JP3397904B2 - Pretreatment method of metal workpiece in laser processing - Google Patents

Pretreatment method of metal workpiece in laser processing

Info

Publication number
JP3397904B2
JP3397904B2 JP22287594A JP22287594A JP3397904B2 JP 3397904 B2 JP3397904 B2 JP 3397904B2 JP 22287594 A JP22287594 A JP 22287594A JP 22287594 A JP22287594 A JP 22287594A JP 3397904 B2 JP3397904 B2 JP 3397904B2
Authority
JP
Japan
Prior art keywords
coating
laser
laser processing
metal material
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22287594A
Other languages
Japanese (ja)
Other versions
JPH0885819A (en
Inventor
典秀 西田
仁士 川崎
実 日野
実 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okayama Prefectural Government
Original Assignee
Okayama Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okayama Prefectural Government filed Critical Okayama Prefectural Government
Priority to JP22287594A priority Critical patent/JP3397904B2/en
Publication of JPH0885819A publication Critical patent/JPH0885819A/en
Application granted granted Critical
Publication of JP3397904B2 publication Critical patent/JP3397904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザを利用して金属
被加工材の溶融加工、熱処理、表面改質等の加工を行な
う際に酸化物などレーザ波長を吸収する透明物質の被覆
を形成して、レーザ光のエネルギーを有効に利用するこ
とを可能にする金属材料被加工物の前処理方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent substance which absorbs a laser wavelength, such as an oxide, when a metal material to be processed is subjected to melting processing, heat treatment, surface modification and the like using a laser. The present invention relates to a pretreatment method for a metal material to be processed, which enables effective use of energy of laser light by forming the coating.

【0002】[0002]

【従来の技術】一般に、金属材料、例えばアルミニウ
ム、アルミニウム合金、鉄鋼材料、銅等はレーザ光に対
する吸収率が低く、炭酸ガスレーザにおいては、数%か
ら十数%程度であり、加工のためのエネルギー効率は非
常に小さい。また、YAGレーザは炭酸ガスレーザに比
べ吸収率は大きいものの、やはり照射したエネルギーの
大部分は反射される。このため、レーザを熱源として利
用する各種の熱加工において、レーザ光の吸収能を高め
ることは、加工効率やエネルギー効率の向上につなが
り、技術的に大きな意味を持つ。
2. Description of the Related Art Generally, metal materials such as aluminum, aluminum alloys, steel materials, and copper have a low absorptance with respect to laser light. The efficiency is very small. Further, although the YAG laser has a higher absorptivity than the carbon dioxide laser, most of the applied energy is also reflected. For this reason, in various types of thermal processing using a laser as a heat source, increasing the absorption ability of laser light leads to improvement in processing efficiency and energy efficiency, and has great technical significance.

【0003】レーザ光の吸収率を高める方法として、従
来一般的に黒鉛やりん酸塩などを主体とした吸収剤をコ
ーティングする方法が用いられていた。しかし、これら
の吸収剤は黒色であり作業環境を悪化するとともに、加
工終了後の除去作業に困難性を有している。また、レー
ザ照射部からりんが材料中に侵入し、割れの原因になる
ことも指摘されている。
As a method of increasing the absorptance of laser light, a method of coating an absorbent mainly containing graphite or phosphate has been generally used. However, these absorbents are black and deteriorate the working environment, and have difficulty in removing work after the end of processing. It has also been pointed out that phosphorus penetrates into the material from the laser irradiation portion and causes cracking.

【0004】黒鉛やりん酸塩に代わるものとして、黒鉛
と無機酸化物の混合物を有機バインダで金属材料被加工
物表面に固着させる方法(例えば特公昭62-54166号)、固
体潤滑剤である窒化ほう素、炭化珪素粉末を塗布する方
法(例えば特開平1-191738号)、あるいは窒化ホウ素をス
プレイコーティングする方法(特開平2-19420号)などが
開発されている。しかし、これらの皮膜は有色であった
り有色でなくても粉体の被覆であるため、程度の差はあ
れ加工後の除去が必要であったり、散乱等によるレーザ
吸収率の向上に限界があって加工能力に問題があった。
また、水ガラスの被覆によるレーザ吸収率の向上が提案
されているが(特公昭63-9004号)、この場合被覆剤がア
ルカリであるため被加工材の金属の材質によっては問題
になる。
As an alternative to graphite or phosphate, a method of adhering a mixture of graphite and an inorganic oxide to the surface of a metal material workpiece with an organic binder (for example, Japanese Patent Publication No. 62-54166), nitriding as a solid lubricant A method of applying boron or silicon carbide powder (for example, Japanese Patent Laid-Open No. 1-191738) or a method of spray coating boron nitride ( Japanese Patent Laid-Open No. 2-19420 ) has been developed. However, since these coatings are powder coatings even if they are colored or not colored, they need to be removed to some extent after processing, and there is a limit to the improvement of the laser absorption rate due to scattering and the like. There was a problem with the processing capacity.
Further, it has been proposed to improve the laser absorptance by coating with water glass (Japanese Patent Publication No. Sho 63-9004), but in this case, since the coating agent is an alkali, it becomes a problem depending on the metal material of the work material.

【0005】更に、従来吸収率の向上を意図したレーザ
光は、いずれも炭酸ガスレーザであり、YAGレーザの
吸収率の向上を目的とした処理剤は見当らない。
Further, the conventional laser beams intended to improve the absorption rate are all carbon dioxide lasers, and no treatment agent for improving the absorption rate of the YAG laser is found.

【0006】[0006]

【発明が解決しようとする課題】本発明はこのような従
来のレーザ加工における前処理剤が有色であり、レーザ
加工後は除去作業が必要であったり、粉体を含むのでレ
ーザ吸収率に限界があって加工が充分に行なえないと
か、被加工金属材によっては前処理ができない等の問題
点に検討を加え、更に炭酸ガスレーザのみならず、YA
Gレーザの吸収率の向上を目的としたレーザ加工におけ
る被加工物の前処理方法を提供しようとするものであ
る。
According to the present invention, such a pretreatment agent in the conventional laser processing is colored, and a removal operation is required after the laser processing, or a powder is included, so that the laser absorption rate is limited. Therefore, it is not possible to process it sufficiently, and it is necessary to consider the problems that pretreatment cannot be performed depending on the metal material to be processed.
An object of the present invention is to provide a pretreatment method for a workpiece in laser processing for the purpose of improving the absorption rate of G laser.

【0007】[0007]

【課題を解決するための手段】本発明では、レーザ加工
を施す前に、予め金属材料被加工材(アルミニウム、ア
ルミニウム合金、鉄鋼、銅等の金属材料)の表面に、レ
ーザ波長域で吸収を示すが、可視光の透過率が大きい、
すなわち透明な、粉体を含まない皮膜を形成させること
で前述の問題点を一挙に解決させた。
According to the present invention, before laser processing, the surface of a metal material to be processed ( metal material such as aluminum, aluminum alloy, steel, copper) is previously absorbed in the laser wavelength range. As shown, the visible light transmittance is high,
That is, the above-mentioned problems were solved all at once by forming a transparent film containing no powder.

【0008】すなわち、金属材からなる被加工物のレー
ザ加工(溶融加工、溶接、熱処理、表面改質)に際し、レ
ーザ波長近傍で吸収を示しかつ可視光の透過能の大きい
透明皮膜を形成する、無機ポリマーで予め被加工物の表
面を被覆することを特徴とするレーザ加工における金属
材料被加工物の前処理方法である。なお、ここにいう透
明皮膜とは、無色であるだけでなく、粉体(粒体)を含ま
ない全体が均質な被覆層をいう。
That is, in the laser processing (melting processing, welding, heat treatment, surface modification ) of a workpiece made of a metal material , a transparent film which absorbs in the vicinity of the laser wavelength and has a large visible light transmittance is formed . metal in the laser processing, which comprises coating the surface of the pre-workpiece without machine polymer
This is a pretreatment method for a material workpiece. The transparent coating mentioned here is not only colorless, but also a coating layer that does not contain powder (particles) and is homogeneous in its entirety.

【0009】この方法に用いられる透明皮膜を形成する
物質は、レーザ波長近傍で吸収を示し、かつ可視光の透
過能の大きい有機金属化合物又は無機ポリマーを主体と
する。なお、レーザ波長近傍で吸収を示すとは、透明
皮膜を形成する物質からなる被覆層自身がレーザ波長域
の吸収を有する場合のみならず、同被覆層が加熱され
て生じた酸化物、窒化物等がレーザ波長域の吸収を有す
場合も含む。
The substance forming the transparent film used in this method is mainly composed of an organometallic compound or an inorganic polymer which absorbs in the vicinity of the laser wavelength and has a large visible light transmitting ability. It should be noted that absorption in the vicinity of the laser wavelength means not only when the coating layer itself made of a material forming a transparent film has absorption in the laser wavelength range, but also oxides and nitrides produced by heating the coating layer. And the like have absorption in the laser wavelength range.

【0010】各種の有機金属化合物や無機ポリマーから
得られる透明皮膜は赤外・紫外領域で化学構造に由来す
る特定波長領域の吸収を示す。このことから、対象とす
るレーザ光に適した皮膜の選定は、赤外・紫外の分光分
析の結果からも判断することが可能である。
Transparent films obtained from various organometallic compounds and inorganic polymers show absorption in a specific wavelength region derived from a chemical structure in the infrared / ultraviolet region. From this, it is possible to judge the selection of a film suitable for the target laser beam from the results of infrared / ultraviolet spectroscopic analysis.

【0011】例えば炭酸ガスレーザの波長(10.6μm)近
傍で大きな吸収を示す材料として、有機金属化合物では
Si(OCH3)4,Si(OC25)4,Si(OC37)4,Si(O
49)4等のテトラアルコキシシラン,フエニルトリエ
トキシシランなどであり、無機ポリマーではポリシラザ
ン(SiHaNb)n等のセラミック前駆躯体ポリマー(焼成
によりセラミックに転化する無機ポリマー),ヘキサメチ
ルジシラザン(NH(Si(CH3)3)2),ビニルトリエトキ
シシラン(CH2=CHSi(OC25)3)等を挙げること
ができる。
For example, as a material showing a large absorption in the vicinity of the wavelength (10.6 μm) of a carbon dioxide gas laser, an organometallic compound is Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , Si (OC 3 H 7 ) 4 , Si (O
C 4 tetraalkoxysilane H 9) 4, etc., and the like phenylalanine triethoxysilane, polysilazane inorganic polymer (SiHaNb) ceramic precursor precursor polymer of n such (inorganic polymer be converted into a ceramic by firing), hexamethyldisilazane (NH (Si (CH 3) 3) 2), vinyltriethoxysilane (CH 2 = CHSi (OC 2 H 5) 3) , and the like.

【0012】YAGレーザ波長域(1.06μm)での、分光
分析結果の既存データは非常に少ないが、本発明では鋭
意検討の結果、ZrO2,Zr(OCH34,Zr(OC25
4,Zr(OC374,Zr(OC494等のテトラアルコ
キシジルコニウム,SiO2,TiO2が効果的であることが
判明した。このような化合物や焼成により得られる酸化
物となる有機金属化合物や無機ポリマーで金属表面を被
覆するのである。
Although there are very few existing data of the spectroscopic analysis results in the YAG laser wavelength range (1.06 μm), as a result of earnest study in the present invention, as a result of ZrO 2 , Zr (OCH 3 ) 4 and Zr (OC 2 H 5) )
It has been found that tetraalkoxyzirconium such as 4 , Zr (OC 3 H 7 ) 4 and Zr (OC 4 H 9 ) 4 , SiO 2 and TiO 2 are effective. The metal surface is coated with such a compound or an organic metal compound or an inorganic polymer which becomes an oxide obtained by firing.

【0013】透明皮膜を形成するためのこれらの材料の
被覆方法としては、低コストで大面積の被覆が可能なゾ
ル−ゲル法によるコーティングがある。またイオンプレ
ーティング、スパッタリング、CVD(化学蒸着法)等の
気相成膜法の適用もできる。もちろん、被覆剤の材質に
よっては、塗布、スプレーコーティングも実施可能であ
る。皮膜の膜厚は皮膜のレーザ光に対する吸収率によっ
て変わる。すなわち、吸収率の小さい被覆剤では厚膜が
必要となるが、吸収率の大きい材料では、必要とする膜
厚は小さい。通常1nm〜100μm、好ましくは5nm〜10μ
mである。
As a coating method of these materials for forming a transparent film, there is a coating by a sol-gel method which can coat a large area at a low cost. Further, vapor phase film forming methods such as ion plating, sputtering and CVD (chemical vapor deposition) can also be applied. Of course, coating or spray coating can be performed depending on the material of the coating material. The film thickness of the film changes depending on the absorption rate of the film for laser light. That is, a coating having a low absorptivity requires a thick film, but a material having a high absorptivity requires a small film thickness. Usually 1 nm to 100 μm, preferably 5 nm to 10 μm
m.

【0014】[0014]

【作用】本発明によって前処理が行なわれると、処理剤
が粉体を含まないので、使用するレーザ光の波長近傍で
レーザ光を効率良く吸収して、反射率の大な金属表面の
レーザ光による溶融加工、切断、溶接、熱処理、表面改
質などのレーザ加工効率が上がる。また、皮膜は可視光
の透過率が大きいので透明性が大で被加工物の外観を損
なうことがなく、また表面の保護層としても作用する。
When the pretreatment is carried out according to the present invention, since the treating agent does not contain powder, the laser light is efficiently absorbed in the vicinity of the wavelength of the laser light used, and the laser light on the metal surface having a large reflectance is obtained. Laser processing efficiency of melting processing, cutting, welding, heat treatment, surface modification, etc. is improved. Further, since the film has a large visible light transmittance, it has a large transparency and does not impair the appearance of the work piece, and also acts as a protective layer on the surface.

【0015】処理方法も一般的なコーティング方式が利
用できるので、特に大がかりな装置を必要としないし、
作業もさして困難でもない。皮膜も1μm以下で極めて
薄くても有効である。
Since a general coating method can be used as the treatment method, a particularly large-scale device is not required,
The work is not so difficult. Even if the film is 1 μm or less and is extremely thin, it is effective.

【0016】[0016]

【実施例】実施例1 レーザ反射率の大きい被加工金属材料としてアルミニウ
ム板(A1100P、2mm厚)をとりあげ、ゾル−ゲル法により
表面にSiO2コーティングを行なった。表1に示す組成
の溶液中からアルミニウム板を30mm/分の速度で引き上
げ、大気中200℃で2時間焼成した。一回の浸漬・引き
上げ・焼成の操作で約66nmの透明皮膜が形成された。厚
膜の形成は一連の操作を繰り返すことで行なった。形成
した皮膜の赤外分光分析の結果、有機物の残存は認めら
れるもののSiO2の形成が確認された。
Example 1 An aluminum plate (A1100P, 2 mm thick) was taken as a metal material to be processed having a large laser reflectance, and its surface was coated with SiO 2 by a sol-gel method. An aluminum plate was pulled up from the solution having the composition shown in Table 1 at a rate of 30 mm / min and baked in the atmosphere at 200 ° C for 2 hours. A transparent film of about 66 nm was formed by a single operation of dipping, pulling up, and firing. The thick film was formed by repeating a series of operations. As a result of infrared spectroscopic analysis of the formed film, formation of SiO 2 was confirmed although organic matter remained.

【0017】[0017]

【表1】 [Table 1]

【0018】SiO2透明被覆処理を施した試料及び未処
理のアルミニウム板に炭酸ガスレーザ(出力780W(cw),
アシストガスO2,送り速度600mm/分)を照射した結果を
図1に示す。未処理及び浸漬回数2回までの試料では、
レーザ照射部にはなんの変化もみられず、痕跡も認めら
れない。しかし、浸漬回数が4回の試料ではレーザ照射
部に皮膜が変化したと思われる形跡がみられ、浸漬回数
8回の試料では明瞭なアルミニウム板の溶融がみられ
る。このようにアルミニウム板に約530nmのSiO2の皮
膜を被覆することにより炭酸ガスレーザの吸収率を明瞭
に向上させ得ることが確認された。
[0018] SiO 2 transparent coating treatment alms samples and untreated aluminum plate carbon dioxide laser (output 780 W (cw),
The result of irradiation with assist gas O 2 and a feed rate of 600 mm / min) is shown in FIG. For untreated and up to 2 immersions,
No change was observed in the laser irradiation part and no trace was observed. However, in the sample that was immersed 4 times, there was evidence that the coating was changed in the laser-irradiated portion, and in the sample that was immersed 8 times, a clear melting of the aluminum plate was observed. Thus, it was confirmed that the absorption rate of the carbon dioxide laser can be clearly improved by coating the aluminum plate with a film of SiO 2 of about 530 nm.

【0019】透明なSiO2皮膜の形成には、必ずしも上
記条件のみでなく、異なった液組成や他のアルコキシド
をもとにした溶液でもよく、引き上げ速度、焼成温度等
を選ぶことにより、一回の浸漬操作で得られる皮膜厚、
皮膜構造などをも変化させ得る。また、浸漬後の焼成に
代わり、レーザ照射で直接酸化物に変化させ得ることも
可能である。
The formation of a transparent SiO 2 film is not limited to the above conditions, but may be a solution based on a different liquid composition or another alkoxide, and it may be performed once by selecting a pulling rate, a firing temperature and the like. Film thickness obtained by dipping operation of
The film structure and the like can be changed. Further, instead of firing after immersion, it is also possible to directly change to an oxide by laser irradiation.

【0020】実施例2 実施例1と同様にアルミニウム板(A1100P、2mm厚)にゾ
ル−ゲル法でZrO2を被覆した。表2に示す組成の溶液
中からアルミニウム板を30mm/分の速度で引き上げ、大
気中200℃で2時間焼成した。一回の浸漬・引き上げ・
焼成の操作で約8nmの透明な皮膜が形成された。厚膜の
形成は一連の操作を繰り返すことで行なった。形成した
透明皮膜の赤外分光分析の結果、有機物の残存は認めら
れるもののZrO2の形成が確認された。
Example 2 As in Example 1, an aluminum plate (A1100P, 2 mm thick) was coated with ZrO 2 by the sol-gel method. An aluminum plate was pulled up from the solution having the composition shown in Table 2 at a rate of 30 mm / min and baked in the atmosphere at 200 ° C for 2 hours. Immersion, pulling up once
A calcination operation formed a transparent film of about 8 nm. The thick film was formed by repeating a series of operations. As a result of infrared spectroscopic analysis of the formed transparent film, formation of ZrO 2 was confirmed although organic substances remained.

【0021】[0021]

【表2】 [Table 2]

【0022】ZrO2透明被覆処理を施した試料及び未処
理のアルミニウム板にYAGレーザ(出力500W(cw),ア
シストガスN2,送り速度600mm/分)を照射した結果を図
2に示す。YAGレーザの吸収率は炭酸ガスレーザに比
べ大きいため、未処理の試料でも溶融が生じているが、
被覆のための浸漬回数の増加によって溶融域の明瞭な増
加がみられる。
FIG. 2 shows the results of irradiation of a YAG laser (output 500 W (cw), assist gas N 2 , feed rate 600 mm / min) on the ZrO 2 transparent coated sample and the untreated aluminum plate. Since the absorption rate of the YAG laser is higher than that of the carbon dioxide laser, melting occurs even in the untreated sample.
A clear increase in the melt zone is seen with increasing number of dips for coating.

【0023】このように、アルミニウム板に約8nm以上
のZrO2透明皮膜をすることによりYAGレーザの吸収
率を明瞭に向上させ得ることが確認された。
As described above, it was confirmed that the absorptivity of the YAG laser can be clearly improved by forming the ZrO 2 transparent film of about 8 nm or more on the aluminum plate.

【0024】透明なZrO2皮膜の形成には必ずしも上記
条件のみでなく、異なった液組成、他のアルコキシドを
もとにした溶液でもよく、引き上げ速度、焼成温度等を
選ぶことにより、一回の浸漬操作で得られる皮膜厚、皮
膜構造などを変化させ得る。また、浸漬後の焼成に代わ
り、レーザ照射で直接酸化物に変化させ得ることも可能
である。
The formation of a transparent ZrO 2 film is not limited to the above conditions, but may be a solution based on a different liquid composition or another alkoxide. The film thickness, film structure, etc. obtained by the dipping operation can be changed. Further, instead of firing after immersion, it is also possible to directly change to an oxide by laser irradiation.

【0025】実施例3 アルミニウム合金板(1mm厚)に、参考として高周波イオ
ンプレーティングにて厚さ2.5及び1.0μmの透明なSiO
2膜を被覆し、炭酸ガスレーザ(出力300W(cw),アシス
トガスAir)を照射し切断を行なった。結果を表3に示
す。
Example 3 On a aluminum alloy plate (1 mm thick), as a reference, high-frequency ion plating was used to form transparent SiO 2 having a thickness of 2.5 and 1.0 μm.
Two films were coated, and carbon dioxide laser (output 300 W (cw), assist gas Air) was irradiated and cut. The results are shown in Table 3.

【0026】未処理の試料では安定した切断が可能な送
り速度の最大は1000mm/分であったが、SiO2透明膜を
被覆した試料では1200〜1500mm/分の送り速度でも安定
した切断が可能であった。このように、SiO2透明膜の
被覆により未処理試料に比較し約1.5倍の切断効率の向
上が図れた。ダイナミック硬さの測定結果(測定方法:
島津製作所製,ダイナミック微小硬度計使用,測定荷重1
gf,頂角115°三角圧子)においても、未処理材が97であ
るのに対して、SiO2を被覆した試料では、347と202と
いった表面硬度の増加がみられた。細かいデータは省略
するが、これらは5点測定の平均値である。
The maximum feed rate for stable cutting was 1000 mm / min for the untreated sample, but stable cutting was possible for the sample coated with the SiO 2 transparent film even at a feed rate of 1200-1500 mm / min. Met. Thus, the coating of the SiO 2 transparent film improved the cutting efficiency by about 1.5 times as compared with the untreated sample. Dynamic hardness measurement results (measurement method:
Shimadzu Corporation, using dynamic micro hardness tester, measuring load 1
In the case of gf, apex angle 115 ° triangular indenter), the untreated material was 97, whereas the sample coated with SiO 2 showed an increase in surface hardness such as 347 and 202. Although detailed data are omitted, these are average values of 5-point measurement.

【0027】[0027]

【表3】 [Table 3]

【0028】実施例4 実施例3と同じアルミニウム合金板に、参考として高周
波イオンプレーティングにより厚さ0.7μmのZrO2透明
膜を被覆し、YAGレーザ(パルスレーザ,平均出力80
w,アシストガスAir)を照射し切断を行なった。結果を
表4に示す。
Example 4 The same aluminum alloy plate as in Example 3 was coated with a 0.7 μm-thick ZrO 2 transparent film by high-frequency ion plating as a reference, and a YAG laser (pulse laser, average output 80) was used.
w, Assist gas Air) was irradiated and it cut. The results are shown in Table 4.

【0029】未処理の試料では、安定した切断が可能な
送り速度の最大は200mm/分であったが、ZrO2膜を被覆
した試料では400〜500mm/分の送り速度でも安定した切
断が可能であった。このように、ZrO2膜の被覆により
未処理試料に比較し2.5倍の切断効率の向上が図れた。
In the untreated sample, the maximum feed rate at which stable cutting was possible was 200 mm / min. However, in the sample coated with the ZrO 2 film, stable cutting was possible even at a feed rate of 400 to 500 mm / min. Met. Thus, the coating with the ZrO 2 film improved the cutting efficiency 2.5 times as compared with the untreated sample.

【0030】[0030]

【表4】 [Table 4]

【0031】実施例5 炭素鋼(S55C:焼きならし処理済、6mm厚)に、参考とし
て高周波イオンプレーティングにより厚さ1.2μmのSi
2膜を被覆し、炭酸ガスレーザ(出力890W(cw)、送り
速度1m/分、アシストガスO2)を照射した。照射位置
は焦点位置より30mm上方に設定し照射ビーム径を大きく
し、表面焼き入れを試みた。照射後の試料断面の光学顕
微鏡による組織写真を図3に示す。
Example 5 Carbon steel (S55C: normalized, 6 mm thick) was used as a reference and subjected to high frequency ion plating to obtain Si having a thickness of 1.2 μm.
The O 2 film was coated and irradiated with a carbon dioxide laser (output 890 W (cw), feed rate 1 m / min, assist gas O 2 ). The irradiation position was set 30 mm above the focal position to increase the irradiation beam diameter, and surface hardening was tried. A structure photograph of the cross section of the sample after irradiation by an optical microscope is shown in FIG.

【0032】未処理材ではレーザ照射によっても表面外
観上なんの変化も認められず、断面組織も焼きならし組
織のままを呈している。しかし、被覆材はレーザ照射に
よる変化が生じ、断面組織に明瞭な焼き入れ組織が観察
された。このように、SiO2被覆によって表面焼き入れ
時のレーザ吸収能の顕著な向上が図れることが確認され
た。
In the untreated material, no change in surface appearance was observed even by laser irradiation, and the cross-sectional structure remained the normalized structure. However, the coating material changed due to laser irradiation, and a clear quenched structure was observed in the cross-sectional structure. As described above, it was confirmed that the SiO 2 coating can remarkably improve the laser absorption capacity during surface quenching.

【0033】実施例6 アルミニウム板(A1100P、2mm厚)に、ポリシラザン(Si
HaNb)nをキシレンで希釈した被覆剤(ポリシラザン濃
度20.3%)をディッピング法で被覆し、溶剤を飛散させ
る目的で150℃、30分加熱し被覆材とした。引き上げ速
度の異なるポリシラザン被覆アルミニウム板に、炭酸ガ
スレーザを照射(出力780W(cw)、送り速度300mm/分、ア
シストガスO2)した。結果のマクロ写真を図4に示す。
Example 6 An aluminum plate (A1100P, 2 mm thick) was coated with polysilazane (Si
A coating material (polysilazane concentration: 20.3%) obtained by diluting HaNb) n with xylene was coated by a dipping method, and heated at 150 ° C. for 30 minutes for the purpose of scattering the solvent to obtain a coating material. The polysilazane-coated aluminum plates having different pulling rates were irradiated with a carbon dioxide gas laser (output 780 W (cw), feed rate 300 mm / min, assist gas O 2 ). The resulting macro photograph is shown in FIG.

【0034】未処理材では、レーザ照射によって溶融等
の変化はなんら認められない。しかし、ポリシラザン被
覆により溶融が認められるようになる。引き上げ速度30
mm/分の試料では部分的な痕跡が認められ、60mm/分の試
料では照射位置に連続的な照射痕がみられる。さらに、
150mm/分、600mm/分の試料では溶融したアルミニウムの
飛散と溶融溝が明瞭に観察される。以上のように、引き
上げ速度の増加(すなわち被覆厚さの増加)に伴い明らか
なレーザ光吸収能の向上が認められた。
In the untreated material, no change such as melting was observed by laser irradiation. However, the polysilazane coating allows melting to be observed. Lifting speed 30
A partial trace is recognized in the sample of mm / min, and a continuous trace of irradiation is seen in the irradiation position in the sample of 60 mm / min. further,
In the samples of 150 mm / min and 600 mm / min, scattering of molten aluminum and molten grooves are clearly observed. As described above, a clear improvement in the laser light absorption ability was observed with an increase in the pulling rate (that is, an increase in the coating thickness).

【0035】ポリシラザンの希釈に用いる溶剤の種類、
濃度は本例の濃度、種類に限定される必要はなく、必要
に応じてセラミック粉末等の添加も可能である。被覆方
法もディッピング法に限らず、スピンコート、塗布、ス
プレーコート等いずれの手段も採用可能である。また、
被覆後の熱処理は必ずしも必要としない。
The type of solvent used to dilute the polysilazane,
The concentration does not have to be limited to the concentration and type of this example, and ceramic powder or the like can be added if necessary. The coating method is not limited to the dipping method, and any means such as spin coating, coating and spray coating can be adopted. Also,
A heat treatment after coating is not always necessary.

【0036】本剤が炭酸ガスレーザの波長域で吸収を示
す原因はポリシラザン中のSi−N結合に起因するもの
であり、ポリシラザンの代わりにPVD法や、CVD法
等で窒化珪素(例えばSi34)を被覆しても同様の効果
が得られる。
The cause of the absorption of this agent in the wavelength region of the carbon dioxide gas laser is due to the Si--N bond in polysilazane. Instead of polysilazane, a silicon nitride (for example, Si 3 N 3) is formed by the PVD method or the CVD method. The same effect can be obtained by coating 4 ).

【0037】実施例7 炭素鋼(S55C:焼きならし処理済、6mm厚)に、実施例6
と同様組成のポリシラザン溶液を引き上げ速度300mm/
分、加熱処理150℃、30分で被覆し、炭酸ガスレーザを
照射(出力890W(cw)、送り速度1m/分、照射位置は焦
点位置より30mm上方、アシストガスO2)した。結果を図
5に示す。
Example 7 Carbon steel (S55C: normalized, 6 mm thick) was applied to Example 6
A polysilazane solution with the same composition as above
The coating was applied for 30 minutes at 150 ° C. for 30 minutes, and irradiated with a carbon dioxide laser (output 890 W (cw), feed rate 1 m / min, irradiation position 30 mm above focus position, assist gas O 2 ). Results are shown in FIG.

【0038】未処理材では、レーザ照射によっても表面
外観上なんの変化も認められず、断面組織も焼きならし
組織のままを呈している。しかし、被覆材はレーザ照射
による変化が生じ、断面組織に明瞭な焼き入れ組織が観
察された。このように、ポリシラザン被覆によって表面
焼き入れ時のレーザ吸収能の顕著な向上が図れることが
確認された。なお、溶剤、被覆方法、熱処理に関する条
件が本実施例に限定されないことや、セラミックの窒化
珪素被覆でも同様の効果が得られることは実施例6と同
じである。
In the untreated material, no change in surface appearance was observed even by laser irradiation, and the cross-sectional structure remained the normalized structure. However, the coating material changed due to laser irradiation, and a clear quenched structure was observed in the cross-sectional structure. As described above, it was confirmed that the coating of polysilazane can remarkably improve the laser absorption capacity during surface quenching. As in Example 6, the conditions regarding the solvent, the coating method, and the heat treatment are not limited to those in this example, and the same effect can be obtained by coating the ceramic with silicon nitride.

【0039】実施例8 鏡面仕上したSUS304板(2mm厚)に、参考として高周波イ
オンプレーティングによるSiO2皮膜(1.2μm厚)、実施
例7と同条件のポリシラザン皮膜、及び市販の炭化珪素
系のレーザ加工用塗布剤をそれぞれ被覆処理し、炭酸ガ
スレーザを照射(パルスレーザ、平均出力10w、アシス
トガスN2)した。結果を図6に示す。
Example 8 On a mirror-finished SUS304 plate (2 mm thick), for reference, a SiO 2 film (1.2 μm thick) by high frequency ion plating, a polysilazane film under the same conditions as in Example 7, and a commercially available silicon carbide-based film were used. Each of the laser processing coating agents was coated and irradiated with a carbon dioxide laser (pulse laser, average output 10 w, assist gas N 2 ). Results are shown in FIG.

【0040】SiO2、ポリシラザン、市販塗布剤いずれ
の被覆材とも、未処理材に比べレーザ照射による溶融痕
が大きくなっており、被覆により吸収能が増大している
ことが確認される。しかし、本発明による被覆処理材の
ポリシラザンのレーザ痕は比較的形状がそろっているの
に対し、比較に用いた市販塗布剤による処理材のレーザ
痕の形状は不均一である。これは、ポリシラザンのレー
ザ吸収効果の位置的な均一性が優れていることを示して
いる。
In all of the coating materials of SiO 2 , polysilazane and the commercial coating agent, the melting traces due to laser irradiation are larger than those of the untreated material, and it is confirmed that the absorption capacity is increased by the coating. However, while the laser traces of the polysilazane of the coating treatment material according to the present invention are relatively uniform in shape, the laser traces of the treatment material with the commercially available coating agent used for comparison are not uniform. This indicates that polysilazane has excellent positional uniformity of the laser absorption effect.

【0041】[0041]

【発明の効果】本発明によって金属材料の溶融加工、切
断、溶接、熱処理、表面改質などのレーザ加工効率が上
がることとなった。また、皮膜が透明であるため被加工
物の外観を損なうことがなく、レーザ加工後も皮膜の除
去を必要としない。更には、酸化物、窒化物等の無機材
料や有機物を被覆する場合は、被加工材の保護皮膜(防
食、耐摩耗など)としての機能も付与できる。このた
め、レーザ加工されることを意図したレーザ加工用金属
素材等への表面前処理として有用である。
According to the present invention, the efficiency of laser processing such as melting, cutting, welding, heat treatment and surface modification of metallic materials is improved. Further, since the film is transparent, the appearance of the work piece is not impaired, and it is not necessary to remove the film even after laser processing. Furthermore, in the case of coating an inorganic material such as an oxide or a nitride or an organic material, a function as a protective film (corrosion resistance, abrasion resistance, etc.) of a material to be processed can be imparted. Therefore, it is useful as a surface pretreatment on a metal material for laser processing intended to be laser processed.

【図面の簡単な説明】[Brief description of drawings]

【図1】被加工物表面状態を示す表面図である。FIG. 1 is a surface view showing a surface state of a work piece.

【図2】被加工物表面状態を示す表面図である。FIG. 2 is a surface view showing a surface state of a workpiece.

【図3】照射後の試料断面の光学顕微鏡による組織断面
図である。
FIG. 3 is a tissue cross-sectional view of a cross section of a sample after irradiation by an optical microscope.

【図4】引き上げ速度の異なるポリシラザン被覆アルミ
ニウム板に炭酸ガスレーザを照射した結果のマクロ表面
図である。
FIG. 4 is a macro surface view of a result obtained by irradiating a polysilazane-coated aluminum plate having a different pulling rate with a carbon dioxide gas laser.

【図5】炭素鋼にポリシラザン処理し炭酸ガスレーザを
照射した結果の表面図である。
FIG. 5 is a surface view showing the result of irradiating carbon steel with carbon dioxide laser after polysilazane treatment.

【図6】SUS304板にSiO2、ポリシラザン皮膜、及び市
販の非黒色系のレーザ加工用塗布剤をそれぞれ被覆処理
し、炭酸ガスレーザを照射した結果の表面図である。
FIG. 6 is a surface view of a result obtained by coating a SUS304 plate with a SiO 2 , polysilazane film, and a commercially available non-black coating agent for laser processing and irradiating a carbon dioxide laser.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平松 実 岡山県岡山市伊福町4丁目3番18号 岡 山県工業技術センター内 (56)参考文献 特開 昭58−93811(JP,A) 特開 昭58−224796(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 1/02 - 1/84 B23K 26/00 - 26/18 C23C 16/00 - 16/56 C23C 26/00 - 26/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Minoru Hiramatsu 4-3-18 Ifukucho, Okayama City, Okayama Prefecture Okayama Prefectural Industrial Technology Center (56) Reference JP-A-58-93811 (JP, A) 58-224796 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C21D 1/02-1/84 B23K 26/00-26/18 C23C 16/00-16/56 C23C 26/00-26/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属材からなる被加工物の溶融加工、溶
接、熱処理、表面改質加工を行なう炭酸ガスレーザ加工
に際し、レーザ波長近傍で吸収を示しかつ可視光の透過
能の大きい透明皮膜を形成するセラミック前駆体ポリマ
ーで予め被加工物の表面を前処理してセラミック被覆す
ることを特徴とするレーザ加工における金属材料被加工
物の前処理方法。
1. A melt processing of a workpiece made of a metal material, welding, heat treatment, when carbon dioxide gas laser processing to perform surface modification process, an absorption at the laser wavelength near and large transparent coating of permeability of visible light A pretreatment method for a metal material workpiece in laser processing, which comprises pretreating a surface of a workpiece with a ceramic precursor polymer to be formed in advance and coating the surface with ceramic .
【請求項2】 金属材からなる被加工物の溶融加工、溶
接、熱処理、表面改質加工を行なう炭酸ガスレーザ加工
に際し、レーザ波長近傍で吸収を示しかつ可視光の透過
能の大きい透明皮膜を形成するテトラアルコキシシラン
溶液のコーティングで予め被加工物の表面を前処理して
SiO 被覆することを特徴とするレーザ加工における
金属材料被加工物の前処理方法。
2. A transparent film that absorbs in the vicinity of the laser wavelength and has a high visible light transmittance during carbon dioxide laser processing for melting, welding, heat treating and surface-modifying a workpiece made of a metal material. Tetraalkoxysilane
Pre-treat the surface of the work piece in advance with solution coating
A pretreatment method for a metal material workpiece in laser processing, which comprises coating with SiO 2 .
【請求項3】 金属材からなる被加工物の溶融加工、溶
接、熱処理、表面改質加工を行なうYAGレーザ加工に
際し、レーザ波長近傍で吸収を示しかつ可視光の透過能
の大きい透明皮膜を形成するテトラアルコキシジルコニ
ウム溶液のコーティングで予め被加工物の表面を前処理
してZrO 被覆することを特徴とするレーザ加工にお
ける金属材料被加工物の前処理方法。」
3. A transparent film which absorbs in the vicinity of the laser wavelength and has a high visible light transmittance during YAG laser processing for melting, welding, heat treating, and surface-modifying a workpiece made of a metal material. preparing a surface of a previously workpiece a coating of tetraalkoxy zirconium solution
A method for pretreating a metal material to be processed in laser processing, which comprises performing ZrO 2 coating. "
JP22287594A 1994-09-19 1994-09-19 Pretreatment method of metal workpiece in laser processing Expired - Fee Related JP3397904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22287594A JP3397904B2 (en) 1994-09-19 1994-09-19 Pretreatment method of metal workpiece in laser processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22287594A JP3397904B2 (en) 1994-09-19 1994-09-19 Pretreatment method of metal workpiece in laser processing

Publications (2)

Publication Number Publication Date
JPH0885819A JPH0885819A (en) 1996-04-02
JP3397904B2 true JP3397904B2 (en) 2003-04-21

Family

ID=16789263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22287594A Expired - Fee Related JP3397904B2 (en) 1994-09-19 1994-09-19 Pretreatment method of metal workpiece in laser processing

Country Status (1)

Country Link
JP (1) JP3397904B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3643444A1 (en) * 2018-10-25 2020-04-29 Citic Dicastal Co., Ltd. Surface laser remelting treatment method for aluminum alloy

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3185869B2 (en) * 1997-10-21 2001-07-11 日本電気株式会社 Laser processing method
US6036873A (en) * 1997-11-26 2000-03-14 Eastman Kodak Company Process for generating precision polished non-plannar aspherical surfaces
JP4058448B2 (en) * 2005-12-26 2008-03-12 宗春 沓名 Laser peening treatment method and laser absorbing powder layer sheet
JP2007169754A (en) * 2005-12-26 2007-07-05 Muneharu Kutsuna Surface treatment method, laser absorption powder layer sheet and powder spray for laser peening
WO2020212736A1 (en) * 2019-04-17 2020-10-22 Arcelormittal A method for the manufacture of an assembly by laser welding
WO2020212737A1 (en) * 2019-04-17 2020-10-22 Arcelormittal A method for the manufacture of a coated metallic substrate by laser metal deposition
EP3822712A1 (en) * 2019-11-13 2021-05-19 Rolex Sa Component for a timepiece
PL242889B1 (en) * 2020-09-12 2023-05-08 Wysokinski Karol Method of modifying metals with a laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3643444A1 (en) * 2018-10-25 2020-04-29 Citic Dicastal Co., Ltd. Surface laser remelting treatment method for aluminum alloy

Also Published As

Publication number Publication date
JPH0885819A (en) 1996-04-02

Similar Documents

Publication Publication Date Title
Ayers et al. A laser processing technique for improving the wear resistance of metals
CN102861990B (en) Method for improving fusion depth in laser welding process of aluminum alloy
Adraider et al. Fabrication of zirconium oxide coatings on stainless steel by a combined laser/sol–gel technique
JP3397904B2 (en) Pretreatment method of metal workpiece in laser processing
US4767678A (en) Corrosion resistant magnesium and aluminum oxalloys
US4613386A (en) Method of making corrosion resistant magnesium and aluminum oxyalloys
Feoktistov et al. Expanding the scope of SiC ceramics through its surface modification by different methods
FR2637587A1 (en) PROCESS FOR FORMING A CERAMIC COATING BY IRRADIATION BY A LASER BEAM
Pu et al. Wettability modification of zirconia by laser surface texturing and silanization
KR102651664B1 (en) Manufacturing method of assemblies by laser welding
Zeng et al. The formed surface characteristics of SiCf/SiC composite in the nanosecond pulsed laser ablation
Jaleh et al. TiN formation on Ti target by laser ablation method under different N2 gas pressure and laser scanning cycles: A wettability study
RU2425908C2 (en) Procedure for application of coating by means of pulse laser and object with coating applied by such procedure
Piatkowski et al. Simultaneous Carburization, Oxidation, and Nitridation of Titanium Surface Using Ablation by Femtosecond Laser in n‐Heptane
JPS61113755A (en) Manufacture of metallic material with thermal sprayed ceramic film having high corrosion and heat resistance
Nedyalkov et al. Ablation and surface structuring of Si3N4 ceramics by nanosecond laser pulses
Orishich et al. Creation of heterogeneous metal-ceramic structures based on Ti, Ni and WC, B4C by the combined method of laser cladding and cold gas-dynamic spraying
Ezz et al. Combined laser/sol–gel synthesis of Si/O/C coatings on mild steel
Aleksandrov et al. Laser Surface Alloying of Aluminum Alloys
Xue et al. Laser gas nitriding of Ti-6AI-4V alloy
Yamaguchi et al. Surface alloying of titanium using a nanosecond laser with a light-transmitting resin
Yilbas et al. Effect of environmental dust particles on laser textured yttria-stabilized zirconia surface in humid air ambient
Das et al. Femtosecond pulsed laser damage characteristics of 7% Y 2 O 3-ZrO 2 thermal barrier coating
Kim et al. Laser-Induced Plasma Spectroscopy Measurement on Surface Roughness in Surface Treatment of Titanium Alloys
Egorova et al. Hardness enhancement by laser modification of titanium under an auxiliary graphite layer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees