JP2002189005A - Method for measuring thickness of inter-metallic compound using epma method, and method for measuring solid shape of inter-metallic compound using the same - Google Patents

Method for measuring thickness of inter-metallic compound using epma method, and method for measuring solid shape of inter-metallic compound using the same

Info

Publication number
JP2002189005A
JP2002189005A JP2001306759A JP2001306759A JP2002189005A JP 2002189005 A JP2002189005 A JP 2002189005A JP 2001306759 A JP2001306759 A JP 2001306759A JP 2001306759 A JP2001306759 A JP 2001306759A JP 2002189005 A JP2002189005 A JP 2002189005A
Authority
JP
Japan
Prior art keywords
measurement
thickness
method
metal
ray intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001306759A
Other languages
Japanese (ja)
Inventor
Yoshio Osada
義男 長田
Original Assignee
Nippon Light Metal Co Ltd
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000309251 priority Critical
Priority to JP2000-309251 priority
Application filed by Nippon Light Metal Co Ltd, 日本軽金属株式会社 filed Critical Nippon Light Metal Co Ltd
Priority to JP2001306759A priority patent/JP2002189005A/en
Publication of JP2002189005A publication Critical patent/JP2002189005A/en
Application status is Pending legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To define correspondence between inter-metallic compounds and defects by measuring and estimating the thickness and solid shape of the inter-metallic compounds, in addition to distinguishing them and measuring their plane sizes. SOLUTION: In the method of measuring the thickness and solid shape of the inter- metallic compound containing a plurality of constituent metals by EPMA, one point of measurement or a plurality of points of measurement on the inter-metallic compound are irradiated with an electron beam. Characteristic X-ray intensity excited by the irradiation with the electron beam at each point of measurement from the metal to be measured is measured. The relative X-ray intensity ratio of the metal to be measured at each point of measurement is computed from the measured characteristic X-ray intensity. From the relative X-ray intensity ratio of the metal to be measured at each point of measurement and the relationship between the relative X-ray intensity ratio of the metal to be measured and thickness obtained by the Monte Carlo simulation method, the thickness of the metal to be measured at each point of measurement is obtained or from the distribution of the points of measurement and the thickness at each point of measurement, the solid shape of the inter-metallic compound is measured by this method.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】この発明は、アルミニウム又はアルミニウム合金、シリコン、マグネシウム、鉄等の金属母材やその他の材料中にみられる金属間化合物について、その厚さや立体形状をエレクトロン・プローブ・ TECHNICAL FIELD The present invention is an aluminum or aluminum alloy, silicon, magnesium, for the base metal and other materials intermetallic compounds found in such as iron, electron probe its thickness and three-dimensional shape
マイクロアナライザー(Electron probe microanalyse Micro analyzer (Electron probe microanalyse
r;以下「EPMA」と称する)で測定し、あるいは、推定する金属間化合物の厚さ若しくは立体形状の測定方法に関する。 r; measured by the following referred to as "EPMA"), or to a method of measuring the thickness or three-dimensional shape of the intermetallic compound to estimate.

【0002】 [0002]

【従来の技術】近年、アルミニウム又はアルミニウム合金からなるアルミニウム材等の陽極酸化処理工程でより厳密な製品管理が要求されるようになり、この陽極酸化処理工程で発生する僅かな製品の色ムラやボイドが問題になっている。 In recent years, become more stringent product management of aluminum or anodizing treatment step of the aluminum material or the like made of aluminum alloy is required, Ya color unevenness slight products generated in the anodic oxidation process void is a problem. そして、このような色ムラやボイドといった欠陥が発生する原因の一つとして、例えばアルミニウム材の場合にはこのアルミニウム材中に存在するAl 3 F Then, Al 3 as one of the causes of defects such as such color unevenness and voids are generated, for example, in the case of the aluminum material is present in the aluminum material F
e、Al 6 Fe、α-AlFeSiや、β-AlFeSi、Mg 2 Si、TiB 2等の金属間化合物が挙げられている。 e, Al 6 Fe, and α-AlFeSi, β-AlFeSi, Mg 2 Si, intermetallic compounds such as TiB 2 are mentioned.

【0003】そこで、このような製品の欠陥を防止するために、アルミニウム材等の基材中に存在する金属間化合物を調べることが必要になるが、この調査のためにE [0003] Therefore, in order to prevent defects of such products, but can examine the intermetallic compounds present in the base material of the aluminum material or the like is required, E for this study
PMA、走査型電子顕微鏡等の電子顕微鏡、及び光学顕微鏡等の分析機器が用いられている。 PMA, electron microscopes such as scanning electron microscope, and analysis equipment optical microscope is used.

【0004】これらの分析機器のうち、EPMAは、金属間化合物の識別と同時に、反射電子像や2次電子像により平面サイズ(電子ビームが照射される面)の測定が可能であり、このような金属間化合物の調査に適した手段であると考えられており、本発明者も微小な金属間化合物の識別判定法として“元素組成比の異なる微小物質のEPMA定量法”(特開2000-162,165号公報)及び“同じ構成元素比を有して組成比の異なる微小物質のE [0004] Among these analytical instruments, EPMA simultaneously with the identification of the intermetallic compound, it is possible to measure the planar size (surface which the electron beam is irradiated) by reflection electron image or a secondary electron image, such such are believed to be suitable means to investigate intermetallic compounds, the present inventors also "EPMA determination of different micro-substances of elemental ratio" identification determination method as a fine intermetallic compound (JP 2000- 162, 165 JP) and "E different micro-substances in composition ratio has the same structure element ratio
PMA定量法”(特開2000-180,393号公報)を提案した。 PMA assay proposed "a (JP 2000-180,393).

【0005】また、走査型電子顕微鏡やその他の電子顕微鏡では、付属のエネルギー分散型分析装置により金属間化合物の定性分析が行われ、検出された元素から金属間化合物の推定が可能であるほか、EPMAと同様に、 [0005] In the scanning electron microscope or other electronic microscope, qualitative analysis of the intermetallic compounds is carried out by energy dispersive analyzer comes in addition from detected elements can be estimated intermetallic compound, as with the EPMA,
金属間化合物の平面サイズの測定ができる。 It can measure the planar size of the intermetallic compound. 更に、光学顕微鏡では、金属間化合物の識別は形状、染色された色等で識別が行われる場合もあるが、通常は平面サイズの測定が主である。 Further, in the optical microscope, the identification of the intermetallic compound form, although in some cases the identification stained with color, etc. are carried out, usually the main measurement of plane size.

【0006】ところで、これら従来の測定方法では、いずれも金属間化合物の厚さや立体形状を測定し、あるいは推定することは行われていない。 [0006] In these conventional measurement methods, both to measure the thickness or three-dimensional shape of the intermetallic compound, or be estimated is not performed. しかるに、金属間化合物の識別及び平面サイズの測定に加えて、更に厚さや立体形状の測定や推定ができれば、金属間化合物と欠陥との対応がより明確になることが期待される。 However, in addition to the identification and measurement of the plane size of the intermetallic compounds, if further measurements or estimates of the thickness and the three-dimensional shape, corresponding to the intermetallic compound and the defect is expected to be more clear.

【0007】 [0007]

【発明が解決しようとする課題】そこで、本発明者は、 The object of the invention is to solve is therefore an object of the present invention have,
先に提案したEPMAによる金属間化合物の識別及び平面サイズの測定に加えて、このEPMAを用いた金属間化合物の厚さや立体形状の測定若しくは推定を行うための方法について検討し、本発明を完成した。 In addition to the identification and measurement of the planar size of the intermetallic compound by EPMA previously proposed, studied method for performing measurement or estimation of the thickness and the three-dimensional shape of the intermetallic compound using the EPMA, completed the present invention did.

【0008】従って、本発明の目的は、EPMAを用いて金属間化合物の厚さを測定し、あるいは推定するEP It is therefore an object of the present invention, by using EPMA to measure the thickness of the intermetallic compound, or estimates EP
MA法による金属間化合物の厚さ測定方法を提供することにある。 To provide a thickness measuring method of the intermetallic compound by MA method. また、本発明の他の目的は、EPMAを用いて金属間化合物の立体形状を測定し、あるいは推定するEPMA法による金属間化合物の立体形状測定方法を提供することにある。 Another object of the present invention is to provide a three-dimensional shape measuring method of the intermetallic compound by EPMA method using EPMA to measure the three-dimensional shape of the intermetallic compound, or estimated.

【0009】 [0009]

【課題を解決するための手段】すなわち、本願の第一の発明は、複数の構成金属を含む厚さ未知の金属間化合物の厚さをEPMAで測定する方法であり、当該金属間化合物を構成する複数の測定対象金属についてその金属特性X線強度を測定し、これら測定された各測定対象金属の金属特性X線強度と、各測定対象金属と同じ金属の金属100%特性X線強度とから当該金属化合物における各測定対象金属の相対X線強度を求め、得られた各測定対象金属の相対X線強度から測定対象金属の相対X線強度比を算出し、モンテカルロシミュレーション法により求めた測定対象金属の相対X線強度比−厚さの関係から上記金属間化合物の厚さを求めることを特徴とするEPMA Means for Solving the Problems] That is, the first invention of the present application is a method for measuring the thickness of the thickness of unknown intermetallic compound containing a plurality of constituent metal with EPMA, constituting the intermetallic compound the metal characteristic X-ray intensity for the plurality of measurement target metal is measured to be from a metallic characteristic X-ray intensity of each measurement target metals are those measured, the metal 100% characteristic X-ray intensities of the same metal as the measurement target metal obtains the relative X-ray intensity of each measurement target metal in the metal compound, it calculates the relative X-ray intensity ratio of the measurement target metal from the relative X-ray intensity of each measurement target metal obtained, measured as determined by Monte Carlo simulation method EPMA, characterized in that the thickness of the relationship determining the thickness of the intermetallic compound - relative X-ray intensity ratio of the metal
法による金属間化合物の厚さ測定方法である。 The thickness measuring method of the intermetallic compound by law.

【0010】また、本願の第二の発明は、複数の構成金属を含む金属間化合物の立体形状をEPMAで推定する方法であり、当該金属間化合物上に分布した複数の測定点に電子線を照射し、この電子線照射により励起した各測定点における複数の測定対象金属からのX線強度を測定し、測定されたX線強度から各測定点における各測定対象金属の相対X線強度を求めると共にこれら測定対象金属の相対X線強度比を算出し、これら各測定点における測定対象金属の相対X線強度比とモンテカルロシミュレーション法により求めた測定対象金属の相対X線強度比−厚さの関係とから上記金属間化合物の各測定点における厚さを求め、これら各測定点の分布と各測定点における厚さとから金属間化合物の立体形状を推定することを特徴とするEP [0010] The second aspect of the present invention is a method of estimating a three-dimensional shape of the intermetallic compound containing a plurality of constituent metals in EPMA, an electron beam into a plurality of measurement points distributed on the intermetallic compound irradiated, the measured X-ray intensity from the plurality of measurement target metal at each measurement point excited by electron beam irradiation, determining the relative X-ray intensity of each measurement target metal at each measuring point from the measured X-ray intensity together to calculate the relative X-ray intensity ratio of these measured metals, relative X-ray intensity ratio of the measurement target metal determined by the relative X-ray intensity ratio and Monte Carlo simulation method of the measurement target metal in each of these measuring points - the thickness of the relationship EP characterized by estimating a three-dimensional shape of the intermetallic compound from the the thickness of each determined thickness at the measuring point, distribution and each measurement point of each measurement point of the intermetallic compound A法による金属間化合物の立体形状測定方法である。 It is a three-dimensional shape measuring method of the intermetallic compound according to A method.

【0011】本願の第一及び第二の発明において、その測定の対象となる金属間化合物としては、導電性であってEPMA測定が可能であり、試料中にその基材を構成する金属元素以外の2種以上の複数の金属元素を有する化合物や、熱フェノール法(BUNSEKI KAGAKU, Vol.33, [0011] In the first and second aspect of the present invention, the intermetallic compounds of interest of the measurement, a conductive are possible EPMA measurement, other than the metal elements constituting the substrate in the sample compounds having two or more of the plurality of metal elements and, hot phenol method (BUNSEKI KAGAKU, Vol.33,
pp.E495-E498, 1984)、エアサンプラー捕集法(BUNSEK pp.E495-E498, 1984), air sampler collection method (BUNSEK
I KAGAKU, Vol.38, pp.515-512, 1989)を始め、非水溶媒系電解液定電位電解抽出分離分析法、酸溶解抽出分離分析法、ハロゲン溶解抽出分離分析法等の方法(金属学会編「金属便覧第5版」平成2年3月31日改訂第488 I KAGAKU, Vol.38, pp.515-512, started 1989), non-aqueous solvent electrolyte constant potential electrolysis extraction separation analysis, acid dissolution extraction separation analysis method such as a halogen dissolution extraction separation analysis (metal Gakkai "metal Handbook, 5th Edition" 1990 March 31, 2008 revision 488
‐493頁)により回収される2種以上の複数の金属元素を有する化合物等を挙げることができる。 And the like compounds having two or more of the plurality of metal elements are collected by pages -493).

【0012】このような金属間化合物の具体例としては、例えば、アルミニウム材中にみられるAl-X系(但し、Xは、Al以外の金属元素)、Al-Cu-X系(但し、X [0012] Specific examples of such an intermetallic compound, for example, Al-X type found in the aluminum material (where, X is a metal element other than Al), Al-Cu-X type (wherein, X
は、Al及びCu以外の金属元素)、Al-Fe-X系(但し、X Is a metal element other than Al and Cu), Al-Fe-X type (wherein, X
は、Al及びFe以外の金属元素)、Al-Mg-X系(但し、X The metal elements other than Al and Fe), Al-Mg-X system (where, X
は、Al及びMg以外の金属元素)、Al-Mn-X系(但し、X The metal elements other than Al and Mg), Al-Mn-X system (where, X
は、Al及びMn以外の金属元素)、Al-Ni-X系(但し、X Is a metal element other than Al and Mn), Al-Ni-X type (wherein, X
は、Al及びNi以外の金属元素)、Al-Ti-X系(但し、X The metal elements other than Al and Ni), Al-Ti-X type (wherein, X
は、Al及びTi以外の金属元素)、Al-V-X系(但し、X Is a metal element other than Al and Ti), Al-V-X system (where, X
は、Al及びV以外の金属元素)等のAl系金属間化合物等を例示することができる。 It may be exemplified Al based intermetallic compounds of metal elements) other than the Al and V.

【0013】また、本願の第一及び第二の発明を実施するために用いるEPMAとしては、波長分散型(Wavele [0013] As the EPMA used to implement the first and second aspect of the present invention, wavelength dispersive (Wavelet
ngth Dispersive X-ray Analizer)であっても、また、 Even ngth Dispersive X-ray Analizer), also,
エネルギー分散型(Energy Dispersive X-ray Analize Energy dispersive (Energy Dispersive X-ray Analize
r)であってもよい。 It may be a r).

【0014】そして、金属間化合物の厚さを測定する上記第一の発明において、EPMAによる金属間化合物上の測定点については、仮に測定対象の金属間化合物の厚さがその全体に亘ってほぼ均一であるとすれば、当該金属間化合物上の唯一点でよく、また、仮に測定対象の金属間化合物の厚さがその全体に亘って均一でないとすれば、当該金属間化合物上の複数の測定点でその厚さを測定し、平均値を求めて金属間化合物の厚さとしてもよい。 [0014] In the first invention for measuring the thickness of the intermetallic compound, for measuring points on the intermetallic compound by EPMA, if the thickness of the intermetallic compound to be measured substantially over its entire if a uniform, well the only point on the intermetallic compound, the thickness of the tentatively intermetallic compound to be measured if not uniform throughout its, a plurality of the said intermetallic compound the thickness at the measurement point is measured, an average value may be used as the thickness of the intermetallic compound sought.

【0015】更に、金属間化合物の立体形状を測定する上記第二の発明において、EPMAによる金属間化合物上に分布した複数の測定点については、好ましくは金属間化合物上のどの位置かという位置情報が認識され、かつ、均一に分布した複数の測定点であるのがよく、これによって当該金属間化合物のどの位置の厚さがどの程度で全体としてどのような立体形状になるかをできるだけ正確に把握できるようにするのがよい。 Furthermore, in the second invention of measuring the three-dimensional shape of the intermetallic compound, for a plurality of measurement points distributed on the intermetallic compound by EPMA, preferably position information as to which position on the intermetallic compound There are recognized, and, uniformly distributed plurality of measuring points at which the well, thereby before it becomes what three-dimensional shape as a whole which thickness is how much the position of the intermetallic compound as accurately as possible it is preferable to be able to grasp.

【0016】また、この第二の発明における金属間化合物上に分布した複数の測定点については、試料の所定領域内の複数の測定点に電子線を照射し、これらの測定点のうちから測定対象の金属間化合物にヒットした測定点を特定し(EPMAのマッピング)、この特定された測定点を金属間化合物上に分布した複数の測定点として把握するようにしてもよく、これによって試料中の金属間化合物の種別、平面サイズ、及び立体形状を同時に測定することができる。 Further, this for the second plurality of measurement points distributed on the intermetallic compound in the invention, by irradiating an electron beam to a plurality of measurement points within a predetermined region of the sample, the measurement from these measurement points identify the measurement points hit intermetallic compound of interest (EPMA mapping) may be aware of this specified measurement point as a plurality of measurement points distributed on the intermetallic compound, whereby the sample type intermetallic compound can be determined plane size, and the three-dimensional shape at the same time.

【0017】なお、本願の第一又は第二の発明を実施する上で測定対象となる金属間化合物の種別と平面サイズを予め測定する必要がある場合には、好ましくは特開20 [0017] When it is necessary to previously measure the type and planar size of the intermetallic compound to be measured in the practice of the first or second aspect of the present invention is preferably JP 20
00-162,165号公報又は特開2000-180,393号公報に記載の方法により金属間化合物の種類を識別し、同時にその平面サイズを測定するのがよい。 By the method described in 00-162,165 JP or JP 2000-180,393 discloses identifies the type of the intermetallic compound, it is preferable to measure the planar size simultaneously.

【0018】本願の第一又は第二の発明により金属間化合物の厚さ又は立体形状を測定し、あるいは推定するためには、先ず、測定対象の金属間化合物における物性値及び実測した平面サイズを基に、その厚さサイズを変数としたモンテカルロシミュレーションによる計算を行い、厚さを変化させた時に識別判定に用いた複数の測定対象金属の相対X線強度比がどのように変化するかを関係式や厚さを横軸とし相対X線強度比を縦軸とする関係図として求めておき、この関係から測定対象の金属間化合物について実測された測定対象金属の相対X線強度比がどの程度の厚さに相当するかを求めておく。 [0018] For the first or second aspect of the present invention to measure the thickness or three-dimensional shape of the intermetallic compound, or estimated, first, the planar size of the physical properties and measured in the intermetallic compound to be measured based, its thickness perform calculations by Monte Carlo simulation with a variable size, the relative X-ray intensity ratio of a plurality of measurement target metal used to identify judgment when changing the thickness of how the change or the relationship to previously obtain a relation diagram to the longitudinal axis of the relative X-ray intensity ratio to the formula and thickness as the horizontal axis, the relative X-ray intensity ratio of the measurement target metal that is actually measured for the intermetallic compound to be measured from the relationship degree It is obtained in advance or corresponds to the thickness of.

【0019】この際に、モンテカルロシミュレーションにおいては、電子の軌跡を折れ線と仮定し、この折れ線の1つの線分を平均自由行程とし、1つの線分と次の線分との間の角度(散乱角)はある乱数に対応した確率とし、更に1つの線分毎に電子のエネルギーが失われるとしてモデルを仮定し、電子のエネルギーロス(ΔE) [0019] At this time, in the Monte Carlo simulation, assuming electron trajectories and polygonal lines, one line of the polygonal line and the mean free path, the angle between one line and the next line segment (scattering angle) and the probability corresponding to a certain random number assumes a model as further electron energy loss per one line, the electron energy loss (Delta] e)
の計算式(1)、散乱角度(ω)及び回転角度(φ) Equation (1), the scattering angle (omega) and the rotation angle (phi)
の計算式(2)、平均自由行程の計算式(3)、電子が元素に衝突する確率(P)の計算式(4)、電子散乱後の位置の計算式(5)、及び発生X線量子数の計算式(6)の各計算式に基づいて相対X線強度の計算が行なわれる。 Equation (2), the mean free path of the equation (3), calculation of the probability of electrons colliding with the element (P) (4), calculation of the position after electron scattering (5), and generating X-rays calculation of the relative X-ray intensity on the basis of the calculation formula of the number of formula quantum (6) is performed.

【0020】電子のエネルギーロス(ΔE)の計算式(1) E>6.338Jの時 ΔE[Kev/cm]=7.85×10 4 ρΣ〔ZC/A・ln(1.166 The electronic calculation formula of energy loss (ΔE) (1) E> when ΔE [Kev / cm] of 6.338J = 7.85 × 10 4 ρΣ [ZC / A · ln (1.166
E/J)〕/E E≦6.338Jの時 ΔE[Kev/cm]=7.85×10 4 ρΣ(ZC/A/J 1/2 )/1. E / J)] / E when E ≦ 6.338J ΔE [Kev / cm ] = 7.85 × 10 4 ρΣ (ZC / A / J 1/2) / 1.
26E 1/2 26E 1/2

【0021】散乱角度(ω)及び回転角度(φ)の計算式(2) cos(ω,ラジアン)=1−2βR/(1+β−R) φ(ラジアン)=2πR The scattering angle (omega) and the calculation formula for the rotational angle (φ) (2) cos (ω, radians) = 1-2βR / (1 + β-R) φ (in radians) = 2.pi.R

【0022】平均自由行程(λ)の計算式(3) λ[cm]=〔(0.0554E×10 3 )/ρ〕×{ΣAC/〔Z The equation of the mean free path (λ) (3) λ [ cm] = [(0.0554E × 10 3) / ρ] × {ΣAC / [Z
1/3 (Z+1)〕}×10 -8 〔但し、上記計算式(1)〜(3)において、Eは電子の所有エネルギー(Kev)を、Aは原子量を、ρは密度(g/ 1/3 (Z + 1)]} × 10 -8 [However, in the above equation (1) ~ (3), E is an electron owned energy (Kev), A is the atomic weight, [rho is the density (g /
cm 3 )を、Zは原子番号を、Jはイオン化ポテンシャル(K The cm 3), Z a is atomic number, J is the ionization potential (K
ev)を、βはスクリーニングパラメータを、Rは一様乱数(0〜1)を、πは円周率(3.14)を、また、Cは組成をそれぞれ示す。 The ev), beta is a screening parameter, the R is uniform random numbers (0 to 1), [pi is the circumference ratio (3.14), also, C is it shows the composition, respectively. ]

【0023】ここで、イオン化ポテンシャル(J)については、これまでに文献上、下記の3つの値 J=11.5Z×10 -3 [Kev] J=0.00976Z+0.0588/Z 0.19 [Kev] J={14.0〔1− exp(−0.1Z)〕+75.5/Z Z/7.5 [0023] Here, the ionization potential (J), so far in the literature, the following three values J = 11.5Z × 10 -3 [Kev ] J = 0.00976Z + 0.0588 / Z 0.19 [Kev] J = {14.0 [1- exp (-0.1Z)] + 75.5 / Z Z / 7.5 -
Z/(100+Z)}Z×10 -3 [Kev] が提案されており、また、スクリーニングパラメータ(β)については、これまでに文献上、下記の3つの値 β=〔5.44Z 2/3 /E〕×10 -3 β=〔3.4Z 2/3 /E(1.13+3.76α 21/2 〕×10 -3 β=〔3.4Z 2/3 /E〕×10 -3 {但し、α=〔3.69(Z/E)〕×10 -3 }が提案されており、更に、散乱角度(ω)の計算式(2)で用いる一様乱数(R)についても、これまでに文献上、例えば、 Z / (100 + Z)} Z × 10 -3 [Kev] it has been proposed, also, screening parameters for (beta), so far in the literature, three of the following values beta = [5.44Z 2/3 / E] × 10 -3 beta = [3.4Z 2/3 /E(1.13+3.76α 2) 1/2] × 10 -3 beta = [3.4Z 2/3 / E] × 10 -3 {However, alpha = [3.69 (Z / E)] × 10 -3} have been proposed, further, the scattering angle for even uniform random number used in the calculation formula (2) (ω) (R ), so far in the literature, For example,
中央二乗法(x k+1 =x k 2の中央の数桁)、乗算型相合式法〔x k+1 =λ・x k (mod,M)〕、混合型合同式法〔x k+ 1 =λ・x k +μ(mod,M)〕等、多数のものが提案されている。 Central squares (x k + 1 = number of central x k 2 digits) Multiplying congruent equation method [x k + 1 = λ · x k (mod, M) ], mixed congruential method [x k + 1 = λ · x k + μ ( mod, M) ] and the like, have been proposed a number of things.

【0024】従って、上記イオン化ポテンシャル(J)、スクリーニングパラメータ(β)、及び、散乱角度(ω)の計算式(2)で用いる一様乱数(R)の選択については数多くの組み合わせが存在するが、本発明では、特に、イオン化ポテンシャル(J)についてはJ [0024] Accordingly, the ionization potential (J), the screening parameters (beta), and, although a number of combinations exist for the selection of the uniform random number (R) used in calculations of the scattering angle (ω) (2) in the present invention, particularly, J for ionization potential (J)
=11.5×Z×10 -3 [Kev]を、また、スクリーニングパラメータ(β)についてはβ=〔5.44Z 2/3 /E〕×10 -3 = 11.5 × Z × 10 -3 to [Kev], also for the screening parameter (β) β = [5.44Z 2/3 / E] × 10 -3
を用いるのがよい。 Good to use. 更に、散乱角度(ω)の計算式(2)で用いる一様乱数(R)については、特に制限はなく、例えば市販の日本電気(株)製パーソナルコンピューター等に内蔵の乱数を用いるのがよい。 Moreover, for the uniform random number used in calculations of the scattering angle (omega) (2) (R), is not particularly limited, for example, a commercially available NEC Corp. personal computer or the like may use a built-in random number . このイオン化ポテンシャル(J)とスクリーニングパラメータ(β)の組み合わせを採用することにより、モンテカルロシミュレーションによる計算結果が標準試料を用いて測定した実測値とよく一致し、また、計算に入力される入射電子数を可及的に減少せしめることができ、大型コンピューターでなくても計算可能になる。 By employing this combination of ionization potential (J) and the screening parameters (beta), calculation results of the Monte Carlo simulation agrees well with the measured value measured by using a standard sample, also enters the number of electrons input into the calculation It can be allowed to decrease as much as possible, also to be calculated without a large computer.

【0025】ここで、多元系化合物に入射した電子がどの原子と衝突するかは元素の衝突断面積による確率(P)で決まり、次の計算式(4)で表される。 [0025] Here, either electrons incident on the multi-compound collides with any atom is determined by the probability (P) by the collision cross section of the element is expressed by the following equation (4). 電子が元素に衝突する確率(P)の計算式(4) P=(σC/A)/Σ(σC/A) σ(散乱全断面積)=〔πe 4 Z(Z+1)〕/〔4E n 2 Formula for the probability of electrons colliding with the element (P) (4) P = (σC / A) / Σ (σC / A) σ ( scattering total cross-sectional area) = [πe 4 Z (Z + 1)] / [4E n 2
β(β+1)〕 e:電子の電荷(−4.0829×10 -10 esu) E n :電子の運動エネルギー(eE/300×10 3 ) 例えば、3元系化合物の場合には次のように行なう。 β (β + 1)] e: electron charge (-4.0829 × 10 -10 esu) E n: electron kinetic energy (eE / 300 × 10 3) For example, in the following manner in the case of ternary compounds. 0<F≦P a …ならばa元素に衝突 P a <F≦P a +P b …ならばb元素に衝突 P a +P b <F≦P a +P b +P c …ならばc元素に衝突 (但し、Fは一様乱数値である。) 0 <F ≦ P a ... if collides with a elemental P a <F ≦ P a + P b ... if collides with b element P a + P b <F ≦ P a + P b + P c ... if collides with c elements ( However, F is a uniform random number.)

【0026】更に、電子散乱後の位置は次の電子散乱後の位置の計算式(5)によって計算される。 Furthermore, position after electron scattering is calculated by the calculation formula of the position after the next electron scattering (5). すなわち、試料表面上にX−Y軸をとり、また、深さ方向にZ That is, taking the X-Y axis on the sample surface and, Z in the depth direction
軸をとり、原点に入射する電子のn番目の電子の終点位置を(x n ,y n ,z n )とすると、(n+1)番目の電子の位置を(x n+1 ,y n+1 ,z n+1 )は、先ず衝突によりn Taking the axis, the electron of the n-th electron of the end position which is incident at the origin (x n, y n, z n) When, (n + 1) -th position of the electron (x n + 1, y n + 1 , z n + 1), first n by the collision
番目の位置から(ω,φ)の方向(ω:衝突による入射方向からの散乱角度、φ:回転角度)に散乱されたとし、これを用いて(n+1)番目の電子の位置を(x, Th from the position (omega, phi) direction (omega: scattering angle from the incident direction caused by the collision, phi: rotation angle) and is scattered, by using this (n + 1) -th position of the electron (x,
y,z)座標軸に対する方向(θ n+1n+1 )で表すと、以下のようになる。 y, z) direction with respect to the coordinate axis (θ n + 1, is represented by ψ n + 1), as follows.

【0027】電子散乱後の位置の計算式(5) cos(θ n+1 )=cos(θ n )cos(ω)-sin(θ n )sin(ω)cos(φ)sin(ψ n+1 ) =Asin(ψ n )+Bcos(ψ n )cos(ψ n+1 )=Acos(ψ n )−Bsin(ψ n ) A=[cos(ω)-cos(θ n )cos(θ n+1 )]/[sin(θ n )sin(θ n+1 )] B=sin(φ)sin(ω)/sin(θ n+1 ) x n+1 =x n +λsin(θ n+1 )cos(ψ n+1 )×10 4 (μm) y n+1 =y n +λsin(θ n+1 )sin(ψ n+1 )×10 4 (μm) z n+1 =z n +λcos(θ n+1 )×10 4 (μm) The calculation formula of the position after electron scattering (5) cos (θ n + 1) = cos (θ n) cos (ω) -sin (θ n) sin (ω) cos (φ) sin (ψ n + 1) = Asin (ψ n) + Bcos (ψ n) cos (ψ n + 1) = Acos (ψ n) -Bsin (ψ n) A = [cos (ω) -cos (θ n) cos (θ n + 1)] / [sin (θ n) sin (θ n + 1)] B = sin (φ) sin (ω) / sin (θ n + 1) x n + 1 = x n + λsin (θ n + 1) cos (ψ n + 1) × 10 4 (μm) y n + 1 = y n + λsin (θ n + 1) sin (ψ n + 1) × 10 4 (μm) z n + 1 = z n + λcos (θ n + 1) × 10 4 ( μm)

【0028】そして、エネルギーEの電子が試料内の距離λにおいて発生する発生X線量子数Iの計算は、次の発生X線量子数の計算式(6)によって計算され、この計算は入射された電子のエネルギーが元素の励起電圧より低くなるまで繰り返して行なわれ、X線量子数は散乱後との積算として計算される。 [0028] Then, the calculation of the generation X-ray quantum number I of electron energy E occurs at a distance λ in the sample is calculated by the following generating X-ray quantum number equation (6), this calculation is incident electrons of energy is carried out repeatedly until the lower than the excitation voltage of the element, X-ray quantum number is calculated as a multiplication of the post-scattering.

【0029】発生X線量子数の計算式(6) I=N A ρQ(E)W K Cλ/A N A :アボガドロ数(6.02×10 23 ) A:原子量 ρ:密度(g/cm 3 ) Q(E):イオン化断面積 Q(E)・E K 2 =7.92×10 -20 /U・ln(U) U=E/E kK :元素の励起電圧[Kev] W k :蛍光収率〔W k =α 4 /(1+α 4 )〕 α=−0.0217+0.0332Z−1.14Z 3 ×10 -6 X線吸収後のX線量子数の計算 I 1 =I exp(−μρd) μ:X線質量吸収係数 d:X線の通過距離(cm) The generated X-ray quantum number equation (6) I = N A ρQ (E) W K Cλ / A N A: Avogadro number (6.02 × 10 23) A: atomic weight [rho: density (g / cm 3) Q (E): ionization cross section Q (E) · E K 2 = 7.92 × 10 -20 / U · ln (U) U = E / E k E K: excitation voltage elements [Kev] W k: fluorescence yield rate [W k = α 4 / (1 + α 4) ] α = -0.0217 + 0.0332Z-1.14Z 3 × 10 -6 calculated X-ray quantum number after the X-ray absorption I 1 = I exp (-μρd) μ: X-ray mass absorption coefficient d: passing distance of X-ray (cm)

【0030】そして、相対X線強度は、入射電子数を同じにして試料から得られるX線量子数と100%試料から得られるX線量子数との比として算出される。 [0030] Then, the relative X-ray intensity is calculated as the ratio of the X-ray quantum number obtained from the X-ray quanta number 100% sample obtained from the sample by the same number of incident electrons.

【0031】ここで、金属間化合物における測定対象金属の相対X線強度比―厚さの関係をモンテカルロシミュレーションにより求めるには、照射される電子線の加速電圧については実際にEPMAで当該金属間化合物の測定対象金属の特性X線強度を測定する際の加速電圧と同じ値に想定し、また、当該金属間化合物の厚さについては、例えば0.2μm、0.5μm、1.0μm、2μ [0031] Here, the measurement target metal relative X-ray intensity ratio in the intermetallic compound - To determine the Monte Carlo simulation of the relationship between the thickness, the intermetallic compound in practice EPMA for the acceleration voltage of the electron beam irradiated measurement assumes a characteristic X-ray intensity of the target metal to the same value as the acceleration voltage at the time of measurement, also, for the thickness of the intermetallic compound, for example 0.2 [mu] m, 0.5 [mu] m, 1.0 .mu.m, 2.mu.
m(バルクサイズ相当)等と想定し、各想定された厚さの金属間化合物についてそれぞれその時の相対X線強度比を計算により求め、求められた相対X線強度比―厚さの関係を関係式や関係図に表わす。 m assuming (bulk size or equivalent) or the like, respectively obtained by calculating the relative X-ray intensity ratio at that time for the intermetallic compound of the supposed thickness, the obtained relative X-ray intensity ratio - the thickness of the relationship the relationship It represents the expression and relationship diagram.

【0032】次に、このようにして測定対象金属の相対X線強度比―厚さの関係が求められたのち、第一の発明においては、測定対象の厚さ未知の金属間化合物について、当該関係を求めた時と同じ加速電圧でEPMAにより、当該金属間化合物の測定対象金属の特性X線強度を測定し、この測定対象金属の特性X線強度と当該測定対象金属について求めた金属100%特性X線強度とから各測定対象金属の相対X線強度を算出してこれら測定対象金属の相対X線強度比を求め、その結果を先にモンテカルロシミュレーションにより求められた測定対象金属の相対X線強度比−厚さの関係に照らして、当該厚さ未知の金属間化合物の厚さを求める。 [0032] Then, in this way the measurement target metal relative X-ray intensity ratio - after the relationship between the thickness obtained in the first invention, the thickness of the unknown intermetallic compound to be measured, the by EPMA in the same accelerating voltage as when the obtained relation, the characteristic X-ray intensity measured metal of the intermetallic compound were measured, the characteristic X-ray intensity of the measured metal and the measurement target metal sought metal 100% It obtains the relative X-ray intensity ratio of these measured metals calculates the relative X-ray intensity of each measured metal and a characteristic X-ray intensities, the relative X-ray to be measured metal obtained by Monte Carlo simulation and the results previously intensity ratio - in light of the thickness of the relationship, obtaining the thickness of the thickness of unknown intermetallic compound.

【0033】また、本願の第二の発明においては、測定対象の立体形状未知の金属間化合物について、上記測定対象金属の相対X線強度比―厚さの関係を求めた時と同じ加速電圧でEPMAにより、当該金属間化合物上に分布した複数の測定点における測定対象金属の相対X線強度比を求め、これら実測された複数の測定点における相対X線強度比を、先にモンテカルロシミュレーションにより求められた測定対象金属の相対X線強度比−厚さの関係に照らし、その結果から各測定点での金属間化合物の厚さを求め、上記各測定点の金属間化合物上の分布情報と各測定点における厚さ情報とから金属間化合物の立体形状を測定する。 Further, in the second aspect of the present invention, the three-dimensional shape unknown intermetallic compound to be measured, the measurement target metal relative X-ray intensity ratio - at the same accelerating voltage as when determined the thickness of the relationship by EPMA, determined obtains the relative X-ray intensity ratio of the measurement target metal in the plurality of measurement points distributed on the intermetallic compound, the relative X-ray intensity ratio in these actually measured plurality of measuring points, above the Monte Carlo simulation was measured metal relative X-ray intensity ratio - in light of the thickness of the relationship, determine the thickness of the intermetallic compound at each measuring point from the result, each of the distribution information on the intermetallic compound of the measurement points and a thickness information at the measurement point for measuring the three-dimensional shape of the intermetallic compound.

【0034】 [0034]

【発明の実施の形態】以下、波長分散型EPMAを用いて金属間化合物の厚さ測定を行なった実施例に基づいて、本発明の好適な実施の形態を説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, with reference to the embodiments was subjected to thickness measurement of the intermetallic compounds using wavelength dispersive EPMA, illustrating a preferred embodiment of the present invention.

【0035】実施例1 〔測定試料の調製〕純アルミニウム中にAl 3 Feの単相を形成せしめ、熱フェノール法により抽出して試料の金属間化合物Al 3 Feをフィルター上に捕捉した。 The allowed form a single phase of Al 3 Fe in pure aluminum in Example 1 [Preparation of measurement sample], was extracted by hot phenol method intermetallic compound Al 3 Fe samples were captured on the filter. このようにして調製された試料について、X線回折装置により金属間化合物の確認を行った。 Thus samples for which were prepared, was confirmed intermetallic compound by the X-ray diffractometer.

【0036】また、上で調製された試料の一部について白金(Pt)蒸着を行った後、そのうちの5個を選別し、 Further, after the platinum (Pt) deposited on a portion of the sample prepared above, it was selected five of them,
金属間化合物Al 3 Feの厚さをEPMAにより測定するための厚さ測定用試料とした。 The thickness of the intermetallic compound Al 3 Fe and a thickness of measurement sample for measuring the EPMA. この厚さ測定に用いた試料5個の平面サイズを走査型電子顕微鏡(SEM)により観察した。 Samples five planar size used in this thickness measurement was observed with a scanning electron microscope (SEM). 結果を表1に示す。 The results are shown in Table 1.

【0037】 [0037]

【表1】 [Table 1]

【0038】〔波長分散型EPMAの測定条件〕波長分散型EPMAの測定条件については、特開2000-180,393 [0038] The wavelength dispersive EPMA measurement conditions [measurement conditions of a wavelength dispersion type EPMA], the JP 2000-180,393
号公報記載の発明の場合と同様に、次のように設定した。 As in the invention of JP, it was set as follows. 加速電圧:15kV 100%のアルミニウムに対する試料吸収電流:15n Accelerating voltage: sample absorption current for 15kV 100% aluminum: 15n
A 計測時間:10秒 電子ビーム径:1μm以下に絞った状態 X線取出角度:52.5° A measurement time: 10 seconds electron beam diameter: 1 [mu] m state X-ray extraction angle focused on the following: 52.5 °

【0039】〔100%鉄(Fe)及び100%アルミニウム(A [0039] [100% iron (Fe) and 100% aluminum (A
l)の特性X線強度の測定〕100%鉄(Fe)及び100%アルミニウム(Al)の充分大きなバルク標準試料を用意し、 Sufficiently prepared large bulk standard sample characteristic measurement of X-ray intensity] 100% iron l) (Fe) and 100% aluminum (Al),
各バルク標準試料について、波長分散型EPMAを用いて上記条件で鉄(Fe)及びアルミニウム(Al)についての Each bulk standard sample for iron (Fe) and aluminum (Al) under the above conditions using a wavelength dispersive EPMA
Fe-100%特性X線強度及びAl-100%特性X線強度を測定した。 The Fe-100% characteristic X-ray intensity and Al-100% characteristic X-ray intensity was measured.

【0040】次に、上で作製した試料5個のAl 3 Fe化合物について、波長分散型EPMAを用い、上で設定した測定条件でFe及びAlの特性X線強度を測定し、この測定されたFe及びAlの特性X線強度と先に求めたFe-100%特性X線強度及びAl-100%特性X線強度とを用いて、Fe及びAlの相対X線強度を算出し、更にFe/Al相対X線強度比を算出した。 Next, the sample of five Al 3 Fe compound prepared above, using a wavelength dispersive EPMA, the characteristic X-ray intensity of Fe and Al in the measurement condition set above was measured and is the measurement by using the Fe-100% characteristic X-ray intensity and Al-100% characteristic X-ray intensity obtained for the characteristic X-ray intensity in the previous Fe and Al, and calculates the relative X-ray intensity of Fe and Al, further Fe / It was calculated Al relative X-ray intensity ratio. 結果を表2に示す。 The results are shown in Table 2.

【0041】 [0041]

【表2】 [Table 2]

【0042】〔Fe/Al相対X線強度比−厚さの関係図の作成〕先に測定したAl 3 Fe化合物の平面サイズの値を用い、また、Al 3 Fe化合物の厚さを0.2μm、0.5μ [0042] - using the value of the plane size of Al 3 Fe compound measured in [Fe / Al relative X-ray intensity ratio thickness of creating relationship diagram] destination, also, 0.2 [mu] m thickness of the Al 3 Fe compound , 0.5μ
m、1.0μm、及び2μm(バルクサイズ相当)と想定し、更に、波長分散型EPMAでの測定条件を先に設定した条件と同じと想定し、表3に示す計算のパラメータと表4及び表5に示す物性値とを用いて、各試料内での電子線軌跡シミュレーションをモンテカルロ法に従って実施し、計算により試料Al 3 Fe化合物について上記各厚さの場合におけるFe/Al相対X線強度比を求めた。 m, 1.0 .mu.m, and assuming 2 [mu] m (bulk size or equivalent), further assume the same as the conditions set measurement conditions of a wavelength dispersion type EPMA above, parameters of the calculations shown in Table 3 and Table 4 and by using the physical property values shown in Table 5, the electron beam trajectory simulation in each sample was performed according to the Monte Carlo method, Fe / Al relative X-ray intensity ratio in the case of each thickness for samples Al 3 Fe compound calculated I was asked.

【0043】 [0043]

【表3】 [Table 3]

【0044】 [0044]

【表4】 [Table 4]

【0045】 [0045]

【表5】 [Table 5]

【0046】計算結果は表6に示すとおりであり、横軸に厚さ(μm)を、また、縦軸にFe/Al相対X線強度比をとってそれらの関係図を作成した。 The calculation results are shown in Table 6, the thickness in the horizontal axis of the ([mu] m), also the vertical axis of the Fe / Al relative X-ray intensity ratio was prepared and their relationship diagram. 得られたFe/Al相対X線強度比−厚さの関係図を図1に示す。 The resulting Fe / Al relative X-ray intensity ratio - shows a relationship diagram of a thickness in FIG.

【0047】 [0047]

【表6】 [Table 6]

【0048】〔各試料の厚さの推定〕図1に示す関係図を用い、表2に示すFe/Al相対X線強度比の実測値から各試料Al 3 Fe化合物の厚さを推定した。 [0048] Using the relationship diagram shown in Figure 1 [estimation of the thickness of each sample] were estimated thickness of each sample Al 3 Fe compounds from the measured value of Fe / Al relative X-ray intensity ratio shown in Table 2. 推定された試料A The estimated sample A
l 3 Fe化合物の厚さを表7に示す。 The thickness of l 3 Fe compounds shown in Table 7.

【0049】 [0049]

【表7】 [Table 7]

【0050】実施例2 〔測定試料の調製〕純アルミニウム中にAl 6 Feの単相を形成せしめ、実施例1と同様にして、厚さ測定用の5個の試料(金属間化合物Al 6 Fe)を調製し、その平面サイズの測定を行った。 [0050] Example 2 [Preparation of measurement sample] in pure aluminum allowed form a single phase of Al 6 Fe, in the same manner as in Example 1, five samples (intermetallic compound Al 6 Fe for thickness measurement ) were prepared and subjected to measurement of its planar size. 結果を表8に示す。 The results are shown in Table 8.

【0051】 [0051]

【表8】 [Table 8]

【0052】次に、実施例1と同様のEPMA測定条件及び同様の方法で各試料Al 6 Fe化合物のFe/Al相対X線強度比を測定した。 Next, to measure the Fe / Al relative X-ray intensity ratio of each sample Al 6 Fe compound was prepared in a similar EPMA measurement conditions and the same method as in Example 1. その結果を表9に示す。 The results are shown in Table 9.

【0053】 [0053]

【表9】 [Table 9]

【0054】〔Fe/Al相対X線強度比−厚さの関係図の作成〕次に、測定された各試料Al 6 Fe化合物の平面サイズを用い、また、表10に示すパラメータと表11及び表12に示す物性値とを用い、実施例1と同様にして試料内での電子線軌跡シミュレーションをモンテカルロ法に従って実施し、試料Al 6 Fe化合物の想定された各厚さにおけるFe/Al相対X線強度比を計算した。 [0054] [Fe / Al relative X-ray intensity ratio - creation of the thickness of the relationship diagram Next, using the measured plane size of each sample Al 6 Fe compound was also parameters and Table 11 and shown in Table 10 using the physical property values shown in Table 12, example 1 and in the same manner as conducted with an electron beam trajectory simulation in the sample according to the Monte Carlo method, the sample Al 6 Fe supposed the thickness definitive Fe / Al relative X was compound It was calculated line intensity ratio.

【0055】 [0055]

【表10】 [Table 10]

【0056】 [0056]

【表11】 [Table 11]

【0057】 [0057]

【表12】 [Table 12]

【0058】計算結果は表13に示すとおりであり、横軸に厚さ(μm)を、また、縦軸にFe/Alの相対X線強度比をとってそれらの関係図を作成した。 [0058] Calculation results are shown in Table 13, the thickness on the horizontal axis of the ([mu] m), also the vertical axis represents the relative X-ray intensity ratio of Fe / Al were prepared and their relationship diagram. 得られたFe/A The resulting Fe / A
l相対X線強度比−厚さの関係図を図1に示す。 l relative X-ray intensity ratio - shows a relationship diagram of a thickness in FIG.

【0059】 [0059]

【表13】 [Table 13]

【0060】〔各試料の厚さの推定〕図1に示す関係図を用い、表9に示すFe/Al相対X線強度比の値から各試料Al 6 Fe化合物の厚さを推定した。 [0060] Using the relationship diagram shown in Figure 1 [estimation of the thickness of each sample] were estimated thickness of each sample Al 6 Fe compounds from the value of Fe / Al relative X-ray intensity ratio shown in Table 9. 推定された各試料Al 6 Each sample Al 6 estimated
Fe化合物の厚さを表14に示す。 The thickness of the Fe compounds shown in Table 14.

【0061】 [0061]

【表14】 [Table 14]

【0062】実施例3 〔測定試料の調製〕純アルミニウム中にα-AlFeSiの単相を形成せしめ、実施例1と同様にして、厚さ測定用の5個の試料(金属間化合物α-AlFeSi)を調製し、その平面サイズの測定を行った。 [0062] allowed forming a single-phase alpha-AlFeSi to pure aluminum in [Preparation of measurement sample] Example 3, in the same manner as in Example 1, five samples (intermetallic compound alpha-AlFeSi for thickness measurement ) were prepared and subjected to measurement of its planar size. 結果を表15に示す。 The results are shown in Table 15.

【0063】 [0063]

【表15】 [Table 15]

【0064】次に、実施例1と同様のEPMA測定条件及び同様の方法で各試料α-AlFeSi化合物のFe/Al相対X Next, Fe / Al relative X of each sample alpha-AlFeSi compound was prepared in a similar EPMA measurement conditions and the same method as in Example 1
線強度比及びFe/Si相対X線強度比を測定した。 It was measured line strength ratio and Fe / Si relative X-ray intensity ratio. その結果を表16に示す。 The results are shown in Table 16.

【0065】 [0065]

【表16】 [Table 16]

【0066】〔Fe/Al相対X線強度比−厚さの関係図、 [0066] [Fe / Al relative X-ray intensity ratio - the thickness of the relationship diagram,
及びFe/Si相対X線強度比−厚さの関係図の作成〕次に、測定された各試料α-AlFeSi化合物の平面サイズを用い、また、表17に示すパラメータと表18及び表1 And Fe / Si relative X-ray intensity ratio - Creating relationship diagram thick Next, using the measured plane size of each sample alpha-AlFeSi compounds were also parameters and Table 18 and Table 1. As shown in Table 17
9に示す物性値とを用い、実施例1と同様にして試料内での電子線軌跡シミュレーションをモンテカルロ法に従って実施し、試料α-AlFeSi化合物の想定された各厚さにおけるFe/Al相対X線強度比及びFe/Siの相対X線強度比をそれぞれ計算した。 Using the physical property values ​​shown in 9, Example 1 and in the same manner as conducted with an electron beam trajectory simulation in the sample according to the Monte Carlo method, the sample alpha-AlFeSi compound of supposed Fe / Al relative X-ray definitive each thickness was the relative X-ray intensity ratio of the intensity ratio and Fe / Si was calculated.

【0067】 [0067]

【表17】 [Table 17]

【0068】 [0068]

【表18】 [Table 18]

【0069】 [0069]

【表19】 [Table 19]

【0070】計算結果は表20に示すとおりであり、横軸に厚さ(μm)を、また、縦軸にFe/Al相対X線強度比をとってそれらの関係図を作成した。 [0070] Calculation results are shown in Table 20, the thickness in the horizontal axis of the ([mu] m), also the vertical axis of the Fe / Al relative X-ray intensity ratio was prepared and their relationship diagram. 得られたFe/Al The resulting Fe / Al
相対X線強度比−厚さの関係図を図1に示す。 The relative X-ray intensity ratio - shows a relationship diagram of a thickness in FIG. また、横軸に厚さ(μm)を、また、縦軸にFe/Si相対X線強度比をとってそれらの関係図を作成した。 The thickness on the horizontal axis of the ([mu] m), also the vertical axis of the Fe / Si relative X-ray intensity ratio was prepared and their relationship diagram. 得られたFe/Si The resulting Fe / Si
相対X線強度比−厚さの関係図を図2に示す。 The relative X-ray intensity ratio - shows a relationship diagram of a thickness in FIG.

【0071】 [0071]

【表20】 [Table 20]

【0072】〔各試料の厚さの推定〕図1に示す関係図を用いて表16に示すFe/Alの相対X線強度比の値から、また、図2に示す関係図を用いて表16に示すFe/S [0072] From the values ​​of the relative X-ray intensity ratio of [the estimation of the thickness of the sample] Fe / Al shown in Table 16 using the relationship diagram shown in Figure 1, also by using the relationship diagram shown in Figure 2 Table Fe / S shown in 16
iの相対X線強度比の値からそれぞれα-AlFeSi化合物の厚さを推定した。 i respectively from the values ​​of the relative X-ray intensity ratio of the estimated thickness of the alpha-AlFeSi compound. 推定された各試料α-AlFeSi化合物の厚さを表21に示す。 The thickness of each sample alpha-AlFeSi compounds estimated in Table 21.

【0073】 [0073]

【表21】 [Table 21]

【0074】 [0074]

【発明の効果】第一の発明の方法によれば、EPMAを用いて金属間化合物の厚さを測定し、あるいは推定することができる。 Effects of the Invention] According to the method of the first invention, it is possible to use the EPMA to measure the thickness of the intermetallic compound, or estimated. また、第二の発明の方法によれば、EP Further, according to the method of the second invention, EP
MAを用いて金属間化合物の立体形状を測定し、あるいは推定することができる。 It can measure the three-dimensional shape of the intermetallic compound, or estimated using MA.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】 図1は、実施例1〜3で得られた関係図〔横軸:厚さ(μm)−縦軸:Fe/Al相対X線強度比〕を示すグラフ図である。 FIG. 1 shows the relationship diagram obtained in Examples 1 to 3 [abscissa: thickness ([mu] m) - the vertical axis: Fe / Al relative X-ray intensity ratio] is a graph showing a.

【図2】 図2は、実施例3で得られた関係図〔横軸: Figure 2 is a relationship diagram obtained in Example 3 [abscissa:
厚さ(μm)−縦軸:Fe/Siの相対X線強度比)を示すグラフ図である。 Thickness ([mu] m) - the vertical axis: a graph showing the relative X-ray intensity ratio) of Fe / Si.

Claims (6)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 複数の構成金属を含む厚さ未知の金属間化合物の厚さをEPMAで測定する方法であり、当該金属間化合物を構成する複数の測定対象金属についてその金属特性X線強度を測定し、これら測定された各測定対象金属の金属特性X線強度と、各測定対象金属と同じ金属の金属100%特性X線強度とから当該金属化合物における各測定対象金属の相対X線強度を求め、得られた各測定対象金属の相対X線強度から測定対象金属の相対X線強度比を算出し、モンテカルロシミュレーション法により求めた測定対象金属の相対X線強度比−厚さの関係から上記金属間化合物の厚さを求めることを特徴とするE The thickness of 1. A plurality of constituent metal thickness including of unknown intermetallic compounds is a method of measuring with EPMA, the metal characteristic X-ray intensity for the plurality of measurement target metal constituting the intermetallic compound measured, and the metal characteristic X-ray intensity of each measurement target metals are those measured, the relative X-ray intensity of each measurement target metal in the metal compound and a metal 100% characteristic X-ray intensities of the same metal as the measurement target metal calculated, it calculates the relative X-ray intensity ratio of the measurement target metal from the relative X-ray intensity of each measurement target metal obtained, the Monte Carlo simulation method by the measurement target metal relative X-ray intensity ratio determined - the thick relationship E, wherein the determination of the thickness of the intermetallic compound
    PMA法による金属間化合物の厚さ測定方法。 The thickness measurement method of the intermetallic compound by PMA method.
  2. 【請求項2】 熱フェノール法等により抽出された金属間化合物をろ紙等に捕捉した試料を用いる請求項1に記載のEPMA法による金属間化合物の厚さ測定方法。 2. A thickness measuring method of the intermetallic compound by EPMA method described intermetallic compounds extracted by hot phenol method or the like according to claim 1 using a sample captured on the filter paper or the like.
  3. 【請求項3】 測定対象金属は、試料のマトリックスを構成するマトリックス金属とは異なる金属である請求項1に記載のEPMA法による金属間化合物の厚さ測定方法。 3. A measurement target metal thickness measurement method of the intermetallic compound according to the EPMA method according to claim 1 which is metal different from the matrix metal which constitutes the matrix of the sample.
  4. 【請求項4】 測定対象金属の相対X線強度比−厚さの関係は、相対X線強度比−厚さの関係図として求められる請求項1〜3のいずれかに記載のEPMA法による金属間化合物の厚さ測定方法。 4. A measurement target metal relative X-ray intensity ratio - the relationship of the thickness is the relative X-ray intensity ratio - metal by EPMA method according to claim 1 obtained as a relationship diagram thickness thickness measurement method between compound.
  5. 【請求項5】 複数の構成金属を含む金属間化合物の立体形状をEPMAで推定する方法であり、当該金属間化合物上に分布した複数の測定点に電子線を照射し、この電子線照射により励起した各測定点における複数の測定対象金属からのX線強度を測定し、測定されたX線強度から各測定点における各測定対象金属の相対X線強度を求めると共にこれら測定対象金属の相対X線強度比を算出し、これら各測定点における測定対象金属の相対X線強度比とモンテカルロシミュレーション法により求めた測定対象金属の相対X線強度比−厚さの関係とから上記金属間化合物の各測定点における厚さを求め、これら各測定点の分布と各測定点における厚さとから金属間化合物の立体形状を測定することを特徴とするEPMA法による金属間化合物の 5. is a three-dimensional shape of the intermetallic compound containing a plurality of constituent metals A method of estimating by EPMA, was irradiated with electron beam into a plurality of measurement points distributed on the intermetallic compound by the electron beam irradiation the X-ray intensity from the plurality of measurement target metal at each measurement point was excited measured, from the measured X-ray intensity of the measurement target metals with determining the relative X-ray intensity of each measurement target metal at each measurement point relative X each of the relationship between the thickness of the intermetallic compound - to calculate the line strength ratio, the relative X-ray intensity ratio of the measurement target metal determined by the relative X-ray intensity ratio and Monte Carlo simulation method of the measurement target metal in each of these measurement points seeking a thickness at the measurement point, the intermetallic compounds by EPMA method characterized by measuring the three-dimensional shape of the intermetallic compound of these and the distribution of the measuring points and the thickness at each measurement point 立体形状測定方法。 Three-dimensional shape measuring method.
  6. 【請求項6】 金属間化合物上に分布した複数の測定点は、試料の所定領域内の複数の測定点に電子線を照射し、これらの測定点のうちから金属間化合物にヒットした測定点を特定して定められる請求項5に記載のEPM 6. The plurality of measurement points distributed on the intermetallic compound is irradiated with electron beam into a plurality of measurement points in a predetermined area of ​​the specimen, measurement points hit intermetallic compounds from these measurement points EPM of claim 5 which is defined to identify the
    A法による金属間化合物の立体形状測定方法。 Three-dimensional shape measuring method of the intermetallic compound according to A method.
JP2001306759A 2000-10-10 2001-10-02 Method for measuring thickness of inter-metallic compound using epma method, and method for measuring solid shape of inter-metallic compound using the same Pending JP2002189005A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000309251 2000-10-10
JP2000-309251 2000-10-10
JP2001306759A JP2002189005A (en) 2000-10-10 2001-10-02 Method for measuring thickness of inter-metallic compound using epma method, and method for measuring solid shape of inter-metallic compound using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001306759A JP2002189005A (en) 2000-10-10 2001-10-02 Method for measuring thickness of inter-metallic compound using epma method, and method for measuring solid shape of inter-metallic compound using the same

Publications (1)

Publication Number Publication Date
JP2002189005A true JP2002189005A (en) 2002-07-05

Family

ID=26601781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001306759A Pending JP2002189005A (en) 2000-10-10 2001-10-02 Method for measuring thickness of inter-metallic compound using epma method, and method for measuring solid shape of inter-metallic compound using the same

Country Status (1)

Country Link
JP (1) JP2002189005A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1779098A1 (en) * 2004-08-03 2007-05-02 Intellection Pty Ltd. Data analysis
AU2011203037B2 (en) * 2004-08-03 2012-05-10 Fei Company Data analysis
US8664595B2 (en) 2012-06-28 2014-03-04 Fei Company Cluster analysis of unknowns in SEM-EDS dataset
US8937282B2 (en) 2012-10-26 2015-01-20 Fei Company Mineral identification using mineral definitions including variability
US9048067B2 (en) 2012-10-26 2015-06-02 Fei Company Mineral identification using sequential decomposition into elements from mineral definitions
US9091635B2 (en) 2012-10-26 2015-07-28 Fei Company Mineral identification using mineral definitions having compositional ranges
US9188555B2 (en) 2012-07-30 2015-11-17 Fei Company Automated EDS standards calibration
US9194829B2 (en) 2012-12-28 2015-11-24 Fei Company Process for performing automated mineralogy
US9778215B2 (en) 2012-10-26 2017-10-03 Fei Company Automated mineral classification

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1779098A1 (en) * 2004-08-03 2007-05-02 Intellection Pty Ltd. Data analysis
EP1779098A4 (en) * 2004-08-03 2009-06-03 Fei Co Data analysis
AU2005269253B2 (en) * 2004-08-03 2011-03-24 Fei Company Data analysis
US7979217B2 (en) 2004-08-03 2011-07-12 Fei Company Method and system for spectroscopic data analysis
AU2011203037B2 (en) * 2004-08-03 2012-05-10 Fei Company Data analysis
US8589086B2 (en) 2004-08-03 2013-11-19 Fei Company Method and system for spectroscopic data analysis
US8664595B2 (en) 2012-06-28 2014-03-04 Fei Company Cluster analysis of unknowns in SEM-EDS dataset
US9188555B2 (en) 2012-07-30 2015-11-17 Fei Company Automated EDS standards calibration
US8937282B2 (en) 2012-10-26 2015-01-20 Fei Company Mineral identification using mineral definitions including variability
US9048067B2 (en) 2012-10-26 2015-06-02 Fei Company Mineral identification using sequential decomposition into elements from mineral definitions
US9091635B2 (en) 2012-10-26 2015-07-28 Fei Company Mineral identification using mineral definitions having compositional ranges
US9778215B2 (en) 2012-10-26 2017-10-03 Fei Company Automated mineral classification
US9194829B2 (en) 2012-12-28 2015-11-24 Fei Company Process for performing automated mineralogy

Similar Documents

Publication Publication Date Title
Tougaard Accuracy of the non‐destructive surface nanostructure quantification technique based on analysis of the XPS or AES peak shape
Brongersma et al. Selected topics in low-energy ion scattering: surface segregation in Cu/Ni alloys and ion neutralization
Schmutz et al. Characterization of AA2024‐T3 by scanning Kelvin probe force microscopy
Arslan et al. Towards better 3-D reconstructions by combining electron tomography and atom-probe tomography
Marquis et al. Applications of atom-probe tomography to the characterisation of solute behaviours
Larson et al. Focused ion-beam milling for field-ion specimen preparation:: preliminary investigations
Baril et al. Local electrochemical impedance spectroscopy applied to the corrosion behavior of an AZ91 magnesium alloy
EP2351063B1 (en) Method and device for high throughput crystal structure analysis by electron diffraction
Kotula et al. Tomographic spectral imaging with multivariate statistical analysis: comprehensive 3D microanalysis
Prange et al. Trace element analysis using total-reflection X-ray fluorescence spectrometry
Davoodi et al. The role of intermetallic particles in localized corrosion of an aluminum alloy studied by SKPFM and integrated AFM/SECM
Tölg et al. The role of total-reflection X-ray fluorescence in atomic spectroscopy
Crimp Scanning electron microscopy imaging of dislocations in bulk materials, using electron channeling contrast
EP0053620A1 (en) Method and apparatus for material analysis.
Detsi et al. On tuning the morphology of nanoporous gold
Karlik et al. High resolution electron microscopy study of Guinier-Preston (GP1) zones in Al Cu based alloys
Burns Applications of secondary ion mass spectrometry (SIMS) in biological research: a review
Matsukawa et al. Measurements of the energy distribution of backscattered kilovolt electrons with a spherical retarding-field energy analyser
Scipioni et al. Understanding imaging modes in the helium ion microscope
Tanem et al. Relations between sample preparation and SKPFM Volta potential maps on an EN AW-6005 aluminium alloy
Brodusch et al. Nanometres‐resolution Kikuchi patterns from materials science specimens with transmission electron forward scatter diffraction in the scanning electron microscope
Genc et al. XEDS STEM tomography for 3D chemical characterization of nanoscale particles
US7132652B1 (en) Automatic classification of defects using pattern recognition applied to X-ray spectra
Guillaumin et al. Effect of dispersion agent on the degradation of a water borne paint on steel studied by scanning acoustic microscopy and impedance
Duncumb Electron probe methods of X-ray microanalysis