JP3400100B2 - Drying method of hydrous activated carbon - Google Patents

Drying method of hydrous activated carbon

Info

Publication number
JP3400100B2
JP3400100B2 JP13371494A JP13371494A JP3400100B2 JP 3400100 B2 JP3400100 B2 JP 3400100B2 JP 13371494 A JP13371494 A JP 13371494A JP 13371494 A JP13371494 A JP 13371494A JP 3400100 B2 JP3400100 B2 JP 3400100B2
Authority
JP
Japan
Prior art keywords
activated carbon
water
adsorption
toluene
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13371494A
Other languages
Japanese (ja)
Other versions
JPH07313874A (en
Inventor
進 阿部
盛隆 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Chemical Co Ltd
Original Assignee
Kuraray Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Chemical Co Ltd filed Critical Kuraray Chemical Co Ltd
Priority to JP13371494A priority Critical patent/JP3400100B2/en
Publication of JPH07313874A publication Critical patent/JPH07313874A/en
Application granted granted Critical
Publication of JP3400100B2 publication Critical patent/JP3400100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は活性炭の乾燥方法に関す
るものである。更に詳しく述べると溶剤回収装置等の吸
着塔に活性炭を充填する場合、活性炭に水を加えてスラ
リー状にして充填した時或いは一時停止のため活性炭塔
に水を注入した場合、溶剤回収装置等の運転開始の際に
適用する活性炭に含まれている水分を除去する方法、す
なわち活性炭の乾燥方法である。 【0002】 【従来の技術】活性炭は高い吸着性を有するため水を含
有する活性炭を乾燥するためには多量の熱量と長時間を
要する。溶剤回収装置等において吸着槽に活性炭を充填
する場合、通常活性炭を充填する便宜上活性炭に水を加
えてスラリー状として充填した後、活性炭中の水分を除
去すなわち乾燥して使用される。この際活性炭を乾燥す
るため過熱スチームを数時間〜2日間も通す必要がある
ことが多い。しかし、この様な強力な乾燥方法を適用し
ても活性炭中の水分を充分に除去することが出来ず、溶
剤回収装置等系内に水分が存在すると性能が低下する装
置では、活性炭が正常な吸着能力を発揮する迄には運転
開始後1〜2日、長い場合は数日間を要する場合もあ
る。 【0003】従って、その間回収能率が低下するのみな
らず大気中に放出された溶剤による大気汚染も問題にな
っている。その他種々の乾燥剤を使用する含水活性炭の
乾燥方法も開示されているが、乾燥剤の再生或いは回収
のため更に別の装置を必要とする等問題があった。 【0004】 【発明が解決しようとする課題】溶剤回収装置等におい
て吸着剤として活性炭を使用する場合、水分を含有した
活性炭を乾燥する必要がある。水分は活性炭のミクロポ
アーに吸着されており、且つ水の蒸発潜熱が大きいた
め、直接過熱スチームを吹き込んで乾燥する方法は熱効
率が低く且つ充分に乾燥することが出来ない。このため
含水活性炭の乾燥方法を改良して、熱効率も高く短時間
でほぼ完全に乾燥出来る方法を開発しようとするもので
ある。 【0005】 【課題を解決するための手段】本発明者等はグラフアイ
ト等炭素質の表面は或る程度の疎水性を有するが、炭化
水素、エステル、ケトン及びアルコール類は水より炭素
質への親和性が高い点に着目した。このため水を吸着し
ている活性炭をこれらの有機溶剤に浸漬すると活性炭中
に含まれている水分と溶剤が置換され、水分を排出する
性質が以外に大きいことを見出した。これに基づいて更
にこれらの有機溶剤の蒸発潜熱は水の蒸発潜熱に較べて
著しく小さいことを考慮して、これらの有機溶剤と置換
後の含水活性炭の乾燥方法についも検討し、本発明に到
達した。 【0006】すなわち、含水活性炭を、炭化水素、エス
テル、ケトン及びアルコールよりなる群より選ばれた1
種または2種以上の有機溶剤に浸漬・液切後、過熱スチ
ームにより活性炭中に含まれる有機溶剤及び水分を脱着
することを特徴とする含水活性炭の乾燥方法である。 【0007】以下本発明について詳細に説明する。 【0008】本発明の乾燥方法は水を含有する活性炭に
適用されるものである。ここで使用する基材の活性炭
は、通常1gあたり数100 m2或いはそれ以上の大きな表面
積を有し、高い吸着性を示す炭素材料であれば広範囲に
使用できる。活性炭の原料は通常ヤシ殻または木材等の
炭化物或いは石炭が使用されるが何れでもよい。また賦
活法も水蒸気或いは二酸化炭素により高温でまたは塩化
亜鉛、リン酸、濃硫酸処理等いづれの方法により得られ
たものでもよい。 【0009】また形状は破砕炭、造粒炭或いは顆粒炭の
何れでも効果は認められるが、圧損失及び入替等取扱い
上造粒炭または活性炭を添着したシート状吸着層が便利
である。造粒炭は常法に従って炭素材料100 部に30〜60
部の石油ピッチ或いはコールタール等をバインダーとし
て加え混和成型後賦活して調整される。 【0010】活性炭は無極性吸着剤として極めて優れた
吸着性を有する特異な物質で、殆どすべてのガス状或い
は液状物質に対して高い吸着性を示すことが知られてい
る。また、その他種々の特異な性質をもっているため多
くの用途に使用される。 【0011】活性炭はしばしば気相中に含まれる有機溶
剤ガスの吸着・回収に使用されるが、特に気相中の有機
溶剤ガスの含有量が低い場合でも高い回収率を示す点に
特徴があるため、この分野では広く使用されている。 【0012】本発明に使用される活性炭の含水量は限定
しないが、本発明の乾燥方法は含水量が高い場合に特に
有効である。本発明において活性炭中に含まれた水の置
換剤として使用される有機溶剤は、炭化水素、エステ
ル、ケトン及びアルコールよりなる群より選ばれた1種
または2種以上の有機溶剤を使用する必要がある。これ
らの有機溶剤は水より活性炭との親和性が高く、また長
期間活性炭の細孔中に吸着された状態で保持されても化
学反応を起こすおそれがないためである。 【0013】炭化水素は飽和炭化水素の他不飽和炭化水
素も使用可能であるが、鎖状不飽和炭化水素は他の有機
溶剤等と反応するおそれがあり、また長期間使用すると
一部分解・変質することもあるため、飽和炭化水素がよ
り好ましく、側鎖があってもよい。また、脂環炭化水素
も本発明の炭化水素に含まれる。尚、芳香族炭化水素は
安定性が高いため鎖状の飽和炭化水素と同様に好まし
い。 【0014】エステルも特に限定しないが、炭化水素と
同様な理由で飽和脂肪酸及び飽和アルコールから得られ
たエステル類が好ましい。 【0015】ケトン及びアルコールは低級な化合物は水
溶性または一部水溶性であり、分子量が高くなると相互
の溶解度が低下し、不溶性になるが、いずれのケトン及
びアルコールも使用可能である。分子量が高いケトン及
びアルコールの沸点は水の沸点より高くなるが、水に不
溶性となり水と共沸する性質を有するため本発明に使用
することが出来る。 【0016】これらの有機溶剤としは例えば、n-ヘキサ
ン、イソペンタン、ベンゼン、トルエン、酢酸エチル、
酢酸イソプロピル或いはアセトン等である。これらの有
機溶剤は1種類のみでなく2種類以上を混合使用するこ
とも可能である。 【0017】また、有機溶剤回収装置に使用るす場合、
その回収対象の有機溶剤と同一の溶剤を活性炭の乾燥の
際の浸漬剤として使用することが好ましい。活性炭の乾
燥後残存した浸漬剤が回収溶剤に混入しても不純物にな
らず、そのまま使用出来る利点があるからである。ま
た、水に可溶性の有機溶剤を使用する場合は、水を含ん
だ溶剤をそのまま浸漬剤として使用することも可能であ
り、ケトン及びアルコールの水溶液を使用する場合も本
発明に含まれている。尚、この場合溶剤濃度が高い程好
ましいことは当然であるが、溶剤濃度がほぼ30%程度以
上であればかなり大きな水分との置換効果が認められ
る。 【0018】含水活性炭に有機溶剤を加えて活性炭中に
含まれている水分と置換させる場合、有機溶剤の添加量
は活性炭が浸る程度で充分である。また活性炭を有機溶
剤に浸漬・接触させる時間は10分間以上が好ましい。 【0019】含水活性炭を有機溶剤に浸漬した後、液切
りして活性炭の外部に排出された水分及び活性炭の周囲
に残存している有機溶剤を分離する必要がある。液切は
例えば活性炭充填槽の場合、槽の底部のバルブを開けて
浸漬液を自然流下させることによりなされる。 【0020】分離された浸漬液には有機溶剤及び水が含
まれているため、その相互溶解度によりデカンターまた
は蒸留により分離され、溶剤は回収され再使用される。 【0021】浸漬後の液切された活性炭中には尚有機溶
剤と水分が含まれている。残存有機溶剤及び水分は過熱
スチームにより脱着させる必要がある。過熱スチームを
使用するのは、活性炭の内部に残存している有機溶剤及
び水分の蒸発熱を供給することにより、残存成分を充分
に脱着させると共に活性炭の細孔内部を乾燥させるため
である。脱着に使用する過熱スチーム量は通常活性炭の
量に対して30〜50重量%でもかなりの効果があるが、2
倍量以上が好ましい。またスチームを過熱する度合は所
要熱量を考慮して適宜に設定される。脱着ガスは冷却・
凝縮される。 【0022】凝縮された脱着液には有機溶剤及び水が含
まれているため、その相互溶解度によりデカンターまた
は蒸留により分離され、溶剤は回収され再使用される。 【0023】 【作用】含水活性炭を乾燥するため直接スチームを吹き
込んでも、多量の熱量と時間を要し尚活性炭の細孔中の
水分を充分に除去することが困難である。炭化水素、エ
ステル、ケトン或いはアルコールは活性炭に対して水分
よりもかなり高い親和性を持っている。この性質を利用
して含水活性炭を一旦これらの有機溶剤に浸漬すること
により、親和性の差異を利用して活性炭中に含有されて
いる水分を有機溶剤と置換し、更に液切した後、過剰な
熱量を持った過熱スチームを吹き込むことにより、容易
に活性炭に含まれていた水分を蒸発・除去することが出
来る。 【0024】更に、本発明方法を溶剤回収装置等に適用
する場合には、回収対象の有機溶剤と同一の溶剤をこれ
らの特定な有機溶剤から選択することによって、活性炭
の乾燥後残存した溶剤が回収溶剤中に混入しても不純物
にならず、そのまま利用できる。更に、溶剤回収装置の
運転開始直後からほぼ定常状態の回収率、排気濃度とな
る利点があり、溶剤のロス及び環境への悪影響を防止出
来る。 【0025】 【実施例】以下、実施例を挙げて本発明を更に具体的に
説明する。 【0026】(実施例1、比較例1)図1に以下本発明
の実施例及び比較例で使用した溶剤回収用試験装置を示
す。吸着槽1の底部には目皿10が設けられ、その上部に
予め乾燥した溶剤回収用活性炭11〔クラレケミカル
(株)製、活性炭「クラレコール 4GS」〕 400g を充填
した。吸着槽1は熱ロスを防止するため断熱剤9で被覆
されている。バルブ2、3及び5を閉じ、バルブ4を開
いて吸着槽1に水を注入し、活性炭11が完全に浸漬され
た状態で1時間放置して充分吸水させた。 【0027】放置後バルブ4及び5を開いて吸着槽内の
水を抜き、吸着槽を秤量した。吸着槽1の重量は予め秤
量してあるからこれによって活性炭の含水率が算出され
る。活性炭の含水率すなわち、吸水量は活性炭の乾燥重
量に対して常に 103〜107 重量% (以下WT%という) で
ほぼ一定である。 【0028】次に、バルブ4を開いて吸着槽1に予め計
量したトルエン(試薬1級)を注入し、活性炭が完全に
浸漬された状態にして1時間放置した。この際、浸漬時
間は10分程度でも充分効果があるが、余裕をみて1時間
浸漬した。この間にトルエンは活性炭に含まれている水
分と置換される。 【0029】浸漬後バルブ4及び5を開き吸着槽内の液
を取り出した。取り出したは上層液のトルエンと下層液
の水に分離しているから分液ロートで分離して、上層液
のトルエンの容量を計量した。次に、バルブ4及び5を
閉めてバルブ1及び3を開き、120 ℃過熱スチームをバ
ルブ4から吸着槽に入れて下向流で槽内を通し40分間活
性炭に吸着されているトルエンを脱着させた (初回スチ
ーム脱着という) 。脱着ガスはバルブ5から取り出され
冷却器6に導いてトルエンを捕集した。この捕集液も上
層液のトルエンと下層液の水に分離しているから分液ロ
ートで分離して、上層液のトルエンの計量を測定した。 【0030】脱着後、吸着槽を取り外して前記と同様に
秤量し、予め秤量してある水注入前の乾燥した活性炭の
みを充填した状態における吸着槽の重量との差から、活
性炭中に残存している液の重量を算出した。更に、トル
エン浸漬時吸着層に注入したトルエン量と、トルエン浸
漬後吸着層から取り出した液中に含まれていたトルエン
量及び初回スチーム脱着時脱着ガスを冷却器に導いて捕
集した捕集液中に含まれていたトルエン量の和との差か
ら、活性炭中の残存液に含まれているトルエン含有率
(活性炭乾燥重量に対するWT%で示す) を算出した。
尚、トルエンの代わりに水溶性有機溶剤を使用した場合
は、溶剤浸漬後の吸着槽からの取出液及び初回スチーム
脱着時の冷却器捕集液は溶剤と水に分離しないため、溶
剤含有量はガスクロマトグラフで定量した。 【0031】次にバルブ4及び5を閉めバルブ1及び3
を開き、バルブ2よりトルエン含有率4500ppm のガスを
流速20cm/secで吸着槽を通して、トルエンを活性炭に吸
着させた。活性炭槽を通過したガスはバルブ3を通り排
気放出口7から外部に放出される。その際放出ガス中の
トルエン濃度は分析計8で測定される。トルエン吸着量
が活性炭の乾燥重量に対して10 WT %に達した時点でガ
スを停止した (初回吸着という) 。 【0032】トルエン吸着後、バルブ2及び3を閉めバ
ルブ4及び5を開き、120 ℃過熱スチームをバルブ4か
ら吸着槽に入れて下向流で20分間槽内を通し、活性炭に
吸着されていたトルエンを脱着させた。脱着ガスはバル
ブ5から取り出され冷却器6に導いてトルエンを回収し
た。以後この吸着・脱着サイクルを繰り返し、前後のサ
イクルの吸着時の放出ガス濃度が等しくなる、定常状態
到達迄に繰り返した吸着・脱着サイクル数を求めた(実
施例1)。 【0033】比較のため吸着槽内に充填した活性炭を水
に浸漬・液切した後、トルエンに浸漬する工程を除外し
た他は実施例1と同一の条件で処理して、初回スチーム
脱着後、活性炭中に残存している液量、更にトルエン含
有ガス吸着時の放出ガスのトルエン濃度分析を行い、前
後のサイクルの吸着時の放出ガス濃度が等しくなる定常
状態到達迄に繰り返した吸着・脱着サイクル数を求めた
(比較例1)。これらの試験条件を表1に、初回吸着時
の放出ガス中のトルエン濃度及び定常状態到達迄のサイ
クル数を測定し表2に示す。 【0034】 【表1】 【0035】 【表2】【0036】この結果より含水活性炭を乾燥する場合、
一旦トルエンに浸漬することにより、顕著な活性炭内部
の水分とトルエンとの置換効果が認められ、過熱スチー
ムで脱着することによって、活性炭の乾燥が大幅に促進
されることが分かる。更にトルエン回収工程におけるト
ルエンの吸着効果が著しく高められることが認められ
る。 【0037】(実施例2、3、比較例2、3)実施例1
及び比較例1において、トルエンの代わりにn-ヘキサン
を使用した他は同一の条件で処理した場合 (実施例2、
比較例2) 、及びトルエンの代わりに酢酸エチルを使用
した他は同一の条件で処理した (実施例3、比較例3)
。その場合の試験条件を表1に示す。また初回スチー
ム脱着後、活性炭中に残存している液量及び液中のn-ヘ
キサンまたは酢酸エチル含有率及び、吸着時の放出ガス
濃度分析を行い、前後の吸着・脱着サイクルの放出ガス
濃度が等しくなる定常状態到達迄の吸着・脱着サイクル
数を測定した。これらの結果を表2に示す。 【0038】この結果より、トルエンの代わりにn-ヘキ
サン或いは酢酸エチルを使用した場合にも、トルエンと
同様なこれらの有機溶剤の置換効果と、含水活性炭の乾
燥促進効果を有することが認められる。 【0039】(実施例4、比較例4)実施例1及び比較
例1において、浸漬溶剤としてトルエンの代わりにアセ
トンを使用し、また吸着槽へ供給するガス中のアセトン
濃度を18000ppmとし、更に2回目以降の過熱スチーム脱
着時間を10分間とした他は、同一の条件で処理した。そ
の場合の試験条件を表1に示す。また初回スチーム脱着
後、活性炭中に残存している液量及び液中のアセトン含
有率及び、吸着時の放出ガス濃度の分析を行い、前後の
吸着・脱着サイクルの放出ガス濃度が等しくなる定常状
態到達迄の吸着・脱着サイクル数を測定した。これらの
結果を表2に示す。 【0040】(実施例5〜7)実施例4において、浸漬
溶剤としてアセトンの代わりにそれぞれ60 WT %アセト
ン水溶液 (実施例5)、40 WT %アセトン水溶液 (実施
例6)、30 WT %アセトン水溶液 (実施例7)を使用し
た他は同一の条件で処理した。これらの試験条件を表1
に示す。また初回スチーム脱着後、活性炭中に残存して
いる液量及び液中のアセトン含有率及び、吸着時の放出
ガス濃度の分析を行い、前後の吸着・脱着サイクルの放
出ガス濃度が等しくなる定常状態到達迄の吸着・脱着サ
イクル数を測定した。これらの結果を表2に示す。 【0041】この結果を実施例4及び比較例4と比較す
ると、アセトン水溶液に含水活性炭を浸漬した場合は、
水を含まないアセトンのみに浸漬した場合に較べて効果
は減少するが、浸漬工程を除外した場合に較べるとかな
り大きな効果が認められ、本発明においてアセトンの代
わりにアセトン水溶液を使用することが可能であること
が分かる。 【0042】(実施例8〜10)実施例4において、初回
スチーム脱着時間をそれぞれ80分 (実施例8)、20分
(実施例9)及び10分 (実施例10)とした他は同一の条
件で処理した。これらの試験条件を表1に示す。また初
回スチーム脱着後、活性炭中に残存している液量及び液
中のアセトン含有率及び、吸着時の放出ガス濃度の分析
を行い、前後の吸着・脱着サイクルの放出ガス濃度が等
しくなる定常状態到達迄の吸着・脱着サイクル数を測定
した。これらの結果を表2に示す。 【0043】初回のスチーム脱着時間を短縮した場合
は、活性炭の初回吸着時の吸着性能が低下する傾向が認
められる。 【0044】(比較例5、6)比較例4において、初回
スチーム脱着時間をそれぞれ600 分 (比較例5)及び14
40分 (比較例6)とした他は同一の条件で処理した。こ
れらの場合の試験条件を表1に示す。また初回スチーム
脱着後、活性炭中に残存している液量及び、吸着時の放
出ガス濃度の分析を行い、前後の吸着・脱着サイクルの
放出ガス濃度が等しくなる定常状態到達迄の吸着・脱着
サイクル数を測定した。これらの結果を表2に示す。 【0045】この結果を比較例1に較べると、初回スチ
ーム脱着時間を大幅に延長したにも拘らず、活性炭内部
の残存水分低下の度合が少なくまた初回の吸着性能も不
良であることが分かる。 【0046】 【発明の効果】本発明は含水活性炭を乾燥する際、活性
炭を特定の有機溶剤に浸漬して活性炭中の水分を溶剤と
置換した後、過熱スチームにより乾燥する方法で、容易
に活性炭中の水分を除去することが出来る。更に、溶剤
回収装置等に適用する場合には、乾燥剤として回収対象
の有機溶剤と同一の溶剤を選択することにより、活性炭
の乾燥後残存した溶剤が回収溶剤中に混入してもそのま
ま利用でき、また、溶剤回収装置の運転開始直後からほ
ぼ定常状態の回収率、排気濃度に到達させ得る利点があ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for drying activated carbon. More specifically, when the activated carbon is filled in an adsorption tower such as a solvent recovery apparatus, when water is added to the activated carbon to form a slurry, or when water is injected into the activated carbon tower for a temporary stop, a solvent recovery apparatus or the like is used. This is a method of removing water contained in activated carbon applied at the start of operation, that is, a method of drying activated carbon. 2. Description of the Related Art Activated carbon has a high adsorptivity and therefore requires a large amount of heat and a long time to dry activated carbon containing water. When the activated tank is filled with activated carbon in a solvent recovery device or the like, water is usually added to the activated carbon for the sake of filling the activated carbon to form a slurry, and then the activated carbon is used after removing water, ie, drying. At this time, it is often necessary to pass superheated steam for several hours to two days in order to dry the activated carbon. However, even if such a powerful drying method is applied, the water in the activated carbon cannot be sufficiently removed, and in a device such as a solvent recovery device in which the performance is reduced due to the presence of water in the system, the activated carbon is normally used. It may take 1 to 2 days after the start of operation and several days if it is long before the adsorption capacity is exhibited. [0003] Accordingly, not only does the recovery efficiency decrease during that time, but also air pollution by the solvent released into the atmosphere has become a problem. Although a method for drying activated carbon containing water using various desiccants is also disclosed, there is a problem that a separate apparatus is required for regeneration or recovery of the desiccant. [0004] When activated carbon is used as an adsorbent in a solvent recovery device or the like, it is necessary to dry the activated carbon containing water. Since water is adsorbed on the micropores of activated carbon and has a large latent heat of evaporation of water, the method of directly blowing and drying overheated steam has low thermal efficiency and cannot be dried sufficiently. Therefore, the aim is to improve the drying method of hydrated activated carbon to develop a method that has high thermal efficiency and can be dried almost completely in a short time. [0005] The present inventors have found that the surface of carbonaceous materials such as graphite has a certain degree of hydrophobicity, but that hydrocarbons, esters, ketones and alcohols are converted from water to carbonaceous materials. We paid attention to the high affinity of For this reason, it has been found that when activated carbon adsorbing water is immersed in these organic solvents, the water contained in the activated carbon is replaced by the solvent, and the property of discharging water is also large. Based on this, considering that the latent heat of vaporization of these organic solvents is significantly smaller than the latent heat of vaporization of water, the present inventors also studied a method for drying the water-containing activated carbon after replacement with these organic solvents and reached the present invention. did. That is, the water-containing activated carbon is selected from the group consisting of hydrocarbons, esters, ketones and alcohols.
This is a method for drying hydrated activated carbon, which comprises immersing and draining in a kind or two or more kinds of organic solvents, and then desorbing the organic solvent and water contained in the activated carbon by superheated steam. Hereinafter, the present invention will be described in detail. [0008] The drying method of the present invention is applied to activated carbon containing water. The activated carbon used as the base material here has a large surface area of usually several hundred m 2 or more per gram, and can be used in a wide range as long as it is a carbon material exhibiting high adsorptivity. As the raw material of the activated carbon, a carbide such as coconut shell or wood or coal is usually used, but any material may be used. The activation method may be one obtained by steam or carbon dioxide at a high temperature or by any of zinc chloride, phosphoric acid, concentrated sulfuric acid treatment and the like. Although the effect can be recognized with any of crushed coal, granulated coal or granulated coal, a sheet-like adsorption layer to which granulated coal or activated carbon is attached is convenient for handling such as pressure loss and replacement. Granulated coal is 30 to 60 per 100 parts of carbon material according to the usual method.
The mixture is adjusted by adding a portion of petroleum pitch or coal tar as a binder and activating after mixing and molding. [0010] Activated carbon is a unique substance having extremely excellent adsorptivity as a non-polar adsorbent, and is known to exhibit high adsorptivity to almost all gaseous or liquid substances. Further, it has various other unique properties and is used for many purposes. Activated carbon is often used for the adsorption and recovery of organic solvent gas contained in the gas phase, but is characterized in that it exhibits a high recovery even when the content of the organic solvent gas in the gas phase is low. Therefore, it is widely used in this field. Although the water content of the activated carbon used in the present invention is not limited, the drying method of the present invention is particularly effective when the water content is high. In the present invention, it is necessary to use one or more organic solvents selected from the group consisting of hydrocarbons, esters, ketones, and alcohols as the organic solvent used as a water replacement agent contained in the activated carbon. is there. This is because these organic solvents have higher affinity for activated carbon than water, and there is no risk of causing a chemical reaction even if the organic solvent is retained in a state of being adsorbed in the pores of activated carbon for a long time. As hydrocarbons, unsaturated hydrocarbons can be used in addition to saturated hydrocarbons. However, chain-like unsaturated hydrocarbons may react with other organic solvents and the like. Therefore, a saturated hydrocarbon is more preferable, and there may be a side chain. Further, alicyclic hydrocarbons are also included in the hydrocarbons of the present invention. In addition, aromatic hydrocarbons are preferable like chain-like saturated hydrocarbons because of their high stability. Esters are not particularly limited, but esters obtained from saturated fatty acids and saturated alcohols are preferred for the same reasons as hydrocarbons. Ketones and alcohols are water-soluble or partially water-soluble, and as the molecular weight increases, mutual solubility decreases and the compound becomes insoluble, but any ketone and alcohol can be used. Ketones and alcohols having a high molecular weight have a boiling point higher than that of water, but are insoluble in water and have a property of azeotropic distillation with water, so that they can be used in the present invention. These organic solvents include, for example, n-hexane, isopentane, benzene, toluene, ethyl acetate,
For example, isopropyl acetate or acetone. These organic solvents can be used alone or in combination of two or more. When used in an organic solvent recovery device,
It is preferable to use the same solvent as the organic solvent to be recovered as the immersion agent for drying the activated carbon. This is because the immersion agent remaining after drying the activated carbon does not become an impurity even when mixed into the recovery solvent, and has an advantage that it can be used as it is. When an organic solvent soluble in water is used, a solvent containing water can be used as it is as an immersion agent, and the use of an aqueous solution of ketone and alcohol is also included in the present invention. In this case, it is natural that the higher the solvent concentration is, the more preferable it is. However, if the solvent concentration is about 30% or more, a considerably large effect of replacing with water is recognized. When an organic solvent is added to the water-containing activated carbon to replace the water contained in the activated carbon, the amount of the organic solvent added is sufficient to soak the activated carbon. The time for immersing and contacting the activated carbon in the organic solvent is preferably 10 minutes or more. After immersing the water-containing activated carbon in an organic solvent, it is necessary to drain the liquid to separate the water discharged outside the activated carbon and the organic solvent remaining around the activated carbon. For example, in the case of an activated carbon filling tank, the drainage is performed by opening a valve at the bottom of the tank and allowing the immersion liquid to flow naturally. Since the separated immersion liquid contains an organic solvent and water, it is separated by decanter or distillation depending on its mutual solubility, and the solvent is recovered and reused. The activated carbon that has been drained after immersion still contains an organic solvent and moisture. The residual organic solvent and moisture must be desorbed by superheated steam. The reason for using the superheated steam is to supply the heat of evaporation of the organic solvent and water remaining inside the activated carbon to sufficiently desorb the remaining components and dry the inside of the pores of the activated carbon. Although the amount of superheated steam used for desorption is usually 30 to 50% by weight based on the amount of activated carbon, there is a considerable effect.
More than twice the amount is preferred. The degree of overheating of the steam is appropriately set in consideration of the required amount of heat. Desorption gas is cooled
Condensed. Since the condensed desorbing liquid contains an organic solvent and water, it is separated by decanter or distillation depending on its mutual solubility, and the solvent is recovered and reused. Function Even if steam is directly blown to dry the water-containing activated carbon, a large amount of heat and time are required, and it is difficult to sufficiently remove the water in the pores of the activated carbon. Hydrocarbons, esters, ketones or alcohols have a much higher affinity for activated carbon than moisture. Utilizing this property, the water-containing activated carbon is once immersed in these organic solvents to replace the water contained in the activated carbon with the organic solvent by utilizing the difference in affinity, and after further draining, the excess By blowing superheated steam having an appropriate amount of heat, the water contained in the activated carbon can be easily evaporated and removed. Further, when the method of the present invention is applied to a solvent recovery apparatus or the like, by selecting the same solvent as the organic solvent to be recovered from these specific organic solvents, the solvent remaining after drying the activated carbon can be reduced. Even if mixed into the recovered solvent, it does not become an impurity and can be used as it is. Further, there is an advantage that the recovery rate and the exhaust gas concentration become almost in a steady state immediately after the start of the operation of the solvent recovery apparatus, so that loss of the solvent and adverse effects on the environment can be prevented. The present invention will be described more specifically below with reference to examples. (Example 1, Comparative Example 1) FIG. 1 shows a solvent recovery test apparatus used in Examples and Comparative Examples of the present invention. A plate 10 was provided at the bottom of the adsorption tank 1, and the upper portion thereof was filled with 400 g of previously dried activated carbon 11 for solvent recovery ("Kuraray Coal 4GS" manufactured by Kuraray Chemical Co., Ltd.). The adsorption tank 1 is covered with a heat insulating agent 9 to prevent heat loss. The valves 2, 3 and 5 were closed, the valve 4 was opened, water was poured into the adsorption tank 1, and the activated carbon 11 was left completely immersed for 1 hour to absorb water sufficiently. After standing, the valves 4 and 5 were opened to drain water from the adsorption tank, and the adsorption tank was weighed. Since the weight of the adsorption tank 1 is weighed in advance, the water content of the activated carbon is calculated from this. The water content of the activated carbon, that is, the water absorption is always almost constant at 103 to 107% by weight (hereinafter referred to as WT%) based on the dry weight of the activated carbon. Next, the valve 4 was opened, and toluene (reagent grade 1) measured in advance was injected into the adsorption tank 1, and the activated carbon was completely immersed and left for 1 hour. At this time, although the immersion time is about 10 minutes, a sufficient effect is obtained, but the immersion is performed for 1 hour with a margin. During this time, the toluene is replaced by the water contained in the activated carbon. After immersion, the valves 4 and 5 were opened and the liquid in the adsorption tank was taken out. Since the upper layer solution was separated into toluene as the upper layer solution and water as the lower layer solution, it was separated by a separating funnel, and the volume of toluene in the upper layer solution was measured. Next, the valves 4 and 5 are closed, the valves 1 and 3 are opened, and steam heated at 120 ° C. is introduced into the adsorption tank from the valve 4 and passed through the tank in a downward flow to desorb toluene adsorbed on the activated carbon for 40 minutes. (First time steam desorption). The desorbed gas was taken out of the valve 5 and led to the cooler 6 to collect toluene. Since this collected liquid was also separated into toluene as the upper layer liquid and water as the lower layer liquid, it was separated by a separating funnel, and the amount of toluene in the upper layer liquid was measured. After the desorption, the adsorption tank was removed, weighed in the same manner as above, and the difference between the weight of the adsorption tank in a state in which only the activated carbon which had been weighed in advance and filled with the dried activated carbon before water injection, was left in the activated carbon. The weight of the solution was calculated. Furthermore, the amount of toluene injected into the adsorption layer at the time of immersion in toluene, the amount of toluene contained in the liquid taken out of the adsorption layer after the immersion of toluene, and the desorbed gas at the time of the first steam desorption were collected and guided by a cooler. From the difference from the sum of the amounts of toluene contained therein, the content of toluene contained in the residual liquid in the activated carbon (indicated by WT% relative to the activated carbon dry weight) was calculated.
When a water-soluble organic solvent was used instead of toluene, the solvent content after removal from the adsorption tank after the solvent immersion and the condenser collected during the first steam desorption were not separated into solvent and water. It was quantified by gas chromatography. Next, the valves 4 and 5 are closed, and the valves 1 and 3 are closed.
Was opened, and a gas having a toluene content of 4500 ppm was passed through the adsorption tank at a flow rate of 20 cm / sec from the valve 2 to adsorb toluene on the activated carbon. The gas that has passed through the activated carbon tank passes through the valve 3 and is discharged outside through the exhaust discharge port 7. At that time, the concentration of toluene in the released gas is measured by the analyzer 8. When the amount of toluene adsorbed reached 10 WT% with respect to the dry weight of the activated carbon, the gas was stopped (referred to as first adsorption). After toluene adsorption, valves 2 and 3 were closed, valves 4 and 5 were opened, and superheated steam at 120 ° C. was introduced into the adsorption tank from valve 4 and passed through the tank in a downward flow for 20 minutes to adsorb the activated carbon. The toluene was desorbed. The desorbed gas was taken out from the valve 5 and led to the cooler 6 to recover toluene. Thereafter, the adsorption / desorption cycle was repeated, and the number of repeated adsorption / desorption cycles until the steady state was reached, in which the concentration of the released gas at the time of adsorption in the previous and subsequent cycles became equal (Example 1). For the sake of comparison, after the activated carbon filled in the adsorption tank was immersed and drained in water, and then treated under the same conditions as in Example 1 except that the step of immersing in activated carbon was removed, Analyzes the amount of liquid remaining in the activated carbon and the toluene concentration of the released gas when adsorbing toluene-containing gas, and repeats the adsorption / desorption cycle until reaching the steady state where the released gas concentration during adsorption in the previous and subsequent cycles is equal The number was determined (Comparative Example 1). Table 1 shows these test conditions, and Table 2 shows the results of measuring the concentration of toluene in the released gas at the time of the first adsorption and the number of cycles to reach a steady state. [Table 1] [Table 2] From this result, when the hydrated activated carbon is dried,
Once immersed in toluene, a remarkable effect of replacing the water inside the activated carbon with toluene is recognized, and it can be seen that the drying of the activated carbon is greatly promoted by desorption with superheated steam. Furthermore, it is recognized that the toluene adsorption effect in the toluene recovery step is significantly improved. (Examples 2 and 3, Comparative Examples 2 and 3) Example 1
And Comparative Example 1, when treated under the same conditions except that n-hexane was used instead of toluene (Example 2,
Comparative Example 2) and treated under the same conditions except that ethyl acetate was used instead of toluene (Example 3, Comparative Example 3).
. Table 1 shows the test conditions in that case. In addition, after the first steam desorption, the amount of liquid remaining in the activated carbon, the content of n-hexane or ethyl acetate in the liquid, and the emission gas concentration at the time of adsorption are analyzed. The number of adsorption / desorption cycles until the steady state was reached was measured. Table 2 shows the results. From these results, it can be seen that when n-hexane or ethyl acetate is used instead of toluene, the same effect of replacing these organic solvents as toluene and the effect of promoting the drying of hydrated activated carbon are obtained. Example 4 and Comparative Example 4 In Example 1 and Comparative Example 1, acetone was used instead of toluene as the immersion solvent, and the acetone concentration in the gas supplied to the adsorption tank was 18,000 ppm. The treatment was carried out under the same conditions except that the time for desorption of the superheated steam after the first time was set to 10 minutes. Table 1 shows the test conditions in that case. After the first steam desorption, the amount of liquid remaining in the activated carbon, the acetone content in the liquid, and the concentration of gas released during adsorption are analyzed. The number of adsorption / desorption cycles until reaching was measured. Table 2 shows the results. (Examples 5 to 7) In Example 4, instead of acetone, a 60 WT% acetone aqueous solution (Example 5), a 40 WT% acetone aqueous solution (Example 6), and a 30 WT% acetone aqueous solution were used in place of acetone. Processing was carried out under the same conditions except that (Example 7) was used. Table 1 shows the test conditions.
Shown in After the first steam desorption, the amount of liquid remaining in the activated carbon, the acetone content in the liquid, and the concentration of gas released during adsorption are analyzed. The number of adsorption / desorption cycles until reaching was measured. Table 2 shows the results. Comparing the results with those of Example 4 and Comparative Example 4, when immersion of hydrated activated carbon in an acetone aqueous solution,
Although the effect is reduced as compared with the case of immersing only in acetone containing no water, a considerably large effect is recognized as compared with the case where the immersion step is omitted, and it is possible to use an acetone aqueous solution instead of acetone in the present invention. It turns out that it is. (Examples 8 to 10) In Example 4, the initial steam desorption time was 80 minutes (Example 8) and 20 minutes, respectively.
(Example 9) and 10 minutes (Example 10), except that the treatment was carried out under the same conditions. Table 1 shows the test conditions. After the first steam desorption, the amount of liquid remaining in the activated carbon, the acetone content in the liquid, and the concentration of gas released during adsorption are analyzed. The number of adsorption / desorption cycles until reaching was measured. Table 2 shows the results. When the time for the first steam desorption is shortened, it is recognized that the adsorption performance at the time of the first adsorption of activated carbon tends to decrease. (Comparative Examples 5 and 6) In Comparative Example 4, the initial steam desorption time was 600 minutes (Comparative Example 5) and 14 minutes, respectively.
Except for 40 minutes (Comparative Example 6), the treatment was carried out under the same conditions. Table 1 shows the test conditions in these cases. In addition, after the first steam desorption, the amount of liquid remaining in the activated carbon and the released gas concentration at the time of adsorption are analyzed, and the adsorption / desorption cycle until the steady state is reached, where the released gas concentrations of the preceding and following adsorption / desorption cycles are equal. The number was measured. Table 2 shows the results. When this result is compared with Comparative Example 1, it can be seen that the degree of reduction of the residual water inside the activated carbon is small and the initial adsorption performance is poor, although the initial steam desorption time is greatly extended. The present invention provides a method for drying activated carbon by immersing the activated carbon in a specific organic solvent to replace the water in the activated carbon with the solvent, followed by drying with superheated steam. It is possible to remove the moisture inside. Furthermore, when the present invention is applied to a solvent recovery apparatus, the same solvent as the organic solvent to be recovered is selected as a desiccant, so that the solvent remaining after drying of the activated carbon is mixed with the recovered solvent and can be used as it is. In addition, there is an advantage that the recovery rate and the exhaust gas concentration can be almost in a steady state immediately after the operation of the solvent recovery apparatus is started.

【図面の簡単な説明】 【図1】本発明に使用する溶剤回収用試験装置のフロー
シートを示す。 【符号の説明】 1 吸着槽 2、3、4、5 バルブ 6 冷却器 7 排気放出口 8 分析計 9 断熱材 10 目皿 11 活性炭
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a flow sheet of a solvent recovery test device used in the present invention. [Description of Signs] 1 Adsorption tank 2, 3, 4, 5 Valve 6 Cooler 7 Exhaust outlet 8 Analyzer 9 Insulation material 10 Plate 11 Activated carbon

Claims (1)

(57)【特許請求の範囲】 【請求項1】 含水活性炭を、炭化水素、エステル、ケ
トン及びアルコールよりなる群より選ばれた1種または
2種以上の有機溶剤に浸漬・液切後、過熱スチームによ
り活性炭中に含まれる有機溶剤及び水分を脱着すること
を特徴とする含水活性炭の乾燥方法。
(57) [Claims] [Claim 1] Immersion and draining of hydrous activated carbon in one or more organic solvents selected from the group consisting of hydrocarbons, esters, ketones and alcohols, followed by heating A method for drying hydrated activated carbon, comprising desorbing an organic solvent and water contained in activated carbon by steam.
JP13371494A 1994-05-23 1994-05-23 Drying method of hydrous activated carbon Expired - Fee Related JP3400100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13371494A JP3400100B2 (en) 1994-05-23 1994-05-23 Drying method of hydrous activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13371494A JP3400100B2 (en) 1994-05-23 1994-05-23 Drying method of hydrous activated carbon

Publications (2)

Publication Number Publication Date
JPH07313874A JPH07313874A (en) 1995-12-05
JP3400100B2 true JP3400100B2 (en) 2003-04-28

Family

ID=15111188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13371494A Expired - Fee Related JP3400100B2 (en) 1994-05-23 1994-05-23 Drying method of hydrous activated carbon

Country Status (1)

Country Link
JP (1) JP3400100B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10888836B2 (en) 2014-07-25 2021-01-12 Chemical and Metal Technologies LLC Extraction of target materials using CZTS sorbent
JP7281355B2 (en) * 2018-07-23 2023-05-25 ケミカル アンド メタル テクノロジーズ リミテッド ライアビリティ カンパニー Emission control system and method
CN115259153B (en) * 2022-06-30 2024-04-26 宁夏华辉环保科技股份有限公司 Efficient special-effect activated carbon for adsorbing acetone and preparation method thereof

Also Published As

Publication number Publication date
JPH07313874A (en) 1995-12-05

Similar Documents

Publication Publication Date Title
Moreno-Castilla et al. Thermal regeneration of an activated carbon exhausted with different substituted phenols
JP3537581B2 (en) Mercury adsorbent
JP2785870B2 (en) Pressure swing adsorption method
KR20020070872A (en) Process and adsorbent for gas drying
US4351732A (en) Dehydration of ethanol
JPS61263642A (en) Regeneration of adsorbent
JPS60118206A (en) Improved adsorptive separation cycle
US9039807B2 (en) Regenerative adsorption process for removal of silicon-containing contaminants from process gas using a neutral adsorbent media
EP1680490A1 (en) Removal of mercury compounds from glycol
JPH0141375B2 (en)
CN100548878C (en) A kind of preparation method of hydrophobic silica gel
JP3400100B2 (en) Drying method of hydrous activated carbon
US4018704A (en) Method for desorption of methyl bromide
JPH01246117A (en) Production of activated carbon
CA1127560A (en) Cumene recovery
JPH01236941A (en) Gaseous ammonia adsorbent
KR100347720B1 (en) A Method for Recovery of Organic Solvents Using a Multiple Adsorption-desorption Reactor, An Appliance thereof, and Zeolite Adsorbent packed at the above appliance
JP2840563B2 (en) Method for treating and recovering rich gaseous hydrocarbons contained in emitted gas
JP6024131B2 (en) Organic solvent dehydrator
JP2004261670A (en) Method for treating exhaust gas
JP3822294B2 (en) Dehydrated porous charcoal
JP2012081412A (en) Solvent dehydrator
JP3364118B2 (en) Gas treatment method and apparatus using inorganic adsorbent
SU1546427A1 (en) Method of purifying waste water of microbiological production from organic substances
JP2002211912A (en) Method for modifying activated carbon, modified activated carbon and adsorbent using the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees