JP3401023B2 - Unmanned vehicle control method - Google Patents

Unmanned vehicle control method

Info

Publication number
JP3401023B2
JP3401023B2 JP33415091A JP33415091A JP3401023B2 JP 3401023 B2 JP3401023 B2 JP 3401023B2 JP 33415091 A JP33415091 A JP 33415091A JP 33415091 A JP33415091 A JP 33415091A JP 3401023 B2 JP3401023 B2 JP 3401023B2
Authority
JP
Japan
Prior art keywords
obstacle
vehicle
row
traveling
storage memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33415091A
Other languages
Japanese (ja)
Other versions
JPH05150833A (en
Inventor
重裕 山本
敏弘 鈴木
Original Assignee
日本輸送機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本輸送機株式会社 filed Critical 日本輸送機株式会社
Priority to JP33415091A priority Critical patent/JP3401023B2/en
Publication of JPH05150833A publication Critical patent/JPH05150833A/en
Application granted granted Critical
Publication of JP3401023B2 publication Critical patent/JP3401023B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、床面清掃等を行う無人
作業車の制御方法に関する。 【0002】 【従来の技術】従来、この種の無人作業車では、例え
ば、特開昭62−120510号公報に示されるよう
に、無人作業車である自動掃除機が直進走行とUターン
を繰り返して作業領域内をくまなく走行するように走行
経路を設定し、該走行経路に沿って走行しながら清掃作
業を行うものが知られている。この自動掃除機において
は、その走行に伴なって、位置検出部の検出データと障
害物検出部の検出データとで、掃除した領域を表す地図
と障害物の位置を表す地図とを作成し、これらの地図か
ら未掃除領域を検出して、該未掃除領域に掃除機を移動
させ、清掃作業を行うようにしている。 【0003】 【発明が解決しようとする課題】しかしながら、この方
法では、メモリ空間上に掃除した領域を表す地図と障害
物の位置を表す地図とを作成するため、常に実空間とメ
モリ空間との間で座標変換演算が必要となり、そのため
に処理速度が遅くなり、車体位置検出精度および停止精
度の悪化、操舵制御の不安定化を招くという問題点があ
った。本発明は、上述した問題点を解決するもので、メ
モリ空間上に地図を使用せずに、処理速度が速く安定し
た操舵制御が可能な無人作業車の制御方法を提供するこ
とを目的とする。 【0004】 【課題を解決するための手段】上記目的を達成するため
に本発明は、走行距離測定手段と、走行方向測定手段
と、該走行距離測定手段および該走行方向測定手段から
得られる車体位置検出手段と、超音波または光等のセン
サによって物体までの距離および方向を測定する非接触
式の障害物検出手段と、物体に接触したことを認識する
接触式の障害物検出手段と、障害物を検出した場合にそ
のときの車体位置を記憶する記憶メモリとを備えた無人
作業車を所定作業領域内を走行させるようにした制御方
法において、作業領域内を作業装置の寸法に応じて分割
した列を想定し、該無人作業車がある列を走行中、前記
センサが前方の所定距離以内に障害物を検出した場合、
その時の実空間上の車体位置を前記記憶メモリに記憶し
た後、旋回して次列を前記列とは逆方向へ走行する動作
を繰り返すことで該障害物の手前側を走行し、その後、
該障害物の向う側に回り込んで、前記記憶メモリに記憶
された車体位置が属する列まで戻って該障害物の向う側
を走行するような走行経路を設定するものである。 【0005】上記の方法によれば、無人作業車がある列
を走行中、センサが前方の所定距離以内に障害物を検出
した場合、その時の実空間上の車体位置を記憶メモリに
記憶した後、旋回して次列を前記列とは逆方向へ走行す
る動作を繰り返すことで、まず、該障害物の手前を走行
する。次に、各種センサにより該障害物の手前の作業が
終了したと判断すれば、該無人作業車の側方に該障害物
がなくなるまで前進し、該障害物の向う側に回り込ん
で、記憶メモリに記憶された車体位置が属する列まで戻
って該障害物の向う側を走行するので、作業領域内をく
まなく作業することができる。 【0006】 【実施例】以下、本発明を具体化した実施例を図面を参
照して説明する。図1は無人作業車の走行のための車輪
部分の構成を示す。無人作業車1に設けられた左右の固
定輪2,3には、無人作業車1の移動距離を検出するた
めのエンコーダ4,5がそれぞれ取り付けられている。
また、無人作業車1には操舵・駆動輪6が設けられてお
り、固定輪2,3の操舵・駆動輪6と反対側前方には、
作業装置7が設けられている。この作業装置7が取付け
られた側に該無人作業車1が進むときを前進とし、逆方
向に進むときを後進として、作業は前進直進時のみ行
う。さらに、無人作業車1の周囲には、障害物を検出す
るための、超音波または光等の非接触式センサおよび接
触式センサが設けられている。 【0007】この非接触式センサには、各センサ前方の
所定距離以内に存在する障害物との距離を検出するため
に、車体の周囲各面に2個ずつ、計8個設置した非接触
式センサ8と、各センサ前方の所定距離以内の障害物の
有無を検出するために、車体の前後面中央に1個ずつ、
計2個設置した非接触式センサ9の2種類がある。非接
触式センサ8によって障害物を検出した場合、車体は障
害物回避動作を行い、非接触式センサ9によって障害物
を検出した場合、車体は所定速度まで減速する。また、
図示しないが、接触式センサは、車体の周囲全域に設け
られ、障害物がセンサと接触したことを検出する。この
接触式センサによって障害物を検出した場合、車体は一
時停止する。 【0008】図2は無人作業車1上に搭載した走行制御
装置の周辺構成を示す。走行制御装置11は、演算およ
び記憶機能を有したマイクロコンピュータ等で構成さ
れ、走行速度用エンコーダ12、前記左右の固定輪2,
3のエンコーダ4,5、操舵角検出用ポテンショメータ
13、非接触式センサ8,9、接触式センサ14等の各
種センサから検出信号を受取り、所定の演算を行って指
令信号を求め、これを操舵用モータM2に出力し、操舵
制御を行い、走行用モータM1には走行コースに応じて
設定された速度信号を出力し、無人作業車1の走行を制
御する。また、走行制御装置11内のマイクロコンピュ
ータには、車体位置を記憶するための記憶メモリ15が
設けられ、この記憶メモリ15内には、無人作業車1が
障害物を回避したか否かを示す障害物回避中フラグを立
てるための領域が設けられている。 【0009】図3のように、作業領域内に、作業領域の
左下端を原点にした仮想のX−Y平面を設定する。作業
領域をX方向に等分割した列を想定し、作業領域の左下
端を走行開始位置A点に、作業領域の右上端を走行終了
位置B点にし、走行開始位置A点の属する列から走行終
了位置B点の属する列まで、順に、1,2,3,……と
列番号を付ける。列番号が奇数の列を奇数列、列番号が
偶数の列を偶数列という。作業領域を作業する場合、無
人作業車1は走行開始位置A点から走行を開始し、1列
目を走行中、作業領域境界Rに到達すると、旋回して2
列目を1列目とは逆方向へ走行する。以後、走行終了位
置B点まで同様の動作を繰り返す。 【0010】作業領域内に障害物S1がある場合、図4
(a)のように、センサが前方の所定距離以内に障害物
S1を検出すると、記憶メモリ15内の障害物回避中フ
ラグをONにし、その時の実空間上の車体位置C点(X
1,Y1)を記憶メモリ15内に記憶した後、旋回して
次列を前記列とは逆方向へ走行する。同様に、該障害物
S1を検出した時点での車体位置D点(X2,Y2),
……を順次記憶メモリ15内に記憶していく。無人作業
車1がE点に到達してセンサが前方の所定距離以内に障
害物S1を検出しなくなれば、障害物S1の手前側の作
業を終了したと考えて、そこで旋回せずに、さらに前進
する。この場合、無人作業車1が上記車体位置Y1,Y
2の位置において障害物S1を検出しないことをもって
障害物S1の手前側の作業を終了したと判断するものと
してもよい。無人作業車1がF点に到達して、センサが
該無人作業車1の側方に該障害物S1を検出しなくなれ
ば、反時計方向に90°旋回し、未作業領域である障害
物S1の向う側、前記C点の属する列のG点まで前進
し、時計方向に90°旋回する。これで、障害物S1を
回避したと考えて、記憶メモリ15内の障害物回避中フ
ラグをOFFにする。そして、障害物S1の向う側を同
様に走行する。 【0011】一方、作業領域内に前記障害物S1より1
列分だけ幅の大きい障害物S2がある場合、図4(b)
のように、記憶メモリ15内の障害物回避中フラグをO
Nとし、上述と同様に、該障害物S2を検出した時点の
車体位置C点(X1,Y1),D点(X2,Y2),…
…を順次記憶メモリ15内に記憶していく。無人作業車
1がE1点に到達してセンサが左前方に障害物S2を検
出すれば、障害物S2の手前側の作業を終了したと考え
て、Yの負方向までは旋回せず、時計方向に90°旋回
し、Xの正方向にE2点まで前進した後、反時計方向に
90°旋回し、Yの正方向に前進する。後は、上述と同
様に、F点およびG点で旋回し、記憶メモリ15内の障
害物回避中フラグをOFFにする。そして、障害物S1
の向う側を同様に走行する。 【0012】次に、作業領域内の同一列に障害物S1が
2つある場合、図5(a)のように、まず、作業領域境
界Rと手前の障害物S1との間で挟まれた平面を作業す
る。その後、図4(a)の場合と同じように、手前の障
害物S1の後ろに回り込み、手前の障害物S1と奥の障
害物S1との間で挟まれた平面を作業し、一旦、Y座標
が最小のH点に戻ってから、奥の障害物S1と作業領域
境界Rとの間で挟まれた平面を作業する。 【0013】一方、作業領域内の同一列に、障害物S1
より1列分だけ幅の大きい障害物S2が2つある場合、
図5(b)のように、まず、作業領域境界Rと手前の障
害物S2との間で挟まれた平面を作業する。その後、図
4(b)の場合と同じように、E1点,E2点で旋回
し、手前の障害物S2の後ろに回り込み、手前の障害物
S2と奥の障害物S2との間で挟まれた平面を作業し、
I1点,I2点でE1点,E2点と同じような旋回を
し、奥の障害物S2と作業領域境界Rとの間で挟まれた
平面を作業する。 【0014】また、図6のように、欠けた部分がある障
害物S3の場合、まず、センサが前方の所定距離以内に
障害物S3を検出すると、その時の実空間上の車体位置
C点(X1,Y1)を記憶メモリ15内に記憶する。そ
して、上述と同様の作業を行い、F点で旋回した後、前
進し、車体位置Xの値が障害物検出位置の第1番目の値
X1に一致するまでに、J1点で反時計方向に90°旋
回可能となれば、旋回する。旋回後、前進し、前方に障
害物S3を検出すれば、J2点で時計方向に90°旋回
する。その後、同様に作業を行う。 【0015】以下、同様の態様で、図7乃至図15のよ
うに作業を行う。このように、障害物の向う側まで作業
できるので、作業を施せない領域が残ることなく、くま
なく作業できる。また、無人作業車を用いて、清掃作業
や塗装作業等の様々な作業が行える。 【0016】 【発明の効果】以上のように本発明によれば、メモリ空
間上に地図を使用せずに、障害物を検出した時点での実
空間上の車体位置を記憶しておくことで障害物回避の判
断を行うので、従来に比べ、処理速度が速くなり、車体
位置検出精度、停止精度、および操舵制御の安定化を図
ることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling an unmanned working vehicle for cleaning a floor or the like. 2. Description of the Related Art Conventionally, in this type of unmanned working vehicle, for example, as shown in Japanese Patent Application Laid-Open No. Sho 62-120510, an automatic cleaner, which is an unmanned working vehicle, repeats straight traveling and U-turn. It is known that a traveling route is set so as to travel all over a work area, and a cleaning operation is performed while traveling along the traveling route. In this automatic cleaner, along with its travel, with the detection data of the position detection unit and the detection data of the obstacle detection unit, a map representing the cleaned area and a map representing the position of the obstacle are created, An uncleaned area is detected from these maps, and the cleaner is moved to the uncleaned area to perform a cleaning operation. However, in this method, since a map representing a cleaned area and a map representing the position of an obstacle are created in the memory space, a map between the real space and the memory space is always created. There is a problem in that coordinate conversion calculation is required between the two, and the processing speed is slowed down, thereby deteriorating the vehicle body position detection accuracy and the stop accuracy, and causing unstable steering control. SUMMARY OF THE INVENTION An object of the present invention is to provide a control method of an unmanned working vehicle capable of performing a high-speed and stable steering control without using a map in a memory space. . [0004] In order to achieve the above object, the present invention provides a travel distance measuring means, a traveling direction measuring means, and a vehicle body obtained from the traveling distance measuring means and the traveling direction measuring means. Position detecting means, a non-contact type obstacle detecting means for measuring the distance and direction to the object by a sensor such as ultrasonic waves or light, a contact type obstacle detecting means for recognizing contact with the object, In a control method in which an unmanned working vehicle having a storage memory for storing a body position at that time when an object is detected is run in a predetermined working area, the inside of the working area is divided according to the size of the working device. Assuming a row, when the unmanned working vehicle is traveling in a row, if the sensor detects an obstacle within a predetermined distance ahead,
After storing the vehicle body position in the real space at that time in the storage memory, the vehicle travels in front of the obstacle by repeating the operation of turning and running the next row in the opposite direction to the row, and thereafter,
A traveling route is set so as to go around the side of the obstacle, return to the row to which the vehicle body position stored in the storage memory belongs, and travel on the side opposite the obstacle. According to the above-mentioned method, when the sensor detects an obstacle within a predetermined distance in front while the unmanned working vehicle is traveling in a certain row, the vehicle body position in the real space at that time is stored in the storage memory. By repeating the operation of turning and traveling in the opposite direction to the next line, first, the vehicle travels just before the obstacle. Next, if it is determined by various sensors that the work in front of the obstacle has been completed, the vehicle advances forward to the side of the unmanned working vehicle until the obstacle disappears, goes around to the side opposite to the obstacle, and enters the storage memory. Since the vehicle returns to the row to which the vehicle body position stored in the vehicle belongs and travels on the side opposite to the obstacle, it is possible to work all over the work area. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a configuration of a wheel portion for traveling of an unmanned working vehicle. Encoders 4 and 5 for detecting a moving distance of the unmanned working vehicle 1 are respectively attached to left and right fixed wheels 2 and 3 provided in the unmanned working vehicle 1.
Further, the unmanned working vehicle 1 is provided with a steering / driving wheel 6.
A working device 7 is provided. When the unmanned working vehicle 1 advances to the side on which the working device 7 is mounted, it is referred to as forward movement, and when the unmanned working vehicle 1 advances in the reverse direction, it is referred to as reverse movement. Further, a non-contact type sensor such as an ultrasonic wave or light and a contact type sensor for detecting an obstacle are provided around the unmanned working vehicle 1. In order to detect the distance to an obstacle existing within a predetermined distance in front of each sensor, a total of eight non-contact sensors are provided on each surface of the vehicle body. In order to detect the presence or absence of an obstacle within a predetermined distance in front of each sensor 8, one at the center of the front and rear surfaces of the vehicle body,
There are two types of non-contact type sensors 9 in which two are installed. When the non-contact sensor 8 detects an obstacle, the vehicle body performs an obstacle avoiding operation, and when the non-contact sensor 9 detects an obstacle, the vehicle body decelerates to a predetermined speed. Also,
Although not shown, the contact-type sensor is provided in the entire area around the vehicle body, and detects that an obstacle contacts the sensor. When an obstacle is detected by the contact sensor, the vehicle body temporarily stops. FIG. 2 shows a peripheral configuration of a traveling control device mounted on the unmanned working vehicle 1. The travel control device 11 includes a microcomputer or the like having a calculation and storage function, and includes a travel speed encoder 12, the left and right fixed wheels 2,
3, detection signals are received from various sensors such as encoders 4 and 5, steering angle detection potentiometer 13, non-contact type sensors 8 and 9, and contact type sensor 14, and a predetermined calculation is performed to obtain a command signal. The traveling motor M2 outputs a speed signal set according to the traveling course to the traveling motor M1 to control traveling of the unmanned working vehicle 1. Further, a microcomputer in the travel control device 11 is provided with a storage memory 15 for storing a vehicle body position. The storage memory 15 indicates whether or not the unmanned working vehicle 1 has avoided an obstacle. An area for setting an obstacle avoiding flag is provided. As shown in FIG. 3, a virtual XY plane having the origin at the lower left end of the work area is set in the work area. Assuming a row in which the work area is equally divided in the X direction, the lower left end of the work area is set to the travel start position A, the upper right end of the work area is set to the travel end position B, and the travel starts from the row to which the travel start position A belongs. .., Are sequentially numbered 1, 2, 3,... Until the column to which the end position B belongs. A column whose column number is odd is called an odd column, and a column whose column number is even is called an even column. When working in the work area, the unmanned work vehicle 1 starts traveling from the traveling start position A, and while traveling in the first row, when it reaches the work area boundary R, it turns and turns 2.
It runs in the row in the opposite direction to the first row. Thereafter, the same operation is repeated up to the traveling end position B. When there is an obstacle S1 in the work area, FIG.
As shown in (a), when the sensor detects the obstacle S1 within a predetermined distance ahead, the obstacle avoiding flag in the storage memory 15 is turned ON, and the vehicle body position C (X
After (1, Y1) is stored in the storage memory 15, the vehicle turns and travels in the next row in the direction opposite to the row. Similarly, the vehicle body position D (X2, Y2) when the obstacle S1 is detected,
.. Are sequentially stored in the storage memory 15. If the unmanned working vehicle 1 reaches the point E and the sensor does not detect the obstacle S1 within a predetermined distance in front, it is considered that the work on the front side of the obstacle S1 has been completed, and the vehicle does not turn there. Advance. In this case, the unmanned working vehicle 1 is positioned at the vehicle body positions Y1, Y
If the obstacle S1 is not detected at the position 2, the operation on the near side of the obstacle S1 may be determined to be completed. When the unmanned working vehicle 1 reaches the point F and the sensor stops detecting the obstacle S1 to the side of the unmanned working vehicle 1, the unmanned working vehicle 1 turns 90 degrees in a counterclockwise direction, and the obstacle S1, which is an unworked area, is turned. On the side opposite to the point G in the row to which the point C belongs, and turns 90 ° clockwise. Thus, it is considered that the obstacle S1 has been avoided, and the obstacle avoiding flag in the storage memory 15 is turned off. Then, the vehicle travels on the opposite side of the obstacle S1. On the other hand, if the obstacle S1
FIG. 4B shows a case where there is an obstacle S2 whose width is large by the number of rows.
, The obstacle avoiding flag in the storage memory 15 is set to O.
In the same manner as described above, the vehicle position C (X1, Y1), D (X2, Y2),.
Are sequentially stored in the storage memory 15. If the unmanned working vehicle 1 reaches the point E1 and the sensor detects the obstacle S2 to the left front, it is considered that the work on the front side of the obstacle S2 has been completed, and the vehicle does not turn to the negative Y direction. After turning 90 degrees in the X direction and moving forward to the point E2 in the positive X direction, it turns 90 degrees counterclockwise and moving in the positive Y direction. Thereafter, as described above, the vehicle turns at the points F and G, and turns off the obstacle avoiding flag in the storage memory 15. And the obstacle S1
On the other side in the same way. Next, when there are two obstacles S1 in the same row in the work area, first, as shown in FIG. 5A, the obstacle S1 is sandwiched between the work area boundary R and the obstacle S1 in front. Work on a plane. After that, as in the case of FIG. 4A, the vehicle goes behind the obstacle S1 in the foreground, and works on a plane sandwiched between the obstacle S1 in the foreground and the obstacle S1 in the back. After the coordinates have returned to the minimum point H, work is performed on the plane sandwiched between the obstacle S1 at the back and the work area boundary R. On the other hand, the obstacle S1 is located in the same row in the work area.
If there are two obstacles S2 that are wider by one row,
First, as shown in FIG. 5B, a plane sandwiched between the work area boundary R and the obstacle S2 in the foreground is worked. Thereafter, as in the case of FIG. 4B, the vehicle turns at the points E1 and E2, turns around behind the obstacle S2 in front, and is sandwiched between the obstacle S2 in front and the obstacle S2 in the back. Work on the plane
A similar turn is made at points I1 and I2 as at points E1 and E2 to work on the plane sandwiched between the obstacle S2 at the back and the work area boundary R. As shown in FIG. 6, in the case of an obstacle S3 having a missing portion, first, when the sensor detects the obstacle S3 within a predetermined distance ahead, the vehicle body position C in the real space at that time (point C ( X1, Y1) are stored in the storage memory 15. Then, the same work as described above is performed, and after turning at the point F, the vehicle moves forward, and is turned in the counterclockwise direction at the point J1 until the value of the vehicle body position X matches the first value X1 of the obstacle detection position. If it becomes possible to turn 90 °, it turns. After turning, the vehicle moves forward, and if it detects an obstacle S3 ahead, it turns 90 ° clockwise at point J2. After that, work is performed similarly. Hereinafter, operations are performed in the same manner as shown in FIGS. As described above, since the work can be performed up to the side opposite to the obstacle, the work can be performed without leaving an area where the work cannot be performed. In addition, various operations such as a cleaning operation and a painting operation can be performed using the unmanned operation vehicle. As described above, according to the present invention, the vehicle body position in the real space at the time when an obstacle is detected is stored in the memory space without using a map. Since the obstacle avoidance determination is performed, the processing speed is higher than in the related art, and the vehicle body position detection accuracy, the stop accuracy, and the steering control can be stabilized.

【図面の簡単な説明】 【図1】本発明の一実施例による無人作業車の上面図で
ある。 【図2】無人作業車の走行制御装置周辺のブロック構成
図である。 【図3】作業領域全体の平面図である。 【図4】作業領域内に障害物がある場合の障害物付近の
平面図である。 【図5】作業領域内の同一列に障害物が2つある場合の
障害物付近の平面図である。 【図6】作業領域内に欠けた部分のある障害物がある場
合の障害物付近の平面図である。 【図7】作業領域内に障害物が2つある場合の障害物付
近の平面図である。 【図8】作業領域内に障害物がある場合の障害物付近の
平面図である。 【図9】作業領域内に障害物がある場合の障害物付近の
平面図である。 【図10】作業領域内に障害物がある場合の障害物付近
の平面図である。 【図11】作業領域内に障害物がある場合の障害物付近
の平面図である。 【図12】作業領域内に障害物がある場合の障害物付近
の平面図である。 【図13】作業領域内に障害物がある場合の障害物付近
の平面図である。 【図14】作業領域内に障害物が2つある場合の障害物
付近の平面図である。 【図15】作業領域内に障害物がある場合の障害物付近
の平面図である。 【符号の説明】 1 無人作業車 7 作業装置 8,9 非接触式センサ 11 走行制御装置 15 記憶メモリ R 作業領域境界 S 障害物
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a top view of an unmanned working vehicle according to one embodiment of the present invention. FIG. 2 is a block diagram of the periphery of a travel control device of the unmanned working vehicle. FIG. 3 is a plan view of the entire work area. FIG. 4 is a plan view near an obstacle when there is an obstacle in a work area. FIG. 5 is a plan view of the vicinity of an obstacle when there are two obstacles in the same column in the work area. FIG. 6 is a plan view of the vicinity of the obstacle when there is an obstacle having a missing portion in the work area. FIG. 7 is a plan view near an obstacle when there are two obstacles in a work area. FIG. 8 is a plan view near an obstacle when there is an obstacle in a work area. FIG. 9 is a plan view of the vicinity of an obstacle when there is an obstacle in a work area. FIG. 10 is a plan view near an obstacle when there is an obstacle in a work area. FIG. 11 is a plan view near an obstacle when there is an obstacle in a work area. FIG. 12 is a plan view near an obstacle when there is an obstacle in a work area. FIG. 13 is a plan view near an obstacle when there is an obstacle in a work area. FIG. 14 is a plan view near an obstacle when there are two obstacles in a work area. FIG. 15 is a plan view near an obstacle when there is an obstacle in a work area. [Description of Signs] 1 Unmanned work vehicle 7 Work device 8, 9 Non-contact sensor 11 Travel control device 15 Storage memory R Work area boundary S Obstacle

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI G05D 1/02 G05D 1/02 R (56)参考文献 特開 昭60−93522(JP,A) 特開 平3−184105(JP,A) (58)調査した分野(Int.Cl.7,DB名) G05D 1/00 A47L 11/00 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 7 Identification symbol FI G05D 1/02 G05D 1/02 R (56) References JP-A-60-93522 (JP, A) JP-A-3-184105 ( JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G05D 1/00 A47L 11/00

Claims (1)

(57)【特許請求の範囲】 【請求項1】 走行距離測定手段と、走行方向測定手段
と、該走行距離測定手段および該走行方向測定手段から
得られる車体位置検出手段と、超音波または光等のセン
サによって物体までの距離および方向を測定する非接触
式の障害物検出手段と、物体に接触したことを認識する
接触式の障害物検出手段と、障害物を検出した場合にそ
のときの車体位置を記憶する記憶メモリとを備えた無人
作業車を所定作業領域内を走行させるようにした制御方
法において、 作業領域内を作業装置の寸法に応じて分割した列を想定
し、該無人作業車がある列を走行中、前記センサが前方
の所定距離以内に障害物を検出した場合、その時の実空
間上の車体位置を前記記憶メモリに記憶した後、旋回し
て次列を前記列とは逆方向へ走行する動作を繰り返すこ
該障害物の手前側を走行し、その後、該障害物の向
う側に回り込んで、前記記憶メモリに記憶された車体位
置が属する列まで戻って該障害物の向う側を走行するよ
うな走行経路を設定することを特徴とした無人作業車の
制御方法。
(57) [Claim 1] A traveling distance measuring means, a traveling direction measuring means, a vehicle position detecting means obtained from the traveling distance measuring means and the traveling direction measuring means, an ultrasonic wave or a light. Non-contact type obstacle detection means that measures the distance and direction to the object with a sensor, etc., and a contact type obstacle detection means that recognizes that the object has been touched, In a control method in which an unmanned working vehicle having a storage memory for storing a vehicle body position is made to travel in a predetermined working area, the work area is assumed to have a row divided according to the size of a working device. If the sensor detects an obstacle within a predetermined distance ahead while the car is traveling in a certain row, the vehicle body position in the real space at that time is stored in the storage memory, and then the vehicle turns and the next row is referred to as the row. Runs in the opposite direction By repeating the operation, the vehicle travels in front of the obstacle, and then goes around to the opposite side of the obstacle , and moves to the vehicle body position stored in the storage memory.
A driving route that returns to the row to which the vehicle belongs and runs on the side opposite the obstacle.
JP33415091A 1991-11-22 1991-11-22 Unmanned vehicle control method Expired - Fee Related JP3401023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33415091A JP3401023B2 (en) 1991-11-22 1991-11-22 Unmanned vehicle control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33415091A JP3401023B2 (en) 1991-11-22 1991-11-22 Unmanned vehicle control method

Publications (2)

Publication Number Publication Date
JPH05150833A JPH05150833A (en) 1993-06-18
JP3401023B2 true JP3401023B2 (en) 2003-04-28

Family

ID=18274092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33415091A Expired - Fee Related JP3401023B2 (en) 1991-11-22 1991-11-22 Unmanned vehicle control method

Country Status (1)

Country Link
JP (1) JP3401023B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10113318A (en) * 1996-10-15 1998-05-06 Penguin Wax Kk Working machine for floor
CN104972462B (en) * 2014-04-14 2017-04-19 科沃斯机器人股份有限公司 Obstacle avoidance walking method of self-moving robot
CN111938513B (en) * 2020-06-30 2021-11-09 珠海市一微半导体有限公司 Robot obstacle-crossing edgewise path selection method, chip and robot
CN112987755A (en) * 2021-04-19 2021-06-18 浙江欣奕华智能科技有限公司 Obstacle avoidance method and device of sweeping robot

Also Published As

Publication number Publication date
JPH05150833A (en) 1993-06-18

Similar Documents

Publication Publication Date Title
US5896488A (en) Methods and apparatus for enabling a self-propelled robot to create a map of a work area
EP0490736B1 (en) Method for automatically controlling a travelling and cleaning operation of vacuum cleaners
JP3866328B2 (en) Vehicle peripheral three-dimensional object recognition device
WO2007000868A1 (en) Obstacle detection device
JPS62154008A (en) Travel control method for self-travel robot
JP2005135400A (en) Self-propelled working robot
JP3401023B2 (en) Unmanned vehicle control method
JPS6093522A (en) Controller of moving robot
JP2785472B2 (en) Automatic parking device
JP2658056B2 (en) Autonomous traveling vehicle control device
JP3237500B2 (en) Autonomous mobile work vehicle
JPH04160609A (en) Automatic parking device
CN112731944B (en) Autonomous obstacle avoidance method for unmanned road roller
JP2863361B2 (en) Unmanned vehicle control method
CN112815945A (en) Unmanned floor washing machine path planning method and system for increasing corner cleaning area
JPH05165517A (en) Method for controlling unmanned working vehicle
JP2005346477A (en) Autonomous travelling body
JPH01124008A (en) Guiding device
JPH0135361B2 (en)
JP2847674B2 (en) Unmanned vehicle control method
JPH06131044A (en) Controller for unmanned traveling car
JP2668882B2 (en) Autonomous traveling vehicle control device
JPS6148098A (en) Display unit for vehicle
JP2825239B2 (en) Automatic guidance control device for moving objects
JP3045435B2 (en) Travel stop control device for unmanned working vehicles

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010130

LAPS Cancellation because of no payment of annual fees