JPH06131044A - Controller for unmanned traveling car - Google Patents
Controller for unmanned traveling carInfo
- Publication number
- JPH06131044A JPH06131044A JP4281285A JP28128592A JPH06131044A JP H06131044 A JPH06131044 A JP H06131044A JP 4281285 A JP4281285 A JP 4281285A JP 28128592 A JP28128592 A JP 28128592A JP H06131044 A JPH06131044 A JP H06131044A
- Authority
- JP
- Japan
- Prior art keywords
- traveling
- unmanned vehicle
- mark
- unmanned
- guide line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000007704 transition Effects 0.000 claims description 5
- 238000004140 cleaning Methods 0.000 abstract description 29
- 238000002360 preparation method Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 6
- 239000003550 marker Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 241001417527 Pempheridae Species 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Landscapes
- Electric Suction Cleaners (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、無人走行車例えば床面
清掃を行う清掃用無人走行車の制御装置に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for an unmanned vehicle, such as a cleaning unmanned vehicle for cleaning a floor.
【0002】[0002]
【従来の技術】従来、無人走行車の運転制御において
は、走行領域の床面に走行方向に沿って誘導線を埋設
し、誘導線に電流を流し無人走行車にて電流による磁束
を検知して誘導線に従い走行するように制御する方法、
または床面に走行方向に沿って光反射テープを貼付け、
無人走行車より光を当てその反射光を光センサにより検
出し光反射テープに追従して走行する方法、または特公
平3−79723号にその制御装置が提案されているよ
うに、メモリ装置に移動領域を二次元座標上の単位ブロ
ックに分割したマップを設け、無人走行車の走行距離と
走行方向の偏位に基づいて移動領域の二次元座標上の位
置を演算により求めて該当する単位ブロックに記憶学習
し、各単位ブロックの縦列または横列に沿って軌道を設
定して無人走行車の直線走行または反転移行を制御する
方法等が用いられている。また、床面の凹凸によつては
無人走行車が傾き、走行方向が傾いた方向にずれる点を
防止するために、無人走行車内にジャイロスコープを設
け、無人走行車の傾きを検出し、左右の駆動モータの回
転数を調整して走行方向を補正するようにしている。し
かしながら、誘導線を埋設するには大掛かりな工事を要
し費用がかかり、かつ走行路の変更は困難で、また光反
射テープの場合も他の走行車や人に踏まれて汚れて反射
率が低下し光センサによる検出が困難になる等の問題が
あり、床面の凹凸によつては無人走行車が傾く場合もあ
り、走行方向に向かう傾斜や床面のゆるやかな凹凸に対
してジャイロスコープが追従できないで、安定した走行
が保証できない場合が発生している。また、特公平3−
79723号の場合、予じめ移動領域と移動領域の境界
および各ブロック内の変化量と走行方向を学習により憶
え込む必要があり、リモートコントロール装置等でスタ
ート点から学習走行し、スタート点の座標と走行方向、
走行中の現在位置の座標と走行方向を順次メモリ装置に
単位ブロックごとにマップ状に記憶させる準備段階で人
手を必要とする問題を残している。2. Description of the Related Art Conventionally, in the operation control of an unmanned vehicle, a guide wire is buried along the traveling direction on the floor surface of the traveling area and a current is passed through the guide wire to detect the magnetic flux due to the current in the unmanned vehicle. To control the vehicle to follow the guide line,
Or stick a light-reflective tape on the floor along the running direction,
A method in which light is applied from an unmanned vehicle and the reflected light is detected by an optical sensor to follow the light-reflective tape and the vehicle travels by following the light-reflective tape, or the control device is moved to the memory device as proposed in Japanese Patent Publication No. 3-79723. A map is created by dividing the area into unit blocks on the two-dimensional coordinates, and the position on the two-dimensional coordinates of the moving area is calculated based on the displacement of the unmanned vehicle and the traveling direction, and the corresponding unit blocks are calculated. For example, a method of learning by memory and setting a trajectory along a column or a row of each unit block to control a straight traveling or a reverse transition of an unmanned vehicle is used. Also, in order to prevent the unmanned vehicle from tilting due to the unevenness of the floor surface and the point where the traveling direction shifts in the inclined direction, a gyroscope is installed in the unmanned vehicle to detect the tilt of the unmanned vehicle and The number of rotations of the drive motor is adjusted to correct the traveling direction. However, burying the guide wire requires a large amount of work and is costly, and it is difficult to change the traveling path.In addition, the reflectance of the light reflection tape is also contaminated by being stepped on by another traveling vehicle or people. The unmanned vehicle may incline due to the unevenness of the floor surface, which makes it difficult to detect with an optical sensor. However, there are cases where stable driving cannot be guaranteed because the vehicle cannot follow. In addition, special fair 3-
In the case of No. 79723, it is necessary to remember the advance movement area, the boundary of the movement area, the amount of change in each block, and the traveling direction by learning, and learning traveling from the start point with a remote control device, etc., and the coordinates of the start point And traveling direction,
There remains a problem that manpower is required at the preparation stage in which the coordinates of the current position during traveling and the traveling direction are sequentially stored in the memory device in a map form for each unit block.
【0003】[0003]
【発明が解決しようとする課題】本発明は、上記従来の
問題点に鑑みなされたもので、無人走行車を誘導する走
行路の設定に大掛かりな工事を必要とせず、また事前に
リモートコントロール装置等で走行経路を学習走行する
等の準備段階での人手を必要とせず、走行路の状態に関
せず検出精度が高く、自律的に適正な走行を行う無人走
行車の制御装置を提供することを目的としている。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and does not require large-scale construction for setting a traveling path for guiding an unmanned vehicle, and a remote control device is provided in advance. Provide a control device for an unmanned vehicle that does not require humans at the preparatory stage such as learning and traveling on a traveling route, has high detection accuracy regardless of the state of the traveling route, and autonomously travels appropriately Is intended.
【0004】[0004]
【課題を解決するための手段】上記目的を達成するため
に、移動領域内の床面に無人走行車の軌道の一部に沿っ
て誘導線を設ける一方、無人走行車に誘導線を検知する
誘導線方向センサと、無人走行車の走行距離を検出する
走行距離センサと、この両センサの出力に基づき無人走
行車の二次元座標上の位置を演算により求める位置認識
手段と、無人走行車の走行に従い次列走行する床面に走
行方向に沿ってマークするマーキング装置と、このマー
クを検出するマーク方向センサと、無人走行車を直線走
行させる直線走行手段と、移動領域の境界で反転し次列
へ移行させる反転移行手段と、前記マーキング装置の制
御手段と、軌道に対する無人走行車の偏位量を検出する
偏位量検出手段と、左側または右側の駆動輪の回転数を
補正制御する補正制御手段とを設け、予じめメモリ装置
に移動領域を二次元座標上の単位ブロックに分割して形
成したマップを形成し、無人走行車に入力した移動領域
のデータに基づいて無人走行車の二次元座標上の軌道を
記憶し、無人走行車を誘導線またはマップの各単位ブロ
ックに沿って直線走行させ、マーキング装置により次列
走行の軌道をマークし、移動領域の境界で反転移行手段
により反転し次列へ移行させ、次列のマークまたはマッ
プの各単位ブロックに沿って直線走行させるとともに、
前記マーク方向センサと走行距離センサの出力に基づき
位置認識手段により無人走行車の二次元座標上の位置を
求め、同二次元座標上の位置と軌道との偏位量に基づき
左側または右側の駆動輪の回転数を補正するようにし
た。In order to achieve the above object, a guide wire is provided on a floor surface in a moving area along a part of the track of an unmanned vehicle, while detecting the guide line in the unmanned vehicle. A guide line direction sensor, a mileage sensor that detects the mileage of an unmanned vehicle, position recognition means that calculates the position of the unmanned vehicle in two-dimensional coordinates based on the outputs of these sensors, and an unmanned vehicle A marking device for marking along the traveling direction on the floor surface that travels in the next row according to traveling, a mark direction sensor for detecting this mark, a linear traveling means for linearly traveling an unmanned vehicle, and a reversal at the boundary of the moving area Inversion transfer means for transferring to a row, control means for the marking device, deviation amount detection means for detecting the deviation amount of the unmanned vehicle with respect to the track, and correction for correcting the rotational speed of the left or right drive wheel And a map formed by dividing the moving area into unit blocks on the two-dimensional coordinates in the memory device in advance, and based on the data of the moving area input to the unmanned vehicle, the map of the unmanned vehicle is formed. The track on the two-dimensional coordinates is stored, the unmanned vehicle is made to travel straight along each unit block on the guide line or map, the track for the next row is marked by the marking device, and the reversal transition means is used at the boundary of the moving area. Reverse and move to the next row, run straight along each unit block of the mark or map of the next row,
The position recognition means obtains the position on the two-dimensional coordinate of the unmanned vehicle based on the outputs of the mark direction sensor and the traveling distance sensor, and drives the left side or the right side based on the deviation amount between the position on the two-dimensional coordinate and the track. Corrected the rotation speed of the wheel.
【0005】[0005]
【作用】上記の構成によれば、無人走行車の軌道の一部
に沿って誘導線を設け、無人走行車に誘導線方向センサ
と、走行距離センサと、位置認識手段と、マーキング装
置と、マーク方向センサと、無人走行車を直線走行させ
る直線走行手段と、移動領域の境界で反転し次列へ移行
させる反転移行手段と、前記マーキング装置の制御手段
と、軌道に対する無人走行車の偏位量を検出する偏位量
検出手段と、左側または右側の駆動輪の回転数を補正制
御する補正制御手段とを設け、予じめメモリ装置に単位
ブロックに分割して形成したマップを形成し、移動領域
のデータに基づいて無人走行車の二次元座標上の軌道を
演算により求めて記憶し、無人走行車を誘導線またはマ
ップの各単位ブロックに沿って直線走行させ、マーキン
グ装置により次列走行の軌道をマークし、移動領域の境
界で次列へ反転移行させ、次列のマークまたはマップの
各単位ブロックに沿って直線走行させ、マーク方向セン
サと走行距離センサの出力に基づいて無人走行車の二次
元座標上の位置を求め、同二次元座標上の位置と軌道と
の偏位量に基づき左側または右側の駆動輪の回転数を補
正し、無人走行車の走行を自律的に制御するようにし
た。According to the above construction, the guide wire is provided along a part of the track of the unmanned vehicle, and the unmanned vehicle has a guide line direction sensor, a mileage sensor, a position recognition means, and a marking device. A mark direction sensor, a straight running means for running the unmanned vehicle in a straight line, a reversing transition means for reversing at the boundary of the moving region and shifting to the next row, a control means for the marking device, and a deviation of the unmanned vehicle with respect to the track. A deviation amount detecting means for detecting the amount and a correction control means for correcting and controlling the rotational speed of the left or right driving wheel are provided, and a map formed by dividing the unit block into a predetermined memory device is formed, The two-dimensional coordinate trajectory of the unmanned vehicle is calculated and stored based on the data of the moving area, and the unmanned vehicle is made to travel straight along each guide line or each unit block of the map, and the next line is set by the marking device. Mark the track of the row, reverse the transition to the next row at the boundary of the movement area, run straight along the mark of the next row or each unit block of the map, and run unmanned based on the output of the mark direction sensor and mileage sensor The position of the vehicle in two-dimensional coordinates is determined, and the rotational speed of the left or right drive wheel is corrected based on the amount of deviation between the position in the two-dimensional coordinates and the track to autonomously control the running of the unmanned vehicle. I decided to do it.
【0006】[0006]
【実施例】本発明の実施例を清掃用無人走行車を例にし
て、添付図面を参照して詳細に説明する。図1は本発明
の清掃用無人走行車(以下無人走行車とする)の概要を
示す構造図で、本体1の前方にはバンパー2とバンパー
2の接触により障害物を検知するタッチセンサ3(図示
せず)が、本体1の前面中央部および両隅部には超音波
センサ4(図示せず)が設けられ、走行中に障害物に近
接するかまたはバンパー2が接触すると走行を停止して
待機し、障害物が除去されると再度走行を開始し継続す
るようにしている。本体1の底面には、ほぼ中央に一対
の清掃用スイーパ5とその後方に吸込み装置6が設けら
れ、前方中央に従動前輪7と、後方左側に左駆動モータ
8に直結した左駆動輪9、後方右側に右駆動モータ10に
直結した右駆動輪11が設けられ、無人走行車を走行可能
に保持している。本体1の一側(本例では右側)には、
側面から突出し所定の位置で誘導線12を検知し走行方向
を検出する誘導線方向センサ13が設けられ、誘導線12に
沿って無人走行車の走行方向を検知している。本体1の
後方には、無人走行車が折り返し走行する次列床面に走
行方向に走行の軌道をマークするマーキング装置14が設
けられ、本体1の側面から無人走行車の進行方向により
マーキング剤の供給口15を右または左に所定の間隔だけ
突出し、床面に向けマーキング剤を放出して次列の軌道
をマークするようにしている。さらに、本体1の前部に
誘導線方向センサ13に並んで左右一対のマーク方向セン
サ16が設けられ、マーキング装置14によりマークされた
次列の軌道を検出し、無人走行車の走行方向を検知して
いる。なお、マーキング剤としては、液状で清掃後は蒸
発して痕跡を残さないもの、または粉体で清掃の際に容
易に回収され痕跡が残らないもの等を使用する。誘導線
12を配設する代わりにマーキング剤の線引きにより形成
し、清掃領域の単位ブロックの第一列内に誘導線12を引
くようにすると、誘導線方向センサ13の代わりにマーク
方向センサ16で検出して無人走行車を走行させることに
より、誘導線方向センサ13を削減することができる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail with reference to the accompanying drawings by taking an unmanned vehicle for cleaning as an example. FIG. 1 is a structural diagram showing an outline of an unmanned vehicle for cleaning (hereinafter referred to as an unmanned vehicle) according to the present invention. In front of a main body 1, a bumper 2 and a touch sensor 3 for detecting an obstacle by contacting the bumper 2 ( (Not shown), ultrasonic sensors 4 (not shown) are provided at the center and both corners of the front surface of the main body 1 to stop traveling when an obstacle is approached or bumper 2 comes into contact with the vehicle while traveling. It stands by, and when the obstacle is removed, it starts traveling again and continues. On the bottom surface of the main body 1, a pair of cleaning sweepers 5 and a suction device 6 are provided substantially in the center, and a driven front wheel 7 in the front center and a left drive wheel 9 directly connected to a left drive motor 8 on the rear left side, The right drive wheel 11 directly connected to the right drive motor 10 is provided on the rear right side, and holds the unmanned vehicle movably. On one side of the main body 1 (right side in this example),
A guide line direction sensor 13 that projects from the side surface and detects the guide line 12 at a predetermined position to detect the traveling direction is provided, and the traveling direction of the unmanned vehicle is detected along the guide line 12. Behind the main body 1, a marking device 14 is provided on the floor of the next row where the unmanned traveling vehicle travels back to mark the track of traveling in the traveling direction. The supply port 15 is projected to the right or left by a predetermined distance, and the marking agent is discharged toward the floor surface to mark the track of the next row. Further, a pair of left and right mark direction sensors 16 are provided in the front part of the main body 1 side by side with the guide line direction sensor 13, and the track of the next row marked by the marking device 14 is detected to detect the running direction of the unmanned vehicle. is doing. As the marking agent, a marking agent that is liquid and does not leave a trace by being evaporated after cleaning, or a marking agent that is easily recovered during cleaning and does not leave a marking, or the like is used. Guide wire
If the guide line 12 is formed in the first row of the unit block in the cleaning area by forming the marking agent instead of providing the guide line 12, the mark direction sensor 16 detects instead of the guide line direction sensor 13. The guide line direction sensor 13 can be eliminated by driving the unmanned vehicle by using the above-mentioned method.
【0007】図2は本発明の無人走行車の構成を示すブ
ロック図で、制御部17には、予じめ対象とする清掃面の
広さ(X、Y)、清掃面のY方向に沿って取り外し可能
に配設された誘導線12の長さL、無人走行車の清掃巾等
の初期設定データを入力する初期設定データ入力装置1
8、誘導線12を検知し走行方向Xを検出する誘導線方向
センサ13、左駆動輪9を駆動する左駆動モータ8、右駆
動輪11を運転制御する右駆動モータ10、左駆動輪9また
は右駆動輪11の回転量に比例したパルス信号を出力する
距離センサ19、バンパー2に設けられたタッチセンサ
3、本体1の前部および両隅部に設けられた超音波セン
サ4、次列の軌道をマークするマーキング装置14、マー
クされた次列の軌道を検出する複数のマーク方向センサ
16が接続され、制御部17内には、入力された初期設定デ
ータにより運転条件を設定する運転条件設定手段20、設
定された運転条件を記憶するとともに、入力された移動
領域を単位ブロックに分割して形成したマップを記憶す
るメモリ装置21、距離センサ19の出力により走行距離を
検出する走行距離検出手段22、誘導線方向センサ13また
はマーク方向センサ16の出力に基づき設定された運転条
件と走行距離を比較し清掃領域の2次元上の位置を識別
する位置識別手段23、境界点で無人走行車を反転移行さ
せる旋回反転制御手段24、旋回反転の回数をカウントす
るY方向カウンタ25、バンパー2のタッチセンサ3また
は超音波センサ4の出力により障害物を検出し駆動モー
タを停止する障害物検出手段26、走行中にマーキング装
置14を駆動するとともに旋回反転時にマーキング装置14
を停止するように制御するマーキング制御手段27が設け
られ、駆動モータ運転制御手段28により左駆動モータ8
および右駆動モータ10の運転を制御するようにしてい
る。FIG. 2 is a block diagram showing the construction of the unmanned vehicle of the present invention. The control unit 17 has a cleaning surface area (X, Y) to be predicted, along the Y direction of the cleaning surface. Initial setting data input device 1 for inputting initial setting data such as the length L of the guide wire 12 that is detachably arranged and the cleaning width of the unmanned vehicle
8, a guide line direction sensor 13 that detects the guide line 12 and the traveling direction X, a left drive motor 8 that drives the left drive wheel 9, a right drive motor 10 that controls the operation of the right drive wheel 11, a left drive wheel 9 or A distance sensor 19 that outputs a pulse signal proportional to the amount of rotation of the right drive wheel 11, a touch sensor 3 provided on the bumper 2, an ultrasonic sensor 4 provided on the front and both corners of the main body 1, and a next row Marking device 14 for marking orbits, multiple mark direction sensors for detecting orbits of the next marked line
16 is connected, and in the control unit 17, operating condition setting means 20 for setting operating conditions based on the input initial setting data, storing the set operating conditions, and dividing the input movement area into unit blocks. The memory device 21 for storing the map formed by the above, the traveling distance detecting means 22 for detecting the traveling distance by the output of the distance sensor 19, the driving condition and the traveling set based on the output of the guide line direction sensor 13 or the mark direction sensor 16. Position identification means 23 for comparing the distances to identify the two-dimensional position of the cleaning area, turning reversal control means 24 for reversing and shifting the unmanned vehicle at the boundary point, Y direction counter 25 for counting the number of turning reversals, bumper 2. Obstacle detection means 26 that detects an obstacle by the output of the touch sensor 3 or the ultrasonic sensor 4 and stops the drive motor, drives the marking device 14 while traveling, and rotates. Marking at the time of reversing device 14
Marking control means 27 for controlling to stop the left drive motor 8 is provided by the drive motor operation control means 28.
And the operation of the right drive motor 10 is controlled.
【0008】図3は清掃領域に無人走行車が所定の間隔
で往復する状態を示し、スタート点Sに有人走行により
無人走行車を運び、本体1の左側面に突出した誘導線方
向センサ13により誘導線12を検知し、誘導線12に沿って
X方向に走行するとともに、マーキング装置14の供給口
15A を本体1より次列の床面側に突出させ、次列の床面
の所定の位置に軌道をマークし、メモリ装置21に記憶さ
れた運転条件設定手段20により予じめ清掃面の広さ
(X、Y)から求めたX方向の単位走行距離Lにより境
界点を検知し、境界点Aでマーキング装置14を停止して
供給口15A を本体側に戻し、メモリ装置21に記憶された
無人走行車の清掃巾またはそれ以下で清掃面のY方向距
離を整数nに分割する長さの横行巾W/nを運転条件設
定手段20により算出し、横行巾W/nだけ旋回反転制御
手段24により横行して反転し、マーキング装置14により
形成された軌道に沿って、マーキング装置14の供給口15
B に切換えて次列の軌道をマークしながら−X方向に単
位走行距離Lだけ走行するようにし、他端の境界点に達
し旋回反転を行い、以下同様に走行と旋回反転をY方向
カウンタ25が規定値(n−1)に達するまで繰り返し、
清掃領域のY方向の境界を位置識別手段23により検出
し、マーキング装置14を停止した状態で清掃面の最終ゴ
ールGまで走行するようにしている。以上、無人走行車
の走行を清掃領域の広さ(X、Y)から求めたX方向の
単位走行距離Lと横行巾W/nにより運転制御している
が、清掃領域を図3に点線で分割して示すように、m×
n個の単位ブロックに分け、その二次元座標上の位置を
メモリ装置21に設けたマップに記憶し、無人走行車をス
タート点SからX方向に走行し、マーキング装置14の供
給口15A により次列の床面の所定の位置に軌道をマーク
し、単位ブロックm個だけ走行して境界点Aを検知し、
マーキング装置14を停止し、次列の単位ブロックとの間
で旋回反転制御手段24により横行して反転し、マーキン
グ装置14の供給口15B に切換えて次列の軌道をマークし
ながら−X方向に単位ブロックm個だけ走行し、他端の
境界点に達し旋回反転を行い、以下同様に走行と旋回反
転をY方向カウンタ25が規定値(n−1)に達するまで
繰り返し、清掃領域のY方向の境界を位置識別手段23に
より検出し、マーキング装置14を停止した状態で清掃面
の最終ゴールGまで走行するようにし、この間無人走行
車の走行をメモリ装置21に設けたマップのデータと比較
しながら制御することにより確実な清掃を行うことがで
きる。なお、誘導線方向センサ13を誘導線12の終端を検
出すると同時に、無人走行車内に引き込み格納すること
により、以後走行中に誘導線方向センサ13が邪魔になら
ずに清掃を完了することができる。FIG. 3 shows a state in which an unmanned vehicle reciprocates at a predetermined interval in the cleaning area. When the unmanned vehicle is carried to a start point S by manned traveling, the guide line direction sensor 13 protruding to the left side surface of the main body 1 is used. Detects the guide wire 12, travels in the X direction along the guide wire 12, and supplies the marking device 14 with a supply port.
15A is projected from the main body 1 to the floor surface side of the next row, the track is marked at a predetermined position on the floor surface of the next row, and the preliminary cleaning surface is widened by the operating condition setting means 20 stored in the memory device 21. The boundary point is detected by the unit traveling distance L in the X direction obtained from the (X, Y), the marking device 14 is stopped at the boundary point A, the supply port 15A is returned to the main body side, and stored in the memory device 21. The operating condition setting means 20 calculates a traverse width W / n of a length that divides the Y-direction distance of the cleaning surface into an integer n with the cleaning width of the unmanned vehicle or less, and the turning reversal control means by the traverse width W / n. The feed port 15 of the marking device 14 is moved along the trajectory formed by the marking device 14 by traversing and reversing by the 24.
Switch to B and mark the track in the next row so that the unit travels in the -X direction for the unit travel distance L, reaches the boundary point at the other end, and performs turn reversal. Is repeated until the specified value (n-1) is reached,
The boundary in the Y direction of the cleaning area is detected by the position identifying means 23, and the marking device 14 is stopped to travel to the final goal G on the cleaning surface. As described above, the driving of the unmanned vehicle is controlled by the unit traveling distance L in the X direction and the traverse width W / n obtained from the size (X, Y) of the cleaning area. The cleaning area is indicated by the dotted line in FIG. Mx as shown divided
The unit block is divided into n unit blocks, and the position on the two-dimensional coordinates is stored in a map provided in the memory device 21. The unmanned vehicle travels in the X direction from the start point S, and the supply port 15A of the marking device 14 is used to Mark the track at a predetermined position on the floor of the row, run only m unit blocks to detect the boundary point A,
The marking device 14 is stopped, and it is traversed and reversed by the turning reversal control means 24 with respect to the unit block of the next row, and switched to the supply port 15B of the marking device 14 to mark the trajectory of the next row in the -X direction. Only m unit blocks travel, reach the boundary point at the other end, and turn reversal is performed, and thereafter, traveling and turn reversal are similarly repeated until the Y direction counter 25 reaches the specified value (n-1), and the cleaning region in the Y direction. Is detected by the position identification means 23, and the marking device 14 is stopped to drive to the final goal G on the cleaning surface. During this time, the travel of the unmanned vehicle is compared with the data of the map provided in the memory device 21. While controlling, it is possible to perform reliable cleaning. Note that the guide wire direction sensor 13 detects the end of the guide wire 12 and, at the same time, retracts and stores it in the unmanned vehicle, so that cleaning can be completed without disturbing the guide wire direction sensor 13 during traveling thereafter. .
【0009】図4は本発明の詳細を示すフローチャート
で、無人走行車の制御部17に清掃領域の広さ等のデータ
を入力し、Y方向カウンタ25を初期化する(31)。運転
条件設定手段20によりX方向に走行する単位走行距離L
と、旋回反転の際にY方向横行する横行巾W/nを算出
する(32)。次いで、マーキング装置14を運転し(3
3)、供給口15A を左方向にスライドして次列走行路に
軌道をマークする。走行中にバンパー2が障害物に近接
するかまたは接触すると(34)、超音波センサ4または
タッチセンサ3が作動して左駆動輪9と右駆動輪11を停
止し(35)、障害物に近接または接触しないとそのまま
走行し、走行距離が単位走行距離Lに一致すると(36)
マーキング装置14を停止し(37)、旋回サブルーチンに
移り(38)、旋回反転して主フローチャートに戻り、マ
ーキング装置14の供給口を供給口15B に切換え(39)、
マーキング装置14を運転開始し(33)無人走行車の運転
を継続する。走行距離が単位走行距離Lに達しない時は
(36)、Y方向カウンタ25が規定値に達しない場合(4
0)に走行サブルーチンに移り(41)、それぞれ図5に
示すそれぞれのサブルーチンによる操作を経てスタート
に戻る。以後、Y方向カウンタ25が規定値に達するまで
繰り返し、Y方向カウンタ25が規定値に達した時に(4
0)、清掃を完了して停止する。また、単位走行距離L
の代わりに単位ブロックの二次元座標上の位置をマーク
方向センサ16と位置識別手段23により求め、求められた
無人走行車の二次元座標上の位置と、メモリ装置21にマ
ップとして記憶された二次元座標上の位置と比較して偏
位量を求め、偏位量に見合う修正を次の単位ブロックま
でに行うことにより、無人走行車の走行方向を維持する
ことができる。FIG. 4 is a flow chart showing the details of the present invention. Data such as the size of the cleaning area is input to the control unit 17 of the unmanned vehicle, and the Y-direction counter 25 is initialized (31). Unit travel distance L traveled in the X direction by the operating condition setting means 20
Then, the transverse width W / n traversing in the Y direction at the time of turning reversal is calculated (32). Then, the marking device 14 is operated (3
3) Slide the supply port 15A to the left to mark the track on the next-row driveway. When the bumper 2 approaches or comes into contact with an obstacle during traveling (34), the ultrasonic sensor 4 or the touch sensor 3 is activated to stop the left drive wheel 9 and the right drive wheel 11 (35), and If the vehicle does not come in close proximity or comes into contact with the vehicle, the vehicle travels as it is and if the traveling distance matches the unit traveling distance L (36).
Stop the marking device 14 (37), move to the turning subroutine (38), turn reverse and return to the main flow chart, switch the supply port of the marking device 14 to the supply port 15B (39),
The marking device 14 is started (33) and the unmanned vehicle continues to be driven. When the traveling distance does not reach the unit traveling distance L (36), when the Y direction counter 25 does not reach the specified value (4
In step 0), the process proceeds to the running subroutine (41), and the operation returns to the start through the operations of the respective subroutines shown in FIG. After that, it is repeated until the Y direction counter 25 reaches the specified value, and when the Y direction counter 25 reaches the specified value (4
0), complete cleaning and stop. Also, the unit traveling distance L
Instead of the two-dimensional coordinate position of the unit block is obtained by the mark direction sensor 16 and the position identification means 23, the obtained two-dimensional coordinate position of the unmanned vehicle and the two stored in the memory device 21 as a map. It is possible to maintain the traveling direction of the unmanned vehicle by obtaining the deviation amount by comparing with the position on the dimensional coordinates and performing the correction corresponding to the deviation amount up to the next unit block.
【0010】図5は本発明のフローチャートの各サブル
ーチンで、(a)旋回サブルーチンでは、メモリ装置21
に記憶された運転条件に従い旋回反転が左折か右折かを
判断し(41)、左折指示が確認されると、右駆動輪11を
反転し左駆動輪9を正転して90°左旋回し(42)、その
状態でY方向に横行巾W/nだけ前進し(43)、さらに
右駆動輪11を反転し左駆動輪9を正転して90°左旋回し
て反対方向に向け走行する(44)。旋回が左折か右折か
を判断し(41)、右折指示が確認されると右駆動輪11を
正転し左駆動輪9を反転して90°右旋回し(45)、Y方
向に横行巾W/nだけ前進し(46)、さらに右駆動輪11
を正転し左駆動輪9を反転して90°右旋回して反対方向
に向け走行する(47)。(b)走行サブルーチンは、走
行指示により右駆動輪11と左駆動輪9を正転して直進
し、進行方向に対して右曲がりを生じると(48)、右駆
動輪11を曲がりに対応して回転数を増速し(49)、左曲
がりを生じると(50)、左駆動輪9を曲がりに対応して
回転数を増速し(51)、曲がりが修正されると右駆動輪
11と左駆動輪9を等速度の正転を行うようにしている
(52)。FIG. 5 is a subroutine of the flowchart of the present invention. In FIG.
It is determined whether the turning reversal is a left turn or a right turn according to the driving condition stored in (41), and when the left turn instruction is confirmed, the right drive wheel 11 is reversed, the left drive wheel 9 is normally rotated, and the vehicle is turned left 90 ° ( 42) In that state, the vehicle moves forward in the Y direction by the transverse width W / n (43), further reverses the right driving wheel 11 and rotates the left driving wheel 9 forward to make a 90 ° left turn and travel in the opposite direction ( 44). It is judged whether the turn is a left turn or a right turn (41), and when the right turn instruction is confirmed, the right drive wheel 11 is rotated forward and the left drive wheel 9 is reversed to turn 90 ° rightward (45), and the transverse width is set in the Y direction. W / n forward (46), then right drive wheel 11
In the forward direction, reverse the left drive wheel 9, turn 90 ° to the right, and drive in the opposite direction (47). (B) In the traveling subroutine, when the right driving wheel 11 and the left driving wheel 9 are rotated in the forward direction in response to the traveling instruction to make a right turn in the traveling direction (48), the right driving wheel 11 corresponds to the turning. To increase the number of revolutions (49) and to make a left turn (50), increase the number of revolutions of the left drive wheel 9 in response to the turn (51), and to correct the turn to the right drive wheel.
11 and the left driving wheel 9 are rotated at a constant speed (52).
【0011】[0011]
【発明の効果】以上のように本発明においては、無人走
行車を誘導線に沿って直線走行させると同時に、マーキ
ング装置により床面に次列走行の軌道をマークすること
により、無人走行車の軌道を自律的に生成するととも
に、無人走行車の二次元座標上の位置とマップの各単位
ブロックに予じめ演算により求めた軌道と比較し、その
偏位量に応じて左または右の駆動輪の回転数を補正する
ことにより、走行方向や直線走行中の傾きを補正し、所
定の軌道を走行することができる。また、本発明により
大掛かりな誘導線の設置工事を必要とせず、予じめ学習
走行により無人走行車の軌道を設定することなく、無人
走行車の走行を自律的に制御することができ、大掛かり
な費用や人手の発生を防ぐことができる。なお、不要の
時に、誘導線を取り外すことにより、誘導線に煩わされ
ることなく床面を他の利用に広く使用することができ、
無人走行車を別の場所でも利用できる利点を有する。As described above, according to the present invention, an unmanned vehicle is run straight along an induction line, and at the same time, the marking device marks the track of the next row traveling on the floor surface. The track is generated autonomously, and the position of the unmanned vehicle on the two-dimensional coordinates is compared with the track calculated in advance in each unit block of the map, and left or right drive is performed according to the deviation amount. By correcting the number of rotations of the wheels, it is possible to correct the traveling direction and the inclination during straight traveling, and travel on a predetermined track. Further, according to the present invention, it is possible to autonomously control the traveling of the unmanned vehicle without setting the track of the unmanned traveling vehicle by preliminarily learning traveling without requiring large-scale installation work of the guide wire. It is possible to prevent unnecessary costs and labor. By removing the guide wire when not needed, the floor surface can be widely used for other purposes without being bothered by the guide wire.
It has an advantage that the unmanned vehicle can be used in another place.
【図1】本発明の無人走行車の概要を示す構造図であ
る。FIG. 1 is a structural diagram showing an outline of an unmanned vehicle of the present invention.
【図2】本発明の無人走行車の構成を示すブロック図で
ある。FIG. 2 is a block diagram showing a configuration of an unmanned vehicle of the present invention.
【図3】清掃領域に無人走行車を走行させている状態を
示す図である。FIG. 3 is a diagram showing a state in which an unmanned vehicle is traveling in a cleaning area.
【図4】本発明の詳細を示すフローチャートである。FIG. 4 is a flow chart showing details of the present invention.
【図5】同フローチャートの各サブルーチン図である。FIG. 5 is a subroutine diagram of the flowchart.
1 本体 2 バンパー 3 タッチセンサ 4 超音波センサ 5 清掃用スイーパ 6 吸込み装置 7 従動前輪 8 左駆動モータ 9 左駆動輪 10 右駆動モータ 11 右駆動輪 12 誘導線 13 誘導線方向センサ 14 マーキング装置 15 供給口 16 マーク方向センサ 17 制御部 18 初期設定データ入力装置 19 距離センサ 20 運転条件設定手段 21 メモリ装置 22 走行距離検出手段 23 位置識別手段 24 旋回反転制御手段 25 Y方向カウンタ 26 障害物検出手段 27 マーキング制御手段 28 駆動モータ運転制御手段 1 main body 2 bumper 3 touch sensor 4 ultrasonic sensor 5 cleaning sweeper 6 suction device 7 driven front wheel 8 left drive motor 9 left drive wheel 10 right drive motor 11 right drive wheel 12 guide wire 13 guide wire direction sensor 14 marking device 15 supply Mouth 16 Mark Direction sensor 17 Control unit 18 Initial setting data input device 19 Distance sensor 20 Operating condition setting means 21 Memory device 22 Travel distance detecting means 23 Position identifying means 24 Turning reversal control means 25 Y direction counter 26 Obstacle detecting means 27 Marking Control means 28 Drive motor operation control means
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 A47L 11/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location A47L 11/00
Claims (2)
一部に沿って誘導線を設ける一方、無人走行車に誘導線
を検知する誘導線方向センサと、無人走行車の走行距離
を検出する走行距離センサと、この両センサの出力に基
づき無人走行車の二次元座標上の位置を演算により求め
る位置認識手段と、無人走行車の走行に従い次列走行す
る床面に走行方向に沿ってマークするマーキング装置
と、このマークを検出するマーク方向センサと、無人走
行車を直線走行させる直線走行手段と、移動領域の境界
で反転し次列へ移行させる反転移行手段と、前記マーキ
ング装置の制御手段と、軌道に対する無人走行車の偏位
量を検出する偏位量検出手段と、左側または右側の駆動
輪の回転数を補正制御する補正制御手段とを設け、予じ
めメモリ装置に移動領域を二次元座標上の単位ブロック
に分割して形成したマップを形成し、無人走行車に入力
した移動領域のデータに基づいて無人走行車の二次元座
標上の軌道を記憶し、無人走行車を誘導線またはマップ
の各単位ブロックに沿って直線走行させ、マーキング装
置により次列走行の軌道をマークし、移動領域の境界で
反転移行手段により反転し次列へ移行させ、次列のマー
クまたはマップの各単位ブロックに沿って直線走行させ
るとともに、前記マーク方向センサと走行距離センサの
出力に基づき位置認識手段により無人走行車の二次元座
標上の位置を求め、同二次元座標上の位置と軌道との偏
位量に基づき左側または右側の駆動輪の回転数を補正す
るようにしてなることを特徴とする無人走行車の制御装
置。1. A guide line is provided along a part of the track of an unmanned vehicle on a floor surface within a moving area, and a guide line direction sensor for detecting the guide line in the unmanned vehicle and a travel distance of the unmanned vehicle. And a position recognizing means for calculating the position of the unmanned traveling vehicle on the two-dimensional coordinates based on the outputs of these sensors, and a traveling direction on the floor surface that is traveling in the next row as the unmanned traveling vehicle travels. A marking device for marking along the line, a mark direction sensor for detecting the mark, a straight running device for running the unmanned vehicle in a straight line, a reversing transfer device for reversing at the boundary of the moving region and moving to the next row, and the marking device. The control means, the deviation amount detecting means for detecting the deviation amount of the unmanned vehicle with respect to the track, and the correction control means for correcting and controlling the rotational speed of the left or right driving wheel are provided to the memory device in advance. Area of movement The area is divided into unit blocks in two-dimensional coordinates to form a map, and the trajectory of the unmanned vehicle in two-dimensional coordinates is stored based on the data of the moving area input to the unmanned vehicle. A straight line along each unit block of the guide line or the map, mark the trajectory of the next row running with the marking device, and invert by the inversion transition means at the boundary of the movement area to move to the next row, mark the next row or While traveling straight along each unit block of the map, the position recognition means determines the position on the two-dimensional coordinates of the unmanned vehicle based on the output of the mark direction sensor and the travel distance sensor, and the position on the two-dimensional coordinates. A controller for an unmanned vehicle, characterized in that the rotational speed of the left or right drive wheel is corrected based on the amount of deviation from the track.
とマークを検出するマーク方向センサを同一仕様で兼用
できるようにしてなることを特徴とする請求項1記載の
無人走行車の制御装置。2. The control device for an unmanned vehicle according to claim 1, wherein the guide wire direction sensor for detecting the guide wire and the mark direction sensor for detecting a mark can be used in common with each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4281285A JPH06131044A (en) | 1992-10-20 | 1992-10-20 | Controller for unmanned traveling car |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4281285A JPH06131044A (en) | 1992-10-20 | 1992-10-20 | Controller for unmanned traveling car |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06131044A true JPH06131044A (en) | 1994-05-13 |
Family
ID=17636946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4281285A Pending JPH06131044A (en) | 1992-10-20 | 1992-10-20 | Controller for unmanned traveling car |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06131044A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100420171B1 (en) * | 2001-08-07 | 2004-03-02 | 삼성광주전자 주식회사 | Robot cleaner and system therewith and method of driving thereof |
JP2017159177A (en) * | 2002-12-16 | 2017-09-14 | アイロボット コーポレイション | Autonomous floor-cleaning robot |
JP2019021156A (en) * | 2017-07-20 | 2019-02-07 | マツダエース株式会社 | Automatic carrier device |
US10420447B2 (en) | 2001-01-24 | 2019-09-24 | Irobot Corporation | Autonomous floor-cleaning robot |
US10906179B2 (en) | 2017-03-08 | 2021-02-02 | Panasonic Corporation | Mobile robot and method of tracking mobile robot |
US11278173B2 (en) | 2002-01-03 | 2022-03-22 | Irobot Corporation | Autonomous floor-cleaning robot |
-
1992
- 1992-10-20 JP JP4281285A patent/JPH06131044A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10420447B2 (en) | 2001-01-24 | 2019-09-24 | Irobot Corporation | Autonomous floor-cleaning robot |
US10433692B2 (en) | 2001-01-24 | 2019-10-08 | Irobot Corporation | Autonomous floor-cleaning robot |
US10517454B2 (en) | 2001-01-24 | 2019-12-31 | Irobot Corporation | Autonomous floor-cleaning robot |
KR100420171B1 (en) * | 2001-08-07 | 2004-03-02 | 삼성광주전자 주식회사 | Robot cleaner and system therewith and method of driving thereof |
US11278173B2 (en) | 2002-01-03 | 2022-03-22 | Irobot Corporation | Autonomous floor-cleaning robot |
JP2017159177A (en) * | 2002-12-16 | 2017-09-14 | アイロボット コーポレイション | Autonomous floor-cleaning robot |
US10906179B2 (en) | 2017-03-08 | 2021-02-02 | Panasonic Corporation | Mobile robot and method of tracking mobile robot |
JP2019021156A (en) * | 2017-07-20 | 2019-02-07 | マツダエース株式会社 | Automatic carrier device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0142594B1 (en) | Control system for mobile robot | |
US5896488A (en) | Methods and apparatus for enabling a self-propelled robot to create a map of a work area | |
JPH04333902A (en) | Automatic running cleaning system of cleaner | |
US5548511A (en) | Method for controlling self-running cleaning apparatus | |
JP2006260161A (en) | Self-propelled working robot | |
CN106020200A (en) | AGV driven by wheel hub motor and its path planning method | |
JPS62117012A (en) | Self-travelling of self-travelling type cleaner and floor cleaner to implement the same | |
KR970010025A (en) | Robot position recognition device and control method | |
JPS62154008A (en) | Travel control method for self-travel robot | |
JPH0884696A (en) | Cleaning robot control method and device therefor | |
JPH06131044A (en) | Controller for unmanned traveling car | |
JPS6093522A (en) | Controller of moving robot | |
JP2707546B2 (en) | Vehicle steering control device | |
JPH06149364A (en) | Controller for unmanned traveling car | |
JP3237500B2 (en) | Autonomous mobile work vehicle | |
JPH10105234A (en) | Unmanned carriage | |
JP3314469B2 (en) | Self-propelled vacuum cleaner | |
JPH06119035A (en) | Controller for cleaning unmanned traveling vehicle | |
JPH06131043A (en) | Controller for unmanned traveling car | |
JP2863361B2 (en) | Unmanned vehicle control method | |
JP3166250B2 (en) | Cleaning robot | |
JPH0379723B2 (en) | ||
JPH05150833A (en) | Control method for unattended work vehicle | |
JP2515733B2 (en) | How to guide an unmanned vehicle | |
JPS6215610A (en) | Traveling control method for autonomous traveling robot |