JP3398744B2 - Thermal flow sensor and method of manufacturing the same - Google Patents

Thermal flow sensor and method of manufacturing the same

Info

Publication number
JP3398744B2
JP3398744B2 JP04348997A JP4348997A JP3398744B2 JP 3398744 B2 JP3398744 B2 JP 3398744B2 JP 04348997 A JP04348997 A JP 04348997A JP 4348997 A JP4348997 A JP 4348997A JP 3398744 B2 JP3398744 B2 JP 3398744B2
Authority
JP
Japan
Prior art keywords
heat
support member
resistor
sensitive
flow sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04348997A
Other languages
Japanese (ja)
Other versions
JPH10239128A (en
Inventor
治昌 柴田
晃 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP04348997A priority Critical patent/JP3398744B2/en
Publication of JPH10239128A publication Critical patent/JPH10239128A/en
Application granted granted Critical
Publication of JP3398744B2 publication Critical patent/JP3398744B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、感熱抵抗体を用
いて流体の流量を検出する感熱式流量センサ及びその製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-sensitive flow sensor for detecting a flow rate of a fluid by using a heat-sensitive resistor and a manufacturing method thereof.

【0002】[0002]

【従来の技術】図9は流体中に配設された感熱抵抗体を
含むブリッジの熱平衡状態から流量を検出する方式の従
来の流量センサを示す斜視図であり、図において、空気
の主通路となる筒体のハウジング31内に計測管路32
が配置されており、この計測管路32内には、後で詳述
するが、支持部材37に支持された感熱抵抗体33、及
び、支持部材43に支持された温度補償抵抗34が設置
されている。また、ハウジング31内の空気の流れの上
流方向(図の右方向)には、整流ネット35が設けられ
ている。なお、矢印Dは空気の流れの方向を示す。
2. Description of the Related Art FIG. 9 is a perspective view showing a conventional flow rate sensor of a type which detects a flow rate from a thermal equilibrium state of a bridge including a heat sensitive resistor arranged in a fluid. Measuring tube 32 in a housing 31 of a cylindrical body
As will be described later in detail, a thermosensitive resistor 33 supported by a supporting member 37 and a temperature compensating resistor 34 supported by a supporting member 43 are installed in the measuring pipe 32. ing. A rectifying net 35 is provided in the upstream direction of the air flow in the housing 31 (rightward in the drawing). The arrow D indicates the direction of air flow.

【0003】次に、図10(a),(b),(c)はそれぞれ上
記感熱抵抗体33の取付部を示す正面図,側面図,平面
図であり、図11は部分拡大断面図である。上記図9で
示した計測管路32内において、電気接続用端子36を
埋設した支持部材37が、流れの方向に対して所定の配
設角度にて立設されており、感熱抵抗体33はその一端
を上記支持部材37の嵌合溝38(感熱抵抗体挿入スリ
ット)に挿入されて、図11に示すように封止材39に
て固定されている。感熱抵抗体33と支持部材37の端
子との電気的接続は、係止部40で半田付けにて行なわ
れ、支持部材37にはターミナル41が設けられてい
る。
Next, FIGS. 10 (a), 10 (b), and 10 (c) are a front view, a side view, and a plan view, respectively, showing a mounting portion of the heat-sensitive resistor 33, and FIG. 11 is a partially enlarged sectional view. is there. In the measurement conduit 32 shown in FIG. 9 above, the support member 37 in which the electrical connection terminal 36 is embedded is erected at a predetermined arrangement angle with respect to the flow direction, and the thermal resistor 33 is One end thereof is inserted into the fitting groove 38 (heat sensitive resistor insertion slit) of the support member 37, and is fixed by the sealing material 39 as shown in FIG. Electrical connection between the heat sensitive resistor 33 and the terminal of the support member 37 is made by soldering at the locking portion 40, and the support member 37 is provided with a terminal 41.

【0004】次に、図12(a),(b)はそれぞれ上記温度
補償抵抗34の取付部を示す平面図及び側面図であり、
図9で示した計測管路32内において、電気接続用端子
42を埋設した支持部材43が流れの方向に対し平行に
立設されており、この支持部材43に温度補償抵抗34
が支持されているが、この温度補償抵抗34と支持部材
43の端子の電気的接続は、係止部44で半田付けにて
行なわれる。即ち温度補償抵抗34は支持部材43に半
田付けにて固定される。
Next, FIGS. 12 (a) and 12 (b) are a plan view and a side view showing a mounting portion of the temperature compensating resistor 34, respectively.
In the measurement conduit 32 shown in FIG. 9, a support member 43 in which the electrical connection terminal 42 is embedded is erected in parallel with the flow direction, and the support member 43 has a temperature compensation resistor 34.
The temperature compensating resistor 34 and the terminal of the supporting member 43 are electrically connected by soldering at the locking portion 44. That is, the temperature compensation resistor 34 is fixed to the support member 43 by soldering.

【0005】図13は従来の感熱式流量センサのブリッ
ジ構成を示す回路図であり、感熱抵抗体33はセラミッ
ク基板上に白金薄膜抵抗体を形成した平板状となってお
り、この感熱抵抗体33は温度補償抵抗34及び抵抗R
1,R2と共にブリッジ回路を構成する。一方、差動増幅
器101の両入力はブリッジ回路の接続点b,fに接続
され、差動増幅器101の出力はトランジスタ102の
ベースに接続される。又、トランジスタ102のエミッ
タはブリッジ回路の一端aに接続され、トランジスタ1
02のコレクタは電源103の正極に接続される。
FIG. 13 is a circuit diagram showing a bridge structure of a conventional heat-sensitive flow sensor. The heat-sensitive resistor 33 has a flat plate shape in which a platinum thin film resistor is formed on a ceramic substrate. Is a temperature compensation resistor 34 and a resistor R
A bridge circuit is configured with 1 and R 2 . On the other hand, both inputs of the differential amplifier 101 are connected to the connection points b and f of the bridge circuit, and the output of the differential amplifier 101 is connected to the base of the transistor 102. The emitter of the transistor 102 is connected to one end a of the bridge circuit, and the transistor 1
The collector of 02 is connected to the positive electrode of the power supply 103.

【0006】次に動作について説明する。ハウジング3
1内に一定流量の流体が流れている場合には、差動増幅
器101と、トランジスタ102により構成される制御
回路により、感熱抵抗体33の平均温度が流体より一定
温度だけ高くなるようにブリッジ回路への供給電流が制
御され、ブリッジ回路は平衡状態になっている。この状
態において流体の流量が増加すると、感熱抵抗体33が
冷却されてその抵抗値が変化し、ブリッジ回路が非平衡
になり、該制御回路によりブリッジ回路への供給電流が
増やされる。これにより、感熱抵抗体33が加熱されて
平均温度が元の温度に戻る事により、ブリッジ回路の平
衡状態が回復される。このときの感熱抵抗体33の流量
に対応した電流Ihにより、b点の電圧VhはIh・R1
表され、この電圧Vhが流量信号として用いられる。
Next, the operation will be described. Housing 3
When a constant flow rate of fluid flows in the bridge circuit 1, the bridge circuit is used by the control circuit composed of the differential amplifier 101 and the transistor 102 so that the average temperature of the thermosensitive resistor 33 becomes higher than the fluid by a constant temperature. The current supplied to the bridge circuit is controlled and the bridge circuit is in a balanced state. When the flow rate of the fluid increases in this state, the thermal resistor 33 is cooled and its resistance value changes, the bridge circuit becomes unbalanced, and the control circuit increases the supply current to the bridge circuit. As a result, the thermal resistor 33 is heated and the average temperature returns to the original temperature, so that the equilibrium state of the bridge circuit is restored. The voltage V h at point b is represented by I h · R 1 by the current I h corresponding to the flow rate of the heat sensitive resistor 33 at this time, and this voltage V h is used as a flow rate signal.

【0007】[0007]

【発明が解決しようとする課題】従来の感熱式流量セン
サは上記のように構成されているので、感熱抵抗体と温
度補償抵抗は、各々別の専用支持部材に半田付けにて電
気的接続をしなければならず、その後各々の支持部材を
計測管路に立設することが必要で、工作に時間がかかる
と共に、精度にも欠けるという問題点があった。
Since the conventional heat-sensitive flow rate sensor is constructed as described above, the heat-sensitive resistor and the temperature compensating resistor are electrically connected to separate dedicated supporting members by soldering. However, it is necessary to erect each support member in the measuring pipe line after that, which requires a long time for work and lacks accuracy.

【0008】この発明は上記のような問題点を解消する
ためになされたもので、流量計測精度を犠牲にすること
なく、工作性を向上することができる感熱式流量センサ
を得ることを目的としており、さらにこの感熱式流量セ
ンサの抵抗体支持部材のすぐれた製造方法を提供するこ
とを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to obtain a heat-sensitive flow rate sensor capable of improving workability without sacrificing flow rate measurement accuracy. Another object of the present invention is to provide an excellent method for manufacturing a resistor support member of this thermal flow sensor.

【0009】[0009]

【課題を解決するための手段】この発明の請求項1に係
る感熱式流量センサは、流体通路中に所定の配設角度を
設けて立設される感熱抵抗体の支持部と、温度補償抵抗
の支持部を一体成形支持部材で構成し、この一体成形支
持部材の感熱抵抗体支持部と温度補償抵抗支持部間に所
定の間隙を設けたものである。
According to a first aspect of the present invention, there is provided a heat-sensitive flow rate sensor comprising: a support portion for a heat-sensitive resistor which is erected at a predetermined disposition angle in a fluid passage; The support part is composed of an integrally formed support member, and a predetermined gap is provided between the heat sensitive resistor support part and the temperature compensation resistance support part of the integrally formed support member.

【0010】この発明の請求項2に係る感熱式流量セン
サは、一体成形支持部材には端子が埋設されると共に、
この端子は、外周部がフレーム状に形成された一体成形
支持部材の外周部以外の部分が流体通路中に露出するよ
うに配置したものである。
In the heat-sensitive flow sensor according to claim 2 of the present invention, the terminal is embedded in the integrally formed support member, and
This terminal is arranged such that a portion other than the outer peripheral portion of the integrally formed support member whose outer peripheral portion is formed in a frame shape is exposed in the fluid passage.

【0011】この発明の請求項3に係る感熱式流量セン
サは、端子をステンレスで構成したものである。
In the heat-sensitive flow sensor according to the third aspect of the present invention, the terminal is made of stainless steel.

【0012】この発明の請求項4に係る感熱式流量セン
サは、ハウジングに、一体成形支持部材を挿入し、取付
固定するための挿入穴を設けたものである。
According to a fourth aspect of the present invention, there is provided a thermosensitive flow rate sensor, wherein the housing is provided with an insertion hole for inserting and fixing the integrally formed support member.

【0013】この発明の請求項5に係る感熱式流量セン
サの支持部材の製造方法は、ロール材を巻き戻して順送
プレスにより所定の端子形状を形成し、その後樹脂成形
を行ない、更に所定の不要な端子部分をプレスで打ち抜
いたものである。
According to a fifth aspect of the present invention, in a method for manufacturing a support member for a heat-sensitive flow sensor, a roll material is rewound and a predetermined terminal shape is formed by a progressive press, and then resin molding is performed, and then a predetermined shape is performed. Unnecessary terminal parts are punched out with a press.

【0014】[0014]

【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION

実施の形態1.以下、この発明の一実施形態を図に基づ
いて説明する。図1は感熱抵抗体2と温度補償抵抗3と
を同一の一体成形支持部材1にて支持せしめた支持構造
を示す正面図であり、図2は同じく図1の矢印A方向か
らみた平面図である。図において、感熱抵抗体2を支持
する部分と、温度補償抵抗3を支持する部分が、同一の
支持部材1上において所定の間隙を設けた状態で構成さ
れている。このように所定の間隙を設けるのは、熱絶縁
を図ると共に、風の流れの影響を受けないようにするた
めであり、逆に離し過ぎると流速が変わってしまうの
で、適当な距離を設定することが必要となるからであ
る。
Embodiment 1. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a front view showing a support structure in which a heat sensitive resistor 2 and a temperature compensating resistor 3 are supported by the same integrally formed support member 1, and FIG. is there. In the figure, a portion supporting the heat sensitive resistor 2 and a portion supporting the temperature compensating resistor 3 are formed on the same supporting member 1 with a predetermined gap. The reason why the predetermined gap is provided in this way is to ensure the heat insulation and to prevent the influence of the wind flow. On the contrary, if the distance is too far, the flow velocity will change, so set an appropriate distance. Is necessary.

【0015】上記一体成形支持部材1には、樹脂からな
るフレーム4の外周部を除く所定の部分が露出するよう
形成された端子5が埋設されており、これにより熱放散
により感熱抵抗体2と計測管路及びハウジングとの熱絶
縁を図ることができるようになっている。なお、ここ
で、上記端子5を黄銅や銅より熱伝導率の低いステンレ
スにすることにより、各抵抗体と一体成形支持部材1間
の熱絶縁性を向上させることができる。
A terminal 5 is embedded in the integrally formed support member 1 so that a predetermined portion of the frame 4 made of resin is exposed except for the outer peripheral portion thereof. Thermal insulation between the measuring pipe line and the housing can be achieved. Here, the terminal 5 is made of brass or stainless steel having a lower thermal conductivity than copper, so that the thermal insulation between each resistor and the integrally formed support member 1 can be improved.

【0016】上記感熱抵抗体2は、その一端を所定の支
持部6に専用固定部材7と封止材8により固定される。
又、感熱抵抗体2とステンレス製端子5との間には通電
用リード線9によって接続されている。一方、温度補償
抵抗3は、そのリード線両端がステンレス製端子5に抵
抗溶接され、電気的接続と固定がなされる。
The thermosensitive resistor 2 has one end fixed to a predetermined supporting portion 6 by a dedicated fixing member 7 and a sealing material 8.
Further, a current-carrying lead wire 9 is connected between the heat-sensitive resistor 2 and the stainless steel terminal 5. On the other hand, both ends of the temperature compensation resistor 3 are resistance-welded to the stainless steel terminal 5 to be electrically connected and fixed.

【0017】そして、図2に示すように、温度補償抵抗
3の取付部10は、風の流れの方向Bに対して平行に取
付けられると共に、一方、感熱抵抗体2の取付部11
は、温度補償抵抗取付部10に対して所定の配設角度α
を設けて配置される。このように両者に配設角度αを設
けたのは、感熱抵抗体2は高感度であるから、風の向き
と平行に取付けると、取付角度のばらつきによる流速計
測精度に影響を与え易くなるので、予め角度を付けてお
くことによって、精度の影響を低減させるためである。
又、別の理由は、風の流れと平行に取付けるところにダ
ストが堆積し易く、それによって流速計測精度が低くな
るので、角度を付けることによって、ダストが堆積し難
くするためでもある。
As shown in FIG. 2, the mounting portion 10 of the temperature compensating resistor 3 is mounted parallel to the direction B of the wind flow, while the mounting portion 11 of the thermosensitive resistor 2 is mounted.
Is a predetermined arrangement angle α with respect to the temperature compensation resistor mounting portion 10.
Are provided and arranged. Since the heat-sensitive resistor 2 has a high sensitivity, it is easy to affect the flow velocity measurement accuracy due to the variation in the mounting angle because the heat-sensitive resistor 2 has a high sensitivity. This is to reduce the influence of accuracy by setting an angle in advance.
Another reason is that dust is likely to be accumulated in a place where the dust is attached in parallel with the flow of wind, which lowers the accuracy of flow velocity measurement. Therefore, the angle makes it difficult for dust to accumulate.

【0018】以上のように、流体通路中に所定の配設角
度を設けて立設される感熱抵抗体2と温度補償抵抗3の
支持部材を一体成形支持部材1とし、この一体成形支持
部材1の感熱抵抗体2支持側と温度補償抵抗3支持側に
所定の間隙を設けるとともに、上記一体成形支持部材1
に埋設されるステンレス製端子5のフレーム4外周部を
除く所定の部分を流体通路中に露出させることにより、
流量計測精度を犠牲にすることなく、部品点数を削減
し、工作性が向上する感熱式流量センサが得られる。
As described above, the supporting member for the heat sensitive resistor 2 and the temperature compensating resistor 3 standing upright in the fluid passage at a predetermined disposition angle is the integrally formed supporting member 1, and the integrally formed supporting member 1 is formed. A predetermined gap is provided between the heat sensitive resistor 2 supporting side and the temperature compensating resistor 3 supporting side, and the integrally formed supporting member 1
By exposing a predetermined portion of the stainless steel terminal 5 buried in the outer peripheral portion of the frame 4 in the fluid passage,
It is possible to obtain a heat-sensitive flow sensor that reduces the number of parts and improves workability without sacrificing flow measurement accuracy.

【0019】次に、図3は感熱式流量センサの全体構
成、特に外かくのハウジングを示す平面図であり、図に
おいて、ハウジング12には上記一体成形支持部材1を
挿入し、取付固定するための挿入穴13が設けられてい
る。図4は図3のC−C線断面側面図であり、図4にお
いては、感熱抵抗体2と温度補償抵抗3を支持してなる
一体成形支持部材1をハウジング12内に挿入して収納
した状態を示している。また、ハウジング12内には計
測管路14が配置されるとともに、このハウジング12
内の空気の流れの上流方向には整流ネット15が設けら
れている。なお、矢印Dは空気の流れの方向を示してい
る。
Next, FIG. 3 is a plan view showing the entire structure of the heat-sensitive flow sensor, particularly the housing of the outer shell. In the drawing, the integrally molded support member 1 is inserted into the housing 12 and fixed there. Insertion hole 13 is provided. FIG. 4 is a side view taken along the line CC of FIG. 3. In FIG. 4, the integrally formed support member 1 supporting the heat sensitive resistor 2 and the temperature compensation resistor 3 is inserted and housed in the housing 12. It shows the state. In addition, the measurement conduit 14 is arranged in the housing 12, and the housing 12
A rectifying net 15 is provided in the upstream direction of the internal air flow. The arrow D indicates the direction of air flow.

【0020】実施の形態2.図5は実施の形態2による
一体成形支持部材1の製造方法を示す工程図であり、図
において、板材からなるステンレス製ロール材16を巻
き戻して順送プレス工程17にて、図6に示す所定の端
子形状をフープ状に形成し、感熱抵抗体2固定側と温度
補償抵抗3固定側間に所定の配設角度を設ける。その後
洗浄工程18においてフープ端子の洗浄を実施し、図7
に示すように、樹脂成形工程19において樹脂成形を行
なう。
Embodiment 2. FIG. 5 is a process diagram showing a method for manufacturing the integrally formed support member 1 according to the second embodiment. In the figure, a stainless steel roll material 16 made of a plate material is rewound, and a progressive press step 17 is shown in FIG. A predetermined terminal shape is formed in a hoop shape, and a predetermined arrangement angle is provided between the heat sensitive resistor 2 fixed side and the temperature compensation resistor 3 fixed side. After that, the hoop terminal is cleaned in the cleaning step 18, and
As shown in, resin molding is performed in the resin molding step 19.

【0021】その後プレス工程20において、図7で斜
線で示される所定の不要な端子部分をプレスで打ち抜
き、図8で示される一体成形支持部材1を得る。なお、
図1で示された一体成形支持部材1の形状と、図8で示
された一体成形支持部材1の形状とは表裏の関係にあ
り、図8で示された形状をひっくり返すと図1の形状と
なる。
Thereafter, in a pressing step 20, predetermined unnecessary terminal portions shown by hatching in FIG. 7 are punched out by a press to obtain the integrally formed support member 1 shown in FIG. In addition,
The shape of the integrally formed support member 1 shown in FIG. 1 and the shape of the integrally formed support member 1 shown in FIG. 8 have a front and back relationship, and when the shape shown in FIG. 8 is turned over, the shape of FIG. Becomes

【0022】以上のように、この発明の一体成形支持部
材1の製造方法では、ステンレス製ロール材16の順送
プレス工程17からステンレス材をインサートするフー
プ成形まで一貫ラインにて製造するので、製造合理化が
可能となる。
As described above, according to the method for manufacturing the integrally formed support member 1 of the present invention, the steps from the progressive pressing step 17 for the stainless steel roll material 16 to the hoop molding for inserting the stainless steel material are performed on an integrated line. Rationalization is possible.

【0023】[0023]

【発明の効果】この発明の請求項1に係る感熱式流量セ
ンサによれば、流体通路中に所定の配設角度を設けて立
設される、感熱抵抗体の支持部と、温度補償抵抗の支持
部とを、一体成形支持部材で構成し、この一体成形支持
部材の感熱抵抗体支持部と温度補償抵抗支持部間に所定
の間隙を設けたので、流速計測精度を犠牲にすることな
く、部品点数を削減し、工作性を向上させることができ
る。
According to the heat-sensitive flow rate sensor of the first aspect of the present invention, the support portion of the heat-sensitive resistor and the temperature-compensating resistor which are erected upright in the fluid passage at a predetermined arrangement angle are provided. Since the support portion is formed of an integrally formed support member and a predetermined gap is provided between the heat sensitive resistor support portion and the temperature compensation resistance support portion of the integrally formed support member, without sacrificing the flow velocity measurement accuracy, It is possible to reduce the number of parts and improve workability.

【0024】この発明の請求項2に係る感熱式流量セン
サによれば、一体成形支持部材には端子が埋設されると
共に、この端子は当該一体成形支持部材の外周フレーム
部以外の部分が流体通路中に露出するように配置されて
いるので、熱放散により感熱抵抗体と計測管路及びハウ
ジングとの熱絶縁を図ることができる。
According to the heat-sensitive flow rate sensor of the second aspect of the present invention, the terminal is embedded in the integrally formed support member, and the terminal of the terminal other than the outer peripheral frame portion of the integrally formed support member has the fluid passage. Since it is arranged so as to be exposed to the inside, it is possible to achieve thermal insulation between the heat-sensitive resistor and the measurement pipe line and the housing by heat dissipation.

【0025】この発明の請求項3に係る感熱式流量セン
サによれば、端子をステンレスで構成したので、各抵抗
体と一体成形支持部材間の熱絶縁性を向上させることが
できる。
In the heat-sensitive flow sensor according to the third aspect of the present invention, since the terminals are made of stainless steel, the thermal insulation between each resistor and the integrally formed support member can be improved.

【0026】この発明の請求項4に係る感熱式流量セン
サによれば、ハウジングに一体成形支持部材を挿入し、
取付固定するための挿入穴を設けたので、容易に一体成
形支持部材を取付けることができる。
According to the thermosensitive flow rate sensor of the fourth aspect of the present invention, the integrally formed support member is inserted into the housing,
Since the insertion hole for attaching and fixing is provided, the integrally formed support member can be easily attached.

【0027】この発明の請求項5に係る感熱式流量セン
サの支持部材の製造方法によれば、ロール材を巻き戻し
て順送プレスにより所定の端子形状を形成し、その後樹
脂成形を行ない、更に所定の不要な端子部分をプレスで
打ち抜くようにしたので、製造合理化が可能となる。
According to the method for manufacturing a support member for a heat-sensitive flow sensor according to claim 5 of the present invention, the roll material is rewound and a predetermined terminal shape is formed by a progressive press, and then resin molding is performed. Since a predetermined unnecessary terminal portion is punched out by a press, manufacturing can be rationalized.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施の形態1による感熱抵抗体及
び温度補償抵抗の支持構造を示す正面図である。
FIG. 1 is a front view showing a support structure for a heat sensitive resistor and a temperature compensation resistor according to a first embodiment of the present invention.

【図2】 この発明の実施の形態1による感熱抵抗体及
び温度補償抵抗の支持構造を示す平面図である。
FIG. 2 is a plan view showing a support structure of a heat sensitive resistor and a temperature compensation resistor according to the first embodiment of the present invention.

【図3】 この発明の実施の形態1による感熱式流量セ
ンサの全体構成(ハウジング)を示す平面図である。
FIG. 3 is a plan view showing an overall configuration (housing) of the heat-sensitive flow sensor according to the first embodiment of the present invention.

【図4】 図3におけるC−C線断面側面図である。4 is a cross-sectional side view taken along the line CC in FIG.

【図5】 この発明の実施の形態2による一体成形支持
部材の製造方法を示す工程図である。
FIG. 5 is a process drawing showing the method of manufacturing the integrally molded support member according to the second embodiment of the present invention.

【図6】 この発明の実施の形態2による一体成形支持
部材の製造工程中の端子を示す平面図である。
FIG. 6 is a plan view showing a terminal during the manufacturing process of the integrally formed support member according to the second embodiment of the present invention.

【図7】 この発明の実施の形態2による製造工程中の
一体成形支持部材をを示す平面図である。
FIG. 7 is a plan view showing an integrally formed support member during a manufacturing process according to Embodiment 2 of the present invention.

【図8】 この発明の実施の形態2による一体成形支持
部材の製造工程における最終製品を示す平面図である。
FIG. 8 is a plan view showing a final product in a manufacturing process of the integrally formed support member according to the second embodiment of the present invention.

【図9】 従来の感熱式流量センサの一部(ハウジン
グ)を切欠いて示した斜視図である。
FIG. 9 is a perspective view in which a part (housing) of a conventional heat-sensitive flow sensor is cut away.

【図10】 従来の感熱式流量センサにおける感熱抵抗
体支持部を示す正面図(a)、側面図(b)、平面図(c)であ
る。
FIG. 10 is a front view (a), a side view (b), and a plan view (c) showing a heat-sensitive resistor support portion in a conventional heat-sensitive flow sensor.

【図11】 従来の感熱式流量センサにおける感熱抵抗
体支持部を示す部分断面図である。
FIG. 11 is a partial cross-sectional view showing a heat-sensitive resistor support portion in a conventional heat-sensitive flow sensor.

【図12】 従来の感熱式流量センサにおける温度補償
抵抗支持部を示す平面図(a)及び側面図(b)である。
FIG. 12 is a plan view (a) and a side view (b) showing a temperature compensation resistance support portion in a conventional thermal flow sensor.

【図13】 従来の感熱式流量センサにおけるブリッジ
構成を示す回路図である。
FIG. 13 is a circuit diagram showing a bridge configuration in a conventional thermal flow sensor.

【符号の説明】[Explanation of symbols]

1 一体成形支持部材、2 感熱抵抗体、3 温度補償
抵抗、4 フレーム、5 端子、13 挿入穴、16
ロール材、17 順送プレス工程、19 樹脂成形工
程、20 プレス工程。
DESCRIPTION OF SYMBOLS 1 Integrated support member, 2 Thermosensitive resistor, 3 Temperature compensation resistance, 4 frame, 5 terminals, 13 Insertion hole, 16
Roll material, 17 progressive press process, 19 resin molding process, 20 press process.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01F 1/00 - 9/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01F 1/00-9/02

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 流体通路中に所定の配設角度を設けて立
設される感熱抵抗体の支持部と、温度補償抵抗の支持部
を一体成形支持部材で構成し、当該一体成形支持部材の
感熱抵抗体支持部と温度補償抵抗支持部間に所定の間隙
を設けたことを特徴とする感熱式流量センサ。
1. A support part for a thermosensitive resistor, which is erected at a predetermined disposition angle in a fluid passage, and a support part for a temperature compensation resistor, are formed by an integrally formed support member, and the support member of the integrally formed support member is formed. A heat-sensitive flow sensor, characterized in that a predetermined gap is provided between the heat-sensitive resistor support portion and the temperature compensation resistance support portion.
【請求項2】 一体成形支持部材は、外周部がフレーム
状に形成されており、当該一体成形支持部材には、感熱
抵抗体及び温度補償抵抗の所定の電気接続をするための
端子が、上記外周フレーム部以外の部分が流体通路中に
露出するように埋設されていることを特徴とする請求項
1記載の感熱式流量センサ。
2. The integrally molded support member has a frame-shaped outer peripheral portion, and the integrally molded support member has a terminal for making a predetermined electrical connection between the heat sensitive resistor and the temperature compensation resistor. The heat-sensitive flow sensor according to claim 1, wherein a portion other than the outer peripheral frame portion is embedded so as to be exposed in the fluid passage.
【請求項3】 端子をステンレスで構成したことを特徴
とする請求項2記載の感熱式流量センサ。
3. The heat-sensitive flow sensor according to claim 2, wherein the terminal is made of stainless steel.
【請求項4】 請求項1から請求項3のいずれか1項に
記載の一体成形支持部材を挿入し、取付固定するための
挿入穴をハウジングに設けたことを特徴とする感熱式流
量センサ。
4. A heat-sensitive flow sensor, wherein the housing is provided with an insertion hole for inserting and fixing the integrally molded support member according to any one of claims 1 to 3.
【請求項5】 請求項1から請求項3のいずれか1項に
記載の一体成形支持部材の製造方法であって、ロール材
を巻き戻して順送プレスにより所定の端子形状を形成
し、その後樹脂成形を行ない、更に所定の不要な端子部
分をプレスで打ち抜くことを特徴とする感熱式流量セン
サの製造方法。
5. The method for manufacturing an integrally molded support member according to claim 1, wherein the roll material is rewound and a predetermined terminal shape is formed by a progressive press, and thereafter, A method for manufacturing a heat-sensitive flow sensor, which comprises performing resin molding and punching a predetermined unnecessary terminal portion with a press.
JP04348997A 1997-02-27 1997-02-27 Thermal flow sensor and method of manufacturing the same Expired - Lifetime JP3398744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04348997A JP3398744B2 (en) 1997-02-27 1997-02-27 Thermal flow sensor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04348997A JP3398744B2 (en) 1997-02-27 1997-02-27 Thermal flow sensor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10239128A JPH10239128A (en) 1998-09-11
JP3398744B2 true JP3398744B2 (en) 2003-04-21

Family

ID=12665139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04348997A Expired - Lifetime JP3398744B2 (en) 1997-02-27 1997-02-27 Thermal flow sensor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3398744B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4097376B2 (en) * 1999-12-28 2008-06-11 日立工機株式会社 Battery powered portable power tool

Also Published As

Publication number Publication date
JPH10239128A (en) 1998-09-11

Similar Documents

Publication Publication Date Title
US4870860A (en) Direct-heated flow measuring apparatus having improved response characteristics
US7293457B2 (en) Measuring apparatus for measuring flow rate of a fluid
KR100488213B1 (en) Thermal Air Flow Meter
JP3240733B2 (en) Thermal air flow meter
JP3379240B2 (en) Four-terminal shunt resistor
JP3398744B2 (en) Thermal flow sensor and method of manufacturing the same
JPH08313318A (en) Heat sensitive type flow rate detector
JP3538188B2 (en) Thermosensitive flow rate detecting element and method of manufacturing the same
JP4080581B2 (en) Flow sensor
JP2842973B2 (en) Air flow meter
JPH11258021A (en) Thermal type air flow sensor
JPS6053814A (en) Airflow-rate measuring device
JPH06105177B2 (en) Thermal flow sensor
JP2549121B2 (en) Thermal air flow meter
JP2001124606A (en) Heating resistance element type air flow measuring instrument
JP2776946B2 (en) Manufacturing method of thermal air flow meter
JP3361720B2 (en) Thermal flow sensor
JPH01240823A (en) Sensor of heat-ray type flow rate measuring apparatus
JP2842485B2 (en) Thermal flow sensor
JP2946254B2 (en) Temperature sensor and method of manufacturing the same
JP3070046B2 (en) Flowmeter
JPH0631374Y2 (en) Thermal flow sensor
JP3418525B2 (en) Thermal flow sensor
JPH0620973Y2 (en) Thermal flow sensor
JP3473133B2 (en) Flowmeter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140221

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term