JP3398273B2 - Desulfurization method of catalytic cracking gasoline - Google Patents

Desulfurization method of catalytic cracking gasoline

Info

Publication number
JP3398273B2
JP3398273B2 JP31852495A JP31852495A JP3398273B2 JP 3398273 B2 JP3398273 B2 JP 3398273B2 JP 31852495 A JP31852495 A JP 31852495A JP 31852495 A JP31852495 A JP 31852495A JP 3398273 B2 JP3398273 B2 JP 3398273B2
Authority
JP
Japan
Prior art keywords
catalyst
catalytically cracked
cracked gasoline
olefin
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31852495A
Other languages
Japanese (ja)
Other versions
JPH09137172A (en
Inventor
覚 引田
重人 畑中
修 定兼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP31852495A priority Critical patent/JP3398273B2/en
Publication of JPH09137172A publication Critical patent/JPH09137172A/en
Application granted granted Critical
Publication of JP3398273B2 publication Critical patent/JP3398273B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は接触分解ガソリンの
脱硫方法に関する。さらに詳しくは、硫黄化合物および
オレフィン分を含有する接触分解ガソリンを触媒を用い
て水素化脱硫処理する際に、予め、接触分解ガソリン中
の末端オレフィンを内部オレフィンに異性化した後、水
素化脱硫処理することにより、末端オレフィンの水素化
によるオクタン価の低下を抑制可能な接触分解ガソリン
の脱硫方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for desulfurizing catalytically cracked gasoline. More specifically, when catalytically cracking a catalytically cracked gasoline containing a sulfur compound and an olefin using a catalyst, the terminal olefin in the catalytically cracked gasoline is isomerized to an internal olefin in advance, and then hydrodesulfurized. By doing so, the present invention relates to a method for desulfurizing catalytically cracked gasoline capable of suppressing a decrease in octane number due to hydrogenation of terminal olefins.

【0002】[0002]

【従来の技術】石油精製の分野において、オレフィン成
分を多量に含有する高オクタン価ガソリン材源として、
接触分解ガソリンがある。これは、重質石油留分、例え
ば減圧軽油あるいは常圧残油等の原料油を接触分解し、
接触分解生成物を回収、蒸留することによって得られる
ガソリン留分で、自動車ガソリンの主要な混合材源の一
つとして使われている。ところが、上記接触分解の原料
油は、もともと硫黄化合物の含有量が比較的多く、これ
をそのまま接触分解処理すると、接触分解生成物中の硫
黄化合物含有量も多くなってしまうので、これを自動車
ガソリンの混合材源として使用すれば環境への影響が問
題になる恐れがある。このため、接触分解装置の原料油
には、予め脱硫処理をした減圧軽油・常圧残油あるいは
硫黄分の少ない常圧残油等を用いるのが通常である。
In the field of petroleum refining, as a high octane gasoline material source containing a large amount of olefin components,
There is catalytic cracking gasoline. This is a heavy petroleum fraction, for example, catalytic cracking of feedstock oil such as vacuum gas oil or atmospheric residual oil,
It is a gasoline fraction obtained by collecting and distilling catalytic cracking products, and is used as one of the main sources of blending materials for automobile gasoline. However, the catalytically cracked feedstock oil originally has a relatively large content of sulfur compounds, and if the catalytic cracking treatment is carried out as it is, the content of sulfur compounds in the catalytically cracked products will also increase. If used as a mixed material source, the environmental impact may become a problem. For this reason, it is usual to use, as the feedstock oil for the catalytic cracking apparatus, vacuum desulfurization oil / atmospheric pressure residual oil which has been desulfurized in advance, or atmospheric pressure residual oil having a low sulfur content.

【0003】脱硫処理としては、従来から石油精製の分
野において行われている水素化脱硫処理が一般的で、こ
れは高温および加圧した水素雰囲気中で、脱硫すべき原
料油を適当な水素化脱硫処理触媒に接触させるものであ
る。接触分解の原料油である減圧軽油や常圧残油等の水
素化脱硫処理の場合、水素化脱硫処理触媒は、VIII族お
よびVI族元素、例えばクロム、モリブデン、タングステ
ン、コバルト、ニッケルなどを、適当な基材、例えばア
ルミナ上に担持したものが用いられる。また、水素化脱
硫処理の条件としては、一般に、温度約300〜400
℃、水素分圧約30〜200kg/cm2 、液空間速度
(LHSV)約0.1〜10 1/hrが採用されてい
る。
As the desulfurization treatment, a hydrodesulfurization treatment which has been conventionally carried out in the field of petroleum refining is generally used. This is a suitable hydrogenation of a feed oil to be desulfurized in a high temperature and pressurized hydrogen atmosphere. The catalyst is brought into contact with the desulfurization treatment catalyst. In the case of hydrodesulfurization treatment of reduced pressure gas oil or atmospheric residual oil, which is a feedstock for catalytic cracking, the hydrodesulfurization catalyst is a group VIII or VI element such as chromium, molybdenum, tungsten, cobalt or nickel. A suitable substrate, for example one supported on alumina, is used. The conditions for the hydrodesulfurization treatment are generally temperatures of about 300 to 400.
C, hydrogen partial pressure of about 30 to 200 kg / cm 2 , and liquid hourly space velocity (LHSV) of about 0.1 to 10 1 / hr are adopted.

【0004】しかしながら、接触分解の原料油である減
圧軽油や常圧残油等の重質石油留分の水素化脱硫処理の
場合は、処理条件が上記のとおり高温、高圧であるた
め、装置の設計条件が過酷になり、装置能力の不足に対
処するために装置を増設する場合、建設費が高いという
問題がある。そのため近年の燃料油品質規制の強化に対
して、多大な設備投資が必要となっている。
However, in the case of hydrodesulfurization of heavy petroleum fractions such as reduced pressure gas oil and atmospheric residual oil which are feedstocks for catalytic cracking, the treatment conditions are high temperature and high pressure as described above, and therefore There is a problem that the construction cost is high when a device is added in order to cope with a strict design condition and a lack of the device capacity. Therefore, a large amount of capital investment is required for the recent tightening of fuel oil quality regulations.

【0005】一方、接触分解ガソリンを直接水素化脱硫
処理することもできるが、この場合は接触分解ガソリン
中に含有されるオレフィン成分が水素化され、その含有
量の減少に伴いオクタン価が低下してしまうという問題
点がある。従来の技術では、例えば、温度約200〜3
50℃、水素分圧約5〜50kg/cm2 、LHSV約
1〜10 1/hrの条件下で接触分解ガソリンを直接
水素化脱硫すると、オクタン価は低下する。触媒および
反応条件等の改良によりこのオクタン価の低下を改善す
る研究が行われているものの、現時点では十分その問題
を解決するには至っていない。そのため、オレフィンの
水素化反応を極力抑えながら、硫黄化合物およびオレフ
ィン成分を含有する接触分解ガソリンを、直接水素化脱
硫処理できるプロセスが期待されている。
On the other hand, the catalytically cracked gasoline can be directly hydrodesulfurized, but in this case, the olefin component contained in the catalytically cracked gasoline is hydrogenated, and the octane number decreases as the content decreases. There is a problem that it ends up. In the conventional technique, for example, the temperature is about 200 to 3
When the catalytically cracked gasoline is directly hydrodesulfurized under the conditions of 50 ° C., hydrogen partial pressure of about 5 to 50 kg / cm 2 , and LHSV of about 1 to 10 1 / hr, the octane number decreases. Although research has been conducted to improve the decrease in octane number by improving the catalyst and reaction conditions, the problem has not been solved yet at this time. Therefore, a process that can directly hydrodesulfurize catalytically cracked gasoline containing a sulfur compound and an olefin component while suppressing the olefin hydrogenation reaction as much as possible is expected.

【0006】[0006]

【発明が解決しようとする課題】このように、接触分解
ガソリンを水素化脱硫する際には、オクタン価の低下と
いう大きな問題が伴っており、ついては自動車ガソリン
としての商業的価値が下がるという大きな問題点があっ
た。本発明の目的は、硫黄化合物およびオレフィン成分
を含有する接触分解ガソリンを、触媒を用いて水素化脱
硫処理する際に、オレフィンの水素化反応を制御し、オ
クタン価の低下が抑制できる接触分解ガソリンの脱硫方
法を提供することにある。
As described above, when hydrodesulfurizing catalytically cracked gasoline, there is a big problem that the octane number is lowered, and the major problem is that the commercial value of automobile gasoline is lowered. was there. An object of the present invention is to provide a catalytically cracked gasoline containing a sulfur compound and an olefin component, which is subjected to a hydrodesulfurization treatment using a catalyst, to control the olefin hydrogenation reaction and to suppress a decrease in octane number. It is to provide a desulfurization method.

【0007】[0007]

【課題を解決するための手段】本発明者らは、従来の硫
黄化合物およびオレフィン成分を含有する接触分解ガソ
リンの水素化脱硫方法における上記欠点を克服し、オク
タン価の低下を抑制する優れた脱硫方法を開発すべく鋭
意研究を重ねた結果、水素化脱硫を行う前に2重結合の
位置異性化触媒を用いることにより、オクタン価の低下
を抑制し得る効果を見出し、本発明を完成するに至っ
た。すなわち本発明は、末端オレフィンの2重結合位置
を内部に移動させ、内部オレフィンに異性化する能力を
有する、酸性異性化触媒を第1段階で使用し、続いて第
2段階で脱硫触媒を用いることにより、オクタン価の低
下を極力抑えることのできる接触分解ガソリンの脱硫方
法に関するものである。
The present inventors have overcome the above-mentioned drawbacks in the conventional hydrodesulfurization method of catalytically cracked gasoline containing a sulfur compound and an olefin component, and have an excellent desulfurization method for suppressing a decrease in octane number. As a result of earnest researches for developing the above, by using a double bond regioisomerization catalyst before hydrodesulfurization, an effect of suppressing a decrease in octane number was found, and the present invention was completed. . That is, in the present invention, an acidic isomerization catalyst having the ability to move the double bond position of a terminal olefin to the inside and isomerize to an internal olefin is used in the first stage, and subsequently, a desulfurization catalyst is used in the second stage. As a result, the present invention relates to a method for desulfurizing catalytically cracked gasoline capable of suppressing a decrease in octane number as much as possible.

【0008】接触分解ガソリン中には芳香族分、オレフ
ィン分、飽和分が含まれており、オレフィン分は15〜
50容量%で、そのうち約1〜10容量%は末端に2重
結合を有する末端オレフィンである。なお、この末端オ
レフィンの割合は1 H−NMR分析等により求めること
ができる。
The catalytically cracked gasoline contains an aromatic content, an olefin content and a saturated content, and the olefin content is 15 to
50% by volume, of which about 1-10% by volume is terminal olefin having a double bond at the end. The ratio of this terminal olefin can be determined by 1 H-NMR analysis or the like.

【0009】従来の接触分解ガソリンの水素化脱硫プロ
セスでは、VIII族および VI 族元素、例えば、モリブデ
ン、タングステン、コバルト、ニッケルなどを、適当な
基材、例えばアルミナに担持したものを予備硫化したも
ののみが触媒として使用されている。しかしこれらの触
媒は、水素化能を有しているため、接触分解ガソリン中
に含まれているオレフィン分を水素化してしまう。触媒
および反応条件等にもよるが、硫黄化合物を含有する接
触分解ガソリンを通常の条件で水素化脱硫処理すると、
末端オレフィンは、内部オレフィンよりも水素化されや
すいことが、発明者らの研究によって明らかになってい
る。
In the conventional hydrodesulfurization process of catalytic cracking gasoline, group VIII and VI elements such as molybdenum, tungsten, cobalt and nickel are presulfurized on a suitable base material such as alumina. Only is used as a catalyst. However, since these catalysts have hydrogenation ability, they will hydrogenate the olefin content contained in the catalytically cracked gasoline. Depending on the catalyst and reaction conditions, etc., when catalytically cracked gasoline containing sulfur compounds is hydrodesulfurized under normal conditions,
Studies by the inventors have revealed that terminal olefins are more easily hydrogenated than internal olefins.

【0010】本発明が既存の技術と根本的に異なるの
は、このプロセスの前に2重結合の位置異性化触媒を使
用することである。これによって、末端オレフィンは水
素化反応を受けにくい内部オレフィンに変化され、続く
水素化脱硫処理の際に生ずるオレフィンの水素化反応が
抑制される。また、末端オレフィンが内部オレフィンへ
と、2重結合位置の異性化反応により変化すると、一般
にオクタン価が上昇することは良く知られている。例え
ば、1−オクテンから2−オクテンへと異性化すると、
リサ−チオクタン価は約28上昇する。
The fundamental difference of the present invention from the existing technology is the use of a double bond regioisomerization catalyst prior to this process. As a result, the terminal olefin is converted into an internal olefin that is less susceptible to the hydrogenation reaction, and the olefin hydrogenation reaction that occurs during the subsequent hydrodesulfurization treatment is suppressed. It is also well known that the octane number generally increases when the terminal olefin changes to the internal olefin by the isomerization reaction at the double bond position. For example, when isomerizing 1-octene to 2-octene,
The Lisathioctan number increases by about 28.

【0011】上記の2つのことから、接触分解ガソリン
中の末端オレフィン分の割合が2容量%以上の場合は、
内部オレフィンへと2重結合位置を異性化することによ
り、オレフィン分の水素化を抑制しつつ、かつ水素化脱
硫処理によるオクタン価の低下を十分に補うことがで
き、その結果オクタン価の低下を抑制できる。接触分解
ガソリン中の末端オレフィン分の割合が2容量%未満で
ある場合も本発明を適用することができるが、水素化脱
硫処理の際に生じるオクタン価の低下を2重結合位置を
異性化することにより十分に補うことはかなり困難とな
る。
From the above two points, when the proportion of the terminal olefin in the catalytically cracked gasoline is 2% by volume or more,
By isomerizing the double bond position to the internal olefin, while suppressing the hydrogenation of the olefin component, it is possible to sufficiently compensate the decrease in the octane number due to the hydrodesulfurization treatment, and as a result, it is possible to suppress the decrease in the octane number. . The present invention can be applied to the case where the proportion of the terminal olefin in the catalytically cracked gasoline is less than 2% by volume, but the decrease in the octane number generated during hydrodesulfurization treatment is isomerized at the double bond position. Makes it much more difficult to make up for it.

【0012】[0012]

【発明の実施の形態】本発明の第1段階において適用し
得る触媒は末端オレフィンの2重結合位置を内部に異性
化するのに十分な酸性能を有する必要がある。触媒とし
ては、2重結合位置の異性化能があると知られている、
シリカ−アルミナ、ゼオライト系触媒等を用いることが
できるが、シリカ−アルミナ触媒はオレフィンの重合に
よるコ−クの析出が起こり、失活しやすいので、活性点
の酸強度が均一なゼオライト系触媒を用いることが好ま
しい。ゼオライト系触媒としては、アルミノケイ酸塩の
他に、アルミノケイ酸塩のアルミニウムやケイ素をリ
ン、ホウ素、ガリウム、鉄等の金属で置換した結晶性構
造体が挙げられる。これらのゼオライト系触媒を単独ま
たは混合物の形で本発明に使用してもよいが、中でも活
性が高く、かつ一般に安価で入手しやすいアルミノケイ
酸塩ゼオライト系触媒を用いるのが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The catalyst applicable in the first stage of the present invention must have sufficient acid performance to internally isomerize the double bond position of the terminal olefin. It is known that the catalyst has an isomerization ability at the double bond position,
Silica-alumina, zeolite-based catalysts and the like can be used, but since silica-alumina catalysts tend to be deactivated due to the precipitation of coke due to the polymerization of olefins, a zeolite-based catalyst with a uniform acid strength at the active site is used. It is preferable to use. Examples of zeolite-based catalysts include aluminosilicates, and crystalline structures in which aluminum or silicon of aluminosilicate is replaced with a metal such as phosphorus, boron, gallium, or iron. These zeolite-based catalysts may be used alone or in the form of a mixture in the present invention, but among them, it is preferable to use an aluminosilicate zeolite-based catalyst which has high activity and is generally inexpensive and easily available.

【0013】本発明に適用し得るアルミノケイ酸塩ゼオ
ライト系触媒としては、例えばX型ゼオライト、Y型ゼ
オライト、β型ゼオライト、ZSM−5型ゼオライト、
モルデナイト等が挙げられ、これらの単独または混合物
の形で用いることができる。アルミノケイ酸塩ゼオライ
ト系触媒は、プロトン型にイオン交換して用いてもよい
が、プロトン型のゼオライト系触媒は酸強度が強いた
め、コ−クの析出による失活が起こりやすいので、アル
ミノケイ酸塩ゼオライトを各種金属イオンでイオン交換
して用いるのが望ましい。使用する金属としては、各種
遷移金属も用いることもできるが、活性の高いアルカリ
土類金属、希土類金属が望ましい。アルカリ土類金属と
しては、マグネシウム、カルシウム、ストロンチウム、
希土類金属としては、ランタン、セリウム、ユウロピウ
ム等が使用できる。
Examples of the aluminosilicate zeolite-based catalyst applicable to the present invention include X-type zeolite, Y-type zeolite, β-type zeolite, ZSM-5 type zeolite,
Mordenite and the like can be used, and these can be used alone or in the form of a mixture. The aluminosilicate zeolite-based catalyst may be used after being ion-exchanged into a proton type, but since the proton-type zeolite-based catalyst has a strong acid strength, deactivation due to the precipitation of coke is likely to occur. It is desirable to use zeolite after ion exchange with various metal ions. As the metal to be used, various transition metals can also be used, but highly active alkaline earth metals and rare earth metals are preferable. Alkaline earth metals include magnesium, calcium, strontium,
Lanthanum, cerium, europium and the like can be used as the rare earth metal.

【0014】本発明の第2段階である水素化脱硫工程に
使用する触媒としては、多孔性無機酸化物担体に脱硫活
性金属を担持させた、石油精製の分野において通常用い
られている水素化脱硫触媒を用いることができる。多孔
性無機酸化物担体としては、例えばアルミナ、シリカ、
チタニア、マグネシア等が挙げられ、これらの単独また
は混合物の形で用いることができる。好ましくはアルミ
ナが選択される。
The catalyst used in the hydrodesulfurization step, which is the second step of the present invention, is a hydrodesulfurization method commonly used in the field of petroleum refining in which a desulfurization active metal is supported on a porous inorganic oxide carrier. A catalyst can be used. As the porous inorganic oxide carrier, for example, alumina, silica,
Examples thereof include titania and magnesia, and these can be used alone or in the form of a mixture. Alumina is preferably selected.

【0015】脱硫活性金属としては、クロム、モリブデ
ン、タングステン、コバルト、ニッケルが挙げられ、こ
れらの単独または混合物の形で用いることができる。好
ましくはコバルト−モリブデン、あるいはニッケル−コ
バルト−モリブデンが選択される。これらの金属は担体
上に金属、酸化物、硫化物、またはそれらの混合物の形
態で存在できる。活性金属の担持方法としては含浸法、
共沈法等の公知の方法を用いることができる。また、コ
−クの析出を抑制するために、カリウム等のアルカリ金
属を配合することは効果的である。
Examples of the desulfurization active metal include chromium, molybdenum, tungsten, cobalt and nickel, and these can be used alone or in the form of a mixture. Preferably, cobalt-molybdenum or nickel-cobalt-molybdenum is selected. These metals can be present on the support in the form of metals, oxides, sulfides, or mixtures thereof. As a method of supporting the active metal, an impregnation method,
A known method such as a coprecipitation method can be used. Further, in order to suppress the precipitation of coke, it is effective to add an alkali metal such as potassium.

【0016】末端オレフィンの2重結合位置を異性化す
る触媒と、接触分解ガソリンに含まれる硫黄化合物を水
素化脱硫する触媒を、同一の反応塔に2層で充填して、
反応を行う場合の反応塔の形式は、固定床に限る。この
方法は、装置の立地面積が少ない時に有効である。接触
分解ガソリン留分・水素および触媒の接触は並流上昇
流、並流下降流、向流のいずれの方式を採用しても良
い。これらの個々の操作は石油精製の分野では公知であ
り、任意に選択して行うことができる。
A catalyst for isomerizing the double bond position of the terminal olefin and a catalyst for hydrodesulfurizing the sulfur compound contained in the catalytically cracked gasoline are packed in the same reaction column in two layers,
When carrying out the reaction, the type of reaction tower is limited to a fixed bed. This method is effective when the site area of the device is small. The catalytic cracking gasoline fraction / hydrogen and the catalyst may be brought into contact with each other by any of a cocurrent upflow, cocurrent downflow and countercurrent systems. These individual operations are known in the field of petroleum refining and can be arbitrarily selected and carried out.

【0017】反応条件は、温度約200〜350℃、水
素分圧約5〜50kg/cm2 、水素/油比約300〜
3000scf/bbl、LHSV約1〜10 1/h
rの中から接触分解ガソリンが気相反応となる条件で設
定できる。接触分解ガソリンの留分の一部が液相の状態
で反応させても本発明の効果は得られるが、触媒の寿命
の点などから気相で反応させる方が好ましい。末端オレ
フィンの2重結合位置を異性化する触媒と、接触分解ガ
ソリンを水素化脱硫する触媒を、異なる反応塔に充填し
て、反応を行うこともできる。この場合、それぞれの反
応塔の間に、プロダクトタンク等の装置を建設すること
もできる。
The reaction conditions are a temperature of about 200 to 350 ° C., a hydrogen partial pressure of about 5 to 50 kg / cm 2 , and a hydrogen / oil ratio of about 300 to.
3000scf / bbl, LHSV about 1 to 10 1 / h
It can be set under the condition that catalytically cracked gasoline becomes a gas phase reaction from r. Although the effect of the present invention can be obtained even when a portion of the fraction of catalytically cracked gasoline is reacted in the liquid phase, it is preferable to react in the gas phase from the viewpoint of the life of the catalyst. It is also possible to carry out the reaction by charging a catalyst for isomerizing the double bond position of the terminal olefin and a catalyst for hydrodesulfurizing the catalytically cracked gasoline into different reaction towers. In this case, a device such as a product tank can be installed between the reaction towers.

【0018】末端オレフィンの異性化処理反応塔の形式
は、固定床、流動床、沸騰床のいずれでもよい。接触分
解ガソリン留分・水素と触媒の接触は並流上昇流、並流
下降流、向流のいずれの方式を採用してもよい。これら
の個々の操作は石油精製の分野では公知であり、任意に
選択して行うことができる。反応条件は、温度約200
〜350℃、水素分圧1〜50kg/cm2 、水素/油
比約100〜3000scf/bbl、液空間速度(L
HSV)約1〜101/hrの中から接触分解ガソリン
が気相反応となる条件で設定できる。反応を水素気流下
ではなく、窒素、ヘリウム、アルゴン等の不活性ガス気
流下で行なうことも可能であるが、コ−クの生成による
失活を防ぐために水素気流下で行なうのが望ましい。接
触分解ガソリンの留分の一部が液相の状態で反応させて
も本発明の効果は得られるが、触媒の寿命の点などから
気相で反応させる方が好ましい。
The type of the olefin isomerization treatment reaction tower may be a fixed bed, a fluidized bed or a boiling bed. The catalytic cracking gasoline fraction / hydrogen and the catalyst may be brought into contact with each other by a cocurrent upflow method, a cocurrent downflow method, or a countercurrent method. These individual operations are known in the field of petroleum refining and can be arbitrarily selected and carried out. The reaction condition is a temperature of about 200.
˜350 ° C., hydrogen partial pressure 1˜50 kg / cm 2 , hydrogen / oil ratio about 100˜3000 scf / bbl, liquid space velocity (L
HSV) About 1 to 101 / hr can be set under the condition that the catalytically cracked gasoline becomes a gas phase reaction. It is possible to carry out the reaction not under a hydrogen stream but under an inert gas stream such as nitrogen, helium or argon, but it is preferable to carry out the reaction under a hydrogen stream in order to prevent deactivation due to the formation of coke. Although the effect of the present invention can be obtained even when a part of the fraction of catalytically cracked gasoline is reacted in the liquid phase, it is preferable to react in the gas phase from the viewpoint of the life of the catalyst.

【0019】水素化脱硫処理反応塔の形式は、固定床、
流動床、沸騰床のいずれでもよいが、特に固定床が好ま
しい。接触分解ガソリン留分・水素および触媒の接触は
並流上昇流、並流下降流、向流のいずれの方式を採用し
てもよい。これらの個々の操作は石油精製の分野では公
知であり、任意に選択して行うことができる。反応条件
は、温度約200〜350℃、水素分圧約5〜50kg
/cm2 、水素/油比約300〜3000scf/bb
l、LHSV約1〜10 1/hrの中から接触分解ガ
ソリンが気相反応となる条件で設定できる。接触分解ガ
ソリンの留分の一部が液相の状態で反応させても本発明
の効果は得られるが、触媒の寿命の点などから気相で反
応させる方が好ましい。
The type of the hydrodesulfurization reaction tower is a fixed bed,
Either a fluidized bed or a boiling bed may be used, but a fixed bed is particularly preferable. The catalytic cracking gasoline fraction / hydrogen and the catalyst may be brought into contact with each other by any of a cocurrent upflow, cocurrent downflow and countercurrent systems. These individual operations are known in the field of petroleum refining and can be arbitrarily selected and carried out. The reaction conditions are a temperature of about 200 to 350 ° C. and a hydrogen partial pressure of about 5 to 50 kg.
/ Cm 2 , hydrogen / oil ratio of about 300 to 3000 scf / bb
1, LHSV of about 1 to 10 1 / hr can be set under the condition that the catalytically cracked gasoline becomes a gas phase reaction. Although the effect of the present invention can be obtained even when a portion of the fraction of catalytically cracked gasoline is reacted in the liquid phase, it is preferable to react in the gas phase from the viewpoint of the life of the catalyst.

【0020】末端オレフィンの異性化処理反応用の触媒
と水素化脱硫処理用の触媒は、反応塔に充填したまま再
生することができる。すなわち触媒に付着したコ−ク
を、反応塔に充填したまま焼成することによって取り除
くことができる。無論、反応塔より取り出して焼成・再
生後、再び充填して反応に用いても支障はない。焼成に
よる触媒の再生条件は、酸素の存在下、触媒が劣化しな
い温度の約400〜650℃で設定できる。焼成中は燃
焼熱により触媒層の温度が急上昇するため、酸素の濃度
があまり高くならないように、窒素、アルゴン等の不活
性ガスで希釈して行なうのが好ましい。
The catalyst for the isomerization treatment reaction of the terminal olefin and the catalyst for the hydrodesulfurization treatment can be regenerated while they are packed in the reaction tower. That is, the coke adhering to the catalyst can be removed by firing while the reaction tower is filled. Of course, there is no problem even if it is taken out from the reaction tower, baked and regenerated, and then charged again for use in the reaction. The catalyst regeneration condition by calcination can be set in the presence of oxygen at a temperature of about 400 to 650 ° C. at which the catalyst does not deteriorate. Since the temperature of the catalyst layer rises rapidly due to the heat of combustion during firing, it is preferably diluted with an inert gas such as nitrogen or argon so that the concentration of oxygen does not become too high.

【0021】[0021]

【実施例】本発明を比較例と実施例によりさらに詳細に
説明する。 (比較例)固定床・並流下降流式の小型反応装置に、ア
ルミナ担体に5重量%CoOと17重量%MoO3 を担
持した1/16インチ・押し出し成型市販触媒を2.8
g(4.0ml)を充填した。10重量%のジブチルジ
スルフィドを加えた沸点範囲が50〜200℃の直留ナ
フサ留分を用いて300℃、圧力12kg/cm2 G、
水素/油比500scf/bbl、LHSV3.5 1
/hrで予備硫化を5時間行った。硫化終了後、沸点範
囲が50〜200℃の直留ナフサ軽油留分をLHSV
3.5 1/hrで48時間通油した。続いて、接触分
解ガソリンとして、常圧残油を含む原料油を接触分解し
て得られた80〜220℃留分の接触分解ガソリンを用
いて脱硫反応試験を行った。密度0.78g/cm3
15℃、硫黄分は200重量ppm、オレフィン分は3
2.1容量%(接触分解ガソリン中の末端オレフィン分
5.0容量%)、リサ−チオクタン価は87.2であ
る。反応条件は、反応温度240℃、水素分圧12kg
/cm2 、LHSV5 1/hr、水素/油比2000
scf/bblとした。その結果、硫黄分22.9重量
ppm、オレフィン分25.2容量%(末端オレフィン
分1.6容量%)、リサ−チオクタン価85.1の水素
化脱硫処理接触分解ガソリンを得た。
EXAMPLES The present invention will be described in more detail with reference to comparative examples and examples. (Comparative Example) A 1 / 16-inch extruded commercially available catalyst in which 5 wt% CoO and 17 wt% MoO 3 are supported on an alumina carrier is used in a fixed bed, cocurrent downflow type small reactor 2.8.
g (4.0 ml) was charged. Using a straight-distilled naphtha fraction having a boiling range of 50 to 200 ° C. to which 10% by weight of dibutyl disulfide was added, the temperature was 300 ° C., the pressure was 12 kg / cm 2 G,
Hydrogen / oil ratio 500scf / bbl, LHSV3.5 1
Pre-sulfurization was carried out for 5 hours at / hr. After completion of sulfurization, the straight-distilled naphtha gas oil fraction with a boiling point range of 50 to 200 ° C is subjected to LHSV.
Oil was passed for 48 hours at 3.5 1 / hr. Then, a desulfurization reaction test was conducted using catalytically cracked gasoline of 80 to 220 ° C. fraction obtained by catalytically cracking a feedstock oil containing atmospheric residual oil as catalytically cracked gasoline. Density 0.78 g / cm 3 @
15 ° C, sulfur content 200 ppm by weight, olefin content 3
2.1% by volume (terminal olefin content in catalytically cracked gasoline: 5.0% by volume), and the resosathioctan number is 87.2. The reaction conditions are a reaction temperature of 240 ° C. and a hydrogen partial pressure of 12 kg.
/ Cm 2 , LHSV5 1 / hr, hydrogen / oil ratio 2000
It was set to scf / bbl. As a result, a hydrodesulfurization catalytic cracking gasoline having a sulfur content of 22.9 weight ppm, an olefin content of 25.2% by volume (terminal olefin content of 1.6% by volume) and a Lisa-thiooctane number of 85.1 was obtained.

【0022】(実施例1)比較例と同一の反応装置を用
い、触媒としてランタンイオンでイオン交換したβ型ゼ
オライトを用いた。比較例と同様の接触分解ガソリンを
用いて、240℃、水素分圧12kg/cm2 、水素/
油比2000scf/bbl、LHSV5 1/hrで
反応活性試験を行った。その結果、硫黄分200重量p
pm、オレフィン分32.0容量%(末端オレフィン分
2.5容量%)、リサ−チオクタン価87.6の接触分
解ガソリンを得た。続いて、比較例と同一の反応装置、
および触媒には比較例と同様にして予備硫化した水素化
脱硫用触媒を使用し、上記のランタンイオン交換β型ゼ
オライトで処理した接触分解ガソリンに含まれる硫黄化
合物を、240℃、水素分圧12kg/cm2 、水素/
油比2000scf/bbl、LHSV5 1/hrで
脱硫反応試験を行った。その結果、硫黄分22.8重量
ppm、オレフィン分29.5容量%(末端オレフィン
分2.0容量%)、リサ−チオクタン価87.2の水素
化脱硫処理接触分解ガソリンを得た。
Example 1 Using the same reactor as in the comparative example, β-type zeolite ion-exchanged with lanthanum ions was used as a catalyst. Using the same catalytically cracked gasoline as in Comparative Example, 240 ° C., hydrogen partial pressure 12 kg / cm 2 , hydrogen /
A reaction activity test was conducted at an oil ratio of 2000 scf / bbl and LHSV5 1 / hr. As a result, sulfur content 200 p
A catalytically cracked gasoline having pm, olefin content of 32.0% by volume (terminal olefin content of 2.5% by volume) and Lisa-thiooctane number of 87.6 was obtained. Then, the same reactor as the comparative example,
The catalyst for hydrodesulfurization presulfurized in the same manner as in Comparative Example was used as the catalyst, and the sulfur compound contained in the catalytically cracked gasoline treated with the above lanthanum ion-exchanged β-zeolite was added at 240 ° C. and a hydrogen partial pressure of 12 kg. / Cm 2 , hydrogen /
A desulfurization reaction test was conducted at an oil ratio of 2000 scf / bbl and LHSV5 1 / hr. As a result, a hydrodesulfurization catalytic cracking gasoline having a sulfur content of 22.8 ppm by weight, an olefin content of 29.5% by volume (terminal olefin content of 2.0% by volume) and a Lisa-thiooctane number of 87.2 was obtained.

【0023】(実施例2)比較例と同一の反応装置に、
実施例1の触媒(ランタンイオンでイオン交換したβ型
ゼオライト)を上層に、比較例の触媒(コバルト−モリ
ブデン系触媒)を下層に2層充填し、比較例と同様の予
備硫化処理を施した。その後温度を240℃に降温し、
比較例と同一の接触分解ガソリンを用いて、同一の反応
条件で脱硫反応試験を行った。その結果、硫黄分22.
9重量ppm、オレフィン分29.5容量%(末端オレ
フィン分2.0容量%)、リサ−チオクタン価87.2
の水素化脱硫処理接触分解ガソリンを得た。
(Example 2) In the same reactor as the comparative example,
The catalyst of Example 1 (β-type zeolite ion-exchanged with lanthanum ions) was packed in the upper layer, and the catalyst of Comparative Example (cobalt-molybdenum-based catalyst) was packed in the lower layer in two layers, and the same presulfiding treatment as in Comparative Example was performed. . After that, the temperature is lowered to 240 ° C,
Using the same catalytically cracked gasoline as in the comparative example, a desulfurization reaction test was conducted under the same reaction conditions. As a result, the sulfur content of 22.
9 ppm by weight, olefin content 29.5% by volume (terminal olefin content 2.0% by volume), Lisa-thiooctane number 87.2
A hydrodesulfurization catalytic cracking gasoline was obtained.

【0024】(実施例3)実施例1を実施後、650
℃、圧力1kg/cm2 G、乾燥空気流量1000ml
/hrの条件で、触媒ランタンイオンでイオン交換した
β型ゼオライトの焼成を3時間実施し、触媒の再生を行
なった。その後実施例1と同様に、比較例と同様の接触
分解ガソリンを用いて、240℃、水素分圧12kg/
cm2 、水素/油比2000scf/bbl、LHSV
5 1/hrで反応活性試験を行った。その結果、硫黄
分200重量ppm、オレフィン分32.0容量%(末
端オレフィン分2.6容量%)、リサ−チオクタン価8
7.6の接触分解ガソリンを得た。
(Embodiment 3) After carrying out Embodiment 1, 650
℃, pressure 1kg / cm 2 G, dry air flow rate 1000ml
Under the condition of / hr, the β-type zeolite ion-exchanged with the catalyst lanthanum ion was calcined for 3 hours to regenerate the catalyst. Thereafter, as in Example 1, the same catalytically cracked gasoline as in Comparative Example was used, and the temperature was 240 ° C. and the hydrogen partial pressure was 12 kg /
cm 2 , hydrogen / oil ratio 2000 scf / bbl, LHSV
The reaction activity test was conducted at 5 1 / hr. As a result, the sulfur content was 200 ppm by weight, the olefin content was 32.0% by volume (terminal olefin content was 2.6% by volume), and the lysa-thiooctane number was 8
A catalytically cracked gasoline of 7.6 was obtained.

【0025】(実施例4)実施例3を実施後、650
℃、圧力1kg/cm2 G、乾燥空気流量1000ml
/hrの条件で、2種の触媒の焼成・再生を3時間実施
した。その後、比較例と同様の予備硫化処理を行なった
後、実施例1と同様に比較例と同様の接触分解ガソリン
を用いて、240℃、水素分圧12kg/cm2 、水素
/油比2000scf/bbl、LHSV5 1/hr
で脱硫反応試験を行った。その結果、硫黄分22.8重
量ppm、オレフィン分29.5容量%(末端オレフィ
ン分2.0容量%)、リサ−チオクタン価87.2の水
素化脱硫処理接触分解ガソリンを得た。
(Embodiment 4) After carrying out Embodiment 3, 650
℃, pressure 1kg / cm 2 G, dry air flow rate 1000ml
The two catalysts were calcined and regenerated for 3 hours under the condition of / hr. Then, after performing the same pre-sulfurization treatment as in the comparative example, the same catalytic cracking gasoline as in the comparative example was used in the same manner as in Example 1 at 240 ° C., hydrogen partial pressure 12 kg / cm 2 , hydrogen / oil ratio 2000 scf / bbl, LHSV5 1 / hr
The desulfurization reaction test was carried out. As a result, a hydrodesulfurization catalytic cracking gasoline having a sulfur content of 22.8 ppm by weight, an olefin content of 29.5% by volume (terminal olefin content of 2.0% by volume) and a Lisa-thiooctane number of 87.2 was obtained.

【0026】[0026]

【発明の効果】接触分解ガソリンを水素化脱硫処理する
際に、第1段階において接触分解ガソリン中の末端オレ
フィンを内部オレフィンに異性化し、第2段階で脱硫触
媒により水素化脱硫する、本発明の方法により、オレフ
ィンの水素化が抑制されるため、オクタン価の低下を防
ぐことができる。
In the hydrodesulfurization treatment of catalytically cracked gasoline, the terminal olefins in the catalytically cracked gasoline are isomerized into internal olefins in the first step and hydrodesulfurized by a desulfurization catalyst in the second step. By the method, hydrogenation of the olefin is suppressed, so that a decrease in octane number can be prevented.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭55−155090(JP,A) 特開 昭54−88903(JP,A) 特開 昭55−47145(JP,A) 特開 昭63−159494(JP,A) 特開 平2−172813(JP,A) 特開 平7−278567(JP,A) 特開 昭59−115747(JP,A) 特開2000−288398(JP,A) 特開 平8−311461(JP,A) 特開 昭61−4531(JP,A) (58)調査した分野(Int.Cl.7,DB名) C10G 69/04 C10G 35/095 C10G 45/04 - 45/12 C07C 5/25 ─────────────────────────────────────────────────── --Continued from the front page (56) Reference JP-A-55-155090 (JP, A) JP-A-54-88903 (JP, A) JP-A-55-47145 (JP, A) JP-A-63- 159494 (JP, A) JP 2-172813 (JP, A) JP 7-278567 (JP, A) JP 59-115747 (JP, A) JP 2000-288398 (JP, A) Kaihei 8-311461 (JP, A) JP-A-61-4531 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C10G 69/04 C10G 35/095 C10G 45/04- 45/12 C07C 5/25

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 硫黄化合物およびオレフィン分を含有す
る接触分解ガソリンを、第1段階にて酸性官能基を有す
る触媒と接触させ、接触分解ガソリン中に存在する末端
オレフィンを内部オレフィンに異性化し、第2段階にて
水素化脱硫触媒と接触させ、脱硫することを特徴とする
接触分解ガソリンの脱硫方法。
1. A catalytically cracked gasoline containing a sulfur compound and an olefin component is contacted with a catalyst having an acidic functional group in the first step to isomerize a terminal olefin present in the catalytically cracked gasoline to an internal olefin, A method for desulfurizing catalytically cracked gasoline, which comprises contacting with a hydrodesulfurization catalyst in two steps to desulfurize.
【請求項2】 接触分解ガソリン中の末端オレフィンの
割合が2容量%以上であることを特徴とする請求項1記
載の接触分解ガソリンの脱硫方法。
2. The method for desulfurizing catalytically cracked gasoline according to claim 1, wherein the proportion of terminal olefins in the catalytically cracked gasoline is 2% by volume or more.
【請求項3】 末端オレフィンを内部オレフィンに異性
化するのに用いる触媒がゼオライト系触媒であることを
特徴とする請求項1〜2記載の接触分解ガソリンの脱硫
方法。
3. The method for desulfurizing catalytically cracked gasoline according to claim 1, wherein the catalyst used for isomerizing the terminal olefin to the internal olefin is a zeolite catalyst.
【請求項4】 水素化脱硫触媒が VIII 族および VI 族
系金属担持硫化物触媒であることを特徴とする請求項1
〜3記載の接触分解ガソリンの脱硫方法。
4. The hydrodesulfurization catalyst is a Group VIII- or Group VI-based metal-supported sulfide catalyst.
[3] The method for desulfurizing catalytically cracked gasoline according to [3].
【請求項5】 末端オレフィンを内部オレフィンに異性
化する触媒と、接触分解ガソリンを水素化脱硫する触媒
を、同一の反応塔に2層で充填して、反応を行うことを
特徴とする請求項1〜4記載の接触分解ガソリンの脱硫
方法。
5. The reaction is carried out by packing a catalyst for isomerizing a terminal olefin into an internal olefin and a catalyst for hydrodesulfurizing catalytically cracked gasoline in two layers in the same reaction column. The method for desulfurizing catalytically cracked gasoline according to any one of 1 to 4.
【請求項6】 末端オレフィンを内部オレフィンに異性
化する触媒と、接触分解ガソリンを水素化脱硫する触媒
を、異なる反応塔に充填して、反応を行うことを特徴と
する請求項1〜4記載の接触分解ガソリンの脱硫方法。
6. The reaction is performed by charging different catalysts with a catalyst for isomerizing a terminal olefin to an internal olefin and a catalyst for hydrodesulfurizing catalytically cracked gasoline, to carry out the reaction. Method for desulfurization of catalytically cracked gasoline.
【請求項7】 末端オレフィンを内部オレフィンに異性
化する触媒の再生を、反応装置に充填したまま、行うこ
とを特徴とする請求項1〜6記載の接触分解ガソリンの
脱硫方法。
7. The method for desulfurizing catalytically cracked gasoline according to claim 1, wherein the catalyst for isomerizing the terminal olefin to the internal olefin is regenerated while the reactor is charged.
JP31852495A 1995-11-14 1995-11-14 Desulfurization method of catalytic cracking gasoline Expired - Lifetime JP3398273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31852495A JP3398273B2 (en) 1995-11-14 1995-11-14 Desulfurization method of catalytic cracking gasoline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31852495A JP3398273B2 (en) 1995-11-14 1995-11-14 Desulfurization method of catalytic cracking gasoline

Publications (2)

Publication Number Publication Date
JPH09137172A JPH09137172A (en) 1997-05-27
JP3398273B2 true JP3398273B2 (en) 2003-04-21

Family

ID=18100081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31852495A Expired - Lifetime JP3398273B2 (en) 1995-11-14 1995-11-14 Desulfurization method of catalytic cracking gasoline

Country Status (1)

Country Link
JP (1) JP3398273B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4482653B2 (en) 2004-05-19 2010-06-16 独立行政法人産業技術総合研究所 Hydrocracking catalyst for catalytic cracking gasoline
CN109097104B (en) * 2018-09-11 2019-11-08 福州大学 A kind of FCC gasoline method for modifying

Also Published As

Publication number Publication date
JPH09137172A (en) 1997-05-27

Similar Documents

Publication Publication Date Title
JP3871449B2 (en) Hydrodesulfurization method of light oil
JP3387700B2 (en) Desulfurization method of catalytic cracking gasoline
US5770047A (en) Process for producing reformulated gasoline by reducing sulfur, nitrogen and olefin
JP4798324B2 (en) Method for desulfurizing gasoline comprising desulfurization of heavy and intermediate fractions resulting from fractionation into at least three fractions
JP4686822B2 (en) Method for producing gasoline with low sulfur content
US5576256A (en) Hydroprocessing scheme for production of premium isomerized light gasoline
US6334948B1 (en) Process for producing gasoline with a low sulphur content
JP5526030B2 (en) Solid acid-assisted advanced desulfurization of diesel boiling range raw materials
JPH1192772A (en) Hydrodesulfurization process for catalytic cracking gasoline, and gasoline
KR100202205B1 (en) Process for desulfurizing catalytically cracked gasoline
JP3443474B2 (en) Desulfurization treatment method for catalytic cracking gasoline
US20030217951A1 (en) Process for the production of hydrocarbons with low sulfur and mercaptan content
JP4590407B2 (en) Production of low sulfur naphtha products by improved olefin isomerization
JP2005528468A (en) Selective hydrodesulfurization of naphtha stream
EP0745660B1 (en) Desulphurization method for catalytically cracked gasoline
KR100506699B1 (en) Catalytic System for Hydroconversion of Naphtha
JP2004010893A (en) Method for hydrodesulfurizing fraction containing sulfur compound and olefin in the presence of catalyst containing group 8 element and tungsten
JP3398273B2 (en) Desulfurization method of catalytic cracking gasoline
JP4282118B2 (en) Hydrodesulfurization method of light oil
JPH08277395A (en) Desulfurization of catalytically cracked gasoline
JP3269900B2 (en) Desulfurization of cracked gasoline fraction
WO2001074973A1 (en) Process for hydrodesulfurization of light oil fraction
JP2007507589A (en) Nitrogen removal from olefinic naphtha feed streams to improve hydrodesulfurization selectivity for olefin saturation
JP2007501294A (en) Method for producing low sulfur fuel
JP2003286493A (en) Method for desulfurizing catalytically cracked gasoline

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140214

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term