JP3404563B2 - Pressure sensor - Google Patents
Pressure sensorInfo
- Publication number
- JP3404563B2 JP3404563B2 JP29333997A JP29333997A JP3404563B2 JP 3404563 B2 JP3404563 B2 JP 3404563B2 JP 29333997 A JP29333997 A JP 29333997A JP 29333997 A JP29333997 A JP 29333997A JP 3404563 B2 JP3404563 B2 JP 3404563B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- protective diaphragm
- strain
- diaphragm
- pressure sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Measuring Fluid Pressure (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は圧力センサに係り、
例えば強い酸性を有する流体(薬品)の圧力測定に好適
する圧力センサの改良に関する。
【0002】
【従来の技術】強い酸性の流体を扱う装置として例えば
半導体製造装置がある。この半導体製造装置は、ふっ酸
を含む硝酸を主体としたエッチング液をポンプで循環さ
せて半導体基板をエッチングする、いわゆる湿式エッチ
ング方法を採用したもので、そのエッチング液の流圧を
圧力センサで測定しながら稼働させている。
【0003】従来、このような半導体製造装置に用いら
れる圧力センサは、耐食性材料からなる円柱状の導圧部
にこれを貫通する中空部を設け、その中空部を塞ぐよう
に静電容量型感圧素子としての起歪体を導圧部に重ね、
この起歪体を導圧部へ押圧するようにして筒型ケース内
に導圧部とともに収納した構成が知られている。
【0004】しかも、起歪体の受圧(接液)面における
エッチング液による腐食を防止する観点から、耐食性の
良好なふっ素樹脂からなる保護ダイヤフラムを重ね、こ
の保護ダイヤフラムを介してエッチング液に接液させる
二重構造とすることにより、経時的に正確な圧力測定を
確保している。そして、この圧力センサでは、中空部の
一端から流入させたエッチング液を保護ダイヤフラムに
接液させ、エッチング液の圧力に応じて起歪体を変位さ
せることによってその変位に応じた電気信号を出力させ
ている。
【0005】
【発明が解決しようとする課題】しかしながら、上述し
た圧力センサでは、起歪体の接液面側にふっ素樹脂から
なる保護ダイヤフラムを重ねた二重構造としても、次の
ような解決すべき課題がある。すなわち、ふっ素樹脂は
耐薬品性に優れた材料であるものの、例えばふっ酸や発
煙硝酸等薬液によっては、長期間の使用によって徐々に
薬液が保護ダイヤフラムを浸透して起歪体に到達し、起
歪体と保護ダイヤフラム間に薬液ガスとなって溜まって
その間に微小な圧力が負荷された状態を発生し、起歪体
の零点が変化して測定誤差が生じ易くなる難点がある。
【0006】そして、この状態が続くと、薬液が起歪体
内部に拡散し、徐々に起歪体の電極や端子、これらに接
続されたケーブル等を腐食させて測定不能状態になる心
配もある。さらに、保護ダイヤフラムはふっ素樹脂を切
削加工して製作するのが一般的であるが、切削加工では
その表面の粗さと平面度の加工精度に限界があり、特に
平面度の凹凸がセンサの測定精度を低下させ易い。
【0007】これを改善するためには、従来、保護ダイ
ヤフラムの起歪体との当接面にふっ素グリースを塗付し
て起歪体との密着状態を改善する手法も提案されている
が、圧力の伝達ロスやばらつきが生じたり製造コストが
アップする難点がある。さらにまた、ふっ素樹脂製の保
護ダイヤフラムは、繰り返しの負荷によって平面度が微
小に変化し、長期間の使用ではセンサ出力が徐々に変化
して、安定した精度を保持し難い。
【0008】本発明はこのような従来の欠点を解決する
ためになされたもので、強酸性流体の圧力を長期間測定
しても経時的に正確な測定が可能で耐久性を確保できる
圧力センサを提供することを目的とする。
【0009】
【課題を解決するための手段】このような課題を解決す
るために本発明に係る構成は、外部へ連通する中空部を
有する導圧部と、その中空部を塞ぐように固定され中空
部内の流体圧力に基づく変位に応じた電気信号を出力す
る起歪体とを有する圧力センサであり、その起歪体の中
空部側に、流体の圧力を起歪体側へ伝達する酸化アルミ
ニウム単結晶からなる保護ダイヤフラムを介在させたも
のである。
【0010】そして、この構成において、三フッ化塩化
エチレン樹脂からなりその保護ダイヤフラムからの微少
金属成分の溶出を抑えるフィルムバリヤ層が当該保護ダ
イヤフラムに形成され、そのフィルムバリヤ層を介して
その流体に接液されるようになっている。
【0011】
【発明の実施の形態】以下本発明の実施の形態を図面を
参照して説明する。図1は本発明の圧力センサに係る第
1の実施の形態を示す縦断面図である。図1において、
導圧部1は例えばPTFE(ポリテトラフルオロエチレ
ン)合成樹脂から円柱状に成形されるとともに外周に3
箇所段部を有してなり、一方の先端(図中下端)の最も
細い部分から順次太くなるとともに、最も細い部分と最
も太い部分外周にはねじ溝3a、3bが形成されてい
る。
【0012】導圧部1には下端から途中で若干内径の広
がった中空部5が上端まで軸方向に沿って貫通形成さ
れ、上端面側でろうと状に拡開している。導圧部1の上
端面において、外周に近い部分には凹溝7が環状に形成
されており、この凹溝7内には弾性を有するOリング9
がはめられ、これに保護ダイヤフラム11が中空部5を
塞ぐように当接させて重ねられている。
【0013】保護ダイヤフラム11は、酸化アルミニウ
ム(Al2O3)単結晶、より具体的にはサファイヤ単結
晶によって偏平かつ円盤状に形成されている。保護ダイ
ヤフラム11には、例えば静電容量型感圧素子(圧力エ
レメント)としての起歪体13が密着するように重ねら
れている。
【0014】起歪体13は、保護ダイヤフラム11と同
様な偏平な円盤状となって内部に対向電極間を有し、こ
れら対向する電極間の容量が保護ダイヤフラム11から
の押圧変位によって変化する点を利用する静電容量型と
なっており、直流電圧の印加によってその変位に応じた
電気信号に変換してリード線15から出力する公知のも
のである。これら起歪体13、保護ダイヤフラム11お
よび導圧部1には一端開放の筒型押えねじ17が被せら
れている。符号17aは押えねじ17の端面部、符号1
7bは端面部17aに設けたリード線15の導出孔であ
る。
【0015】この押えねじ17の先端内側にはねじ溝
(図示せず)が形成され、このねじ溝が導圧部1のねじ
溝3bにねじ込まれており、押えねじ17の端面部17
aによって起歪体13が導圧部1方向に抑えつけられ、
起歪体13、保護ダイヤフラム11、Oリング9および
導圧部1の端面が強く圧接されている。そのため、導圧
部1の上端側では保護ダイヤフラム11との間で密封構
造になって中空部5内に満たされた例えばエッチング液
が漏れないようになっている。
【0016】これら導圧部1および押えねじ17の外周
には図示しないキャップ等が被せられて製品化される。
このように構成された本発明の圧力センサは、導圧部1
のねじ溝3aを例えば半導体製造装置(図示せず)にお
けるエッチング液の循環系にねじ込み連結すれば、中空
部5内がエッチング液で満たされるとともに保護ダイヤ
フラム11に接液する。
【0017】そして、エッチング液の圧力変位に応じた
保護ダイヤフラム11の変位を介して起歪体13が変位
し、その押圧変位に応じたレベルの電気信号がリード線
15から出力される。しかも、サファイヤ単結晶板は、
ふっ酸や発煙硝酸等薬液に対して耐薬品性に優れるとと
もに浸透も殆どなく、これを用いた保護ダイヤフラム1
1にエッチング液が接液しても、エッチング液の起歪体
13への浸透が抑えられ、保護ダイヤフラム11と起歪
体13間にガスが溜まることがなく、長期間にわたって
使用しても正確な測定および耐久性を確保できる。
【0018】しかも、サファイヤ単結晶板は、平面度が
10μm程度と極めて高く、従来のようにふっ素グリー
スを使用しなくても、保護ダイヤフラム11と起歪体1
3間の面接触精度を高く維持できるので、この点からも
正確な測定が可能である。
【0019】図2は、起歪体13に厚み0.1mm程度
の保護ダイヤフラム11を重ねた第1の構成において、
定格圧力を負荷したときのセンサの出力を示す特性図で
あり、これから分るように本発明の圧力センサでは負荷
圧力に対する出力精度が良好なことが分る。さらに、サ
ファイヤ単結晶板は繰り返し負荷による平面度の変化も
ないので、これを保護ダイヤフラム11に用いることに
より、長期間安定した精度を保持することが可能とな
る。
【0020】そして、上述した図1の構成による圧力セ
ンサにおいて、導圧部1と保護ダイヤフラム11間の耐
圧シール性は9Kgf/cm2 程度であるが、この導圧
部1と保護ダイヤフラム11間の耐圧シール性を向上さ
せれば、より高いレンジの圧力測定が可能となる。
【0021】ところで、サファイヤ単結晶板を保護ダイ
ヤフラム11に使用した場合、上記のように耐薬品性、
薬液の浸透性防止、精度の安定性という観点で優れてい
るが、薬液に接液した部分から微小量の金属成分が溶出
する可能性が若干心配される。そこで、図3に示すよう
に、保護ダイヤフラム11における導圧部1側、すなわ
ちエッチング液に接液する面に、三フッ化塩化エチレン
樹脂(PCTFE)フィルムからなるコーティング層と
してのフィルムバリヤ層19をOリング9を介して導圧
部1に押し付けるとともにエッチング液に接液させると
良い。他の構成は図1と同様である。
【0022】このような圧力センサでは、三フッ化塩化
エチレン樹脂(PCTFE)が緻密で硬い材料であるこ
とから、保護ダイヤフラム11に三フッ化塩化エチレン
樹脂(PCTFE)フィルムからなるフィルムバリヤ層
19を形成して三重保護ダイヤフラム構造にすることに
より、エッチング液へ微小金属成分が溶出するのを阻止
することが可能になる。
【0023】次に、図4は本発明に係る第2の構成を説
明する縦断面図であり、第1の構成に対してサファイヤ
単結晶板の代わりに、厚み0.2mm程度の炭化シリコ
ン(特に、β−SiC)の膜を起歪体13の片面に例え
ば熱CVDで成膜して保護ダイヤフラム21を形成した
ものであり、他の構成は第1の構成と同様である。この
ように、炭化シリコン自体で形成した保護ダイヤフラム
21を用いることにより、炭化シリコン(SiC)が緻
密で硬い材料であることから、耐薬品性、薬液の浸透性
防止、精度の安定性等優れた特性を保持することが可能
となるし、保護ダイヤフラム21から微小金属成分も溶
出しない。なお、上述した本発明の圧力センサは、強酸
性のエッチング液の圧力測定に限らず、強酸性の液体や
気体等の流体の流圧測定に好適する。
【0024】
【発明の効果】以上説明したように本発明に係る第1の
構成は、外部へ連通する中空部を有する導圧部と、その
中空部を塞ぐように固定され中空部内の流体圧力に基づ
く変位に応じた電気信号を出力する起歪体とを有し、そ
の流体圧力を起歪体側へ伝達する酸化アルミニウム単結
晶からなる保護ダイヤフラムをその起歪体の中空部側に
介在させ、三フッ化塩化エチレン樹脂からなりその保護
ダイヤフラムからの微少金属成分の溶出を抑えるフィル
ムバリヤ層を該保護ダイヤフラムに形成し、そのフィル
ムバリヤ層を介してその流体に接液させるから、耐薬品
性に優れ、薬液の浸透も阻止でき、酸化アルミニウム単
結晶の保護ダイヤフラムから薬液中への微小金属成分溶
出も抑えることが可能となるうえ、繰り返しの負荷によ
る平面度の変化もなく、長期間に安定したセンサ精度を
保持することが可能となる。さらに、本発明に係る第2
の構成は、起歪体に重ねて薬液に接液する保護ダイヤフ
ラム自体を炭化シリコンで形成したから、耐薬品性の向
上、薬液の浸透性防止、精度の安定性等優れた特性を保
持することが可能となるうえ、微小金属成分の溶出もな
い。Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a pressure sensor,
For example, the present invention relates to an improvement of a pressure sensor suitable for measuring pressure of a fluid (chemical) having strong acidity. 2. Description of the Related Art As an apparatus for handling a strongly acidic fluid, for example, there is a semiconductor manufacturing apparatus. This semiconductor manufacturing apparatus employs a so-called wet etching method in which an etching solution mainly composed of nitric acid containing hydrofluoric acid is circulated by a pump to etch a semiconductor substrate, and a flow pressure of the etching solution is measured by a pressure sensor. While running. Conventionally, a pressure sensor used in such a semiconductor manufacturing apparatus is provided with a hollow portion penetrating a cylindrical pressure guiding portion made of a corrosion-resistant material, and a capacitive sensor is formed so as to close the hollow portion. A strain element as a pressure element is placed on the pressure guide,
A configuration is known in which the strain body is housed in a cylindrical case together with the pressure guiding portion so as to be pressed against the pressure guiding portion. In addition, from the viewpoint of preventing corrosion by the etching solution on the pressure receiving (liquid contacting) surface of the flexure element, a protective diaphragm made of fluororesin having good corrosion resistance is overlaid, and the protective diaphragm comes into contact with the etching solution via the protective diaphragm. With the double structure, accurate pressure measurement over time is ensured. In this pressure sensor, the etching liquid flowing from one end of the hollow portion is brought into contact with the protection diaphragm, and the strain sensor is displaced in accordance with the pressure of the etching liquid to output an electric signal corresponding to the displacement. ing. [0005] However, the above-mentioned pressure sensor has the following solution even if it has a double structure in which a protective diaphragm made of fluororesin is superimposed on the liquid contact surface side of the flexure element. There are issues to be addressed. In other words, although fluororesin is a material with excellent chemical resistance, depending on a chemical such as hydrofluoric acid or fuming nitric acid, the chemical gradually penetrates the protective diaphragm over a long period of time and reaches the strain-generating body, causing a rise. There is a problem in that a chemical gas is accumulated between the strain body and the protection diaphragm, and a state in which a small pressure is applied therebetween is generated, and the zero point of the strain body changes, so that a measurement error easily occurs. If this state continues, there is a concern that the chemical solution diffuses into the strain body, gradually corrodes the electrodes and terminals of the strain body, the cables connected thereto, and the like, and the measurement becomes impossible. . Furthermore, protective diaphragms are generally manufactured by cutting fluororesin, but the cutting process has limitations on the surface roughness and the processing accuracy of flatness. Is easily reduced. In order to improve this, conventionally, there has been proposed a method of applying a fluorine grease to a contact surface of the protective diaphragm with the strain generating body to improve a close contact state with the strain generating body. There is a problem in that transmission loss and variation in pressure occur and manufacturing costs increase. Furthermore, in the case of a protective diaphragm made of fluororesin, the flatness changes minutely due to repeated load, and the sensor output gradually changes over a long period of use, and it is difficult to maintain stable accuracy. SUMMARY OF THE INVENTION The present invention has been made to solve such a conventional drawback, and a pressure sensor capable of accurately measuring the pressure of a strongly acidic fluid over time for a long period of time and ensuring durability. The purpose is to provide. [0009] In order to solve the above-mentioned problems, a structure according to the present invention comprises a pressure guiding portion having a hollow portion communicating with the outside, and a pressure guiding portion fixed to close the hollow portion. A pressure sensor that outputs an electric signal corresponding to a displacement based on a fluid pressure in the hollow portion. An aluminum oxide unit that transmits the pressure of the fluid to the strain member side at the hollow portion side of the pressure sensor. This is one in which a protective diaphragm made of a crystal is interposed. In this structure, trifluoride
Made of ethylene resin and its protection diaphragm
The film barrier layer that suppresses elution of metal components
Formed on the diaphragm and through its film barrier layer
It comes in contact with the fluid. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view showing a first embodiment according to the pressure sensor of the present invention. In FIG.
The pressure guiding portion 1 is formed into a cylindrical shape from, for example, PTFE (polytetrafluoroethylene) synthetic resin and has
It has a stepped portion, and one end (the lower end in the figure) is gradually thickened from the thinnest portion, and thread grooves 3a, 3b are formed on the outer periphery of the thinnest portion and the thickest portion. A hollow portion 5 whose inner diameter is slightly widened from the lower end to the middle thereof is formed in the pressure guiding portion 1 in the axial direction to the upper end, and expands like a funnel at the upper end surface. On the upper end surface of the pressure guiding portion 1, a groove 7 is formed annularly in a portion near the outer periphery, and an O-ring 9 having elasticity is formed in the groove 7.
The protective diaphragm 11 is overlapped with the protective diaphragm 11 so as to close the hollow portion 5. The protective diaphragm 11 is formed of a single crystal of aluminum oxide (Al 2 O 3), more specifically, a single crystal of sapphire in a flat and disc-like shape. A strain-generating body 13 as, for example, a capacitance-type pressure-sensitive element (pressure element) is overlaid on the protective diaphragm 11 so as to be in close contact with each other. The strain body 13 has a flat disk shape similar to that of the protection diaphragm 11 and has a space between opposing electrodes therein. The point at which the capacitance between these opposing electrodes changes due to the pressing displacement from the protection diaphragm 11. Is a known type that converts into an electric signal corresponding to the displacement by applying a DC voltage and outputs the electric signal from the lead wire 15. The strain body 13, the protective diaphragm 11, and the pressure guiding portion 1 are covered with a cylindrical presser screw 17 which is open at one end. Reference numeral 17a denotes an end face of the holding screw 17, reference numeral 1
7b is a lead-out hole for the lead wire 15 provided on the end face 17a. A screw groove (not shown) is formed inside the tip end of the holding screw 17, and the screw groove is screwed into the screw groove 3 b of the pressure guiding section 1.
a restricts the flexure element 13 in the direction of the pressure-guiding section 1,
The end faces of the flexure element 13, the protective diaphragm 11, the O-ring 9, and the pressure guiding portion 1 are strongly pressed. For this reason, a sealing structure is formed between the upper end side of the pressure guiding section 1 and the protection diaphragm 11 so that, for example, the etching liquid filled in the hollow section 5 does not leak. A cap or the like (not shown) is put on the outer periphery of the pressure guiding portion 1 and the holding screw 17 to produce a product.
The pressure sensor of the present invention configured as described above has a pressure guiding portion 1.
When the screw groove 3a is screwed and connected to, for example, a circulation system of an etching solution in a semiconductor manufacturing apparatus (not shown), the hollow portion 5 is filled with the etching solution and comes into contact with the protective diaphragm 11. Then, the flexure element 13 is displaced through the displacement of the protective diaphragm 11 in accordance with the pressure displacement of the etching solution, and an electric signal of a level corresponding to the pressure displacement is output from the lead wire 15. Moreover, the sapphire single crystal plate is
It has excellent chemical resistance to chemical liquids such as hydrofluoric acid and fuming nitric acid and hardly penetrates.
Even if the etching liquid comes into contact with 1, the permeation of the etching liquid into the strain body 13 is suppressed, and no gas is accumulated between the protective diaphragm 11 and the strain body 13, so that even if used for a long time, Measurement and durability can be secured. Further, the sapphire single crystal plate has a very high flatness of about 10 μm, and the protective diaphragm 11 and the strain generating element 1 can be formed without using fluorine grease as in the prior art.
Since the surface contact accuracy between the three can be kept high, accurate measurement is possible from this point as well. FIG. 2 shows a first configuration in which a protective diaphragm 11 having a thickness of about 0.1 mm is superimposed on a flexure element 13.
FIG. 5 is a characteristic diagram showing the output of the sensor when a rated pressure is applied, and as can be seen from the graph, it can be seen that the pressure sensor of the present invention has good output accuracy with respect to the load pressure. Further, since the sapphire single crystal plate does not change its flatness due to the repeated load, by using the sapphire single crystal plate for the protective diaphragm 11, stable accuracy can be maintained for a long time. In the pressure sensor having the configuration shown in FIG. 1, the pressure-resistant seal between the pressure guiding portion 1 and the protection diaphragm 11 is about 9 kgf / cm 2. If the sealing property is improved, a higher range pressure measurement can be performed. By the way, when a sapphire single crystal plate is used for the protective diaphragm 11, the chemical resistance and
Although it is excellent in terms of preventing the penetration of the chemical solution and stabilizing the accuracy, there is some concern that a minute amount of the metal component may be eluted from the portion in contact with the chemical solution. Therefore, as shown in FIG. 3, a film barrier layer 19 as a coating layer made of an ethylene trifluorochloride resin (PCTFE) film is provided on the pressure guiding portion 1 side of the protective diaphragm 11, that is, on the surface in contact with the etching solution. It is preferable to press against the pressure guiding portion 1 via the O-ring 9 and to make it come into contact with the etching liquid. Other configurations are the same as those in FIG. In such a pressure sensor, since the ethylene trifluoride chloride (PCTFE) is a dense and hard material, the protective diaphragm 11 is provided with the film barrier layer 19 made of the ethylene trifluoride chloride (PCTFE) film. The formation of the triple protective diaphragm structure makes it possible to prevent the elution of the minute metal component into the etching solution. Next, FIG. 4 is a longitudinal sectional view for explaining a second configuration according to the present invention. In place of the sapphire single crystal plate, silicon carbide (about 0.2 mm thick) is used in the first configuration. In particular, the protective diaphragm 21 is formed by forming a film of (β-SiC) on one surface of the strain body 13 by, for example, thermal CVD, and the other configuration is the same as the first configuration. As described above, since the silicon carbide (SiC) is a dense and hard material by using the protective diaphragm 21 formed of silicon carbide itself, it is excellent in chemical resistance, prevention of penetration of a chemical solution, stability of accuracy, and the like. The characteristics can be maintained, and no minute metal components elute from the protective diaphragm 21. The above-described pressure sensor of the present invention is not limited to measuring the pressure of a strongly acidic etching liquid, but is also suitable for measuring the flow pressure of a fluid such as a strongly acidic liquid or gas. As described above, the first configuration according to the present invention comprises a pressure guiding portion having a hollow portion communicating with the outside, and a fluid pressure in the hollow portion fixed to close the hollow portion. A strain-generating body that outputs an electric signal according to the displacement based on, and a protective diaphragm made of aluminum oxide single crystal that transmits the fluid pressure to the strain-generating body side is interposed in the hollow part side of the strain-generating body, Made of chlorofluoroethylene resin for protection
Fill that suppresses elution of minute metal components from diaphragm
Forming a barrier layer on the protective diaphragm;
Since is wetted in the fluid through the Mubariya layer, excellent chemical resistance, it can also prevent chemical penetration, aluminum oxide single
Dissolution of small metal components into chemical solution from protective diaphragm of crystal
In addition, it is possible to suppress the protrusion, and it is possible to maintain stable sensor accuracy for a long period without a change in flatness due to a repeated load. Further, the second aspect of the present invention
Because the protective diaphragm itself, which is placed on the strain body and comes into contact with the chemical solution, is made of silicon carbide, it has excellent properties such as improved chemical resistance, prevention of chemical solution penetration, and stability of accuracy. And no elution of minute metal components.
【図面の簡単な説明】
【図1】本発明の第1の構成に係る圧力センサの実施の
形態を示す縦断面図である。
【図2】図1の第1の構成に係る圧力センサが示す特性
図である。
【図3】図1の第1の構成の変形例を示す縦断面図であ
る。
【図4】本発明の第2の構成に係る圧力センサの実施の
形態を示す縦断面図である。
【符号の説明】
1 導圧部
3a、3b ねじ溝
5 中空部
7 凹溝
9 Oリング
11、21 保護ダイヤフラム
13 起歪体
15 リード線
17 押えねじ
17a 端面部
17b 導出孔
19 フィルムバリヤ層BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view showing an embodiment of a pressure sensor according to a first configuration of the present invention. FIG. 2 is a characteristic diagram of the pressure sensor according to the first configuration of FIG. FIG. 3 is a longitudinal sectional view showing a modification of the first configuration in FIG. 1; FIG. 4 is a longitudinal sectional view showing an embodiment of a pressure sensor according to a second configuration of the present invention. [Description of Signs] 1 Pressure guiding portions 3a, 3b Screw groove 5 Hollow portion 7 Concave groove 9 O-ring 11, 21 Protective diaphragm 13 Strain generator 15 Lead wire 17 Holding screw 17a End face portion 17b Lead-out hole 19 Film barrier layer
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−138177(JP,A) 特開 平7−326770(JP,A) 実開 平1−128141(JP,U) 特表 平3−501062(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01L 19/06 G01L 9/00 305 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-9-138177 (JP, A) JP-A-7-326770 (JP, A) JP-A 1-128141 (JP, U) 501062 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01L 19/06 G01L 9/00 305
Claims (1)
と、前記中空部を塞ぐように固定され前記中空部内の流
体圧力に基づく変位に応じた電気信号を出力する起歪体
とを有する圧力センサにおいて、 前記起歪体の前記中空部側に、前記流体の圧力を前記起
歪体側へ伝達する酸化アルミニウム単結晶からなる保護
ダイヤフラムが形成され、三フッ化塩化エチレン樹脂か
らなり前記保護ダイヤフラムからの微少金属成分の溶出
を抑えるフィルムバリヤ層が前記保護ダイヤフラムに形
成され、前記フィルムバリヤ層を介して前記流体に接液
させることを特徴とする圧力センサ。 (1) A pressure guiding portion having a hollow portion communicating with the outside, and an electric signal fixed to close the hollow portion and corresponding to a displacement based on a fluid pressure in the hollow portion. A protective diaphragm made of an aluminum oxide single crystal that transmits the pressure of the fluid to the strain-generating body side is formed on the hollow part side of the strain-generating body. Chlorinated ethylene resin
Elution of minute metal components from the protective diaphragm
Film barrier layer is formed on the protective diaphragm
And is in contact with the fluid through the film barrier layer.
A pressure sensor, characterized in that cause.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29333997A JP3404563B2 (en) | 1997-10-09 | 1997-10-09 | Pressure sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29333997A JP3404563B2 (en) | 1997-10-09 | 1997-10-09 | Pressure sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11118650A JPH11118650A (en) | 1999-04-30 |
JP3404563B2 true JP3404563B2 (en) | 2003-05-12 |
Family
ID=17793533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29333997A Expired - Lifetime JP3404563B2 (en) | 1997-10-09 | 1997-10-09 | Pressure sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3404563B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001324398A (en) * | 2000-03-07 | 2001-11-22 | Anelva Corp | Corrosion resistant vacuum sensor |
JP3947389B2 (en) * | 2001-11-26 | 2007-07-18 | ミネベア株式会社 | Corrosion-resistant pressure sensor |
JP2006322783A (en) * | 2005-05-18 | 2006-11-30 | Dainippon Screen Mfg Co Ltd | Pressure sensor and substrate processing apparatus |
JP4945142B2 (en) * | 2006-02-06 | 2012-06-06 | 東海ゴム工業株式会社 | Liquid-filled vibration isolator |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0712910Y2 (en) * | 1988-02-25 | 1995-03-29 | 株式会社長野計器製作所 | Pressure sensor |
DE3912217A1 (en) * | 1989-04-13 | 1990-10-18 | Endress Hauser Gmbh Co | PRESSURE SENSOR |
JPH07326770A (en) * | 1991-07-12 | 1995-12-12 | Terumo Corp | Semiconductor pressure sensor and its manufacture |
JPH09138177A (en) * | 1995-11-14 | 1997-05-27 | Yokogawa Electric Corp | Pressure reception diaphragm |
-
1997
- 1997-10-09 JP JP29333997A patent/JP3404563B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH11118650A (en) | 1999-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3247719A (en) | Strain decoupled transducer | |
JP2777113B2 (en) | Pressure sensor | |
KR100258678B1 (en) | Pressure detector | |
JP4916449B2 (en) | Semiconductor pressure sensor and manufacturing method thereof | |
US6644125B1 (en) | Pressure sensor | |
EP0430676A2 (en) | Capacitive pressure sensor | |
JP3404563B2 (en) | Pressure sensor | |
JP2552093B2 (en) | Pressure sensor | |
US6640639B2 (en) | Pressure sensor | |
JP3370593B2 (en) | Mounting structure of pressure sensor | |
KR101016495B1 (en) | Diaphragm pressure sensor | |
JPH1019704A (en) | Pressure sensor | |
JP3158354B2 (en) | Pressure detector | |
JP2547038Y2 (en) | Pressure sensor | |
US20030070490A1 (en) | Pressure detection device | |
US6901806B2 (en) | Electrical capacitance sapphire diaphragm pressure sensor and a method of fabricating the same | |
JP3158355B2 (en) | Pressure detector | |
JP2003156399A (en) | Semiconductor pressure detector | |
JP3158353B2 (en) | Pressure detector | |
JP2846869B2 (en) | Pressure sensor | |
JPS6273131A (en) | Pressure detector | |
JPS5922506Y2 (en) | Corrosion resistant pressure receiver | |
JPH0749282A (en) | Oil seal structure of pressure sensor | |
SU1273988A1 (en) | Transducer of hydrostatic pressure | |
JP2000028464A (en) | Pressure sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090307 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090307 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100307 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100307 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100307 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110307 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110307 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120307 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120307 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120307 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130307 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130307 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140307 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |