JP3397568B2 - 音声認識方法及び装置 - Google Patents

音声認識方法及び装置

Info

Publication number
JP3397568B2
JP3397568B2 JP06804696A JP6804696A JP3397568B2 JP 3397568 B2 JP3397568 B2 JP 3397568B2 JP 06804696 A JP06804696 A JP 06804696A JP 6804696 A JP6804696 A JP 6804696A JP 3397568 B2 JP3397568 B2 JP 3397568B2
Authority
JP
Japan
Prior art keywords
voice
cepstrum
hmm
average
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06804696A
Other languages
English (en)
Other versions
JPH09258772A (ja
Inventor
哲夫 小坂
恭則 大洞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP06804696A priority Critical patent/JP3397568B2/ja
Priority to US08/821,719 priority patent/US5924067A/en
Priority to EP97301980A priority patent/EP0798695B1/en
Priority to DE69715281T priority patent/DE69715281T2/de
Publication of JPH09258772A publication Critical patent/JPH09258772A/ja
Application granted granted Critical
Publication of JP3397568B2 publication Critical patent/JP3397568B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/20Speech recognition techniques specially adapted for robustness in adverse environments, e.g. in noise, of stress induced speech
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
    • G10L25/24Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being the cepstrum

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Telephonic Communication Services (AREA)
  • Machine Translation (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、隠れマルコフモデ
ル(HMM)を用いて音声認識をおこなう、音声認識方
法及び装置に関するものである。
【0002】
【従来の技術】実環境において音声認識を行う場合、特
に問題となるのはマイクや電話回線特性などの影響によ
る回線特性の歪みと、内部雑音などの加算性雑音であ
る。これらに対処する方法として、これまでCepst
rum Mean Subtraction(CMS)
法やParallel Model Combinat
ion(PMC)法が提案されている。CMS法は「R
ahim,et al.:Signal Bias R
emoval for Robust Telepho
ne Based Speech Recogniti
on in Adverse Environment
s,Proc.of ICASSP ’94,(199
4).」などに詳しく、PMC法については「M.J.
Gales,S.Young:An Improved
Approach to theHidden Ma
rkov Model Decomposition
ofSpeech and Noise,Proc.o
f ICASSP’92,I−233−236,(19
92).」に詳しく述べられている。
【0003】CMS法は回線特性の歪みを補償するため
の一手法である。これに対しPMC法は加算性雑音に対
処するための方法である。いずれも入力音声から雑音部
と音声部を検出し、その情報をもとに回線歪みや雑音の
ない環境で作成されたHidden Markov M
odel(HMM)を修正し、入力環境に適応させる。
これによって回線特性や雑音が変動した場合でも、柔軟
に対処できる。
【0004】CMS法はインパルス応答の畳み込みで作
用する乗算性雑音(回線歪み)を補償する方法である。
入力音声の長時間スペクトルを入力音声から差し引き、
またモデル作成に用いた音声の長時間スペクトルをモデ
ルから差し引くことにより回線特性の差を正規化する。
正規化処理は対数スペクトル領域やケプストラム領域で
行うのが一般的である。乗算性雑音はこの二者の領域で
は加算性歪みとしてあらわれるので、引き算により雑音
補償が可能となる。このうちケプストラム領域で行う方
法がCMSと呼ばれている。
【0005】PMC法は無雑音環境で収録した音声で学
習したHMM(音声HMM)と雑音で学習したHMM
(雑音HMM)と加算合成して、モデルをより雑音重畳
環境に近づける方法である。PMCにおける雑音処理で
は、線形スペクトル領域で雑音と音声の加算性が成立す
ることを仮定している。一方、HMMは音声の特徴量と
して、ケプストラムなど対数スペクトル系のパラメータ
を用いることが多い。PMC法では、これらのパラメー
タを線形スペクトル領域に変換し、音声HMMおよび雑
音HMMから得られる特徴量の線形スペクトル領域での
加算合成を行っている。音声と雑音との合成後、逆変換
を行って線形スペクトル領域からケプストラム領域に戻
すことによって、雑音重畳音声HMMを得ている。
【0006】
【発明が解決しようとする課題】以上述べたようにCM
S法を用いることにより、マイクや電話回線特性などの
影響による回線特性の歪みに対処することができる。ま
たPMC法を用いることにより、内部雑音などの加算性
雑音に対処することができる。よってCMSとPMCを
組み合わせることにより、回線歪みと加算性雑音の影響
がある場合でも同時に適応できる。しかし、単に両者を
組み合わせた場合、SNR(信号対量子化雑音比)が低
い場合回線特性の推定がうまく行かない恐れがある。
【0007】これは回線特性推定の際に加算性雑音が悪
影響を及ぼし、回線特性の推定がうまく行かないことに
起因する。特に加算性雑音の特性が白色雑音でない場合
問題が大きい。
【0008】
【課題を解決するための手段】上記課題を解決するため
に、本発明は、音声部と非音声部とを含む音声を入力
し、前記音声をケプストラム時系列に変換し、前記入力
音声に含まれる音声部のケプストラム時系列から音声部
のケプストラム長時間平均を求め、前記入力音声に含ま
れる非音声部のケプストラム時系列から雑音HMMを求
め、前記音声部のケプストラム長時間平均から前記雑音
HMMの平均パラメータの定数倍の値を線形スペクトル
次元上で差し引き、前記差し引きで求められた値を線形
スペクトル領域からケプストラム領域へ変換することに
より補正された入力音声のケプストラム平均を求め、学
習用音声ケプストラムデータの音声部から求められたケ
プストラム長時間平均を、前記学習用音声ケプストラム
データから求められた音声HMMの平均値パラメータか
ら差し引き、さらに前記補正された入力音声のケプスト
ラム平均を加えることにより音声HMMの平均値パラメ
ータを変更し、前記雑音HMMおよび前記パラメータが
更新された音声HMMをケプストラム領域から線形領域
へ変換を行い、両者をパラレル・モデル・コンビネーシ
ョン法(PMC法)で混合し、混合結果を線形領域から
ケプストラム領域へ変換することにより雑音に適応した
HMMを求め音声認識に使うことを特徴とする音声認識
方法を提供する。
【0009】上記課題を解決するために、本発明は、音
声部と非音声部とを含む音声を入力する入力手段と、前
記音声をケプストラム時系列に変換する変換手段と、前
記入力音声に含まれる音声部のケプストラム時系列から
音声部のケプストラム長時間平均を求めるケプストラム
長時間平均導出手段と、前記入力音声に含まれる非音声
部のケプストラム時系列から雑音HMMを求める雑音H
MM導出手段と、前記音声部のケプストラム長時間平均
から前記雑音HMMの平均パラメータの定数倍の値を線
形スペクトル次元上で差し引く差し引き手段と、前記差
し引きで求められた値を線形スペクトル領域からケプス
トラム領域へ変換することにより補正された入力音声の
ケプストラム平均を求めるケプストラム平均導出手段
と、学習用音声ケプストラムデータの音声部から求めら
れたケプストラム長時間平均を、前記学習用音声ケプス
トラムデータから求められた音声HMMの平均値パラメ
ータから差し引き、さらに前記補正された入力音声のケ
プストラム平均を加えることにより音声HMMの平均値
パラメータを変更する変更手段と、前記雑音HMMおよ
び前記パラメータが更新された音声HMMをケプストラ
ム領域から線形領域へ変換を行い、両者をパラレル・モ
デル・コンビネーション法(PMC法)で混合し、混合
結果を線形領域からケプストラム領域へ変換するケプス
トラム領域変換手段とを有することを特徴とする音声認
識装置を提供する。
【0010】
【0011】
【0012】
【0013】
【0014】
【0015】
【0016】
【0017】
【発明の実施の形態】図3は本発明の音声認識装置の構
成を表わすブロック図である。101はCRTや液晶表
示器等の表示部であり、本発明の音声認識の結果得られ
る文字列を表示する。102はLBPやインクジェット
プリンタ等の印字部であり、本発明の音声認識の結果得
られる文字列を印字する。103はマイクロフォン等の
音声入力部であり、公衆回線等を介して入力するもので
あっても良い。104はCPUであり、記憶部105や
CDROM等の着脱可能な記憶媒体107に記憶されて
いる制御プログラムに従って以下説明する各種処理を実
行するよう制御する。105は装置内に備える記憶部で
あって、CPU104が実行する後述の各種処理の為の
制御プログラムやその為に必要な各種パラメータ(例え
ば音声認識に用いる辞書に相当するデータ等)、認識す
る音声データ等を記憶する。106は通信I/Fであっ
て、公衆回線やLAN等の通信手段を介してデータの受
授を行うべく通信の制御を行う。この通信I/Fによ
り、他の装置で入力された音声や、他の装置が記憶して
いる制御プログラムや各種パラメータを本装置にとり込
み、記憶部105に記憶させた後、以下説明する各処理
を開始するようにしても良い。107は例えばCDRO
M、FD等の本体に着脱可能な記憶媒体であって、記憶
部105に記憶されているとして先に説明した制御プロ
グラム、各種パラメータ、音声データを記憶することの
可能な本体に着脱可能な記憶媒体であって、以下説明す
る各処理を開始する前にこの記憶媒体107から記憶部
105にデータをダウンロードしても良いし、或いはC
PU104が直接記憶媒体107にアクセスしても良
い。図3は記憶部105或いは記憶媒体107に記憶さ
れているデータのメモリマップであり、401?403
に示すような各処理の制御プログラムが格納されてい
る。また、図3には図示していないが、この他にパラメ
ータ格納部、音声データ格納部、ワーキングエリア等も
備える。
【0018】以下、図1に従って本発明の実施の形態を
詳細に説明する。図1は本発明音声認識処理の機能的な
ブロック構成図であり、データの流れがわかるようにし
てある。図1において、1は学習用音声データベース上
のデータからCM(CepstrumMean: ケプストラム長時
間平均)を計算するCM計算部であり、CM導出プログ
ラム401-aに従ってCMを計算する。2はその結果
得て記憶部105に記憶されたCM(以後CM(2)と
称する)、3は学習用音声データベース上のデータから
HMMを求めるためのHMM学習部、4はその結果得て
記憶部105に記憶されたHMM(以後HMM(4)と
称する)、5は入力音声に含まれる音声部からCMを求
めるためのCM計算部であり、CM導出プログラム40
1-aに従ってCMを求める。6はその結果得て記憶部
105に記憶されたCM(以後CM(6)と称する)、
7は入力音声に含まれる非音声部から雑音HMMを学習
するための雑音HMM学習部、8はその結果得て記憶部
105に記憶された雑音HMM(以後HMM(8)と称
する)、9は入力音声の音声部から得られたCM(6)
をケプストラム領域から線形スペクトル領域へ変換する
ための変換部であり、線形スペクトル領域変換プログラ
ム401-bに従って実行される。10は雑音HMM
(8)をケプストラム領域から線形スペクトル領域へ変
換するための変換部であり、線形スペクトル領域変換プ
ログラム401-cに従って実行される。11は線形ス
ペクトル領域からケプストラム領域への変換部、12は
ケプストラム領域から線形ケプストラム領域への変換
部、13はPMC実行部であり、PMC法データ処理プ
ログラムに従って実行される。14はPMCで得られた
モデルの線形スペクトル領域表現をケプストラム領域へ
変換するための変換部、15は変換して最終的に得られ
たHMM(以後HMM(15)と称する)、16は15
のHMM(15)を用いて音声認識を行う音声認識部で
ある。
【0019】本認識装置は入力音声の一部を取り込み、
そのデータでモデルの適応をおこなう、環境適応型とし
て動作する。まず環境適応モードにおける動作の説明を
行う。最初に音声入力部103より入力した入力音声は
音声部と音声が入っていない非音声部に分けられる。入
力音声はケプストラムなどのパラメータに変換されてい
るものとする。まず雑音HMM学習部7により非音声部
のデータを用いて雑音用のHMMを通常のBaum-W
elchアルゴリズムで学習する。これにより雑音HM
M(8)ができる。また入力音声の音声部のケプストラ
ムの長時間平均を5で計算する。それぞれをケプストラ
ム領域から線形スペクトル領域へ変換する。変換法は前
述のM.J.Gales,et.al.の文献に詳し
い。この場合変換は音声部のCM(6)では平均値のみ
を用い、雑音HMM(8)について平均値および分散の
値を用いる。入力データの音声部から計算したCM
(6)の線形スペクトル領域CM(6)′での表現を以
下のように表わす。
【0020】
【外1】
【0021】非音声部から計算したHMM(8)のパラ
メータのうち平均値の線形スペクトル領域表現を以下の
ように表わす。
【0022】
【外2】
【0023】ここで添字linは線形スペクトル表現を
示す。次に
【0024】
【外3】
【0025】式(1)に示す計算を行い、この結果を1
1の変換部で線形スペクトル表現からケプストラム表現
への変換を行う。これを
【0026】
【外4】 以下のように表わす。
【0027】この式(1)に示す引き算により入力音声
のCM(6)の推定誤りを低減できる。ここでK1は定
数である。また引数cepはケプストラム表現を表わ
す。
【0028】次に学習用音声データベースの一部のデー
タを用いてCM学習部1でCM(2)を計算する。
【0029】
【外5】
【0030】また同じく学習用音声データベースの一部
のデータを用いて音声認識用の音素や単語などを単位と
したHMM(4)をHMM学習部3で学習する。このH
MMのパラメータのうち平均値HMM(4)′を以下の
ように表わす。
【0031】HMM(4)′=y(t)cep
【0032】これが適応前の雑音や回線変動に対応しな
いHMMの平均値パラメータとなる。このHMM
(4)′を用いても音声認識は可能であるが、雑音や回
線変動の影響を受けた場合認識率が低下する。次に式
(2)に示す計算を行う。
【0033】
【外6】
【0034】これによりHMM学習部3で求められたH
MM(4)のうち平均値が変換されてHMM(4)″が
求められたことになる。ここで出来たHMM(4)″は
雑音と回線変動のうち回線変動のみに対処したものとな
る。
【0035】次に12でこのHMM(4)″をケプスト
ラム表現から線形スペクトル表現に変換する。またPM
C13において10から得られた雑音HMM(8)′に
定数K2をかけ、この雑音HMM(8)′と回線変動の
みに対応したHMM(4)″をPMC法により混合し、
HMM(13)を求める。得られたHMM(13)を1
4でケプストラム表現に変換することにより、雑音およ
び回線変動に適応したHMM(14)が得られる。この
得られたHMM(14)を用いて音声認識部16におい
て一般的なHMMを用いた音声認識法により音声認識を
おこなう。
【0036】上述の実施の形態とは異なる実施の形態と
して、以下に適応モードと認識モードを別個に行わない
方法について説明する。図1の構成では、適応のための
音声入力と認識のための音声入力には別個に切替えてす
るようになっている。これに対し適応モードを設けない
構成も可能である。図2にこの構成を示す。認識対象語
彙が音声入力部103より入力されるとそのデータが音
声部と非音声部に分けられ18の環境適応部に渡させ
る。この環境適応部は図1で説明した構成5〜構成14
と同じものである。この環境適応部(8)により17に
記憶されている適応前のHMM(HMM(4)に相当)
が適応されて19の適応後のHMMが得られる(HMM
(14)に相当)。このHMMを用い20の音声認識部
で認識対象語彙が認識される。つまり先の例とは異な
り、1つの入力音声が適応と認識の両方で用いられるこ
とになる。
【0037】
【発明の効果】従来のCMSとPMCの組合せでは加算
性雑音が大きい場合、CMが正確に推定されず認識率が
低下するという問題があったが、本発明によれば雑音が
大きい場合でも、その雑音の影響を加味してCMが求め
られるため、回線変動の推定の精度が高まり、ひいては
認識性能の向上につながる。
【0038】また、PMCでは、HMMの平均パラメー
タのみならず分散パラメータも考慮した雑音モデルと音
声モデルの合成を行うため、より耐雑音性が高くなる。
【図面の簡単な説明】
【図1】本発明の音声認識装置のブロック構成図。
【図2】他の音声認識装置のブロック構成図。
【図3】音声認識装置の構成図。
【図4】記憶部内のメモリマップ例。
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G10L 15/14 G10L 15/02 G10L 15/06

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】 音声部と非音声部とを含む音声を入力
    し、 前記音声をケプストラム時系列に変換し、 前記入力音声に含まれる音声部のケプストラム時系列か
    ら音声部のケプストラム長時間平均を求め、 前記入力音声に含まれる非音声部のケプストラム時系列
    から雑音HMMを求め、 前記音声部のケプストラム長時間平均から前記雑音HM
    Mの平均パラメータの定数倍の値を線形スペクトル次元
    上で差し引き、 前記差し引きで求められた値を線形スペクトル領域から
    ケプストラム領域へ変換することにより補正された入力
    音声のケプストラム平均を求め、 学習用音声ケプストラムデータの音声部から求められた
    ケプストラム長時間平均を、前記学習用音声ケプストラ
    ムデータから求められた音声HMMの平均値パラメータ
    から差し引き、さらに前記補正された入力音声のケプス
    トラム平均を加えることにより音声HMMの平均値パラ
    メータを変更し、 前記雑音HMMおよび前記パラメータが更新された音声
    HMMをケプストラム領域から線形領域へ変換を行い、
    両者をパラレル・モデル・コンビネーション法(PMC
    法)で混合し、混合結果を線形領域からケプストラム領
    域へ変換することにより雑音に適応したHMMを求め音
    声認識に使うことを特徴とする音声認識方法。
  2. 【請求項2】 音声部と非音声部とを含む音声を入力す
    る入力手段と、 前記音声をケプストラム時系列に変換する変換手段と、 前記入力音声に含まれる音声部のケプストラム時系列か
    ら音声部のケプストラム長時間平均を求めるケプストラ
    ム長時間平均導出手段と、 前記入力音声に含まれる非音声部のケプストラム時系列
    から雑音HMMを求める雑音HMM導出手段と、 前記音声部のケプストラム長時間平均から前記雑音HM
    Mの平均パラメータの定数倍の値を線形スペクトル次元
    上で差し引く差し引き手段と、 前記差し引きで求められた値を線形スペクトル領域から
    ケプストラム領域へ変換することにより補正された入力
    音声のケプストラム平均を求めるケプストラム平均導出
    手段と、 学習用音声ケプストラムデータの音声部から求められた
    ケプストラム長時間平均を、前記学習用音声ケプストラ
    ムデータから求められた音声HMMの平均値パラメータ
    から差し引き、さらに前記補正された入力音声のケプス
    トラム平均を加えることにより音声HMMの平均値パラ
    メータを変更する変更手段と、 前記雑音HMMおよび前記パラメータが更新された音声
    HMMをケプストラム領域から線形領域へ変換を行い、
    両者をパラレル・モデル・コンビネーション法(PMC
    法)で混合し、混合結果を線形領域からケプストラム領
    域へ変換するケプストラム領域変換手段とを有すること
    を特徴とする音声認識装置。
JP06804696A 1996-03-25 1996-03-25 音声認識方法及び装置 Expired - Fee Related JP3397568B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP06804696A JP3397568B2 (ja) 1996-03-25 1996-03-25 音声認識方法及び装置
US08/821,719 US5924067A (en) 1996-03-25 1997-03-20 Speech recognition method and apparatus, a computer-readable storage medium, and a computer- readable program for obtaining the mean of the time of speech and non-speech portions of input speech in the cepstrum dimension
EP97301980A EP0798695B1 (en) 1996-03-25 1997-03-24 Speech recognizing method and apparatus
DE69715281T DE69715281T2 (de) 1996-03-25 1997-03-24 Verfahren und Vorrichtung zur Spracherkennung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06804696A JP3397568B2 (ja) 1996-03-25 1996-03-25 音声認識方法及び装置

Publications (2)

Publication Number Publication Date
JPH09258772A JPH09258772A (ja) 1997-10-03
JP3397568B2 true JP3397568B2 (ja) 2003-04-14

Family

ID=13362465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06804696A Expired - Fee Related JP3397568B2 (ja) 1996-03-25 1996-03-25 音声認識方法及び装置

Country Status (4)

Country Link
US (1) US5924067A (ja)
EP (1) EP0798695B1 (ja)
JP (1) JP3397568B2 (ja)
DE (1) DE69715281T2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10257583A (ja) 1997-03-06 1998-09-25 Asahi Chem Ind Co Ltd 音声処理装置およびその音声処理方法
JP3902860B2 (ja) * 1998-03-09 2007-04-11 キヤノン株式会社 音声合成制御装置及びその制御方法、コンピュータ可読メモリ
US7039588B2 (en) * 2000-03-31 2006-05-02 Canon Kabushiki Kaisha Synthesis unit selection apparatus and method, and storage medium
JP3728177B2 (ja) 2000-05-24 2005-12-21 キヤノン株式会社 音声処理システム、装置、方法及び記憶媒体
JP3774698B2 (ja) * 2000-10-11 2006-05-17 キヤノン株式会社 情報処理装置、情報処理方法及び記憶媒体
JP2002268681A (ja) * 2001-03-08 2002-09-20 Canon Inc 音声認識システム及び方法及び該システムに用いる情報処理装置とその方法
JP3542578B2 (ja) * 2001-11-22 2004-07-14 キヤノン株式会社 音声認識装置及びその方法、プログラム
JP3826032B2 (ja) * 2001-12-28 2006-09-27 株式会社東芝 音声認識装置、音声認識方法及び音声認識プログラム
JP4728791B2 (ja) * 2005-12-08 2011-07-20 日本電信電話株式会社 音声認識装置、音声認識方法、そのプログラムおよびその記録媒体
JP5609182B2 (ja) * 2010-03-16 2014-10-22 日本電気株式会社 音声認識装置、音声認識方法および音声認識プログラム
JP5200080B2 (ja) * 2010-09-29 2013-05-15 日本電信電話株式会社 音声認識装置、音声認識方法、およびそのプログラム
US20220254332A1 (en) * 2019-07-30 2022-08-11 Dolby Laboratories Licensing Corporation Method and apparatus for normalizing features extracted from audio data for signal recognition or modification

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4899386A (en) * 1987-03-11 1990-02-06 Nec Corporation Device for deciding pole-zero parameters approximating spectrum of an input signal
JPH02239292A (ja) * 1989-03-13 1990-09-21 Canon Inc 音声合成装置
DE69028072T2 (de) * 1989-11-06 1997-01-09 Canon Kk Verfahren und Einrichtung zur Sprachsynthese
JPH03150599A (ja) * 1989-11-07 1991-06-26 Canon Inc 日本語音節の符号化方式
US5204906A (en) * 1990-02-13 1993-04-20 Matsushita Electric Industrial Co., Ltd. Voice signal processing device
DE69121312T2 (de) * 1990-05-28 1997-01-02 Matsushita Electric Ind Co Ltd Geräuschsignalvorhersagevorrichtung
JP3066920B2 (ja) * 1991-06-11 2000-07-17 キヤノン株式会社 音声認識方法及び装置
JPH04362698A (ja) * 1991-06-11 1992-12-15 Canon Inc 音声認識方法及び装置
JPH05188994A (ja) * 1992-01-07 1993-07-30 Sony Corp 騒音抑圧装置
JPH0743598B2 (ja) * 1992-06-25 1995-05-15 株式会社エイ・ティ・アール視聴覚機構研究所 音声認識方法
US5522012A (en) * 1994-02-28 1996-05-28 Rutgers University Speaker identification and verification system
US5590242A (en) * 1994-03-24 1996-12-31 Lucent Technologies Inc. Signal bias removal for robust telephone speech recognition
US5598505A (en) * 1994-09-30 1997-01-28 Apple Computer, Inc. Cepstral correction vector quantizer for speech recognition
US5677990A (en) * 1995-05-05 1997-10-14 Panasonic Technologies, Inc. System and method using N-best strategy for real time recognition of continuously spelled names

Also Published As

Publication number Publication date
DE69715281T2 (de) 2003-07-31
JPH09258772A (ja) 1997-10-03
DE69715281D1 (de) 2002-10-17
EP0798695A2 (en) 1997-10-01
EP0798695A3 (en) 1998-09-09
EP0798695B1 (en) 2002-09-11
US5924067A (en) 1999-07-13

Similar Documents

Publication Publication Date Title
EP0689194B1 (en) Method of and apparatus for signal recognition that compensates for mismatching
EP0831461B1 (en) Scheme for model adaptation in pattern recognition based on taylor expansion
EP1262953B1 (en) Speaker adaptation for speech recognition
US6691091B1 (en) Method for additive and convolutional noise adaptation in automatic speech recognition using transformed matrices
US5924065A (en) Environmently compensated speech processing
EP1195744B1 (en) Noise robust voice recognition
JPH08234788A (ja) 音声認識のバイアス等化方法および装置
EP0660300B1 (en) Speech recognition apparatus
JPH08110793A (ja) 特性ベクトルの前端正規化による音声認識の改良方法及びシステム
US20030115055A1 (en) Method of speech recognition resistant to convolutive distortion and additive distortion
JP3397568B2 (ja) 音声認識方法及び装置
EP0807305A1 (en) Spectral subtraction noise suppression method
JP5242782B2 (ja) 音声認識方法
KR20010005674A (ko) 인식 시스템
EP1189205A2 (en) HMM-based noisy speech recognition
JP2008513825A (ja) 話者に依存しない堅牢な音声認識システム
JP2002311989A (ja) チャネル歪みおよび背景雑音の両方に対して補正した音声認識方法
JPH09160584A (ja) 音声適応化装置および音声認識装置
JPH09258771A (ja) 音声処理方法及び装置
US8423360B2 (en) Speech recognition apparatus, method and computer program product
JP3962445B2 (ja) 音声処理方法及び装置
JP3587966B2 (ja) 音声認識方法、装置そよびその記憶媒体
Hirsch HMM adaptation for applications in telecommunication
Cerisara et al. α-Jacobian environmental adaptation
EP1178465A2 (en) Method for noise adaptation in automatic speech recognition using transformed matrices

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030121

LAPS Cancellation because of no payment of annual fees