JP3405275B2 - EPMA determination method for fine substances having the same constituent elements but different composition ratios - Google Patents
EPMA determination method for fine substances having the same constituent elements but different composition ratiosInfo
- Publication number
- JP3405275B2 JP3405275B2 JP20073899A JP20073899A JP3405275B2 JP 3405275 B2 JP3405275 B2 JP 3405275B2 JP 20073899 A JP20073899 A JP 20073899A JP 20073899 A JP20073899 A JP 20073899A JP 3405275 B2 JP3405275 B2 JP 3405275B2
- Authority
- JP
- Japan
- Prior art keywords
- alfe
- relative
- ray
- constituent elements
- substance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000126 substance Substances 0.000 title claims description 59
- 238000000034 method Methods 0.000 title claims description 40
- 239000000470 constituent Substances 0.000 title claims description 37
- 238000004453 electron probe microanalysis Methods 0.000 title claims description 30
- 239000000203 mixture Substances 0.000 title claims description 15
- 239000002245 particle Substances 0.000 claims description 58
- 229910052782 aluminium Inorganic materials 0.000 claims description 42
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 29
- 238000010894 electron beam technology Methods 0.000 claims description 23
- 238000000342 Monte Carlo simulation Methods 0.000 claims description 16
- 229910052742 iron Inorganic materials 0.000 claims description 15
- 239000012528 membrane Substances 0.000 claims description 12
- 238000011002 quantification Methods 0.000 claims description 11
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 238000004445 quantitative analysis Methods 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 48
- 239000000523 sample Substances 0.000 description 45
- 238000005259 measurement Methods 0.000 description 26
- 238000004364 calculation method Methods 0.000 description 24
- 238000010521 absorption reaction Methods 0.000 description 21
- 150000001875 compounds Chemical class 0.000 description 21
- 239000011888 foil Substances 0.000 description 16
- 229910016570 AlCu Inorganic materials 0.000 description 12
- 238000000605 extraction Methods 0.000 description 12
- 230000001133 acceleration Effects 0.000 description 11
- 239000003990 capacitor Substances 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 9
- 239000013618 particulate matter Substances 0.000 description 8
- 150000004767 nitrides Chemical class 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 150000001247 metal acetylides Chemical class 0.000 description 6
- 239000004810 polytetrafluoroethylene Substances 0.000 description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 238000012216 screening Methods 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 150000003568 thioethers Chemical class 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 238000001803 electron scattering Methods 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 238000005530 etching Methods 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 239000004143 Partial polyglycerol esters of polycondensed fatty acids of castor oil Substances 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- DIZZIOFQEYSTPV-UHFFFAOYSA-N [I].CO Chemical compound [I].CO DIZZIOFQEYSTPV-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 235000019445 benzyl alcohol Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 238000007417 hierarchical cluster analysis Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910005347 FeSi Inorganic materials 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- MKPBFDNRQBVZQZ-UHFFFAOYSA-N [Br].COC(C)=O Chemical compound [Br].COC(C)=O MKPBFDNRQBVZQZ-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000004149 tartrazine Substances 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
- Sampling And Sample Adjustment (AREA)
Description
【0001】[0001]
【発明の属する技術分野】この発明は、測定対象に電子
線を照射し、その測定対象から放射される特性X線の元
素を定性又は定量するエレクトロン・プローブ・マイク
ロアナライザー(Electron probe microanalyser; 以下
「EPMA」と称する)による定量法に係り、特に、例
えば電解コンデンサー用アルミ箔中のAlFe晶出粒子や、
エアサンプラーで捕集された大気浮遊粒子状物質や、鉄
鋼中の炭化物、窒化物、硫化物等のように、測定対象が
同じ2種以上の構成元素を含むと共にその元素組成比が
異なり、かつ、電子線照射時における特性X線発生領域
より小さい複数の微小物質を定量するのに適したEPM
A定量法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron probe microanalyser (hereinafter referred to as "electron probe microanalyser") for irradiating a measuring object with an electron beam and qualifying or quantifying the elements of characteristic X-rays emitted from the measuring object. EPMA ”), especially, for example, AlFe crystallized particles in aluminum foil for electrolytic capacitors,
Airborne particulate matter collected by an air sampler, and carbides, nitrides, sulfides, etc. in iron and steel, which contain two or more constituent elements that are the same as the object to be measured, and their elemental composition ratios differ, and , EPM suitable for quantifying a plurality of minute substances smaller than the characteristic X-ray generation region during electron beam irradiation
A Quantitative method.
【0002】[0002]
【従来の技術】例えば、高純度アルミニウム(99.9
%以上)を基材とする電解コンデンサー用アルミ箔中に
は、微量ではあるが不純物として鉄(Fe)、シリコン
(Si)、銅(Cu)等が含まれており、Feは主としてAl
Fe晶出粒子(Al6 Fe、Al3 Fe、AlFe、AlFe3 )やAlFeSi
晶出粒子(α−AlFeSi、β−AlFeSi)として存在し、ま
た、CuはAlCu晶出粒子(Al2 Cu、AlCu)として存在す
ることが知られている。2. Description of the Related Art For example, high-purity aluminum (99.9)
% Or more) as the base material, the aluminum foil for electrolytic capacitors contains iron (Fe), silicon (Si), copper (Cu), etc. as impurities, albeit in a small amount, and Fe is mainly Al.
Fe crystallized particles (Al 6 Fe, Al 3 Fe, AlFe, AlFe 3 ) and AlFeSi
It is known that it exists as crystallized particles (α-AlFeSi, β-AlFeSi), and Cu exists as AlCu crystallized particles (Al 2 Cu, AlCu).
【0003】そして、これらの晶出粒子は、それがAlFe
晶出粒子であるか、AlFeSi晶出粒子であるか、あるいは
AlCu晶出粒子であるかによりアルミ箔の電解コンデンサ
ー用としてのアルミ箔のエッチング特性や静電容量等の
品質特性に影響を与えるほか、AlFe晶出粒子がAl6 Fe、
Al3 Fe、AlFe、AlFe3 の何れか又はその割合により、ま
た、AlFeSi晶出粒子がα−AlFeSi、β−AlFeSiの何れか
又はその割合により、更には、AlCu晶出粒子がAl2 Cu、
AlCuの何れか又はその割合により、アルミ箔の電解コン
デンサー用としてのエッチング特性や静電容量等の品質
特性に少なからず影響を与えると考えられる。And these crystallized particles are
Crystallized particles, AlFeSi crystallized particles, or
Depending on whether it is AlCu crystallized particles, it affects the etching characteristics of aluminum foil for electrolytic capacitors of aluminum foil, quality characteristics such as capacitance, and AlFe crystallized particles are Al 6 Fe,
Al 3 Fe, AlFe, any one of AlFe 3 , or a ratio thereof, and AlFeSi crystallized particles are α-AlFeSi, β-AlFeSi, or a ratio thereof, and further, AlCu crystallized particles are Al 2 Cu,
It is considered that any one or the proportion of AlCu has a considerable influence on the etching characteristics of the aluminum foil for electrolytic capacitors and quality characteristics such as capacitance.
【0004】そこで、従来においても、このアルミ箔の
エッチング特性や静電容量等の品質特性を改善するため
に、試料を熱フェノールに溶解し、次いでベンジルアル
コールで希釈し、得られた溶液をポリテトラフルオロエ
チレン(PTFE)製フィルターで濾過して不溶性の晶
出粒子をフィルターで捕捉し(即ち、フェノール法:BU
NSEKI KAGAKU, Vol.33, pp.E495-E498, 1984)、これを
X線回折法(XRD)で同定したり、蛍光X線で元素分
析を行なっている。Therefore, in the past, in order to improve the etching characteristics and the quality characteristics such as capacitance of the aluminum foil, the sample was dissolved in hot phenol and then diluted with benzyl alcohol, and the obtained solution was diluted with polyphenol. Filtered with a filter made of tetrafluoroethylene (PTFE) to capture insoluble crystallized particles with the filter (that is, phenol method: BU
NSEKI KAGAKU, Vol.33, pp.E495-E498, 1984), which is identified by an X-ray diffraction method (XRD), and elemental analysis is performed by fluorescent X-rays.
【0005】しかしながら、このXRD法においては、
晶出粒子の同定を行なうために測定試料として少なくと
も数mg程度は必要であり、電解コンデンサー用アルミ
箔のような高純度アルミニウム中に極微量含まれる不純
物の晶出粒子を同定可能な程度まで集めるには多大な労
力と時間とを必要とし、また、例えばAlFe晶出粒子であ
ると同定されても、このAlFe晶出粒子の化合物別の存在
比率が既知の標準試料の作成が困難であるため、それら
の積分回折強度からAlFe晶出粒子の化合物別の存在比率
を正確に測定することはできない。また、蛍光X線にお
いても、測定試料としては数mgあれば足りるが、元素
分析であるために化合物別の特定はできない。However, in this XRD method,
At least a few mg is required as a measurement sample to identify crystallized particles, and crystallized particles of impurities contained in a very small amount in high-purity aluminum such as aluminum foil for electrolytic capacitors are collected to the extent that they can be identified. Requires a lot of labor and time, and even if it is identified as, for example, AlFe crystallized particles, it is difficult to prepare a standard sample in which the existing ratio of each AlFe crystallized particle by compound is known. , It is not possible to accurately measure the abundance ratio of AlFe crystallized particles for each compound from their integrated diffraction intensities. Also, with fluorescent X-rays, a few mg is sufficient as a measurement sample, but since it is an elemental analysis, it cannot be specified for each compound.
【0006】また、例えばPTFEタイプT100A型
メンブランフィルター(孔径1.0μm)を用いてエア
サンプラーにより大気浮遊粒子状物質を捕集し、この粒
子状物質についてEPMAにより種々の金属元素の特性
X線強度(Kα)を測定し、その結果を階層的クラスタ
ー分析法(Median法)や非階層的クラスター分析法(Se
ed法)で解析し、粒子状物質の起源解析をしたり(BUNS
EKI KAGAKU, Vol.38,pp.515-521, 1989)や、鉄鋼中の
炭化物、窒化物、硫化物等について、非水溶媒系電解液
定電位電解抽出分離分析法、酸溶解抽出分離分析法、ヨ
ウ素−メタノールや臭素−酢酸メチル等を用いるハロゲ
ン溶解抽出分離分析法等の手法で試料のマトリックスを
選択的に溶解し、炭化物、窒化物、硫化物等を分離し、
EPMAで分析すること(金属学会編「金属便覧第5
版」平成2年3月31日改訂第488〜493頁)が知
られている。Further, for example, a PTFE type T100A type membrane filter (pore size 1.0 μm) is used to collect airborne particulate matter by an air sampler, and the characteristic X-ray intensities of various metal elements are collected by EPMA for the particulate matter. (Kα) is measured, and the result is analyzed by the hierarchical cluster analysis method (Median method) or non-hierarchical cluster analysis method (Se).
ed method) to analyze the origin of particulate matter (BUNS
EKI KAGAKU, Vol.38, pp.515-521, 1989) and carbides, nitrides, sulfides, etc. in steel, non-aqueous solvent-based electrolyte potentiostatic electrolysis extraction separation analysis method, acid dissolution extraction separation analysis method , Iodine-methanol or bromine-by using a method such as halogen dissolution extraction separation analysis method using methyl acetate to selectively dissolve the matrix of the sample and separate the carbide, nitride, sulfide, etc.,
Analyzing with EPMA (Metals Handbook 5
Edition ", revised March 31, 1990, pages 488 to 493).
【0007】しかしながら、これらの大気浮遊粒子状物
質や、鉄鋼中の炭化物、窒化物、硫化物等の分析におい
ても、同じ構成元素を含んでその元素組成比が異なるよ
うな微小物質を定量できるまでには至っておらず、ま
た、その形状やサイズ、更にはその分布を調べることも
困難であるという問題がある。However, even in the analysis of these airborne particulate matter and carbides, nitrides, sulfides, etc. in steel, it is possible to quantify minute substances containing the same constituent elements but having different elemental composition ratios. However, there is a problem that it is difficult to examine its shape and size, and further its distribution.
【0008】[0008]
【発明が解決しようとする課題】そこで、本発明者ら
は、電解コンデンサー用アルミ箔中のAlFe晶出粒子や、
エアサンプラーで捕集された大気浮遊粒子状物質、更に
は鉄鋼中の炭化物、窒化物、硫化物等のように、同じ構
成元素を含んでその元素組成比が異なり、しかも、電子
線照射時における特性X線発生領域より小さい複数の微
小物質を定量することができるEPMA定量法について
鋭意検討した結果、微小物質を構成する2種の構成元素
からの特性X線強度を測定し、測定された特性X線強度
からこれら2種の構成元素の相対X線強度を求め、得ら
れた各相対X線強度からこれら2種の構成元素の相対X
線強度比を算出し、この微小物質における2種の構成元
素の相対X線強度比を、モンテカルロシミュレーション
法により求めた分別判定のための同じ2種の構成元素の
相対X線強度比の閾値と比較して微小物質の分別判定を
行ない、この分別判定の結果から微小物質の定量を行う
ことにより、フィルター上に捕捉された微小物質が極め
て微量であってもEPMAにより正確に定量できること
を見出し、本発明を完成した。Therefore, the present inventors have proposed AlFe crystallized particles in aluminum foil for electrolytic capacitors,
Airborne particulate matter collected by an air sampler, and further, such as carbides, nitrides, and sulfides in iron and steel, containing the same constituent elements and having different elemental composition ratios, moreover, at the time of electron beam irradiation As a result of diligent study on an EPMA quantification method capable of quantifying a plurality of minute substances smaller than the characteristic X-ray generation region, the characteristic X-ray intensities from two kinds of constituent elements constituting the minute substance are measured, and the measured characteristics are measured. The relative X-ray intensities of these two kinds of constituent elements were obtained from the X-ray intensities, and the relative X-rays of these two kinds of constituent elements were calculated from the obtained relative X-ray intensities.
The line intensity ratio is calculated, and the relative X-ray intensity ratio of the two constituent elements in this minute substance is used as a threshold value of the relative X-ray intensity ratio of the same two constituent elements for the classification determination obtained by the Monte Carlo simulation method. By conducting a classification determination of the minute substances by comparison, and by quantifying the minute substances from the results of this classification determination, it was found that even if the amount of the minute substances captured on the filter is extremely small, it can be accurately quantified by EPMA, The present invention has been completed.
【0009】従って、本発明の目的は、同じ2種以上の
構成元素を含むと共にその元素組成比が異なり、かつ、
電子線照射時における特性X線発生領域より小さい複数
の微小物質をEPMAで実用可能な程度に正確に定量す
ることができるEPMA定量法を提供することにある。Therefore, an object of the present invention is to include the same two or more kinds of constituent elements and to have different elemental composition ratios, and
It is an object of the present invention to provide an EPMA quantification method capable of accurately quantifying a plurality of minute substances smaller than the characteristic X-ray generation region at the time of electron beam irradiation to the extent practical with EPMA.
【0010】また、本発明の他の目的は、例えば電解コ
ンデンサー用アルミ箔のように、高純度のアルミニウム
基材中に微量存在するAlFe晶出粒子をEPMAにより定
量し、その化合物(Al6 Fe、Al3 Fe、AlFe、AlFe3 )別
の存在比率を確認することができるアルミニウム基材中
のAlFe晶出粒子のEPMA定量法を提供することにあ
る。Another object of the present invention is to quantify AlFe crystallized particles, which are present in a high-purity aluminum base material in a trace amount, such as an aluminum foil for electrolytic capacitors, by EPMA, and to analyze the compound (Al 6 Fe). , Al 3 Fe, AlFe, AlFe 3 ), the EPMA quantification method of AlFe crystallized particles in an aluminum substrate can be confirmed.
【0011】[0011]
【課題を解決するための手段】すなわち、本発明は、少
なくとも同じ2種の構成元素を含むと共にその元素組成
比が異なり、かつ、電子線照射時における特性X線発生
領域より小さい複数の微小物質をEPMAで定量するE
PMA定量法であり、測定対象の微小物質をフィルター
上に捕捉し、この捕捉した微小物質に電子線を照射し、
電子線照射により励起した2種の構成元素からの特性X
線強度を測定し、測定された特性X線強度からこれら2
種の構成元素の相対X線強度を求め、得られた各相対X
線強度からこれら2種の構成元素の間の相対X線強度比
を算出し、この微小物質における2種の構成元素の相対
X線強度比を、モンテカルロシミュレーション法により
求めた分別判定のための同じ構成元素の相対X線強度比
の閾値と比較して微小物質の分別判定を行ない、この分
別判定の結果から微小物質の定量を行うことを特徴とす
る同じ構成元素を有して組成比の異なる微小物質のEP
MA定量法である。That is, according to the present invention, a plurality of minute substances containing at least the same two kinds of constituent elements, different in their elemental composition ratios, and smaller than the characteristic X-ray generation region during electron beam irradiation. E with EPMA
This is a PMA quantification method, in which a fine substance to be measured is captured on a filter, and the captured fine substance is irradiated with an electron beam,
Characteristic X from two constituent elements excited by electron beam irradiation
The line intensity is measured, and these 2 are calculated from the measured characteristic X-ray intensity.
The relative X-ray intensities of the constituent elements of the species were obtained, and the respective relative X-rays obtained
The relative X-ray intensity ratio between these two types of constituent elements was calculated from the line intensities, and the relative X-ray intensity ratio of the two types of constituent elements in this minute substance was determined by the Monte Carlo simulation method. Differentiating composition ratios by having the same constituent element characterized by performing a classification judgment of a minute substance by comparing with a threshold value of the relative X-ray intensity ratio of the constituent element and quantifying the minute substance from the result of the classification judgment. EP of minute substances
This is the MA quantitative method.
【0012】また、本発明は、上記の微小物質のEPM
A定量法において、試料が微小物質のAlFe晶出粒子を含
むアルミニウム基材であり、フェノール法によりこの試
料中のAlFe晶出粒子をメンブランフィルター上に捕捉
し、次いでこのメンブランフィルターにAl及びFe以
外の導電性金属の蒸着を行なって導電性を付与し、構成
元素のAlとFeとの間のFe/Al相対X線強度比を求
め、このAlFe晶出粒子のFe/Al相対X線強度比を、モン
テカルロシミュレーション法により求めたAl6 Fe、Al3
Fe、AlFe、及びAlFe3 を分別判定するためのFe/Al相対
X線強度比の閾値と比較し、AlFe晶出粒子中のAl6 Fe、
Al3 Fe、AlFe、及びAlFe3 を分別判定して定量する、ア
ルミニウム基材中のAlFe晶出粒子のEPMA定量法であ
る。The present invention also provides an EPM of the above-mentioned minute substance.
In the A quantitative method, the sample is an aluminum base material containing AlFe crystallized particles of a minute substance, and the AlFe crystallized particles in this sample are captured on a membrane filter by the phenol method, and then other than Al and Fe are collected on this membrane filter. The conductive metal is vapor-deposited to give conductivity, and the Fe / Al relative X-ray intensity ratio between the constituent elements Al and Fe is determined. The Fe / Al relative X-ray intensity ratio of the AlFe crystallized particles is determined. Of Al 6 Fe and Al 3 obtained by the Monte Carlo simulation method.
Fe, AlFe, and AlFe 3 are compared with a threshold value of the Fe / Al relative X-ray intensity ratio for discriminating and judging, and Al 6 Fe in AlFe crystallized particles,
This is an EPMA quantification method for AlFe crystallized particles in an aluminum base material, in which Al 3 Fe, AlFe, and AlFe 3 are separately determined and quantified.
【0013】本発明方法を実施する際に用いるEPMA
としては、波長分散型(WavelengthDispersive X-ray A
nalizer)であっても、また、エネルギー分散型(Energ
y dispersive X-ray Analizer)であってもよい。EPMA used in carrying out the method of the present invention
As a wavelength dispersion type (WavelengthDispersive X-ray A
nalizer), but also energy dispersive (Energ
y dispersive X-ray Analizer).
【0014】本発明方法において、測定対象の微小物質
をフィルター上に捕捉する方法については特に制限はな
く、測定対象の微小物質の種類等に応じて従来公知の方
法を採用することができる。具体的には、例えば、測定
対象の微小物質が高純度アルミニウム中に存在するAlFe
晶出粒子、AlFeSi晶出粒子、又はAlCu晶出粒子等の晶出
粒子である場合には、試料を熱フェノールに溶解し、次
いでベンジルアルコールで希釈し、得られた溶液をPT
FE製メンブランフィルターで濾過して不溶性の晶出粒
子をフィルターで捕捉するフェノール法(BUNSEKI KAGA
KU, Vol.33, pp.E495-E498, 1984)であり、また、測定
対象の微小物質が大気浮遊粒子状物質である場合には、
PTFEタイプT100A型メンブランフィルター(孔
径1.0μm)を用いてエアサンプラーにより捕集する
方法(BUNSEKI KAGAKU, Vol.38,pp515-521 )であり、
更に、測定対象の微小物質が鉄鋼中の炭化物、窒化物、
硫化物等である場合には、非水溶媒系電解液定電位電解
抽出分離分析法、酸溶解抽出分離分析法、ヨウ素−メタ
ノールや臭素−酢酸メチル等を用いるハロゲン溶解抽出
分離分析法等の手法(金属学会編「金属便覧第5版」平
成2年3月31日改訂第488〜493頁)である。In the method of the present invention, the method for capturing the fine substance to be measured on the filter is not particularly limited, and a conventionally known method can be adopted depending on the type of the fine substance to be measured. Specifically, for example, the fine substance to be measured is AlFe present in high-purity aluminum.
In the case of crystallized particles such as crystallized particles, AlFeSi crystallized particles, or AlCu crystallized particles, the sample is dissolved in hot phenol and then diluted with benzyl alcohol, and the obtained solution is PT.
Phenol method (BUNSEKI KAGA) to filter insoluble crystallized particles by filtration with FE membrane filter
KU, Vol.33, pp.E495-E498, 1984), and when the fine substance to be measured is airborne particulate matter,
It is a method (BUNSEKI KAGAKU, Vol.38, pp515-521) of collecting with an air sampler using a PTFE type T100A membrane filter (pore size 1.0 μm),
Furthermore, the minute substances to be measured are carbides and nitrides in steel,
In the case of sulfide, etc., non-aqueous solvent system electrolyte potentiostatic electrolysis extraction separation analysis method, acid dissolution extraction separation analysis method, halogen dissolution extraction separation analysis method using iodine-methanol or bromine-methyl acetate etc. ("Metals Handbook, 5th Edition," edited by the Institute of Metals, March 31, 1990, revised pages 488-493).
【0015】ここで用いられる微小物質を捕捉するため
のフィルターについては、それが導電性のものであって
も非導電性のものであってもよく、また、この孔径につ
いては予測される微小物質の大きさを考慮して確実にそ
の微小物質を捕捉できる大きさのものであればよい。例
えば、測定対象の微小物質が高純度アルミニウム中に存
在するAlFe晶出粒子、AlFeSi晶出粒子、又はAlCu晶出粒
子等の晶出粒子である場合には孔径0.1μm程度のP
TFE製メンブランフィルターが用いられ、また、測定
対象の微小物質が大気浮遊粒子状物質である場合には孔
径1.0μm程度のPTFE製メンブランフィルターが
用いられ、更に、測定対象の微小物質が鉄鋼中の炭化
物、窒化物、硫化物等である場合には孔径0.2μm程
度のPTFE製メンブランフィルターが用いられる。The filter used for trapping the fine substance used herein may be a conductive substance or a non-conductive substance, and the pore size thereof is expected to be a minute substance. Any size may be used as long as it can reliably capture the minute substance in consideration of the size. For example, when the fine substance to be measured is crystallized particles such as AlFe crystallized particles, AlFeSi crystallized particles, or AlCu crystallized particles present in high-purity aluminum, P with a pore diameter of about 0.1 μm is used.
A TFE membrane filter is used, and when the measurement target is a particulate matter in the air, a PTFE membrane filter with a pore size of about 1.0 μm is used. In the case of the above-mentioned carbides, nitrides, sulfides, etc., a PTFE membrane filter having a pore diameter of about 0.2 μm is used.
【0016】そして、もし用いるフィルターが導電性で
ある場合には、この導電性フィルターを構成する元素
が、測定対象の微小物質を構成し、電子線を照射して特
性X線強度を測定する対象の2種の構成元素以外の元素
である必要があり、また、もし用いるフィルターが有機
質等の非導電性である場合には、電子線を照射して2種
の構成元素の特性X線強度を測定する前に、この非導電
性フィルターに上記2種の構成元素以外の金属元素を蒸
着して導電性を付与するのがよい。If the filter used is electrically conductive, the elements constituting the electrically conductive filter form the minute substance to be measured and are irradiated with an electron beam to measure the characteristic X-ray intensity. It is necessary to be an element other than the above two constituent elements, and if the filter used is non-conductive such as an organic substance, the characteristic X-ray intensities of the two constituent elements are irradiated by electron beam irradiation. Prior to measurement, it is preferable to vapor-deposit a metal element other than the above-mentioned two kinds of constituent elements on this non-conductive filter to impart conductivity.
【0017】また、EPMAによる特性X線強度の測定
のための加速電圧、試料吸収電流、計測時間等の電子線
照射条件は、測定対象となる微小物質の種類やその微小
物質を構成する2種の構成元素の種類、更にはフィルタ
ーの種類等を考慮し、微小物質を判別するのに必要な分
解能が得られる最小限の試料吸収電流を確保できるよう
に決定される。The electron beam irradiation conditions such as acceleration voltage, sample absorption current, and measurement time for measuring the characteristic X-ray intensity by EPMA are the types of the minute substances to be measured and the two types of the minute substances. In consideration of the types of constituent elements, the type of filter, and the like, it is determined so that the minimum sample absorption current that can obtain the resolution necessary for discriminating a minute substance can be secured.
【0018】更に、分別判定のための2種の構成元素の
間の相対X線強度比の閾値は、電子線軌跡シミュレーシ
ョンをモンテカルロ法に従って行ない、このモンテカル
ロシミュレーションの結果を基に決定する。Further, the threshold value of the relative X-ray intensity ratio between the two constituent elements for the classification determination is determined based on the result of the Monte Carlo simulation by performing the electron beam trajectory simulation according to the Monte Carlo method.
【0019】そして、このモンテカルロシミュレーショ
ンにおいては、電子の軌跡を折れ線と仮定し、この折れ
線の1つの線分を平均自由行程とし、1つの線分と次の
線分との間の角度(散乱角)はある乱数に対応した確率
とし、更に1つの線分毎に電子のエネルギーが失われる
としてモデルを仮定し、電子のエネルギーロス(Δ
E)の計算式(1)、散乱角度(ω)及び回転角度
(φ)の計算式(2)、平均自由行程の計算式
(3)、電子が元素に衝突する確率(P)の計算式
(4)、電子散乱後の位置の計算式(5)、及び発
生X線量子数の計算式(6)の各計算式に基づいて相対
X線強度の計算が行なわれる。In this Monte Carlo simulation, the trajectory of electrons is assumed to be a polygonal line, and one line segment of this polygonal line is defined as the mean free path, and the angle (scattering angle) between one line segment and the next line segment is defined. ) Is the probability corresponding to a certain random number, and the model is assumed to lose the electron energy for each line segment, and the electron energy loss (Δ
E) calculation formula (1), scattering angle (ω) and rotation angle (φ) calculation formula (2), mean free path calculation formula (3), probability of electron collision with element (P) calculation formula The relative X-ray intensity is calculated based on each of the equations (4), the equation (5) of the position after electron scattering, and the equation (6) of the generated X-ray quantum number.
【0020】電子のエネルギーロス(ΔE)の計算式
(1)
E>6.338Jの時
ΔE[Kev/cm]=7.85×104 ρΣ〔ZC/A・ln(1.16
6 E/J)〕/E
E≦6.338Jの時
ΔE[Kev/cm]=7.85×104 ρΣ(ZC/A/J1/2 )/
1.26E1/2
散乱角度(ω)及び回転角度(φ)の計算式(2)
cos(ω,ラジアン)=1−2βR/(1+β−R)
φ(ラジアン)=2πR
平均自由行程(λ)の計算式(3)
λ[cm]=〔(0.0554E×103 )/ρ〕×{ΣA
C/〔Z1/3 (Z+1)〕}×10-8
〔但し、上記計算式(1)〜(3)において、Eは電子
の所有エネルギー(Kev)を、Aは原子量を、ρは密度(g/
cm3) を、Zは原子番号を、Jはイオン化ポテンシャル
(Kev) を、βはスクリーニングパラメータを、Rは一様
乱数(0〜1)を、πは円周率(3.14)を、また、Cは
組成をそれぞれ示す。〕Calculation formula of electron energy loss (ΔE) (1) When E> 6.338J ΔE [Kev / cm] = 7.85 × 10 4 ρΣ [ZC / A · ln (1.16
6 E / J)] / EE When E ≦ 6.338 J ΔE [Kev / cm] = 7.85 × 10 4 ρΣ (ZC / A / J 1/2 ) /
1.26E 1/2 Calculation formula of scattering angle (ω) and rotation angle (φ) (2) cos (ω, radian) = 1-2βR / (1 + β−R) φ (radian) = 2πR Mean free path (λ) Formula (3) λ [cm] = [(0.0554E × 10 3 ) / ρ] × {ΣA
C / [Z 1/3 (Z + 1)]} × 10 -8 [where E is the electron owning energy (Kev), A is the atomic weight, and ρ is the density in the above formulas (1) to (3). (g /
cm 3 ), Z is atomic number, J is ionization potential
(Kev), β is a screening parameter, R is a uniform random number (0 to 1), π is a circular constant (3.14), and C is a composition. ]
【0021】ここで、イオン化ポテンシャル(J)につ
いては、これまでに文献上、下記の3つの値
J=11.5Z×10-3 [Kev]
J=0.00976Z+0.0588/Z0.19 [Kev]
J={14.0〔1− exp(−0.1Z)〕+75.5
/ZZ/7.5−Z/(100+Z)}Z×10-3 [Kev]
が提案されており、また、スクリーニングパラメータ
(β)については、これまでに文献上、下記の3つの値
β=〔5.44Z2/3 /E〕×10-3
β={3.4Z2/3 /E(1.13+3.76α2 )
1/2 }×10-3
β=〔3.4Z2/3 /E〕×10-3
{但し、α=〔3.69(Z/E)〕×10-3}
が提案されており、更に、散乱角度(ω)の計算式
(2)で用いる一様乱数(R)についても、これまでに
文献上、例えば、中央二乗法(xk+1 =xk 2 の中央の
数桁)、乗算型相合式法〔xk+1 =λ・xk (mod,
M)〕、混合型合同式法〔xk+1 =λ・xk +μ(mod,
M)〕等、多数のものが提案されている。Regarding the ionization potential (J), the following three values J: 11.5Z × 10 −3 [Kev] J = 0.00976Z + 0.0588 / Z 0.19 [Kev] have been hitherto known in the literature. J = {14.0 [1-exp (-0.1Z)] + 75.5
/ Z Z / 7.5 −Z / (100 + Z)} Z × 10 −3 [Kev] has been proposed, and as for the screening parameter (β), the following three values β = [ 5.44Z 2/3 / E] × 10 −3 β = {3.4Z 2/3 /E(1.13+3.76α 2 ).
1/2 } × 10 -3 β = [3.4Z 2/3 / E] × 10 -3 {where α = [3.69 (Z / E)] × 10 -3 } is proposed, Further, regarding the uniform random number (R) used in the calculation formula (2) of the scattering angle (ω), in the literature so far, for example, the central square method (x k + 1 = x k 2 several digits in the center) , Multiplication-type phase combination method [x k + 1 = λ · x k (mod,
M)], mixed congruential method [x k + 1 = λ · x k + μ (mod,
M)] and many others have been proposed.
【0022】従って、上記イオン化ポテンシャル
(J)、スクリーニングパラメータ(β)、及び、散乱
角度(ω)の計算式(2)で用いる一様乱数(R)の選
択については数多くの組み合わせが存在するが、本発明
では、特に、イオン化ポテンシャル(J)についてはJ
=11.5×Z×10-3 [Kev]を、また、スクリーニン
グパラメータ(β)についてはβ=〔5.44Z2/3 /
E〕×10-3を用いるのがよい。更に、散乱角度(ω)
の計算式(2)で用いる一様乱数(R)については、特
に制限はなく、例えば市販の日本電気(株)製パーソナ
ルコンピューター等に内蔵の乱数を用いるのがよい。こ
のイオン化ポテンシャル(J)とスクリーニングパラメ
ータ(β)の組み合わせを採用することにより、モンテ
カルロシミュレーションによる計算結果が標準試料を用
いて測定した実測値とよく一致し、また、計算に入力さ
れる入射電子数をを可及的に減少せしめることができ、
大型コンピューターでなくても計算可能になる。Therefore, there are many combinations for the selection of the ionization potential (J), the screening parameter (β), and the uniform random number (R) used in the calculation formula (2) of the scattering angle (ω). In the present invention, especially regarding the ionization potential (J), J
= 11.5 × Z × 10 −3 [Kev], and for the screening parameter (β) β = [5.44Z 2/3 /
E] × 10 −3 is preferably used. Furthermore, the scattering angle (ω)
The uniform random number (R) used in the calculation formula (2) is not particularly limited, and it is preferable to use a random number built in a commercially available NEC personal computer or the like. By adopting the combination of this ionization potential (J) and the screening parameter (β), the calculation result by Monte Carlo simulation agrees well with the measured value measured using the standard sample, and the number of incident electrons input to the calculation Can be reduced as much as possible,
It can be calculated without using a large computer.
【0023】ここで、多元系化合物に入射した電子がど
の原子と衝突するかは元素の衝突断面積による確率
(P)で決まり、次の計算式(4)で表される。電子
が元素に衝突する確率(P)の計算式(4)
P=(σC/A)/Σ(σC/A)
σ(散乱全断面積)=〔πe4 Z(Z+1)〕/〔4E
n 2 β(β+1)〕
e:電子の電荷(−4.8029×10-10 esu )
En :電子の運動エネルギー(eE/300×103 )
例えば、3元系化合物の場合には次のように行なう。
0<F≦Pa …ならばa元素に衝
突
Pa <F≦Pa +Pb …ならばb元素に衝
突
Pa +Pb <F≦Pa +Pb +Pc …ならばc元素に衝
突
(但し、Fは一様乱数値である。)Here, which atom the electron incident on the multi-component compound collides with is determined by the probability (P) due to the collision cross section of the element, and is represented by the following calculation formula (4). Calculation formula of probability (P) of electron collision with element (4) P = (σC / A) / Σ (σC / A) σ (total scattering cross section) = [πe 4 Z (Z + 1)] / [4E
n 2 β (β + 1)] e: electron charge (−4.8029 × 10 −10 esu) E n : electron kinetic energy (eE / 300 × 10 3 ) For example, in the case of a ternary compound, Do so. If 0 <F ≦ P a ... Collide with a element P a <F ≦ P a + P b ... Collide with b element P a + P b <F ≦ P a + P b + P c ... Collide with c element ( However, F is a uniform random number value.)
【0024】更に、電子散乱後の位置は次の電子散乱
後の位置の計算式(5)によって計算される。すなわ
ち、試料表面上にX−Y軸をとり、また、深さ方向にZ
軸をとり、原点に入射する電子のn番目の電子の終点位
置を(xn , yn ,zn )とすると、(n+1)番目の
電子の位置を(xn+1 , yn+1 ,zn+1 )は、先ず衝突
によりn番目の位置から(ω,φ)の方向(ω:衝突に
よる入射方向からの散乱角度、φ:回転角度)に散乱さ
れたとし、これを用いて(n+1)番目の電子の位置を
(x, y,z)座標軸に対する方向(θn+1 , ψn+1 )
で表すと、以下のようになる。Further, the position after electron scattering is calculated by the following formula (5) for calculating the position after electron scattering. That is, the X-Y axis is taken on the surface of the sample, and Z in the depth direction.
Taking the axis, and letting the end point position of the nth electron of the electron incident on the origin be (x n , y n , z n ), the position of the (n + 1) th electron is (x n + 1 , y n + 1 , Z n + 1 ) is first scattered by the collision in the direction (ω, φ) from the n-th position (ω: scattering angle from the incident direction due to collision, φ: rotation angle), and The position of the (n + 1) th electron is the direction (θ n + 1 , ψ n + 1 ) with respect to the (x, y, z) coordinate axis.
It can be expressed as follows.
【0025】電子散乱後の位置の計算式(5)
cos(θn+1)=cos(θn ) cos(ω)-sin(θn ) sin(ω) co
s(φ)
sin(ψn+1)=Asin(ψn ) +Bcos(ψn )
cos(ψn+1)=Acos(ψn ) −Bsin(ψn )
A=[ cos(ω)-cos(θn ) cos(θn+1)] /[ sin(θn )
sin(θn+1)]
B=sin(φ) sin(ω) /sin(θn+1)
xn+1 =xn +λsin(θn+1)cos(ψn+1)×104 (μ
m)
yn+1 =yn +λsin(θn+1)sin(ψn+1)×104 (μ
m)
zn+1 =zn +λcos(θn+1)×104 (μm)Calculation formula of position after electron scattering (5) cos (θ n + 1 ) = cos (θ n ) cos (ω) -sin (θ n ) sin (ω) co
s (φ) sin (ψ n + 1) = Asin (ψ n) + Bcos (ψ n) cos (ψ n + 1) = Acos (ψ n) -Bsin (ψ n) A = [cos (ω) -cos (θ n ) cos (θ n + 1 )] / [sin (θ n )
sin (θ n + 1 )] B = sin (φ) sin (ω) / sin (θ n + 1 ) x n + 1 = x n + λ sin (θ n + 1 ) cos (ψ n + 1 ) × 10 4 (Μ
m) y n + 1 = y n + λ sin (θ n + 1 ) sin (ψ n + 1 ) × 10 4 (μ
m) z n + 1 = z n + λcos (θ n + 1 ) × 10 4 (μm)
【0026】そして、エネルギーEの電子が試料内の距
離λにおいて発生する発生X線量子数Iの計算は、次の
発生X線量子数の計算式(6)によって計算され、こ
の計算は入射された電子のエネルギーが元素の励起電圧
より低くなるまで繰り返して行なわれ、X線量子数は散
乱後との積算として計算される。発生X線量子数の計
算式(6)
I=NA ρQ(E)WK Cλ/A
NA :アボガドロ数(6.02×1023)
A:原子量
ρ:密度(g/cm3)
Q(E):イオン化断面積
Q(E)・Ek 2 =7.92×10-20 /U・ln
(U)
U=E/Ek
Ek :元素の励起電圧 [Kev]
Wk :蛍光収率〔Wk =α4 /(1+α4 )〕
α=−0.0217+0.0332Z−1.14Z3 ×
10-6
X線吸収後のX線量子数の計算
I1 =I exp(−μρd)
μ:X線質量吸収係数
d:X線の通過距離(cm)Then, the calculation of the generated X-ray quantum number I in which electrons of energy E are generated at the distance λ in the sample is calculated by the following calculation formula (6) of the generated X-ray quantum number, and this calculation is incident. It is repeatedly performed until the energy of the electron becomes lower than the excitation voltage of the element, and the X-ray quantum number is calculated as an integration with that after scattering. Calculation formula of generated X-ray quantum number (6) I = N A ρQ (E) W K Cλ / A N A : Avogadro's number (6.02 × 10 23 ) A: Atomic weight ρ: Density (g / cm 3 ) Q (E): Ionization cross section Q (E) · E k 2 = 7.92 × 10 −20 / U · ln
(U) U = E / E k E k : Excitation voltage of element [Kev] W k : Fluorescence yield [W k = α 4 / (1 + α 4 )] α = -0.0217 + 0.0332Z-1.14Z 3 ×
Calculation of X-ray quantum number after 10 −6 X-ray absorption I 1 = I exp (−μρd) μ: X-ray mass absorption coefficient d: X-ray passage distance (cm)
【0027】微小物質における2種の構成元素の相対X
線強度は、入射電子数を同じにして試料から得られるX
線量子数と100%試料から得られるX線量子数との比
として算出され、更に、得られたこれら2種の構成元素
の相対X線強度から微小物質におけるこれら2種の構成
元素の間における相対X線強度比が計算され、この相対
X線強度比を基に微小物質を分別判定するための相対X
線強度比の閾値が決定される。Relative X of two constituent elements in a minute substance
The line intensity is X obtained from the sample with the same number of incident electrons.
Calculated as the ratio of the line quantum number and the X-ray quantum number obtained from a 100% sample, and further, from the obtained relative X-ray intensities of these two constituent elements, between these two constituent elements in the minute substance The relative X-ray intensity ratio is calculated, and the relative X-ray intensity ratio is used to sort and determine the minute substances based on this relative X-ray intensity ratio.
A line intensity ratio threshold is determined.
【0028】[0028]
【発明の実施の形態】以下、高純度アルミニウムからな
る電解コンデンサー用アルミ箔中におけるAlFe晶出粒子
の化合物別の存在比率を波長分散型EPMA(島津製作
所製EPMA−8705;X線取出角度:52.5°)
により定量する場合の実施例に基づいて、本発明の好適
な実施の形態を説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the abundance ratio of AlFe crystallized particles by compound in an aluminum foil for electrolytic capacitors made of high-purity aluminum is determined by a wavelength dispersion type EPMA (Shimadzu EPMA-8705; X-ray extraction angle: 52). .5 °)
A preferred embodiment of the present invention will be described based on an example in the case of quantifying by.
【0029】〔測定試料の調製(フェノール法によるAl
Fe晶出粒子の捕捉)〕300mlフラスコに120ml
のフェノールを仕込み、約1分間160℃に加熱して水
分を除去し、次いで0.2〜0.3gの試料アルミ箔を
細かに千切ってフラスコ中に投入し、還流冷却器を取り
付けて2〜3分程度加熱して試料アルミ箔をフェノール
に溶解せしめ、次いで80mlのベンジルアルコールを
加えて室温まで冷却し、得られた溶液を遠心管に移して
遠心分離(7000rpm)して上澄み液を除去し、遠
心管にベンジルアルコールを加えて沈殿物を再度分散さ
せた後に再び遠心分離(7000rpm)して上澄み液
を除去し、その後にメタノールを加えてPTFE製メン
ブランフィルター(孔径0.1μm)により濾過し、更
にメタノールで洗浄してこのフィルター上にAlFe晶出粒
子を捕捉した。[Preparation of measurement sample (Al by phenol method
Capture of Fe crystallized particles)] 120 ml in a 300 ml flask
Of phenol, heated to 160 ° C. for about 1 minute to remove water, and then 0.2 to 0.3 g of sample aluminum foil was finely shredded and put into a flask, and a reflux condenser was attached. Heat the sample for about 3 minutes to dissolve the sample aluminum foil in phenol, then add 80 ml of benzyl alcohol and cool to room temperature. Transfer the resulting solution to a centrifuge tube and centrifuge (7000 rpm) to remove the supernatant. Then, add benzyl alcohol to the centrifuge tube to disperse the precipitate again, centrifuge again (7000 rpm) to remove the supernatant, and then add methanol and filter with a PTFE membrane filter (pore size 0.1 μm). Then, it was washed with methanol to capture AlFe crystallized particles on this filter.
【0030】次に、このAlFe晶出粒子を捕捉したフィル
ターに対してイオンスパッター〔日立(株)製E102
イオンスパッター〕により白金(Pt)蒸着を行い、PT
FE製メンブランフィルターに導電性を付与した。この
白金蒸着の際の白金蒸着量は、予め白金蒸着量を変化さ
せてEPMAにより実際に特性X線強度を測定し、この
EPMAによる特性X線強度の測定における電子線照射
条件(加速電圧、試料吸収電流、計測時間等)について
最適な条件が得られるように、経験的に決定された。Next, an ion sputterer [E102 manufactured by Hitachi, Ltd.] was applied to the filter that captured the AlFe crystallized particles.
Ion sputtering] to deposit platinum (Pt) and PT
Conductivity was imparted to the FE membrane filter. The platinum vapor deposition amount at the time of platinum vapor deposition was changed by changing the platinum vapor deposition amount in advance to actually measure the characteristic X-ray intensity by EPMA, and the electron beam irradiation conditions (acceleration voltage, sample It was determined empirically so that the optimum conditions for absorption current, measurement time, etc.) could be obtained.
【0031】〔モンテカルロシミュレーションの検証〕
先ず、モンテカルロ法による電子線軌跡シミュレーショ
ン(モンテカルロシミュレーション)において、その電
子のエネルギーロス(ΔE)の計算式(1)、散乱角度
(ω)の計算式(2)、及び平均自由行程の計算式
(3)におけるイオン化ポテンシャル(J)、スクリー
ニングパラメータ(β)、及び、散乱角度(ω)の計算
式(2)で用いる一様乱数(R)については、多くの試
行錯誤とバルク標準試料の測定や既知薄膜の測定の結果
に基づいて、J=11.5×Z×10 -3 [Kev]、及びβ
=〔5.44Z2/3 /E〕×10-3、並びにパーソナル
コンピューターN88BASIC〔日本電気(株)製〕
に内蔵の一様乱数(R)を採用し、電子線軌跡及びX線
発生プログラムを構成した。[Verification of Monte Carlo Simulation]
First, a simulation of electron beam trajectories by the Monte Carlo method
(Monte Carlo simulation)
Energy loss (ΔE) calculation formula (1), scattering angle
Calculation formula (2) of (ω) and calculation formula of mean free path
Ionization potential (J) in (3), screen
Calculation of training parameter (β) and scattering angle (ω)
Many trials have been conducted for the uniform random number (R) used in the equation (2).
Error and result of measurement of bulk standard sample and measurement of known thin film
Based on J = 11.5 × Z × 10 -3 [Kev], and β
= [5.44Z2/3/ E] × 10-3, And personal
Computer N88 BASIC [manufactured by NEC Corporation]
The uniform random number (R) built into the
Configured the generator.
【0032】また、フィルター上に捕捉されたアルミ箔
中のAlFe晶出粒子のような微小物質から測定され、求め
られるFe/Al相対X線強度比は、特性X線発生領域より
充分大きなバルク試料から測定されるFe/Al相対X線強
度比とは異なることが予想される。そこで、分析領域に
大きな影響を与える電子線の加速電圧については、加速
電圧が15kVより低いと反射電子像の分解能が悪く、
フィルター上のAlFe晶出粒子のように空中固定された微
小物質を見つけ難くなるので、最低の加速電圧として1
5kVを検討し、また、最大使用可能な加速電圧として
30kVを検討することとした。Further, the Fe / Al relative X-ray intensity ratio measured and determined from minute substances such as AlFe crystallized particles in the aluminum foil captured on the filter is sufficiently larger than the characteristic X-ray generation region in the bulk sample. It is expected that it will be different from the Fe / Al relative X-ray intensity ratio measured from. Therefore, regarding the accelerating voltage of the electron beam that has a large effect on the analysis region, if the accelerating voltage is lower than 15 kV, the resolution of the backscattered electron image is poor,
Since it is difficult to find fine particles fixed in the air like AlFe crystallized particles on the filter, the minimum acceleration voltage is 1
It was decided to study 5 kV and 30 kV as the maximum usable acceleration voltage.
【0033】次に、この電子線軌跡及びX線発生プログ
ラムを検証するため、表1に示す物性値を用い、加速電
圧15kV及び30kVにおける特性X線発生領域より
大きな10μm角のAlFe化合物(Al6 Fe、Al3 Fe、AlF
e、及びAlFe3 )のバルク試料を想定し、各加速電圧1
5kV又は30kVでこの想定試料から発生するAl及
びFeの相対X線強度を求め、次いで得られた各元素の
相対X線強度の値をZAF法で重量%組成に換算し、そ
の結果を理論組成と比較した。結果を表2及び表3に示
す。Next, in order to verify the electron beam locus and the X-ray generation program, the physical property values shown in Table 1 were used, and the AlFe compound (Al 6) having a 10 μm square larger than the characteristic X-ray generation region at the acceleration voltages of 15 kV and 30 kV was used. Fe, Al 3 Fe, AlF
Assuming a bulk sample of e, and AlFe 3 ), each acceleration voltage is 1
The relative X-ray intensities of Al and Fe generated from this assumed sample were obtained at 5 kV or 30 kV, and then the obtained values of the relative X-ray intensities of the respective elements were converted into the weight% composition by the ZAF method. Compared with. The results are shown in Tables 2 and 3.
【0034】[0034]
【表1】 [Table 1]
【0035】[0035]
【表2】 [Table 2]
【0036】[0036]
【表3】 [Table 3]
【0037】上記表2及び表3に示す結果から明らかな
ように、モンテカルロシミュレーションにより求められ
た組成は、理論組成と相対誤差10%以内で良く一致し
ており、このモンテカルロシミュレーションの電子線軌
跡及びX線発生プログラムは使用可能であることが確認
された。As is clear from the results shown in Tables 2 and 3, the composition obtained by Monte Carlo simulation is in good agreement with the theoretical composition within a relative error of 10%. It was confirmed that the X-ray generation program could be used.
【0038】〔電子線の加速電圧〕次に、想定化合物を
直方体と仮定し、電子が入射された平面方向(X,Y)
及び深さ方向(Z)を0.2〜10μmの範囲で変化さ
せ、想定化合物のサイズを微小物質からバルク体まで変
化させたときのFe/Al相対X線強度比を計算し、想定化
合物のサイズが及ぼす影響を調べた。結果を表4〜11
に示す。[Acceleration Voltage of Electron Beam] Next, assuming that the assumed compound is a rectangular parallelepiped, the plane direction (X, Y) in which the electron is incident is assumed.
And the depth direction (Z) is changed in the range of 0.2 to 10 μm, and the Fe / Al relative X-ray intensity ratio is calculated when the size of the assumed compound is changed from the minute substance to the bulk body. The effect of size was investigated. The results are shown in Tables 4-11.
Shown in.
【0039】[0039]
【表4】 [Table 4]
【0040】[0040]
【表5】 [Table 5]
【0041】[0041]
【表6】 [Table 6]
【0042】[0042]
【表7】 [Table 7]
【0043】[0043]
【表8】 [Table 8]
【0044】[0044]
【表9】 [Table 9]
【0045】[0045]
【表10】 [Table 10]
【0046】[0046]
【表11】 [Table 11]
【0047】上記表4〜11に示す結果から明らかなよ
うに、フィルター上に捕捉されたAlFe晶出粒子について
は、その粒子のサイズに依存することなくFe/Al相対X
線強度比により分別判定出来ることが判明した。As is clear from the results shown in Tables 4 to 11, the AlFe crystallized particles trapped on the filter have a Fe / Al relative X value which does not depend on the size of the particles.
It was found that the classification determination can be performed by the line intensity ratio.
【0048】〔試料吸収電流及び計測時間の設定〕X線
強度のカウント数NにはN1/2 の変動があり、真のカウ
ント数をN0 とすると、このカウント数N0 は、一般的
に、N−3N1/2 <N0 <N+3N1/2 の範囲内にある
と推定される。このため、通常の概念で微小物質のX線
強度を測定すると、検出されるX線強度が小さいために
この統計変動の影響が大きく現れることが懸念される。
そこで、この統計変動の影響をできるだけ小さくする必
要があるが、そのための手段としては、試料吸収電流を
多くすること、及び、各測定点の計測時間を長くするこ
とが考えられる。[Setting of Sample Absorption Current and Measurement Time] The count number N of the X-ray intensity has a fluctuation of N 1/2 , and when the true count number is N 0 , this count number N 0 is generally In addition, it is estimated that it is within the range of N-3N 1/2 <N 0 <N + 3N 1/2 . Therefore, when the X-ray intensity of a minute substance is measured by the usual concept, there is a concern that the influence of this statistical variation will appear significantly because the detected X-ray intensity is small.
Therefore, it is necessary to reduce the influence of this statistical fluctuation as much as possible. As a means therefor, it is conceivable to increase the sample absorption current and lengthen the measurement time at each measurement point.
【0049】しかしながら、試料吸収電流は多いほどよ
いが、この試料吸収電流を多くすると電子ビーム径が大
きくなったり、電流の安定性が悪くなる傾向があり、同
一の分析箇所に電子ビームを照射できなくなる場合があ
る。そこで、安定性のよい試料吸収電流と計測時間を決
定するために、実際の試料で調査を行なった。その結
果、加速電圧15kVでは試料吸収電流15nA及び計
測時間10秒、加速電圧30kVでは試料吸収電流5n
A及び計測時間10秒という測定条件で安定した測定が
可能であることが判明した。しかし、フィルター上に捕
捉されている粒子の固定状態により、より多くの試料吸
収電流がとれるのなら、できるだけ多くの試料吸収電流
をとるのがよい。However, the larger the sample absorption current, the better, but if this sample absorption current is increased, the electron beam diameter tends to increase and the current stability tends to deteriorate, so that the same analysis site can be irradiated with the electron beam. It may disappear. Therefore, in order to determine a stable sample absorption current and a measurement time, an actual sample was investigated. As a result, the sample absorption current was 15 nA and the measurement time was 10 seconds when the acceleration voltage was 15 kV, and the sample absorption current was 5 n when the acceleration voltage was 30 kV.
It was found that stable measurement is possible under the measurement conditions of A and measurement time of 10 seconds. However, if a larger sample absorption current can be obtained due to the fixed state of the particles trapped on the filter, it is preferable to take as much sample absorption current as possible.
【0050】〔測定条件(加速電圧、試料吸収電流及び
計測時間)と統計変動〕ここで、上で検討した測定条件
(加速電圧、試料吸収電流及び計測時間)で測定される
特性X線強度の統計変動がFe/Al相対X線強度比に及ぼ
す影響について、表4及び表8に示した想定Al6 Fe化合
物(化合物サイズ;X:0.2μm、Y:0.2μm、
Z:0.2μm)から計算されるFe及びAlの最小の
相対X線強度を用いて検討した。[Measurement Conditions (Acceleration Voltage, Sample Absorption Current and Measurement Time) and Statistical Variation] Here, the characteristic X-ray intensity measured under the measurement conditions (acceleration voltage, sample absorption current and measurement time) examined above Regarding the influence of statistical fluctuation on the Fe / Al relative X-ray intensity ratio, the assumed Al 6 Fe compounds shown in Tables 4 and 8 (compound size; X: 0.2 μm, Y: 0.2 μm,
Z: 0.2 μm) was used for the investigation, using the minimum relative X-ray intensities of Fe and Al.
【0051】結果は、試料吸収電流及び計測時間につい
ての測定条件が上述した値以上であれば、たとえ測定さ
れる特性X線強度に統計変動があっても求められるFe/
Al相対X線強度比の値にはほとんど影響がなく、化合物
の判定を正しく行なうことができることが判明した。The results show that if the measurement conditions for the sample absorption current and the measurement time are equal to or more than the above-mentioned values, Fe / Fe can be obtained even if there is a statistical variation in the measured characteristic X-ray intensity.
It was found that the value of the Al relative X-ray intensity ratio is hardly affected and the compound can be correctly determined.
【0052】以上の結果、この実施例においては、X線
取出角度52.5°の波長分散型EPMAを用いて、加
速電圧15〜30kV、Alに対する試料吸収電流5〜
15nA、及び計測時間10秒の条件で、アルミ箔中の
AlFe晶出粒子の各AlFe化合物(Al6 Fe、Al3 Fe、AlFe、
及びAlFe3 )を表12に示すFe/Al相対X線強度比の変
動範囲で定量できることが判明した。As a result, in this embodiment, the accelerating voltage was 15 to 30 kV, and the sample absorption current was 5 to 5 Al, using the wavelength dispersion type EPMA with the X-ray extraction angle of 52.5 °.
Under conditions of 15 nA and measuring time of 10 seconds,
AlFe compounds of AlFe crystallized particles (Al 6 Fe, Al 3 Fe, AlFe,
And AlFe 3 ) can be quantified in the range of fluctuation of the Fe / Al relative X-ray intensity ratio shown in Table 12.
【0053】[0053]
【表12】 [Table 12]
【0054】〔実測値との比較検討〕モンテカルロシミ
ュレーションにより求められたFe/Al相対X線強度比の
閾値を検証するため、フェノール法で抽出されX線回折
によりAl3Fe 晶出粒子のみが確認されている試料を用
い、この試料から採取したサイズの異なる5個のAl3Fe
晶出粒子を使用し、加速電圧15kV、Alに対する試
料吸収電流15nA、及び計測時間10秒の測定条件で
X線取出角度52.5°の波長分散型EPMAを用いて
FeとAlの特性X線強度を測定し、Fe/Al相対X線強
度比を求めて比較した。結果は、実測値が0.8〜1.
0の範囲であるのに対し、モンテカルロシミュレーショ
ンにより算出された計算値が0.8〜1.3であり、よ
く一致していることが判明した。[Comparison Study with Measured Values] In order to verify the threshold value of the Fe / Al relative X-ray intensity ratio obtained by Monte Carlo simulation, only Al 3 Fe crystallized particles were confirmed by X-ray diffraction extracted by the phenol method. Of the sample, and five different size Al 3 Fe samples taken from this sample
Characteristic X-rays of Fe and Al using crystallized particles, accelerating voltage of 15 kV, sample absorption current to Al of 15 nA, and measurement time of 10 seconds using a wavelength-dispersive EPMA with an X-ray extraction angle of 52.5 °. The intensity was measured, and the Fe / Al relative X-ray intensity ratio was obtained and compared. As a result, the measured value is 0.8-1.
While it was in the range of 0, the calculated value calculated by the Monte Carlo simulation was 0.8 to 1.3, and it was found that they were in good agreement.
【0055】〔電解コンデンサー用アルミ箔中のAlCu晶
出粒子とAlFeSi晶出粒子について〕上記AlFe晶出粒子の
場合と同様にして、高純度アルミニウムからなる電解コ
ンデンサー用アルミ箔中におけるAlCu晶出粒子及びAlFe
Si晶出粒子の化合物別の存在比率を波長分散型EPMA
(島津製作所製EPMA−8705;X線取出角度:5
2.5°)により定量する場合のCu/Al相対X線強度比
及びFe/Si相対X線強度比の閾値をモンテカルロシミュ
レーションにより求めた。[Regarding AlCu Crystallized Particles and AlFeSi Crystallized Particles in Aluminum Foil for Electrolytic Capacitor] Similar to the case of the AlFe crystallized particles, AlCu crystallized particles in the aluminum foil for electrolytic capacitor made of high-purity aluminum. And AlFe
Abundance ratio of Si crystallized particles by compound is determined by wavelength dispersion type EPMA.
(Shimadzu EPMA-8705; X-ray extraction angle: 5
The thresholds of the Cu / Al relative X-ray intensity ratio and the Fe / Si relative X-ray intensity ratio in the case of quantification by 2.5 °) were obtained by Monte Carlo simulation.
【0056】波長分散型EPMAの測定条件について
は、次のように設定した。
加速電圧:15kV
100%のアルミニウムに対する試料吸収電流:15n
A
計測時間:10秒
X線取出角度:52.5°The measurement conditions of the wavelength dispersion type EPMA were set as follows. Accelerating voltage: 15 kV Sample absorption current for aluminum of 100%: 15 n
A Measurement time: 10 seconds X-ray extraction angle: 52.5 °
【0057】また、計算に用いた物性値は表13に示す
通りであり、理論組成と比較した結果を表14及び表1
5に示す。The physical properties used in the calculations are shown in Table 13, and the results of comparison with theoretical compositions are shown in Table 14 and Table 1.
5 shows.
【0058】[0058]
【表13】 [Table 13]
【0059】[0059]
【表14】 [Table 14]
【0060】[0060]
【表15】 [Table 15]
【0061】更に、想定化合物を直方体と仮定し、電子
が入射された平面方向(X,Y)及び深さ方向(Z)を
0.2〜10μmの範囲で変化させ、想定化合物のサイ
ズを微小物質からバルク体まで変化させたときのCu/Al
相対X線強度比及びFe/Si相対X線強度比を入射電子数
150個で計算し、想定化合物のサイズが及ぼす影響を
調べた。結果を表16〜19に示す。Further, assuming that the assumed compound is a rectangular parallelepiped, the plane direction (X, Y) and the depth direction (Z) on which electrons are incident are changed within a range of 0.2 to 10 μm, and the size of the assumed compound is made minute. Cu / Al when changing from substance to bulk body
The relative X-ray intensity ratio and the Fe / Si relative X-ray intensity ratio were calculated with the number of incident electrons of 150, and the influence of the size of the assumed compound was investigated. The results are shown in Tables 16-19.
【0062】[0062]
【表16】 [Table 16]
【0063】[0063]
【表17】 [Table 17]
【0064】[0064]
【表18】 [Table 18]
【0065】[0065]
【表19】 [Table 19]
【0066】以上の結果、AlCu晶出粒子及びAlFeSi晶出
粒子についても、X線取出角度52.5°の波長分散型
EPMAを用いて、加速電圧15kV、Alに対する試
料吸収電流15nA、及び計測時間10秒の条件で、各
AlCu化合物(Al2 Cu、AlCu)及びAlFeSi化合物(α−Al
FeSi、β−AlFeSi)を表20に示すCu/Al相対X線強度
比及びFe/Si相対X線強度比の変動範囲で定量できるこ
とが判明した。As a result, for the AlCu crystallized particles and the AlFeSi crystallized particles, the accelerating voltage of 15 kV, the sample absorption current of 15 nA with respect to Al, and the measuring time were measured by using the wavelength dispersion type EPMA with the X-ray extraction angle of 52.5 °. Under the condition of 10 seconds, each
AlCu compounds (Al 2 Cu, AlCu) and AlFeSi compounds (α-Al
It has been found that FeSi, β-AlFeSi) can be quantified in the fluctuation range of the Cu / Al relative X-ray intensity ratio and the Fe / Si relative X-ray intensity ratio shown in Table 20.
【0067】[0067]
【表20】 [Table 20]
【0068】[0068]
【発明の効果】本発明の微小物質のEPMA定量法によ
れば、同じ2種以上の構成元素を含むと共にその元素組
成比が異なり、かつ、電子線照射時における特性X線発
生領域より小さい複数の微小物質をEPMAで実用可能
な程度に正確に定量することができる。According to the EPMA quantification method for minute substances of the present invention, a plurality of elements containing the same two or more kinds of constituent elements, having different elemental composition ratios, and having a characteristic X-ray generation region smaller than that of the characteristic X-ray generation region during electron beam irradiation. It is possible to accurately quantify the minute substance of EPMA to the extent practical for EPMA.
【0069】また、本発明の微小物質のEPMA定量法
によれば、例えば電解コンデンサー用アルミ箔のよう
に、高純度のアルミニウム基材中に微量存在するAlFe晶
出粒子をEPMAにより定量し、その化合物(Al6 Fe、
Al3 Fe、AlFe、AlFe3 )別の存在比率を確認することが
できる。Further, according to the EPMA quantification method for minute substances of the present invention, a small amount of AlFe crystallized particles present in a high-purity aluminum substrate such as an aluminum foil for electrolytic capacitors is quantified by EPMA, and Compound (Al 6 Fe,
Al 3 Fe, AlFe, AlFe 3 ).
Claims (4)
共にその元素組成比が異なり、かつ、電子線照射時にお
ける特性X線発生領域より小さい複数の微小物質をEP
MAで定量するEPMA定量法であり、測定対象の微小
物質をフィルター上に捕捉し、この捕捉した微小物質に
電子線を照射し、電子線照射により励起した2種の構成
元素からの特性X線強度を測定し、測定された特性X線
強度からこれら2種の構成元素の相対X線強度を求め、
得られた各相対X線強度からこれら2種の構成元素の間
の相対X線強度比を算出し、この微小物質における2種
の構成元素の相対X線強度比を、モンテカルロシミュレ
ーション法により求めた分別判定のための同じ構成元素
の相対X線強度比の閾値と比較して微小物質の分別判定
を行ない、この分別判定の結果から微小物質の定量を行
うことを特徴とする同じ構成元素を有して組成比の異な
る微小物質のEPMA定量法。1. A plurality of minute substances containing at least the same two kinds of constituent elements, having different element composition ratios, and having a smaller characteristic X-ray generation region at the time of electron beam irradiation, are EP.
This is an EPMA quantification method for quantifying by MA, in which a microscopic substance to be measured is captured on a filter, the captured microscopic substance is irradiated with an electron beam, and characteristic X-rays from two constituent elements excited by the electron beam irradiation. The intensity is measured, and the relative X-ray intensity of these two constituent elements is determined from the measured characteristic X-ray intensity,
The relative X-ray intensity ratio between these two kinds of constituent elements was calculated from the obtained relative X-ray intensities, and the relative X-ray strength ratio of the two kinds of constituent elements in this minute substance was determined by the Monte Carlo simulation method. The same constituent element is characterized in that the minute substance is judged to be discriminated by comparing it with the threshold value of the relative X-ray intensity ratio of the same constituent element for the discrimination judgment, and the minute substance is quantified from the result of the discrimination judgment. EPMA determination method for minute substances with different composition ratios.
性フィルターであり、この非導電性フィルターには、電
子線を照射して2種の構成元素の特性X線強度を測定す
る前に、これら2種の構成元素以外の金属元素を蒸着し
て導電性を付与する請求項1に記載の微小物質のEPM
A定量法。2. A filter for trapping a minute substance is a non-conductive filter, which is irradiated with an electron beam to measure the characteristic X-ray intensities of two constituent elements. The EPM of the minute substance according to claim 1, wherein the metallic elements other than the two constituent elements are vapor-deposited to impart conductivity.
A quantitative method.
含まれる試料のマトリックスを形成するマトリックス元
素と同じ元素を含み、この試料を所定の溶剤に溶解して
濾過することによりフィルター上に捕捉される請求項1
又は2に記載の微小物質のEPMA定量法。3. The fine substance to be measured contains the same elements as the matrix elements forming the matrix of the sample containing the fine substance, and the sample is dissolved in a predetermined solvent and filtered to capture it on the filter. Claim 1
Or the EPMA quantification method of the minute substance according to item 2.
ルミニウム基材であり、フェノール法によりこの試料中
のAlFe晶出粒子をメンブランフィルター上に捕捉し、次
いでこのメンブランフィルターにAl及びFe以外の導
電性金属の蒸着を行なって導電性を付与し、構成元素の
AlとFeとの間のFe/Al相対X線強度比を求め、この
AlFe晶出粒子のFe/Al相対X線強度比を、モンテカルロ
シミュレーション法により求めたAl6 Fe、Al3 Fe、AlF
e、及びAlFe3 を分別判定するためのFe/Al相対X線強
度比の閾値と比較し、AlFe晶出粒子中のAl6 Fe、Al3 F
e、AlFe、及びAlFe3 を分別判定して定量する請求項3
に記載の微小物質のEPMA定量法。4. The sample is an aluminum base material containing AlFe crystallized particles of a minute substance, and the AlFe crystallized particles in this sample are captured on a membrane filter by the phenol method, and then other than Al and Fe are collected on the membrane filter. The conductive metal is vapor-deposited to give conductivity, and the Fe / Al relative X-ray intensity ratio between the constituent elements Al and Fe is obtained.
The Fe / Al relative X-ray intensity ratio of AlFe crystallized particles was obtained by Monte Carlo simulation method. Al 6 Fe, Al 3 Fe, AlF
e, and compared with the threshold of the Fe / Al relative X-ray intensity ratio for distinguishing and judging AlFe 3 , and comparing Al 6 Fe and Al 3 F in AlFe crystallized particles
A method for separately determining e, AlFe, and AlFe 3 to quantify them.
EPMA quantification method of the minute substance of statement.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20073899A JP3405275B2 (en) | 1998-10-05 | 1999-07-14 | EPMA determination method for fine substances having the same constituent elements but different composition ratios |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28241298 | 1998-10-05 | ||
JP10-282412 | 1998-10-05 | ||
JP20073899A JP3405275B2 (en) | 1998-10-05 | 1999-07-14 | EPMA determination method for fine substances having the same constituent elements but different composition ratios |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000180393A JP2000180393A (en) | 2000-06-30 |
JP3405275B2 true JP3405275B2 (en) | 2003-05-12 |
Family
ID=26512366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20073899A Expired - Fee Related JP3405275B2 (en) | 1998-10-05 | 1999-07-14 | EPMA determination method for fine substances having the same constituent elements but different composition ratios |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3405275B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007127544A (en) * | 2005-11-04 | 2007-05-24 | Nomura Micro Sci Co Ltd | Method of inspecting foreign matter in semiconductor polishing slurry |
-
1999
- 1999-07-14 JP JP20073899A patent/JP3405275B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000180393A (en) | 2000-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hodoroaba | Energy-dispersive X-ray spectroscopy (EDS) | |
JP5550098B2 (en) | Integrated analysis method for crystals in sediments | |
Hedberg et al. | Improved particle location and isotopic screening measurements of sub-micron sized particles by secondary ion mass spectrometry | |
Pessanha et al. | Comparison of matrix effects on portable and stationary XRF spectrometers for cultural heritage samples | |
WO2010061487A1 (en) | Method for analyzing metallic material | |
Newbury et al. | Measurement of trace constituents by electron-excited X-ray microanalysis with energy-dispersive spectrometry | |
Newbury et al. | Electron-excited X-ray microanalysis at low beam energy: Almost always an adventure! | |
Egerton et al. | An introduction to EELS | |
Han et al. | Quantitative material analysis using secondary electron energy spectromicroscopy | |
Holbrook et al. | An investigation into LA-spICP-ToF-MS uses for in situ measurement of environmental multi-elemental nanoparticles | |
JP3405275B2 (en) | EPMA determination method for fine substances having the same constituent elements but different composition ratios | |
Roomans | Introduction to X‐ray microanalysis in biology | |
JP3409742B2 (en) | EPMA analysis method using Monte Carlo simulation | |
JP2018044829A (en) | Method for preparing particulate/resin-embedded sample for use in surface analysis, method for analyzing sample, and method for evaluating sample preparation condition | |
Emmrich et al. | Scanning transmission helium ion microscopy on carbon nanomembranes | |
Petrosino et al. | Scanning electron microscopy (SEM) in forensic geoscience | |
Egerton | Electron energy-loss spectroscopy for elemental analysis | |
JP2018048951A (en) | Analysis method inside anaerobic/antiposic particle | |
Newbury | Pushing the envelope with SEM/SDD-EDS mapping: X-ray spectrum image mapping in 30 seconds or less, but what are the real limits? | |
JP3424605B2 (en) | EPMA determination method for micro substances with different element composition ratios | |
Goldstein et al. | Quantitative Analysis: The SEM/EDS Elemental Microanalysis k-ratio Procedure for Bulk Specimens, Step-by-Step | |
RU2515131C2 (en) | Method for integrated scintillation investigation of substance with fractional evaporation thereof into plasma | |
Romig | Analytical transmission electron microscopy | |
JP4038154B2 (en) | Method for evaluating inclusions in metal sample, evaluation apparatus, computer program, and computer-readable storage medium | |
JP2001305081A (en) | Epma quantitative analysis method using analytical curve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R154 | Certificate of patent or utility model (reissue) |
Free format text: JAPANESE INTERMEDIATE CODE: R154 |
|
LAPS | Cancellation because of no payment of annual fees |