JPH08313318A - Heat sensitive type flow rate detector - Google Patents

Heat sensitive type flow rate detector

Info

Publication number
JPH08313318A
JPH08313318A JP7119960A JP11996095A JPH08313318A JP H08313318 A JPH08313318 A JP H08313318A JP 7119960 A JP7119960 A JP 7119960A JP 11996095 A JP11996095 A JP 11996095A JP H08313318 A JPH08313318 A JP H08313318A
Authority
JP
Japan
Prior art keywords
resistance
heating
flow rate
film
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7119960A
Other languages
Japanese (ja)
Other versions
JP3331814B2 (en
Inventor
Koji Tanimoto
考司 谷本
Tomoya Yamakawa
智也 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11996095A priority Critical patent/JP3331814B2/en
Publication of JPH08313318A publication Critical patent/JPH08313318A/en
Application granted granted Critical
Publication of JP3331814B2 publication Critical patent/JP3331814B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To shorten a time for attaining the thermal equilibrium condition of respective portions, and to improve responsiveness and measuring accuracy by setting the resistance of a heating portion to be several times or more as high as the resistance of a lead portion, and embedding one end of a heater in the interior of a heat insulating hold member. CONSTITUTION: The resistance Rh of a meander-like heating portion 3a with approximately uniform width, which is formed by providing a resistance film 3 in a range of 40 to 80% from one end of an insulating board 2 in a lengthwise direction, is five time or more as high as the resistance Rs of a lead portion 3b, which is provided continuing with the heating portion 3a as far as the other end of the board 2. Since the ratio Rs/Rh of both resistances Rh, Rh becomes small, a heating quantity flowing to fluid via a hold member 5 becomes small so that a starting time is reduced. Since an area occupied by the film 3 is large in the area of the board 2, in detecting the temperature change of the board 2 by the film 3 no response delay is allowed. Since the one end of a heater 1, one part of the lead portion 3b, an electrode portion 3c, and the like are sealed inside the member 5, the heating quantity flowing to liquid is reduced. Thereby, a time for attaining the thermal equilibrium condition is shortened so that responsiveness and measuring accuracy are improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エンジンの吸入空気流
量を測定する流量検出装置に関し、特に感熱式流量検出
素子(以下、単に検出素子と呼ぶ)の構造および寸法配
分の最適化に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate detecting device for measuring the intake air flow rate of an engine, and more particularly to optimization of the structure and size distribution of a heat-sensitive flow rate detecting element (hereinafter, simply referred to as a detecting element). is there.

【0002】[0002]

【従来の技術】一般に自動車用エンジンの電子制御式燃
料噴射装置においては、空燃比制御のために、エンジン
への吸入空気流量を精度よく計測することが必要であ
る。最近空気流量検出装置として、小形で質量流量信号
が得られ応答性のよい感熱式流量検出装置(以下、単に
流量検出装置と呼ぶ)が使用されている。流量検出装置
は流体の通路内部に電気的に加熱する発熱体を配設し、
発熱体の抵抗が温度によって変化することを利用して、
流体通路内部の流速または流量を流体の流れにともなう
発熱体の冷却効果により検出するものである。発熱体と
しては、ガラスあるいはセラミックなどの平板状の絶縁
性基板(以下、単に基板と呼ぶ)上に白金などの温度依
存性抵抗膜(以下、単に抵抗膜と呼ぶ)を形成したもの
が一般的であり、この発熱体の一端あるいは両端を断熱
支持し検出素子として用いる。
2. Description of the Related Art Generally, in an electronically controlled fuel injection system for an automobile engine, it is necessary to accurately measure the intake air flow rate to the engine for air-fuel ratio control. Recently, as an air flow rate detecting device, a heat-sensitive type flow rate detecting device (hereinafter, simply referred to as a flow rate detecting device) having a small size and a high mass flow signal and excellent responsiveness is used. The flow rate detecting device is provided with a heating element for electrically heating inside the passage of the fluid,
Utilizing that the resistance of the heating element changes with temperature,
The flow velocity or flow rate inside the fluid passage is detected by the cooling effect of the heating element that accompanies the fluid flow. As a heating element, a temperature-dependent resistance film (hereinafter simply referred to as a resistance film) such as platinum is generally formed on a flat plate-shaped insulating substrate (hereinafter simply referred to as a substrate) such as glass or ceramic. One end or both ends of this heating element is supported by heat insulation and used as a detection element.

【0003】図16に特開昭62−98219号公報に
記載された従来の検出素子の構造を示す。発熱体1は図
に示すように、基板2の表面に抵抗膜3を形成し、発熱
部3a、リード部3b、電極部3cのパターンを形成し
てある。保持部材51 は金属表面に絶縁膜を塗布したも
ので、空気流と平行に配置し、発熱体1の長手方向の一
端を断熱部材を介して接着固定してある。発熱体1を接
着固定した近傍の絶縁膜上には導電膜71 が形成してあ
り、ボンディングワイヤ6によって発熱体1の電極部3
cとを接続している。検出素子ではこのようにして発熱
部3aから保持部材51 へ流れる熱量を抑制している。
抵抗膜3の抵抗は温度によって変化するため、抵抗膜3
に流す加熱電流を抵抗膜3の抵抗が一定になるよう制御
することにより抵抗膜3の平均温度を一定に保持する。
しかし、検出素子の耐振動性、耐衝撃性などの点から支
持部材51 と断熱部材との接触面積はある程度大きくし
なければならない。保持部材51 は上述のとおり金属で
できており、熱伝導率が大きいため、発熱体1を電流で
加熱すると発熱体1から保持部材51 へ流れる熱量が無
視できないレベルになる。リード部3bの抵抗は抵抗膜
3の全抵抗に比べて比較的大きく、加熱時にこの部分で
生じるジュール熱が大きい。このため、リード部3bの
温度が高く、リード部3bから保持部材51 へ流れる熱
量が多くなるため、被測定流体(以下、単に流体と呼
ぶ)の流量検出精度や応答性を悪化させている。また、
ボンディングワイヤ6は流体にさらされているため異物
との衝突や振動などによる破損が生じる可能性が高く、
信頼性に欠けるという問題がある。
FIG. 16 shows the structure of a conventional detecting element described in Japanese Patent Laid-Open No. 62-98219. As shown in the figure, the heating element 1 has a resistive film 3 formed on the surface of a substrate 2 and patterns of a heating portion 3a, lead portions 3b, and electrode portions 3c. Holding member 5 1 obtained by applying an insulating film on a metal surface, arranged parallel to the air flow, the longitudinal end of the heating element 1 are bonded and fixed via a heat insulating member. A conductive film 7 1 is formed on the insulating film in the vicinity where the heating element 1 is fixed by bonding, and the electrode portion 3 of the heating element 1 is formed by the bonding wire 6.
It is connected to c. In the detection element, the amount of heat flowing from the heat generating portion 3a to the holding member 5 1 is suppressed in this way.
Since the resistance of the resistance film 3 changes with temperature, the resistance film 3
The average temperature of the resistance film 3 is kept constant by controlling the heating current flowing through the resistance film 3 so that the resistance of the resistance film 3 becomes constant.
However, the contact area between the support member 5 1 and the heat insulating member must be increased to some extent in view of the vibration resistance and shock resistance of the detection element. Since the holding member 5 1 is made of metal as described above and has a high thermal conductivity, when the heating element 1 is heated with an electric current, the amount of heat flowing from the heating element 1 to the holding member 5 1 becomes a level that cannot be ignored. The resistance of the lead portion 3b is relatively larger than the total resistance of the resistance film 3, and the Joule heat generated in this portion during heating is large. Therefore, the temperature of the lead portion 3b is high and the amount of heat flowing from the lead portion 3b to the holding member 5 1 is large, which deteriorates the flow rate detection accuracy and responsiveness of the fluid to be measured (hereinafter, simply referred to as fluid). . Also,
Since the bonding wire 6 is exposed to the fluid, there is a high possibility that the bonding wire 6 will be damaged due to collision with foreign matter or vibration.
There is a problem of lack of reliability.

【0004】図17は上記とは異なる従来の検出素子の
構造を示す。上述した検出素子と同様に基板2の表面上
に抵抗膜3が形成され、発熱部3a、電極部3cのパタ
ーンが形成してある。そして、発熱体1は熱伝導率の小
さい耐熱性樹脂の保持部材5に挿入・固定してある。タ
ーミナルピン7と電極部3cの間をボンディングワイヤ
6で接続し抵抗膜3と接続している。ボンディングワイ
ヤ6およびターミナルピン7の抵抗は抵抗膜3のそれに
比べて非常に小さくしてある。発熱体1を熱伝導率の小
さい耐熱性樹脂の保持部材5で固定しているため、上述
したものに比べて、発熱体1から保持部材5を通して流
体へ流れる熱量は小さい。また、抵抗の比較的大きい膜
状のリード部をもたないために前述したようなリード部
での発熱による問題は発生しない。しかし、ターミナル
ピン7およびボンディングワイヤ6が流体にさらされて
いるため、異物の衝突や振動による損傷の可能性は高く
信頼性に欠ける。さらに、発熱体1の固定部近傍で流体
の流れに乱れが生じ、流量検出の安定性や特性のばらつ
きが生じるといった点で問題があった。さらにまた、取
扱いの不注意などで、発熱体1がその固定部近傍で折損
する場合があるが、そのような場合でもボンディングワ
イヤを介して電気的に接続が保たれることがあり、流量
検出装置の故障診断が困難になるなどの問題も生じてい
た。
FIG. 17 shows a structure of a conventional detecting element different from the above. Similar to the detection element described above, the resistance film 3 is formed on the surface of the substrate 2, and the pattern of the heating portion 3a and the electrode portion 3c is formed. The heating element 1 is inserted and fixed in a holding member 5 made of a heat resistant resin having a small thermal conductivity. The terminal pin 7 and the electrode portion 3c are connected to each other by the bonding wire 6 and the resistance film 3. The resistance of the bonding wire 6 and the terminal pin 7 is much smaller than that of the resistance film 3. Since the heating element 1 is fixed by the holding member 5 made of a heat resistant resin having a small thermal conductivity, the amount of heat flowing from the heating element 1 to the fluid through the holding member 5 is smaller than that described above. Further, since there is no film-shaped lead portion having a relatively large resistance, the above-mentioned problem due to heat generation in the lead portion does not occur. However, since the terminal pin 7 and the bonding wire 6 are exposed to the fluid, there is a high possibility of foreign matter collision or damage due to vibration, and the reliability is low. Further, there is a problem in that the flow of the fluid is disturbed in the vicinity of the fixed portion of the heating element 1 and the stability of flow rate detection and the variation of characteristics occur. Furthermore, due to careless handling, the heating element 1 may break near the fixed portion, but even in such a case, the electrical connection may be maintained through the bonding wire, and the flow rate detection may be performed. There have also been problems such as difficulty in diagnosing device failures.

【0005】[0005]

【発明が解決しようとする課題】ボンディングワイヤに
よる電気的接続の信頼性を向上させ、流体の流れに乱れ
を生じさせないようにするためには、ボンディングワイ
ヤを流体にさらさないようにする必要がある。しかし、
抵抗膜と外部の電子回路とを接続するリード部が発熱部
と同一基板上にあると、従来のような発熱部、リード
部、電極部のパターンではリード部の抵抗が大きくな
り、加熱電流によるリード部の発熱により応答遅れが生
じる。つまり、リード部から保持部材へ流れる熱量があ
り、これが流体へ伝達されるため、熱的平衡状態になる
までに大きな時間遅れを生じ、流量が変化する場合に応
答性が悪化するのである。
In order to improve the reliability of the electrical connection by the bonding wire and prevent the flow of the fluid from being disturbed, it is necessary to prevent the bonding wire from being exposed to the fluid. . But,
If the lead part that connects the resistance film and the external electronic circuit is on the same substrate as the heat generating part, the resistance of the lead part becomes large in the conventional pattern of the heat generating part, the lead part, and the electrode part, and the heating current causes A response delay occurs due to heat generation in the lead section. In other words, there is a quantity of heat that flows from the lead portion to the holding member, and this is transferred to the fluid, so that a large time delay occurs until a thermal equilibrium state is reached, and the responsiveness deteriorates when the flow rate changes.

【0006】また、図16に示すように発熱部におい
て、基板面積のうち抵抗膜の面積が占める割合が小さい
と、基板2の温度変化を抵抗膜で検出するまでに遅れが
生じ、流量が変化する場合に応答遅れを生じる。この原
因は基板の厚さが熱伝導率の大きい抵抗膜よりも大き
く、抵抗膜の温度が抵抗膜に接する部分の基板の温度に
影響されるため、抵抗膜のない部分の面積が相対的に大
きいと、基板の温度が近傍の抵抗膜の温度に追従するの
に遅れを生じることによると考えられる。
Further, as shown in FIG. 16, when the ratio of the area of the resistive film to the area of the substrate in the heat generating portion is small, a delay occurs until the temperature change of the substrate 2 is detected by the resistive film, and the flow rate changes. If you do, a response delay occurs. The reason for this is that the thickness of the substrate is larger than that of the resistive film with high thermal conductivity, and the temperature of the resistive film is affected by the temperature of the substrate in the portion in contact with the resistive film. If the temperature is large, it is considered that there is a delay in the temperature of the substrate following the temperature of the nearby resistive film.

【0007】さらに、流量が変化する場合の応答時間が
小さいものは加熱電流を供給してから定常状態に達する
までの時間である起動時間が大きくなり、逆に起動時間
が小さいものは流量が変化する場合の応答性が悪くなる
という問題があった。これは発熱体における流体にさら
される部分の面積と発熱部の面積の比が適当でないこと
によるものと考えられる。すなわち、起動時間は加熱電
流の供給を始めてから発熱体および保持部材などが熱的
平衡状態に達するまでの時間に大きく依存する。このた
め、発熱体支持部の温度が流体の温度に早く反応するた
めには発熱部の面積は小さい方がよい。一方、流量が変
化する場合の応答は、リード部や保持部材からの流体へ
流れる熱量が小さく、かつこの熱量が流量の変化につれ
て変化する割合が小さいほど早いために、発熱面積を大
きくする方が応答性がよくなると考えるられる。
Further, if the response time is small when the flow rate changes, the start-up time, which is the time from the supply of the heating current until the steady state is reached, becomes long, and conversely, if the start-up time is short, the flow rate changes. There was a problem that the responsiveness when doing was poor. It is considered that this is because the ratio of the area of the heating element to the area exposed to the fluid is not appropriate. That is, the start-up time largely depends on the time from the start of supplying the heating current to the time when the heating element and the holding member reach the thermal equilibrium state. Therefore, in order for the temperature of the heating element support portion to quickly react with the temperature of the fluid, the area of the heating portion should be small. On the other hand, the response when the flow rate changes is faster as the amount of heat flowing to the fluid from the lead portion or the holding member is smaller and the rate at which this amount of heat changes with the change in flow rate is smaller, so it is better to increase the heat generation area. It is considered that the responsiveness is improved.

【0008】[0008]

【課題を解決するための手段】請求項1の発明に係る流
量検出装置は、検出素子に発熱部抵抗をリード部抵抗の
5倍以上にした発熱体を用い、発熱体の一端をリード部
の一部、電極部およびターミナルピンの部分をともに断
熱性の保持部材内部に埋設して支持し、この支持部を流
体にさらさないようしたものである。
According to a first aspect of the present invention, there is provided a flow rate detecting device in which a heating element having a resistance of a heating portion which is 5 times or more the resistance of the lead portion is used as a detecting element, and one end of the heating element is connected to the lead portion. A part of the electrode portion and the terminal pin are both embedded and supported inside a heat insulating holding member so that the support portion is not exposed to a fluid.

【0009】請求項2に係る発明の流量検出装置は、請
求項1の発明における検出素子の発熱部面積を検出素子
の流体にさらされる部分の面積の40%ないし80%に
したものである。
According to a second aspect of the invention, there is provided the flow rate detecting device according to the first aspect of the invention, in which the area of the heat generating portion of the detecting element is 40% to 80% of the area of the portion of the detecting element exposed to the fluid.

【0010】請求項3に係る発明の流量検出装置は、請
求項1の発明における検出素子の発熱部における抵抗膜
表面積を、発熱部における基板面積の50%以上にした
ものである。
According to a third aspect of the present invention, there is provided the flow rate detecting device according to the first aspect of the invention, in which the surface area of the resistive film in the heat generating portion of the detecting element is 50% or more of the substrate area in the heat generating portion.

【0011】[0011]

【作用】請求項1に係る発明では、検出素子の保持部材
部分で流体に乱れを生じることがなく、かつ検出素子の
リード部における発熱量が減少するのでリード部の温度
が低下し、リード部を経て固定部材の側に流れる熱量が
減少し流体の冷却効果による保持部材の温度変化が減少
する。
In the invention according to claim 1, the fluid is not disturbed in the holding member portion of the detection element, and the amount of heat generated in the lead portion of the detection element is reduced, so that the temperature of the lead portion is lowered and the lead portion is reduced. After that, the amount of heat flowing to the side of the fixing member decreases, and the temperature change of the holding member due to the cooling effect of the fluid decreases.

【0012】請求項2に係る発明では、検出素子の保持
部材部分で流体に乱れを生じることがなく、かつ検出素
子のリード部における発熱量が減少するのでリード部の
温度が低下し、リード部を経て固定部材の側に流れる熱
量がより減少し流体の冷却効果による保持部材の温度変
化が減少する。
According to the second aspect of the present invention, the fluid is not disturbed in the holding member portion of the detecting element, and the amount of heat generated in the lead portion of the detecting element is reduced, so that the temperature of the lead portion is lowered and the lead portion is reduced. The amount of heat flowing to the side of the fixing member via the flow rate is further reduced, and the temperature change of the holding member due to the cooling effect of the fluid is reduced.

【0013】請求項3に係る発明では、検出素子の保持
部材部分で流体に乱れを生じることがなく、かつ発熱部
での温度の均一性が高まるとともに、検出素子のリード
部における発熱量が減少するのでリード部の温度が低下
し、リード部を経て固定部材の側に流れる熱量がより減
少し流体の冷却効果による保持部材の温度変化が減少す
る。
According to the third aspect of the invention, the fluid is not disturbed in the holding member portion of the detection element, the temperature uniformity in the heat generating portion is improved, and the heat generation amount in the lead portion of the detection element is reduced. As a result, the temperature of the lead portion decreases, the amount of heat flowing to the fixing member side via the lead portion further decreases, and the temperature change of the holding member due to the cooling effect of the fluid decreases.

【0014】[0014]

【実施例】【Example】

実施例1.以下、この発明の実施例を図を用いて説明す
る。図1および図2は本発明の第1の実施例による検出
素子を示し、図1は発熱体を保持部材へ取付る途中での
平面図および断面図、図2は完成した検出素子の断面図
である。なお、従来の検出素子と同一あるいは相当する
部分には同一の符号を用いており、重複する説明は省略
する。図において、1は基板2とその表面に形成した抵
抗膜3などからなっている発熱体である。基板2は厚さ
0.15〜0.2mm、幅1.5〜2mm、長さ12〜
15mmのアルミナセラミックまたはガラスの短冊状平
板で、その片面には白金またはニッケルなど抵抗が温度
によって変化する金属を、蒸着、スパッタあるいは印刷
などの方法で均一の厚さに成膜し、写真製版やレーザー
トリミングなどの方法で皮膜の一部を除去した抵抗膜3
が形成してある。抵抗膜3は基板2の抵抗膜形成面の長
手方向の一端から40〜80%の範囲に設け、その幅を
ほぼ均一に形成したミアンダ形状の発熱部3aと、この
発熱部3aと連続して基板2の他端までの間に設けたリ
ード部3bとからなり、発熱部3aでの抵抗膜3の表面
積は発熱部3aのある部分の基板1の面積に対して50
%以上になっている(以下、発熱部3aがある部分の基
板2の面積が基板2の片面の面積に占める比率を発熱部
比率、発熱部3aにおける抵抗膜3の表面積が発熱部3
aのある部分の基板2の面積に対する比率を発熱膜比率
と呼ぶ)。なお、発熱部3aにおける抵抗膜の幅はリー
ド部3bの抵抗膜幅の約1/3以下である。4は抵抗膜
3を形成した後、抵抗膜形成面にオーバーコートガラス
を塗布して形成した保護膜で、そのリード部3b側端部
近傍には開口部が設けてあり電極部3cになっている。
5はターミナルピン7と一体にモールドした樹脂ででき
た保持部材で、発熱体1のリード部3b側先端部を接着
してある。6は電極部3cとターミナルピン7とを接続
するボンディングワイヤ、8はカバー、9は保持部材5
とカバー8の間に形成される空間にエポキシ樹脂などを
気泡が入らないよう隙間から封入した封止材である。タ
ーミナルピン7から電流を供給し、ジュール熱で発熱体
1を加熱する。
Example 1. Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 show a detecting element according to a first embodiment of the present invention, FIG. 1 is a plan view and a sectional view in the middle of attaching a heating element to a holding member, and FIG. 2 is a sectional view of a completed detecting element. Is. Note that the same reference numerals are used for the same or corresponding portions as those of the conventional detection element, and duplicate description will be omitted. In the figure, reference numeral 1 is a heating element composed of a substrate 2 and a resistance film 3 formed on the surface thereof. The substrate 2 has a thickness of 0.15 to 0.2 mm, a width of 1.5 to 2 mm, and a length of 12 to
A 15 mm strip of alumina ceramic or glass flat plate, on one surface of which metal such as platinum or nickel whose resistance changes with temperature is formed into a uniform thickness by a method such as vapor deposition, sputtering or printing. Resistive film 3 with part of the film removed by methods such as laser trimming
Is formed. The resistance film 3 is provided in a range of 40 to 80% from one end in the longitudinal direction of the resistance film formation surface of the substrate 2, and the meander-shaped heat generating portion 3a having a substantially uniform width is formed. The surface area of the resistance film 3 in the heat generating portion 3a is 50 with respect to the area of the substrate 1 at the portion having the heat generating portion 3a.
% (Hereinafter, the ratio of the area of the substrate 2 where the heating portion 3a is present to the area of one surface of the substrate 2 is the heating portion ratio, and the surface area of the resistance film 3 in the heating portion 3a is the heating portion 3).
The ratio of the portion having a to the area of the substrate 2 is referred to as a heat generating film ratio). The width of the resistance film in the heat generating portion 3a is about 1/3 or less of the width of the resistance film in the lead portion 3b. Reference numeral 4 denotes a protective film formed by forming the resistive film 3 and then applying overcoat glass on the resistive film forming surface. An opening is provided near the end portion on the lead portion 3b side to form the electrode portion 3c. There is.
Reference numeral 5 is a holding member made of resin that is molded integrally with the terminal pin 7, and the tip of the heating element 1 on the lead portion 3b side is bonded. 6 is a bonding wire for connecting the electrode portion 3c and the terminal pin 7, 8 is a cover, and 9 is a holding member 5.
This is a sealing material in which an epoxy resin or the like is sealed from a gap so that air bubbles do not enter a space formed between the cover 8 and the cover 8. An electric current is supplied from the terminal pin 7 to heat the heating element 1 with Joule heat.

【0015】図3は図1および図2を用いて説明した検
出素子を流体流路へ設置した流量検出装置におけるセン
サ部分の構造図である。流体の流路20中央部にセンサ
を取付けるインナーダクト21があり、その上流側には
ハニカムまたはモールド格子などの整流装置22が設け
てある。インナーダクト21の内部に検出素子10の発
熱体部分を流体の流れ方向に平行または20〜30°の
迎角をつけて取付ている。検出素子10の保持部材部分
はインナーダクト21のステイ部分211 に埋め込まれ
流体の流れを乱さないようになっている。また、検出素
子10の上流側には検出素子と同様な温度依存性抵抗で
構成する補償用温度検出素子11を設けてある。
FIG. 3 is a structural diagram of a sensor portion in a flow rate detecting device in which the detecting element described with reference to FIGS. 1 and 2 is installed in a fluid flow path. An inner duct 21 for mounting a sensor is provided at the center of the fluid flow path 20, and a rectifying device 22 such as a honeycomb or a mold lattice is provided on the upstream side of the inner duct 21. The heating element portion of the detection element 10 is mounted inside the inner duct 21 in parallel with the fluid flow direction or at an elevation angle of 20 to 30 °. The holding member portion of the detection element 10 is embedded in the stay portion 21 1 of the inner duct 21 so as not to disturb the flow of fluid. Further, on the upstream side of the detecting element 10, there is provided a compensating temperature detecting element 11 composed of the same temperature-dependent resistance as the detecting element.

【0016】次に流量検出装置の構成とともにその動作
について説明する。図4は検出素子内部の回路構成を示
す模式図で、発熱体1における発熱部3aの抵抗をR
h、リード部分の抵抗をRsで表している。また、図5
は流量検出原理を示す制御回路図である。図において、
10は検出素子、11は補償用温度検出素子、12、1
3および14は固定抵抗素子で、検出素子10、補償用
温度検出素子11とともにブリッジ回路を構成してお
り、その出力を差動増幅器15に供給している。なお、
16は加熱電流供給トランジスタである。差動増幅器1
5の差動ゲインは大きいため、ブリッジ回路の出力電圧
がほぼ0になるように加熱電流がブリッジ回路に流れ、
検出素子10の抵抗が一定になるようにバランスする。
検出素子10と固定抵抗素子14の抵抗の和は、補償用
温度検出素子11、抵抗素子12および13の抵抗の和
の1/50以下になっており加熱電流のほとんどが検出
素子10を流れる。固定抵抗素子14の端子間電圧とし
て流量信号が得られる。
Next, the structure of the flow rate detector and its operation will be described. FIG. 4 is a schematic diagram showing a circuit configuration inside the detection element, in which the resistance of the heating portion 3a of the heating element 1 is represented by R
The resistance of h and the lead portion is represented by Rs. Also, FIG.
FIG. 4 is a control circuit diagram showing the principle of flow rate detection. In the figure,
10 is a detecting element, 11 is a temperature detecting element for compensation, 12, 1
Fixed resistance elements 3 and 14 form a bridge circuit together with the detection element 10 and the compensation temperature detection element 11, and the output thereof is supplied to the differential amplifier 15. In addition,
Reference numeral 16 is a heating current supply transistor. Differential amplifier 1
Since the differential gain of 5 is large, the heating current flows in the bridge circuit so that the output voltage of the bridge circuit becomes almost 0,
The resistance of the detection element 10 is balanced so as to be constant.
The sum of the resistances of the detection element 10 and the fixed resistance element 14 is 1/50 or less of the sum of the resistances of the compensation temperature detection element 11 and the resistance elements 12 and 13, and most of the heating current flows through the detection element 10. A flow rate signal is obtained as the voltage between the terminals of the fixed resistance element 14.

【0017】図6に流量検出装置の動作状態における検
出素子の温度分布を示す。横軸は発熱体1の自由端から
の距離を示し、3aは発熱部、3bはリード部である。
曲線Aは抵抗比Rs/Rh=0.3、曲線Bは抵抗比R
s/Rh=0.1の場合の温度分布である。いずれの場
合も、検出素子10の抵抗が同一になるように動作す
る。流量検出装置の動作中、検出素子10の抵抗は抵抗
比Rs/Rhが小さい場合、自由端に近い発熱部の平均
温度で決まる抵抗とほぼ等しくなる。一方、抵抗比Rs
/Rhが大きい場合は発熱部3aと保持部材5に近いリ
ード部3bの平均温度で決まる抵抗になる。したがって
相対的に後者の方がリード部の温度が高くなり、また検
出素子の抵抗を一定に維持するために必要な発熱量も後
者の方が大きくなる。
FIG. 6 shows the temperature distribution of the detecting element in the operating state of the flow rate detecting device. The horizontal axis represents the distance from the free end of the heating element 1, 3a is a heat generating portion, and 3b is a lead portion.
Curve A shows resistance ratio Rs / Rh = 0.3, curve B shows resistance ratio R
It is a temperature distribution when s / Rh = 0.1. In either case, the detection elements 10 operate so that the resistances are the same. During the operation of the flow rate detection device, the resistance of the detection element 10 becomes substantially equal to the resistance determined by the average temperature of the heat generating portion near the free end when the resistance ratio Rs / Rh is small. On the other hand, the resistance ratio Rs
When / Rh is large, the resistance is determined by the average temperature of the heating portion 3a and the lead portion 3b near the holding member 5. Therefore, in the latter case, the temperature of the lead portion becomes relatively higher, and in the latter case, the amount of heat generated for maintaining the resistance of the detection element constant becomes larger.

【0018】加熱電流供給開始後の出力信号の様子を図
7に示す。横軸は時間、縦軸は出力電圧として得られる
流量信号であり、t0 は加熱電流供給開始時点を示す。
出力電圧は加熱電流供給開始直後にブリッジ電圧の飽和
点まで上昇するが、検出素子の温度上昇とともに抵抗が
増加するため加熱電流は減少して出力信号の大きさも減
少し、やがて平衡状態になる。以下、加熱電流供給開始
から平衡状態に達するまでの時間を起動時間TONと呼
ぶ。
FIG. 7 shows a state of the output signal after the heating current supply is started. The horizontal axis represents time, the vertical axis represents the flow rate signal obtained as the output voltage, and t 0 represents the heating current supply start point.
The output voltage rises to the saturation point of the bridge voltage immediately after the heating current starts to be supplied, but the resistance increases as the temperature of the detection element increases, so that the heating current decreases and the magnitude of the output signal also decreases, eventually reaching a balanced state. Hereinafter, the time from the start of heating current supply to the equilibrium state is called the startup time T ON .

【0019】図8に発熱部の抵抗Rhに対するリード部
の抵抗Rsの比と起動時間TONの関係を示す。抵抗比R
s/Rhが小さいほど、リード部における発熱量が小さ
いため保持部へ流れる熱量が小さくなり起動時間TON
減少する。図に示すように抵抗比Rs/Rhが0.2以
上の範囲では起動時間TONが急激に大きくなる。
FIG. 8 shows the relationship between the ratio of the resistance Rs of the lead portion to the resistance Rh of the heating portion and the starting time T ON . Resistance ratio R
As s / Rh is smaller, the amount of heat generated in the lead portion is smaller, so the amount of heat flowing to the holding portion is smaller and the startup time T ON is reduced. As shown in the figure, the starting time T ON rapidly increases in the range where the resistance ratio Rs / Rh is 0.2 or more.

【0020】図9は流量をステップ状に変化させた場合
の応答を示す。以下、流量の立上りから定常状態に達す
るまでの時間を応答時間Tr と呼ぶ。図10に発熱部比
率と起動時間TONおよび応答時間Tr の関係を示す。発
熱部比率が小さくなると、リード部における温度が低く
なるため、起動時間TONは小さくなる。一方、発熱部比
率が0.1から0.8の範囲では発熱部比率が大きくな
るにつれて応答時間Tr が小さくなる。これは発熱部比
率が増大するにつれて、発熱部から流体へ流れる熱量が
相対的に増大するためであると考えることができる。な
お、発熱部比率が0.8以上では応答時間TON、Tr
いずれも増大する傾向を示している。これは発熱部比率
が0.8以上では発熱部から熱時定数の大きい保持部材
へ流れる熱量の影響が大きくなることによると考えるこ
とができる。以上のことから、発熱部比率は0.4から
0.8の範囲にするのが好ましいといえる。
FIG. 9 shows the response when the flow rate is changed stepwise. Hereinafter, the time from the rise of the flow rate to the steady state is called the response time Tr . FIG. 10 shows the relationship between the heat generating portion ratio, the start time T ON, and the response time T r . When the heat generating portion ratio decreases, the temperature in the lead portion decreases, so that the start-up time T ON decreases. On the other hand, in the range of the heat generating portion ratio from 0.1 to 0.8, the response time T r decreases as the heat generating portion ratio increases. It can be considered that this is because the amount of heat flowing from the heat generating portion to the fluid relatively increases as the heat generating portion ratio increases. It should be noted that when the heating portion ratio is 0.8 or more, both the response times T ON and T r tend to increase. It can be considered that this is because when the heat generating portion ratio is 0.8 or more, the influence of the amount of heat flowing from the heat generating portion to the holding member having a large thermal time constant becomes large. From the above, it can be said that it is preferable to set the heating portion ratio in the range of 0.4 to 0.8.

【0021】図11に発熱膜比率と応答時間Tr の関係
を示す。発熱膜比率が約0.5以下では、基板2の温度
変化が抵抗膜3の抵抗変化として現るまでに遅れが生
じ、応答時間Tr が大きくなる傾向を示す。このことか
ら、発熱膜比率は約0.5以上とするのが好ましいとい
える。
FIG. 11 shows the relationship between the heating film ratio and the response time T r . When the heating film ratio is about 0.5 or less, there is a delay before the temperature change of the substrate 2 appears as the resistance change of the resistance film 3, and the response time T r tends to increase. From this, it can be said that the heating film ratio is preferably about 0.5 or more.

【0022】以上の説明では、抵抗膜の厚さは発熱部3
a、リード部3bとも同一としたが、図12の検出素子
断面図に示すようにリード部から電極部にかけての抵抗
膜の膜厚を発熱部の膜厚より大きくしてもよい。この場
合、リード部の抵抗膜断面積を図1および2のものと同
等あるいはそれ以上にすればよい。それによってリード
部の抵抗Rsと発熱部の抵抗Rhの比をより小さく設定
することが可能になり、リード部分の温度を下げてリー
ド部から保持部材へ流れる熱量を減少させることができ
るため、起動時間をより短縮することが可能になる。
In the above description, the thickness of the resistance film is determined by the heating portion 3
Although a and the lead portion 3b are the same, the film thickness of the resistance film from the lead portion to the electrode portion may be larger than the film thickness of the heat generating portion as shown in the sectional view of the detection element of FIG. In this case, the resistance film cross-sectional area of the lead portion may be made equal to or larger than those in FIGS. As a result, the ratio of the resistance Rs of the lead portion to the resistance Rh of the heat generating portion can be set smaller, and the temperature of the lead portion can be lowered to reduce the amount of heat flowing from the lead portion to the holding member. It becomes possible to further shorten the time.

【0023】さらに、図13に示すように、リード部お
よび電極部を抵抗膜よりも体積抵抗率の小さい例えば
銅、アルミニウムなどからなる金属膜3dで形成しても
よい。図12の場合と同様の効果が得られる。
Further, as shown in FIG. 13, the lead portion and the electrode portion may be formed of a metal film 3d made of, for example, copper, aluminum or the like having a volume resistivity smaller than that of the resistance film. The same effect as in the case of FIG. 12 is obtained.

【0024】さらに、図14に示すように、リード部お
よび電極部の上に例えば銅、アルミニウムなどの導電材
料からなる金属膜3dを成膜してもよい。図12および
図13と同様の効果が得られる。
Further, as shown in FIG. 14, a metal film 3d made of a conductive material such as copper or aluminum may be formed on the lead portion and the electrode portion. The same effect as in FIGS. 12 and 13 can be obtained.

【0025】実施例2.以下、この発明の第2の実施例
を図を用いて説明する。図15はこの実施例による検出
素子の断面図である。第1の実施例との相違点は基板2
の中央部に発熱部3aを、両端部にリード部3bを1つ
ずつ配置し両端で固定するようにしたことにある。発熱
体を両端を固定するようにしたため、リード部の抵抗膜
のパターン幅が比較的大きく設定でき抵抗比Rs/Rh
を小さくできる。また、外力に対する強度を高くするこ
とができる。もちろん、リード部を図12〜図14のよ
うに構成することも可能である。
Example 2. A second embodiment of the present invention will be described below with reference to the drawings. FIG. 15 is a sectional view of the detecting element according to this embodiment. The difference from the first embodiment is the substrate 2
The heat generating part 3a is arranged at the central part of the above, and the lead parts 3b are arranged at both ends one by one so as to be fixed at both ends. Since the heating element is fixed at both ends, the pattern width of the resistance film of the lead portion can be set to be relatively large and the resistance ratio Rs / Rh
Can be made smaller. Also, the strength against external force can be increased. Of course, the lead portion can be configured as shown in FIGS.

【0026】[0026]

【発明の効果】請求項1に係る発明では、検出素子の保
持部材部分で流体に乱れを生じることがなく、かつ検出
素子のリード部における発熱量が減少するのでリード部
の温度が低下し、リード部を経て固定部材の側に流れる
熱量が減少し流体の冷却効果による保持部材の温度変化
が減少するので、加熱電流を流してから各部分が熱的平
衡状態になるまでの時間が短くなり、応答性が改善する
とともに計測精度が向上する。さらにボンディングワイ
ヤが流体に接しないので異物との衝突や振動などによる
損傷がなくなり信頼性が向上する。
According to the first aspect of the present invention, the fluid is not disturbed in the holding member portion of the detection element, and the amount of heat generated in the lead portion of the detection element is reduced, so that the temperature of the lead portion is reduced. The amount of heat that flows through the lead to the fixing member decreases, and the temperature change of the holding member due to the cooling effect of the fluid decreases, so the time from the application of the heating current to the thermal equilibrium of each part is shortened. , The response is improved and the measurement accuracy is improved. Furthermore, since the bonding wire does not come into contact with the fluid, damage due to collision with foreign matter, vibration, etc. is eliminated and reliability is improved.

【0027】請求項2に係る発明によれば、請求項1の
発明に比べ発熱部とリード部の発熱量の配分がより好ま
しいものとなるため、応答性および計測精度がさらに改
善・向上する。
According to the second aspect of the present invention, the distribution of the heat generation amount between the heat generating portion and the lead portion is more preferable than that of the first aspect of the invention, so that the responsiveness and the measurement accuracy are further improved and improved.

【0028】請求項3に係る発明によれば、請求項1の
発明に比べ発熱部での温度の均一性が増し、流量変化に
対する応答性が改善し計測精度がさらに向上する。
According to the third aspect of the invention, the temperature uniformity in the heat generating portion is increased, the responsiveness to the flow rate change is improved, and the measurement accuracy is further improved, as compared with the first aspect of the invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の第1の実施例による検出素子の平
面図および断面図である。
FIG. 1 is a plan view and a sectional view of a detection element according to a first embodiment of the present invention.

【図2】 この発明の第1の実施例による検出素子の組
立断面図である。
FIG. 2 is an assembled sectional view of the detection element according to the first embodiment of the present invention.

【図3】 この発明の第1の実施例による流量検出装置
の断面図である。
FIG. 3 is a sectional view of a flow rate detecting device according to a first embodiment of the present invention.

【図4】 この発明の第1の実施例による検出素子の回
路図である。
FIG. 4 is a circuit diagram of a detection element according to the first embodiment of the present invention.

【図5】 この発明の第1の実施例による流量検出原理
を示す制御回路図である。
FIG. 5 is a control circuit diagram showing the principle of flow rate detection according to the first embodiment of the present invention.

【図6】 この発明の第1の実施例による検出素子にお
ける温度分布を示す説明図である。
FIG. 6 is an explanatory diagram showing a temperature distribution in the detection element according to the first embodiment of the present invention.

【図7】 この発明の第1の実施例による流量検出装置
の起動時応答を示す説明図である。
FIG. 7 is an explanatory diagram showing a start-up response of the flow rate detection device according to the first embodiment of the present invention.

【図8】 この発明の第1の実施例による検出素子の発
熱部とリード部の抵抗比と起動時間の関係を示す特性図
である。
FIG. 8 is a characteristic diagram showing the relationship between the resistance ratio of the heating portion and the lead portion of the detection element according to the first embodiment of the present invention and the startup time.

【図9】 この発明の第1の実施例による流量検出装置
のステップ流量変化に対する応答性を示す説明図であ
る。
FIG. 9 is an explanatory diagram showing the responsiveness of the flow rate detection device according to the first embodiment of the present invention to changes in step flow rate.

【図10】 この発明の第1の実施例による検出素子の
起動時間およびステップ応答時間と発熱部比率の関係を
示す特性図である。
FIG. 10 is a characteristic diagram showing the relationship between the start-up time and step response time of the detection element and the heating section ratio according to the first example of the present invention.

【図11】 この発明の第1の実施例による検出素子の
ステップ応答時間と発熱膜比率の関係を示す特性図であ
る。
FIG. 11 is a characteristic diagram showing the relationship between the step response time and the heating film ratio of the detection element according to the first example of the present invention.

【図12】 この発明の第1の実施例において検出素子
のリード部構成を変えたものの断面図である。
FIG. 12 is a cross-sectional view of the detection element in which the lead portion structure is changed in the first embodiment of the present invention.

【図13】 この発明の第1の実施例による検出素子の
さらに他の変形例における断面図である。
FIG. 13 is a sectional view of still another modification of the detection element according to the first embodiment of the present invention.

【図14】 この発明の第1の実施例による検出素子の
さらに他の変形例における断面図である。
FIG. 14 is a sectional view of still another modification of the detection element according to the first embodiment of the present invention.

【図15】 この発明の第2の実施例による検出素子の
断面図である。
FIG. 15 is a sectional view of a detection element according to a second embodiment of the present invention.

【図16】 従来の検出素子の平面図である。FIG. 16 is a plan view of a conventional detection element.

【図17】 図15とは異なる従来の検出素子の平面図
である。
FIG. 17 is a plan view of a conventional detection element different from that of FIG.

【符号の説明】[Explanation of symbols]

1 発熱体 2 絶縁性基板 3 抵抗膜 3a 発熱部 3b リード部 3c 電極部
3d 導電性膜 4 保護膜 5 保持部材 6 ボン
ディングワイヤ 7 ターミナルピン 8 カバー 9 封止
材 10 検出素子 11 補償用温度検出素子 20 流路 21 インナーダクト 22
整流装置
DESCRIPTION OF SYMBOLS 1 Heating element 2 Insulating substrate 3 Resistive film 3a Heating part 3b Lead part 3c Electrode part
3d Conductive film 4 Protective film 5 Holding member 6 Bonding wire 7 Terminal pin 8 Cover 9 Encapsulating material 10 Detecting element 11 Compensating temperature detecting element 20 Flow path 21 Inner duct 22
Rectifier

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性基板上に温度依存性抵抗膜を形成
し、この絶縁性基板の支持部から離れた位置にミアンダ
形状に形成した発熱部を設けるとともに外部との接続の
ための電極部と、前記発熱部と前記電極部の間を接続す
る膜状のリード部とをもつ発熱体と、この発熱体を支持
しかつ前記電極部を介して電気的に外部と接続する導電
部をもつ保持部材とからなる流量検出素子を有する感熱
式検出装置において、 前記発熱部の抵抗を前記リード部の抵抗の5倍以上と
し、かつ前記発熱体の端部を前記リード部の一部、前記
電極部および前記電極部を介して電気的に外部と接続す
る導電部をともに被測定流体と隔離する断熱性の前記保
持部材内部に埋設した前記流量検出素子を用い、前記発
熱体の保持部材埋設部以外を前記被測定流体の流路中に
配設したことを特徴とする感熱式流量検出装置。
1. A temperature-dependent resistance film is formed on an insulating substrate, a meandering heat generating portion is provided at a position apart from a supporting portion of the insulating substrate, and an electrode portion for connection to the outside is provided. A heating element having a film-shaped lead portion connecting between the heating portion and the electrode portion, and a conductive portion supporting the heating element and electrically connected to the outside through the electrode portion. In a heat-sensitive detection device having a flow rate detection element including a holding member, the resistance of the heating portion is 5 times or more the resistance of the lead portion, and the end portion of the heating element is part of the lead portion, the electrode. And a conductive part electrically connected to the outside via the electrode part and the electrode part are embedded in the heat insulating holding member for isolating the fluid to be measured, and the holding member embedded part of the heating element is used. Except in the flow path of the fluid to be measured Thermosensitive flow rate detecting device being characterized in that disposed.
【請求項2】 前記発熱部の面積が、前記流量検出素子
の前記被測定流体にさらされる部分の面積の40%ない
し80%であることを特徴とする請求項第1項記載の感
熱式流量検出装置。
2. The heat-sensitive flow rate according to claim 1, wherein an area of the heat generating portion is 40% to 80% of an area of a portion of the flow rate detecting element exposed to the fluid to be measured. Detection device.
【請求項3】 前記発熱部のパターン幅がほぼ均一であ
り、かつ前記発熱部の前記温度依存性抵抗膜の表面積が
前記発熱部における前記絶縁性基板の面積の50%以上
であることを特徴とする請求項第1項記載の感熱式流量
検出装置。
3. The pattern width of the heat generating portion is substantially uniform, and the surface area of the temperature dependent resistance film of the heat generating portion is 50% or more of the area of the insulating substrate in the heat generating portion. The heat-sensitive flow rate detecting device according to claim 1.
JP11996095A 1995-05-18 1995-05-18 Thermal flow detector Expired - Lifetime JP3331814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11996095A JP3331814B2 (en) 1995-05-18 1995-05-18 Thermal flow detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11996095A JP3331814B2 (en) 1995-05-18 1995-05-18 Thermal flow detector

Publications (2)

Publication Number Publication Date
JPH08313318A true JPH08313318A (en) 1996-11-29
JP3331814B2 JP3331814B2 (en) 2002-10-07

Family

ID=14774469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11996095A Expired - Lifetime JP3331814B2 (en) 1995-05-18 1995-05-18 Thermal flow detector

Country Status (1)

Country Link
JP (1) JP3331814B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6189380B1 (en) 1998-03-19 2001-02-20 Mitsubishi Denki Kabushiki Kaisha Flow rate sensor
US6240775B1 (en) 1998-05-11 2001-06-05 Mitsubishi Denki Kabushiki Kaisha Flow rate sensor
US6336361B1 (en) 1999-06-08 2002-01-08 Mitsubishi Denki Kabushiki Kaisha Flow rate sensor with symmetrical support protective member and structural member
US6561021B2 (en) 2000-10-13 2003-05-13 Mitsubishi Denki Kabushiki Kaisha Flow rate-measuring device
US6776036B2 (en) 2001-10-11 2004-08-17 Vistoen Global Technologies, Inc. Fluid flow meter
DE19960822B4 (en) * 1999-06-08 2005-11-03 Mitsubishi Denki K.K. Flow rate sensor
JP2010044071A (en) * 2008-08-11 2010-02-25 Heraeus Sensor Technology Gmbh 300 degrees centigrade type flow rate sensor
DE102010044110A1 (en) 2009-12-18 2011-06-22 DENSO CORPORATION, Aichi-pref. Air flow measuring device
DE102011009754A1 (en) * 2011-01-28 2012-08-02 Heraeus Sensor Technology Gmbh Flow sensors with current feed-through in the lid and sensor tip as an intermediate product
JP2013238594A (en) * 2012-05-11 2013-11-28 E & E Elektron Gmbh Flow sensor
WO2015121800A1 (en) * 2014-02-12 2015-08-20 C.I.B. Unigas S.P.A. Device for controlling the combustion of a burner

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6189380B1 (en) 1998-03-19 2001-02-20 Mitsubishi Denki Kabushiki Kaisha Flow rate sensor
DE19848109B4 (en) * 1998-03-19 2005-03-24 Mitsubishi Denki K.K. Flow rate sensors
US6240775B1 (en) 1998-05-11 2001-06-05 Mitsubishi Denki Kabushiki Kaisha Flow rate sensor
DE19852015B4 (en) * 1998-05-11 2010-09-23 Mitsubishi Denki K.K. Flow rate sensor
US6557410B2 (en) 1999-06-08 2003-05-06 Mitsubishi Denki Kabushiki Kaisha Flow rate sensor with a temperature sensing structure spaced from the support member
US6336361B1 (en) 1999-06-08 2002-01-08 Mitsubishi Denki Kabushiki Kaisha Flow rate sensor with symmetrical support protective member and structural member
US6729182B2 (en) 1999-06-08 2004-05-04 Mitsubishi Denki Kabushiki Kaisha Flow rate sensor, having a protective member and standard member
DE19960822B4 (en) * 1999-06-08 2005-11-03 Mitsubishi Denki K.K. Flow rate sensor
US6513375B2 (en) 1999-06-08 2003-02-04 Mitsubishi Denki Kabushili Kaisha Flow rate sensor
US6561021B2 (en) 2000-10-13 2003-05-13 Mitsubishi Denki Kabushiki Kaisha Flow rate-measuring device
US6776036B2 (en) 2001-10-11 2004-08-17 Vistoen Global Technologies, Inc. Fluid flow meter
JP2010044071A (en) * 2008-08-11 2010-02-25 Heraeus Sensor Technology Gmbh 300 degrees centigrade type flow rate sensor
DE102010044110A1 (en) 2009-12-18 2011-06-22 DENSO CORPORATION, Aichi-pref. Air flow measuring device
DE102011009754A1 (en) * 2011-01-28 2012-08-02 Heraeus Sensor Technology Gmbh Flow sensors with current feed-through in the lid and sensor tip as an intermediate product
US8943913B2 (en) 2011-01-28 2015-02-03 Heraeus Sensor Technology Gmbh Flow sensors having a flow duct in the cover, and sensor tip as intermediate product
JP2013238594A (en) * 2012-05-11 2013-11-28 E & E Elektron Gmbh Flow sensor
WO2015121800A1 (en) * 2014-02-12 2015-08-20 C.I.B. Unigas S.P.A. Device for controlling the combustion of a burner
EA031938B1 (en) * 2014-02-12 2019-03-29 С.И.Б. Унигас С.П.А. Device for controlling the combustion of a burner
US10782022B2 (en) 2014-02-12 2020-09-22 C.I.B. Unigas S.P.A. Device for controlling the combustion of a burner

Also Published As

Publication number Publication date
JP3331814B2 (en) 2002-10-07

Similar Documents

Publication Publication Date Title
US4870860A (en) Direct-heated flow measuring apparatus having improved response characteristics
JP3366818B2 (en) Thermal air flow meter
JP3335860B2 (en) Measuring element for thermal air flow meter and thermal air flow meter
JP4157034B2 (en) Thermal flow meter
JPH08313318A (en) Heat sensitive type flow rate detector
JP2000131112A (en) Heat-sensitive flow sensor
JP2002328053A (en) Thermal flow sensor
JP3671393B2 (en) Thermal flow sensor
JPH11118566A (en) Flow sensor
US6250150B1 (en) Sensor employing heating element with low density at the center and high density at the end thereof
JPH0552625A (en) Thermal type air flowmeter and engine control device
JP2569733B2 (en) Thermal air flow detector
JP3174234B2 (en) Thermal air flow detector
JP2842485B2 (en) Thermal flow sensor
JPH0422268Y2 (en)
JPH07286876A (en) Thermal type air flow rate detector
JPH09236465A (en) Heating resistance-type measuring apparatus for flow rate of air
JPH04122818A (en) Heat-type flow sensor
JPH04291115A (en) Hot-wire air flowmeter
JPH0631374Y2 (en) Thermal flow sensor
JPH0620973Y2 (en) Thermal flow sensor
JPH04343022A (en) Thermal flowmeter sensor
JPH05340780A (en) Thermal flow rate sensor
JPH0674804A (en) Heat sensing flow rate sensor
JPH02249919A (en) Inhaled air quantity detector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070726

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130726

Year of fee payment: 11

EXPY Cancellation because of completion of term