JP3397538B2 - Manufacturing method of oxide piezoelectric single crystal - Google Patents

Manufacturing method of oxide piezoelectric single crystal

Info

Publication number
JP3397538B2
JP3397538B2 JP23662095A JP23662095A JP3397538B2 JP 3397538 B2 JP3397538 B2 JP 3397538B2 JP 23662095 A JP23662095 A JP 23662095A JP 23662095 A JP23662095 A JP 23662095A JP 3397538 B2 JP3397538 B2 JP 3397538B2
Authority
JP
Japan
Prior art keywords
single crystal
container
piezoelectric
oxide
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23662095A
Other languages
Japanese (ja)
Other versions
JPH0983038A (en
Inventor
専治 嶋貫
史郎 斉藤
剛史 小林
守 泉
勝 河内
洋八 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23662095A priority Critical patent/JP3397538B2/en
Publication of JPH0983038A publication Critical patent/JPH0983038A/en
Application granted granted Critical
Publication of JP3397538B2 publication Critical patent/JP3397538B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超音波診断装置や
超音波探傷装置などの超音波送受信素子である超音波プ
ローブに用いられる酸化物圧電単結晶の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an oxide piezoelectric single crystal used for an ultrasonic probe which is an ultrasonic transmitting / receiving element of an ultrasonic diagnostic apparatus, an ultrasonic flaw detector, or the like.

【0002】[0002]

【従来の技術】超音波診断装置や超音波探傷装置などの
に用いられる超音波プローブは、圧電素子を主体として
構成され、超音波を対象物に向けて照射し、その対象物
における音響インピーダンスの異なる界面からの反射エ
コーを受信することにより前記対象物の内部状態を画像
化することができる。従来、振動子としては、電気機械
結合係数(k33´,ktなど)が大きく、かつケーブル
や装置浮遊容量による損失が少ない送受信回路とのマッ
チングが取りやすい誘電率の大きなチタン酸ジルコン酸
鉛(PZT)系セラミックが用いられている。
2. Description of the Related Art An ultrasonic probe used in an ultrasonic diagnostic apparatus, an ultrasonic flaw detector, etc., is mainly composed of a piezoelectric element and radiates ultrasonic waves toward an object to detect the acoustic impedance of the object. The internal state of the object can be imaged by receiving reflected echoes from different interfaces. Conventionally, as a vibrator, lead zirconate titanate having a large electromechanical coupling coefficient (k 33 ′, kt, etc.) and a large permittivity that is easy to match with a transmission / reception circuit with little loss due to a cable or device stray capacitance PZT) -based ceramics are used.

【0003】現在、超音波プローブは厚さが数10μm
〜数100μmの短冊状の振動子を数10〜200個程
度配列したアレイプローブが主流であり、振動子数は高
分解能化の要求と共に増加する傾向にある。また、超音
波プローブの高感度化や広帯域化の要求に対しても圧電
素子自体の圧電特性の向上が求められている。これらの
要求に対しては大きな電気機械結合係数を有するPb
[(Zn1/3 Nb2/31-x Tix ]O3 、Pb[(M
1/3 Nb2/31-y Tiy ]O3 、Pb[(Ni1/3
Nb2/31-z Tiz ]O3 、Pb[(Co1/3 Nb
2/31-u Tiu ]O3 、Pb[(A1/2 Nb1/2
1-w Tiw ]O3 (ただし、AはSc、In、Fe、Y
および希土類元素から選ばれる1種)等の3価の金属元
素を含む複合酸化物、これらの複合酸化物においてNb
の一部をTaで置換したタンタル酸−チタン酸鉛の複合
酸化物、およびこれらを組み合わせた複合酸化物などの
ペロブスカイト型酸化物単結晶を用いた超音波プローブ
が期待されている。
Currently, ultrasonic probes have a thickness of several tens of μm.
An array probe in which approximately 10 to 200 strip-shaped oscillators each having a size of several 100 μm are arranged is the mainstream, and the number of oscillators tends to increase with the demand for higher resolution. Further, in response to the demand for higher sensitivity and wider band of the ultrasonic probe, improvement in piezoelectric characteristics of the piezoelectric element itself is required. Pb having a large electromechanical coupling coefficient for these requirements
[(Zn 1/3 Nb 2/3 ) 1-x Ti x ] O 3 , Pb [(M
g 1/3 Nb 2/3 ) 1-y Ti y ] O 3 , Pb [(Ni 1/3
Nb 2/3 ) 1-z Ti z ] O 3 , Pb [(Co 1/3 Nb
2/3 ) 1-u Ti u ] O 3 , Pb [(A 1/2 Nb 1/2 ).
1-w Ti w ] O 3 (where A is Sc, In, Fe, Y
And a complex oxide containing a trivalent metal element such as one selected from rare earth elements), and Nb in these complex oxides.
An ultrasonic probe using a perovskite type oxide single crystal such as a composite oxide of tantalic acid-lead titanate in which a part of the above is substituted with Ta, and a composite oxide combining these is expected.

【0004】ところで、超音波プローブの振動子に用い
られる圧電材料は、大きさが10mm角以上の面積を持
つ板状で、大きい電気機械結合係数(例えばk33´>7
5%)および高い誘電率を有し、かつ個々の振動子にお
いて圧電・誘電体の特性が均一であることが望まれてい
る。通常、前記酸化物圧電単結晶は酸化鉛、酸化硼素等
をフラックスとし、かつ酸化物圧電単結晶の各成分を原
料とする、いわゆるフラックス法により育成されてい
る。このフラックス法は、前記フラックスと前記酸化物
圧電単結晶の原料を900℃以上の温度で溶融した後、
850℃以下の共晶温度付近まで単に徐冷して単結晶を
析出させる簡便な育成方法である。
By the way, the piezoelectric material used for the transducer of the ultrasonic probe is a plate having a size of 10 mm square or more, and has a large electromechanical coupling coefficient (for example, k 33 ′> 7).
5%) and a high dielectric constant, and it is desired that the characteristics of the piezoelectric / dielectric body be uniform in each vibrator. Usually, the oxide piezoelectric single crystal is grown by a so-called flux method in which lead oxide, boron oxide, etc. are used as a flux, and each component of the oxide piezoelectric single crystal is used as a raw material. In this flux method, the flux and the raw material of the piezoelectric oxide single crystal are melted at a temperature of 900 ° C. or higher,
This is a simple growth method in which a single crystal is precipitated by simply slowly cooling it to near the eutectic temperature of 850 ° C. or less.

【0005】しかしながら、前記フラックス法では溶液
から前記酸化鉛を含むペロブスカイト型酸化物単結晶を
育成する場合、有用でない低誘電率の酸化鉛と酸化ニオ
ブからなるパイクロア型の酸化物単結晶が発生し易い。
さらに、前記ペロブスカイト型の酸化物単結晶は<11
1>方位が最も優勢な成長方位であるため、<111>
方位に速く成長し易い。特に、<111>方位の成長が
顕著である場合にはパイクロア型の酸化物単結晶が発生
し易くなる。また、このような場合には<111>方位
に伸びた矢じり形の単結晶になり易く、成長中に単結晶
内部にフラックス成分からなるインクルージョンと呼ば
れる包有物、成長応力歪、双晶などの欠陥が生じやす
い。このような欠陥が生じると、超音波プローブの製作
に必要な10mm以上の大きい単結晶を育成した時に圧
電・誘電特性にばらつきが起こる。さらに、前記酸化物
圧電単結晶は全て固溶系の酸化物であるため、徐冷して
結晶成長を行うと、それと共に組成が徐々に変化して、
超音波プローブの振動子に用いた場合には特性の不均一
化が起こる。その結果、超音波プローブの感度が実質的
に低下したり、帯域が狭くなとるいう問題が生じる。
However, when the perovskite type oxide single crystal containing the lead oxide is grown from the solution by the flux method, an unusable low dielectric constant lead oxide and niobium oxide piechlore type oxide single crystal is generated. easy.
Furthermore, the perovskite type oxide single crystal is <11
Since the 1> orientation is the most dominant growth orientation, <111>
Easy to grow fast in the direction. In particular, when the growth in the <111> direction is remarkable, a pichlore type oxide single crystal is likely to be generated. In such a case, an arrowhead-shaped single crystal extending in the <111> orientation is likely to be formed, and inclusions called inclusions made of flux components inside the single crystal during growth, growth stress strain, twin crystals, etc. Defects are likely to occur. When such a defect occurs, the piezoelectric / dielectric characteristics vary when a large single crystal having a size of 10 mm or more necessary for manufacturing an ultrasonic probe is grown. Furthermore, since all of the oxide piezoelectric single crystals are solid solution type oxides, when crystal growth is performed by slow cooling, the composition gradually changes with it,
When it is used as an oscillator of an ultrasonic probe, the characteristics become non-uniform. As a result, there arise problems that the sensitivity of the ultrasonic probe is substantially lowered and the band is narrowed.

【0006】[0006]

【発明が解決しようとする課題】本発明は、大面積にし
ても単結晶内部に包有物、成長応力歪、双晶などの欠陥
が生じず、しかも圧電・誘電特性に優れ、かつ均一な組
成を有する酸化物圧電単結晶の製造方法を提供しようと
するものである。
SUMMARY OF THE INVENTION According to the present invention, defects such as inclusions, growth stress strains, and twins do not occur inside a single crystal even if the area is large, and the piezoelectric and dielectric characteristics are excellent and uniform. An object of the present invention is to provide a method for producing an oxide piezoelectric single crystal having a composition.

【0007】[0007]

【課題を解決するための手段】本発明に係る酸化物圧電
単結晶の製造方法は、Pb[(Zn1/3Nb2/31-x
x]O3(ただし、xは0.05≦x≦0.20を示
す)、Pb[(Mg1/3Nb2/31-yTiy]O3(ただ
し、yは0.20≦y≦0.40を示す)、Pb[(N
1/3Nb2/31-zTiz]O3(ただし、zは0.30
≦z≦0.50を示す)、Pb[(Co1/3Nb2/3
1-uTiu]O3(ただし、uは0.10≦u≦0.30
を示す)、Pb[(A1/2Nb1/21-wTiw]O3(た
だし、AはSc、In、Fe、Yおよび希土類元素から
選ばれる1種、wは0.30≦w≦0.50を示す)、
にて表されるペロブスカイト型複合酸化物、もしくは前
記式中のNbの一部をTaで置換したペロブスカイト型
複合酸化物、または前記式中のPbの一部を10モル%
以内の量でNa、Sr、Ca、およびLaの少なくとも
1種で置換したペロブスカイト型複合酸化物からなる圧
電単結晶をフラックス法により製造するにあたり、底部
の曲率半径が少なくとも10mm以上の有底筒状容器内
に主に酸化鉛をフラックス、前記圧電単結晶の各成分を
原料として収容する工程と、下方に向けて温度を下げ、
その温度勾配を0.05〜20℃/mmとした電気炉内
に前記有底筒状容器を配置してその有底筒状容器内の前
記フラックスおよび原料を溶融した後、前記有底筒状容
器を前記温度勾配を持つ電気炉領域を0.05〜10m
m/hrの速度で下降させることにより前記有底筒状容
器の底部位置に<100>方位の単結晶の核を発生さ
せ、この単結晶の核から<100>方位に単結晶を成長
させる工程とを含むことを特徴とするものである。
A method of manufacturing an oxide piezoelectric single crystal according to the present invention is carried out by using Pb [(Zn 1/3 Nb 2/3 ) 1-x T
i x ] O 3 (where x is 0.05 ≦ x ≦ 0.20), Pb [(Mg 1/3 Nb 2/3 ) 1-y Ti y ] O 3 (where y is 0. 20 ≦ y ≦ 0.40), Pb [(N
i 1/3 Nb 2/3) 1-z Ti z] O 3 ( however, z is 0.30
≦ z ≦ 0.50), Pb [(Co 1/3 Nb 2/3 ).
1-u Ti u ] O 3 (where u is 0.10 ≦ u ≦ 0.30
, Pb [(A 1/2 Nb 1/2 ) 1-w Ti w ] O 3 (where A is one selected from Sc, In, Fe, Y and rare earth elements, and w is 0.30). ≦ w ≦ 0.50),
Or a perovskite-type composite oxide in which a part of Nb in the above formula is replaced by Ta, or a part of Pb in the above formula is 10 mol%
In manufacturing a piezoelectric single crystal composed of a perovskite-type composite oxide substituted with at least one of Na, Sr, Ca, and La by the flux method, a bottomed cylindrical shape having a bottom radius of curvature of at least 10 mm or more Flux mainly containing lead oxide in the container, a step of containing each component of the piezoelectric single crystal as a raw material, and lowering the temperature downward,
The bottomed tubular container is placed in an electric furnace having a temperature gradient of 0.05 to 20 ° C./mm, the flux and the raw material in the bottomed tubular container are melted, and then the bottomed tubular container is The container has an electric furnace area having the temperature gradient of 0.05 to 10 m.
A step of generating a <100> orientation single crystal nucleus at the bottom position of the bottomed cylindrical container by lowering at a speed of m / hr, and growing a single crystal in the <100> orientation from this single crystal nucleus. It is characterized by including and.

【0008】このような本発明によれば、<111>方
位の成長を抑制し、優先的に<100>方位の単結晶核
を発生させて、それを継続的に<100>方位に単結晶
を成長させるので、前述したパイクロア型の酸化物単結
晶が生成し難く、従来のフラックス法で見られた単結晶
内部の包有物、成長応力歪、双晶などの欠陥が生じるこ
となく、それと共に単結晶内部の組成変動も極めて小さ
く、大面積でも優れた圧電特性・誘電特性を有する均一
な組成の酸化物圧電単結晶を製造することができる。
According to the present invention, the growth of the <111> orientation is suppressed, preferentially the single crystal nuclei of the <100> orientation are generated, and the single crystal nuclei are continuously oriented in the <100> orientation. It is difficult to generate the above-mentioned Pychlore type oxide single crystal because it is grown, and inclusion defects inside the single crystal, growth stress strain, twin defects, etc. found in the conventional flux method do not occur. At the same time, the composition fluctuation inside the single crystal is extremely small, and it is possible to manufacture an oxide piezoelectric single crystal having a uniform composition having excellent piezoelectric characteristics and dielectric characteristics even in a large area.

【0009】特に、形状が直方体で、かつその単結晶の
<111>の軸として3回対称の成長稜が3mm以上の
長さで形成されたペロブスカイト型酸化物圧電単結晶は
単結晶内部の包有物の欠陥発生が皆無となる。
In particular, a perovskite type oxide piezoelectric single crystal having a rectangular parallelepiped shape and a growth edge of three-fold symmetry with a length of 3 mm or more with respect to the <111> axis of the single crystal is formed inside the single crystal. There will be no defects in the material.

【0010】[0010]

【発明の実施の形態】以下、本発明に係わる酸化物圧電
単結晶の製造方法を図面を参照して詳細に説明する。図
1は、酸化物圧電単結晶の育成装置を示す概略図であ
る。図中の1は、上下方向にヒータ2が埋設された縦型
管状電気炉である。図中の3は、前記電気炉1内に上下
動自在に配置される有底筒状容器である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for manufacturing an oxide piezoelectric single crystal according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram showing an apparatus for growing an oxide piezoelectric single crystal. Reference numeral 1 in the figure is a vertical tubular electric furnace in which a heater 2 is embedded in the vertical direction. Reference numeral 3 in the drawing denotes a bottomed cylindrical container which is vertically movable in the electric furnace 1.

【0011】まず、酸化鉛を主成分とし、酸化ニオブお
よび酸化タンタルから選ばれる少なくとも1種を含む原
料を有底筒状容器3内に収容する。この有底筒状容器3
をヒータ2により中央部が最も高温度で、上方および下
方に向かうに従って温度が低くなるように設定した、つ
まり温度勾配を持たせた電気炉1内に吊下する。つづい
て、前記電気炉1内で有底筒状容器3内の原料およびフ
ラックスを溶融した後、前記容器3を徐々に下降させる
ことにより溶液4が収容された前記容器3底部が局所的
に低温になり、前記底部位置に<100>方位の単結晶
の核を発生し、この単結晶の核から<100>方位に単
結晶5を成長させる。
First, a raw material containing lead oxide as a main component and at least one selected from niobium oxide and tantalum oxide is placed in a bottomed cylindrical container 3. This bottomed cylindrical container 3
Is set to have the highest temperature in the central portion by the heater 2 and to be lowered as it goes upward and downward, that is, is suspended in the electric furnace 1 having a temperature gradient. Then, after melting the raw material and the flux in the bottomed cylindrical container 3 in the electric furnace 1, the container 3 containing the solution 4 is locally cooled at a low temperature by gradually lowering the container 3. Then, a single crystal nucleus of <100> orientation is generated at the bottom position, and the single crystal 5 is grown in the <100> orientation from this single crystal nucleus.

【0012】前記方法で育成される酸化物圧電単結晶
は、Pb[(Zn1/3 Nb2/3 1-xTix ]O3 (た
だし、xは0.05≦x≦0.20を示す)、Pb
[(Mg1/3Nb2/31-yTiy]O3(ただし、yは
0.20≦y≦0.40を示す)、Pb[(Ni1/3
2/31-zTiz]O3(ただし、zは0.30≦z≦
0.50を示す)、Pb[(Co1/3Nb2/31-u
u]O3(ただし、uは0.10≦u≦0.30を示
す)、Pb[(A1/2Nb1/21-wTiw]O3(ただ
し、AはSc、In、Fe、Yおよび希土類元素から選
ばれる1種、wは0.30≦w≦0.50を示す)にて
表されるペロブスカイト型複合酸化物、もしくは前記式
中のNbの一部をTaで置換したペロブスカイト型複合
酸化物、または前記式中のPbの一部を10モル%以内
の量でNa、Sr、Ca、およびLaの少なくとも1種
で置換したペロブスカイト型複合酸化物である。
The oxide piezoelectric single crystal grown by the above method is Pb [(Zn 1/3 Nb 2/3 ) 1-x Ti x ] O 3 (where x is 0.05 ≦ x ≦ 0.20). ), Pb
[(Mg 1/3 Nb 2/3 ) 1-y Ti y ] O 3 (where y is 0.20 ≦ y ≦ 0.40), Pb [(Ni 1/3 N
b 2/3 ) 1-z Ti z ] O 3 (where z is 0.30 ≦ z ≦
0.50), Pb [(Co 1/3 Nb 2/3 ) 1-u T
i u ] O 3 (where u represents 0.10 ≦ u ≦ 0.30), Pb [(A 1/2 Nb 1/2 ) 1-w Ti w ] O 3 (where A is Sc, One kind selected from In, Fe, Y and rare earth elements, w is 0.30 ≦ w ≦ 0.50), or a part of Nb in the above formula is Ta. Or a perovskite-type composite oxide in which a part of Pb in the above formula is replaced with at least one of Na, Sr, Ca, and La in an amount of 10 mol% or less.

【0013】前記ペロブスカイト型複合酸化物の単結晶
を育成する溶液組成は、育成する単結晶組成(例えば亜
鉛ニオブ鉛−チタン酸鉛のペロブスカイト型酸化物圧電
単結晶をPZN−PTと略す)と酸化鉛(PbO)を主
成分とするフラックス組成(Fluxと略す)との組成
比がモル比でPZN−PT/Flux=20/80以上
であることが好ましい。ブリッジマン法では、モル比で
PZN−PT/Flux=30/70〜95/5の範囲
であることが好ましい。前記フラックス成分は、主に酸
化鉛(PbO)、酸化硼素(B23 )および単結晶成
分の少なくとも1つの元素(A)の酸化物(A;Zn、
Mg、Ni、Fe、Co、Sc、Inなどの希土類元素
から選ばれる少なくとも1つの元素)からなり、そのフ
ラックス組成としてはPbO=60〜100モル%、B
23 =0〜40モル%、Aの酸化物=0〜40モル%
であることが好ましい。前記PbOの一部は、PbF
2 、PbO2 、Pb34 などの鉛化合物で置換される
ことを許容する。また、その他の添加物として、Li2
O、K2 O、CaO、SrO、MnO、CuO、Al2
3 、Ga23 、Bi23 、La23 、Nd2
3 、SiO2 、GeO2 、SnO2 、ZrO2 、HfO
2 、V25 、Sb25 、Ta25 を5モル%の範
囲内で使用することを許容する。PZN−PT以外のペ
ロブストカイト型酸化物圧電単結晶も前述したのと同様
な方法により育成される。
The solution composition for growing the single crystal of the perovskite type composite oxide is composed of a single crystal composition to be grown (eg, a perovskite type oxide piezoelectric single crystal of lead zinc niobium-lead titanate is abbreviated as PZN-PT) and oxidation. It is preferable that the composition ratio with respect to the flux composition containing lead (PbO) as the main component (abbreviated as Flux) is PZN-PT / Flux = 20/80 or more in molar ratio. In the Bridgman method, the molar ratio is preferably in the range of PZN-PT / Flux = 30/70 to 95/5. The flux component is mainly an oxide (A; Zn,) of lead oxide (PbO), boron oxide (B 2 O 3 ) and at least one element (A) of a single crystal component.
At least one element selected from rare earth elements such as Mg, Ni, Fe, Co, Sc and In), and its flux composition is PbO = 60 to 100 mol%, B
2 O 3 = 0 to 40 mol%, oxide of A = 0 to 40 mol%
Is preferred. Part of the PbO is PbF
Allowed to be replaced by lead compounds such as 2 , PbO 2 and Pb 3 O 4 . Moreover, as other additives, Li 2
O, K 2 O, CaO, SrO, MnO, CuO, Al 2
O 3, Ga 2 O 3, Bi 2 O 3, La 2 O 3, Nd 2 O
3 , SiO 2 , GeO 2 , SnO 2 , ZrO 2 , HfO
2 , V 2 O 5 , Sb 2 O 5 , and Ta 2 O 5 are allowed to be used within the range of 5 mol%. Perovstokite type oxide piezoelectric single crystals other than PZN-PT are also grown by the same method as described above.

【0014】前記容器は、Pt、Rhのような貴金属か
ら形成されることが好ましい。このような容器は、底部
が平らであることが好ましい。特に、最も低温になる前
記容器底部において直径5mm以上の面積で、その曲率
半径が少なくとも10mm以上であると<100>方位
の核発生が起こり易くなる。
The container is preferably made of a noble metal such as Pt or Rh. Such a container preferably has a flat bottom. In particular, when the bottom of the container has the lowest temperature and the area is 5 mm or more in diameter and the radius of curvature is at least 10 mm or more, nucleation in the <100> orientation is likely to occur.

【0015】前記酸化物圧電単結晶の成長速度は、0.
05〜5mm/hrにすることが好ましい。これは、次
のような理由によるもである。すなわち、前記成長速度
を0.05mm/hr未満にすると組成変動が大きくな
り、均一な圧電特性・誘電特性を有する酸化物圧電単結
晶を製造することが困難になる。一方、前記成長速度が
5mm/hrを越えると、<111>方位に成長が優勢
になるため、単結晶内部に包有物、成長応力歪、双晶な
どの欠陥が発生し易くなる。
The growth rate of the oxide piezoelectric single crystal is 0.
It is preferably from 05 to 5 mm / hr. This is due to the following reasons. That is, if the growth rate is less than 0.05 mm / hr, compositional variation will be large, and it will be difficult to manufacture an oxide piezoelectric single crystal having uniform piezoelectric characteristics and dielectric characteristics. On the other hand, if the growth rate exceeds 5 mm / hr, the growth becomes dominant in the <111> orientation, and defects such as inclusions, growth stress strain, and twins are likely to occur inside the single crystal.

【0016】[0016]

【0017】前記電気炉のヒータによる温度勾配および
前記容器の下降速度は、それぞれ0.05〜20℃/m
m、0.05〜10mm/hrにする。このような条件
に設定することにより、前述した酸化物圧電単結晶の成
長速度を0.05〜5mm/hrにすることが可能にな
る。
The temperature gradient by the heater of the electric furnace and the descending speed of the container are 0.05 to 20 ° C./m, respectively.
m, 0.05 to 10 mm / hr. By setting such conditions, the growth rate of the above-described oxide piezoelectric single crystal can be set to 0.05 to 5 mm / hr.

【0018】また、このように温度勾配のある電気炉中
の容器を移動させることにより容器底部の局所を冷却す
ることもできるが、容器底部の一点に冷却棒を接触させ
ることで、この1点のみをより効率的に冷却することが
可能になる。
It is also possible to cool the local portion of the bottom of the container by moving the container in the electric furnace having such a temperature gradient, but by bringing a cooling rod into contact with a point on the bottom of the container, this one point can be cooled. Only the more efficient cooling becomes possible.

【0019】なお、単結晶の成長に際し、前記容器を下
降させたが、これは通常PbbOを主成分とするフラッ
クスが前記圧電単結晶より比重が大きいからである。も
し、PbOを主成分とするフラックスが前記圧電単結晶
より比重が小さい場合には前記容器を前記電気炉内で上
昇させて結晶成長を行う必要がある。
The container was lowered during the growth of the single crystal, because the flux containing PbbO as the main component usually has a larger specific gravity than the piezoelectric single crystal. If the specific gravity of the flux containing PbO as the main component is smaller than that of the piezoelectric single crystal, it is necessary to raise the container in the electric furnace for crystal growth.

【0020】以下、本発明に係わる酸化物圧電単結晶を
用いて製作される超音波プローブを図2を参照して詳細
に説明する。酸化物圧電単結晶からなる複数の圧電体1
1は、バッキング材12上に互いに分離して接着されて
いる。前記各々の圧電体11は図の矢印A方向に振動す
る。第1電極13は、前記各々の圧電体11の超音波送
受信面からその側面およびおよび前記送受信面と反対側
の面の一部に亘ってそれぞれ形成されている。第2電極
14は、前記各々の圧電体11の前記送受信面と反対側
の面に前記第1電極13と所望の距離隔ててそれぞれ形
成されている。このような前記圧電体11、前記第1、
第2の電極13、14により超音波送受信素子が構成さ
れる。音響マッチング層15は、前記各々の第1電極1
3を含む前記各圧電体11の超音波送受信面にそれぞれ
形成されている。音響レンズ16は、前記各音響マッチ
ング層15の全体に亘って形成されている。フレキシブ
ル印刷配線板18は、前記各々の第1電極13に接続さ
れている。アース電極板17は、前記各々の第2電極4
に例えばはんだ付けにより接続されている。図示しない
複数の導体(ケーブル)は前記フレキシブル印刷配線板
18およびアース電極板17にそれぞれ接続される。
An ultrasonic probe manufactured by using the oxide piezoelectric single crystal according to the present invention will be described in detail below with reference to FIG. Plural piezoelectric bodies 1 made of oxide piezoelectric single crystal
1 are separated and adhered to each other on the backing material 12. Each of the piezoelectric bodies 11 vibrates in the direction of arrow A in the figure. The first electrode 13 is formed from the ultrasonic wave transmitting / receiving surface of each piezoelectric body 11 to the side surface thereof and a part of the surface opposite to the transmitting / receiving surface. The second electrode 14 is formed on the surface of each of the piezoelectric bodies 11 opposite to the transmitting / receiving surface at a desired distance from the first electrode 13. Such piezoelectric body 11, the first,
The second electrodes 13 and 14 form an ultrasonic transmitting / receiving element. The acoustic matching layer 15 includes the first electrodes 1
3 is formed on each ultrasonic wave transmitting / receiving surface of each piezoelectric body 11. The acoustic lens 16 is formed over the entire acoustic matching layer 15. The flexible printed wiring board 18 is connected to each of the first electrodes 13. The ground electrode plate 17 includes the second electrodes 4
Are connected by soldering, for example. A plurality of conductors (cables) not shown are connected to the flexible printed wiring board 18 and the ground electrode board 17, respectively.

【0021】このような図2に示す構造の超音波プロー
ブは、例えば次のような方法により作製される。まず、
酸化物圧電単結晶に導電膜をスパッタ法により蒸着し、
選択エッチング技術によりの超音波送受信面および前記
送受信面と反対側の面に導電膜を残す。つづいて、前記
単結晶片の超音波送受信面となる面に音響マッチング層
を形成し、これらをバッキング材12上に接着する。ひ
きつづき、ブレードを用いて前記音響マッチング層から
前記単結晶片に亘って複数回切断することにより前記バ
ッキング材12上に第1、第2電極13、14を有する
互いに分離された複数の圧電体11と前記各圧電体11
上にそれぞれ配置された複数の音響マッチング層15が
形成される。次いで、前記音響マッチング層15に音響
レンズ16を形成した後、フレキシブル印刷配線板18
を前記第1電極13にそれぞれ接続し、前記第2電極1
4にアース電極板17を例えばはんだ付けにより接続
し、さらに図示しない複数の導体(ケーブル)を前記フ
レキシブル印刷配線板18およびアース電極板17にそ
れぞれ接続することにより超音波プローブを作製する。
The ultrasonic probe having the structure shown in FIG. 2 is manufactured by the following method, for example. First,
A conductive film is deposited on the oxide piezoelectric single crystal by a sputtering method,
The conductive film is left on the ultrasonic wave transmitting / receiving surface and the surface opposite to the transmitting / receiving surface by the selective etching technique. Subsequently, an acoustic matching layer is formed on the surface of the single crystal piece that serves as the ultrasonic wave transmitting / receiving surface, and these are bonded onto the backing material 12. Subsequently, a plurality of piezoelectric bodies 11 having first and second electrodes 13 and 14 on the backing material 12 are separated from each other by cutting the acoustic matching layer from the acoustic matching layer a plurality of times using a blade. And each piezoelectric body 11
A plurality of acoustic matching layers 15 respectively arranged on the above are formed. Next, after forming the acoustic lens 16 on the acoustic matching layer 15, the flexible printed wiring board 18 is formed.
Are connected to the first electrode 13 respectively, and the second electrode 1
4, an earth electrode plate 17 is connected by, for example, soldering, and a plurality of conductors (cables) (not shown) are connected to the flexible printed wiring board 18 and the earth electrode plate 17, respectively, to produce an ultrasonic probe.

【0022】[0022]

【実施例】以下、本発明の好ましい実施例を詳細に説明
する。 (実施例1)まず、純度が99.9%以上のPbO、Z
nO、Nb25 およびTiO2 を、亜鉛酸ニオブ酸鉛
(Pb[Zn1/3 Nb2/3 ]O3 ;PZNと略す)とチ
タン酸鉛(PbTiO3 ;PTと略す)のモル比が9
1:9(つまりPb[(Zn1/3 Nb2/31-x Ti
x ]O3 ,x=0.09)で、この91PZN−9PT
とフラックスとして酸化鉛(PbO)とがモル比で8
5:15になるように秤量した。これらの粉末に純水を
加え、ジルコニアボ−ルを用いてボールミルで12時間
混合した。この混合物を乾燥し、ライカイ機で十分に混
合粉砕した後、ゴム製容器に入れて2トン/cm2 の圧
力で静水圧プレスを行って成形した。この塊状物1.0
kgを前述した図1の内径30mmの200ccの有底
筒状白金容器3内に入れた。つづいて、中央部の温度が
1230℃、上下に4分割されたヒータ2により上下方
向に平均温度勾配が1℃/mmとした内径80mm、長
さ1000mmの縦型管状電気炉1に前記白金容器3を
吊下し、1230℃の温度まで6時間昇温した後、12
時間保持して前記容器3内のフラックスおよび原料を溶
解して溶液4を調製した。次いで、前記白金容器3を電
気炉1の中央より下部の温度勾配部分に向かって1mm
/hrの速度で約500mmまで下降させ、その後室温
まで放冷した。前記白金容器3を20%硝酸で8時間煮
沸し、フラックスを溶かし出して結晶を取り出した。
The preferred embodiments of the present invention will be described in detail below. (Example 1) First, PbO, Z having a purity of 99.9% or more
The molar ratio of nO, Nb 2 O 5 and TiO 2 between lead niobate zincate (Pb [Zn 1/3 Nb 2/3 ] O 3 ; abbreviated as PZN) and lead titanate (PbTiO 3 ; abbreviated as PT). Is 9
1: 9 (that is, Pb [(Zn 1/3 Nb 2/3 ) 1-x Ti
x ] O 3 , x = 0.09), this 91PZN-9PT
And lead oxide (PbO) as a flux in a molar ratio of 8
Weighed to be 5:15. Pure water was added to these powders and mixed with a zirconia ball in a ball mill for 12 hours. The mixture was dried, thoroughly mixed and pulverized with a liquor machine, put in a rubber container, and subjected to isostatic pressing at a pressure of 2 ton / cm 2 to mold the mixture. This lump 1.0
1 kg was put into the above-mentioned bottomed cylindrical platinum container 3 having an inner diameter of 30 mm and a diameter of 200 cc. Subsequently, the temperature of the central portion is 1230 ° C., the vertical temperature is 1 ° C./mm, and the vertical temperature is 1230 ° C. The heater 2 is divided into four parts. 3 was hung up and the temperature was raised to 1230 ° C. for 6 hours, then 12
Solution 4 was prepared by holding for a period of time to dissolve the flux and the raw material in the container 3. Then, the platinum container 3 is moved toward the temperature gradient part below the center of the electric furnace 1 by 1 mm.
It was lowered to about 500 mm at a speed of / hr and then allowed to cool to room temperature. The platinum container 3 was boiled with 20% nitric acid for 8 hours, the flux was melted and the crystals were taken out.

【0023】得られた結晶は、色調が淡黄色で大きさが
25mm角×75mmLであるほぼ直方体のブロックで
あった。この結晶構造をX線回折法により調べた。その
結果、室温で菱面体のペロブスカイト型構造であること
がわかった。
The obtained crystal was a block of a substantially rectangular parallelepiped having a pale yellow color tone and a size of 25 mm square × 75 mm L. This crystal structure was investigated by X-ray diffraction. As a result, it was found to have a rhombohedral perovskite structure at room temperature.

【0024】また、前記結晶の結晶構造をX線ラウエ写
真で調べたところ、明瞭なラウエ斑点を示し、かつ長手
方向がほぼ<100>方位に延びた単結晶であることを
確認した。すなわち、白金容器の底面に垂直方向が単結
晶の<100>方位になっており、白金容器の底面にお
いてこの面に垂直方向に<100>方位の核発生が起こ
り、そのまま白金容器の軸方向(底面と垂直方向)に単
結晶が<100>方位に成長したことがわかった。白金
容器の底面に張り付いた面は、{100}面であった。
単結晶の表面に晶癖らしき成長面が現れていた。しかし
ながら、この面は{100}面ではなかった。前記単結
晶を観察すると、4つの<111>方位に対して3回対
称の成長稜が現れていた。この成長稜の長さは3〜30
mmであった。成長時間から単結晶の成長速度は0.1
5mm/hrであることがわかった。また、前記単結晶
の粉末のICPによる化学分析から前記組成;Pb
[(Zn1/3 Nb2/31-x Tix ]O3 のx値が0.
09であることを確認した。
Further, when the crystal structure of the crystal was examined by an X-ray Laue photograph, it was confirmed that the crystal was a single crystal showing clear Laue spots and extending in the <100> direction in the longitudinal direction. That is, the vertical direction to the bottom surface of the platinum container is the <100> orientation of the single crystal, and the nucleation of the <100> orientation perpendicular to this surface occurs on the bottom surface of the platinum container, and the axial direction of the platinum container ( It was found that the single crystal grew in the <100> orientation in the direction perpendicular to the bottom surface). The surface stuck to the bottom surface of the platinum container was the {100} surface.
A growth surface that appeared to be a crystal habit appeared on the surface of the single crystal. However, this plane was not the {100} plane. When the single crystal was observed, a growth edge having three-fold symmetry with respect to four <111> orientations appeared. The length of this growth edge is 3 to 30
It was mm. The growth rate of a single crystal is 0.1 from the growth time.
It was found to be 5 mm / hr. Also, from the chemical analysis of the single crystal powder by ICP, the above composition: Pb
The x value of [(Zn 1/3 Nb 2/3 ) 1-x Ti x ] O 3 is 0.
It was confirmed to be 09.

【0025】次いで、得られた単結晶についてX線ラウ
エカメラを用いて<100>方位軸を出し、この軸に垂
直にカッタで厚さが1mmの{100}面単結晶板を切
り出し、研磨して0.3mm厚さに仕上げた。この板状
単結晶の内部を観察した。その結果、インクルージョン
(包有物)、成長歪などの欠陥は全く含まれていないこ
とが確認された。つづいて、前記板状単結晶の両面に銀
電極をTi/Au電極をスパッタ法により形成し、15
0〜250℃の絶縁オイル中で1kV/mmの電界を3
0分間印加した後電界冷却して分極を行なった。これを
10mm角の板にしてLCRメータを用いて静電容量を
測定した。その結果、比誘電率が3500であった。前
記電極付き板状単結晶を幅0.15mm、厚さ0.3m
m、長さ10mmの短冊状に切断し、共振、反共振周波
数を測定した。その結果、電気機械結合係数k33´は8
6〜87%で、ばらつきが1%以下と良好な圧電特性を
有することが確認された。
Then, using the X-ray Laue camera, the <100> orientation axis was set for the obtained single crystal, and a {100} plane single crystal plate having a thickness of 1 mm was cut out by a cutter perpendicular to this axis and polished. To a thickness of 0.3 mm. The inside of this plate-shaped single crystal was observed. As a result, it was confirmed that defects such as inclusion (inclusion) and growth strain were not included at all. Subsequently, a silver electrode and a Ti / Au electrode were formed on both surfaces of the plate-like single crystal by a sputtering method, and 15
An electric field of 1 kV / mm is applied in insulating oil at 0 to 250 ° C for 3
After applying for 0 minutes, electric field cooling was performed to perform polarization. This was used as a 10 mm square plate and the capacitance was measured using an LCR meter. As a result, the relative dielectric constant was 3,500. The plate-shaped single crystal with electrodes has a width of 0.15 mm and a thickness of 0.3 m.
The sample was cut into strips of m and 10 mm in length, and the resonance and antiresonance frequencies were measured. As a result, the electromechanical coupling coefficient k 33 ′ is 8
It was confirmed that the range of 6 to 87% had a variation of 1% or less, and had good piezoelectric characteristics.

【0026】さらに、前記単結晶を用いて前述した図2
に示すアレイ形超音波プローブを作製した。すなわち、
前記91PZT−9PTの圧電単結晶を加工して厚さ2
00μmの角板を作製した。得られた角板の上下面およ
び側面にTi/Au導体膜をスパッタ法により蒸着し、
選択エッチング技術により前記角板の一方の側面に位置
する前記導電膜部分および超音波送受信面となる面と反
対側の面に位置する前記導電膜の一部を除去した。つづ
いて、前記角板の超音波送受信面となる面に音響マッチ
ング層を形成し後、フレキシブル印刷配線板18を第1
電極に供される前記導電膜部分に半田付けにより接続し
た。また、アース電極17を第2電極に供される前記導
電膜部分に半田付けにより接続した、これらをバッキン
グ材12上に接着した。なお、フレキシブル印刷配線板
18およびアース電極17は導電ペーストを用いて前記
導体膜に接続してもよい。ひきつづき、ダイヤモンドブ
レードを用いて前記音響マッチング層から前記角板に亘
って切り込み、100μmの幅で短冊状に切断した。こ
の切断により、前記バッキング材12上に第1、第2電
極13、14を有する互いに分離された圧電体1と前記
各圧電体1上にそれぞれ配置された複数の音響マッチン
グ層15が形成された。次いで、前記音響マッチング層
15に音響レンズ16を形成した後、フレキシブル印刷
配線板18を前記各々の第1電極3にそれぞれ半田付け
接続し、アース電極板17を前記各第2電極14に半田
付けにより接続し、さらに図示しない110pF/m、
長さ2mの複数の導体(ケーブル)をフレキシブル印刷
配線板18およびアース電極板17にそれぞれ接続する
ことによりアレイ形超音波プローブを製造した。
Further, as shown in FIG.
An array type ultrasonic probe shown in Fig. 3 was produced. That is,
The piezoelectric single crystal of 91PZT-9PT is processed to have a thickness of 2
A square plate of 00 μm was produced. A Ti / Au conductor film is deposited on the upper and lower surfaces and side surfaces of the obtained square plate by a sputtering method,
By the selective etching technique, the conductive film portion located on one side surface of the square plate and a part of the conductive film located on the surface opposite to the surface serving as the ultrasonic transmission / reception surface were removed. Subsequently, after forming an acoustic matching layer on the surface of the rectangular plate that serves as the ultrasonic wave transmitting / receiving surface, the flexible printed wiring board 18 is firstly attached.
The conductive film portion provided for the electrode was connected by soldering. Further, the ground electrode 17 was connected to the conductive film portion serving as the second electrode by soldering, and these were bonded onto the backing material 12. The flexible printed wiring board 18 and the ground electrode 17 may be connected to the conductor film using a conductive paste. Subsequently, a diamond blade was used to cut from the acoustic matching layer to the square plate, and cut into strips with a width of 100 μm. By this cutting, the piezoelectric bodies 1 having the first and second electrodes 13 and 14 separated from each other on the backing material 12 and a plurality of acoustic matching layers 15 respectively arranged on the respective piezoelectric bodies 1 were formed. . Next, after forming the acoustic lens 16 on the acoustic matching layer 15, the flexible printed wiring board 18 is soldered and connected to each of the first electrodes 3, and the ground electrode plate 17 is soldered to each of the second electrodes 14. 110pF / m, not shown,
An array type ultrasonic probe was manufactured by connecting a plurality of conductors (cables) having a length of 2 m to the flexible printed wiring board 18 and the ground electrode board 17, respectively.

【0027】得られたアレイ形超音波プローブについ
て、パルスエコー法により反射エコーを測定した。その
結果、中心周波数が3.5MHzのエコーが全素子に亘
って得られた。また、感度は従来のセラミックスより5
dB高く、周波数帯域は−6dBで比帯域92%と広帯
域であることがわかった。
With respect to the obtained array type ultrasonic probe, the reflection echo was measured by the pulse echo method. As a result, an echo with a center frequency of 3.5 MHz was obtained over all the elements. Moreover, the sensitivity is 5 compared with conventional ceramics.
It was found that the frequency band was high, the frequency band was -6 dB, and the relative bandwidth was 92%.

【0028】(実施例2)まず、純度が99.9%以上
のPbO、MgO、Nb25 、TiO2 およびB2
3 を、マグネシウム酸ニオブ酸鉛(Pb[Mg1/3 Nb
2/3 ]O3 ;PMNと略す)とチタン酸鉛(PbTiO
3 ;PTと略す)のモル比が67:33(つまりPb
[(Mg1/3 Nb2/31-x Tix ]O3 ,x=0.3
3)で、この67PMN−33PTとフラックス(FL
UX=PbO+MgO+B23 ,モル比でPbO/M
gO/B23 =6/3/1)とが[67PMN−33
PT/(PbO+MgO+B23 )]のモル比で6
0:40になるように秤量した。これらの粉末に実施例
1と同様に処理して塊状物を作製した。この塊状物1.
3kgを前述した図1の内径30mmの200ccの有
底筒状白金容器3内に入れた。つづいて、中央部の温度
が1200℃、上下に4分割されたヒータ2により上下
方向に平均温度勾配が5℃/mmとした実施例1で説明
した寸法を有する縦型管状電気炉1に前記白金容器3を
吊下し、1200℃の温度まで6時間昇温した後、12
時間保持して前記容器3内のフラックスおよび原料を溶
解して溶液4を調製した。次いで、前記白金容器3を電
気炉1の中央より下部の温度勾配部分に向かって2mm
/hrの速度で約400mmまで下降させ、その後室温
まで放冷した。前記白金容器3を20%硝酸で8時間煮
沸し、フラックスを溶かし出して結晶を取り出した。
Example 2 First, PbO, MgO, Nb 2 O 5 , TiO 2 and B 2 O having a purity of 99.9% or more.
3 is lead magnesium niobate (Pb [Mg 1/3 Nb
2/3 ] O 3 ; abbreviated as PMN) and lead titanate (PbTiO 2
3 ; molar ratio of PT is 67:33 (that is, Pb
[(Mg 1/3 Nb 2/3 ) 1-x Ti x ] O 3 , x = 0.3
In 3), this 67 PMN-33PT and flux (FL
UX = PbO + MgO + B 2 O 3 , molar ratio of PbO / M
gO / B 2 O 3 = 6/3/1) and [67 PMN-33
PT / (PbO + MgO + B 2 O 3 )] at a molar ratio of 6
Weighed to be 0:40. These powders were treated in the same manner as in Example 1 to prepare lumps. This lump 1.
3 kg was put into the 200 cc bottomed cylindrical platinum container 3 having an inner diameter of 30 mm shown in FIG. Next, the vertical tubular electric furnace 1 having the dimensions described in Example 1 was set such that the temperature of the central portion was 1200 ° C. and the average temperature gradient in the vertical direction was 5 ° C./mm by the heater 2 divided into four vertically. After suspending the platinum container 3 and raising the temperature to 1200 ° C. for 6 hours, 12
Solution 4 was prepared by holding for a period of time to dissolve the flux and the raw material in the container 3. Then, the platinum container 3 is moved to the temperature gradient part below the center of the electric furnace 1 by 2 mm.
It was lowered to about 400 mm at a speed of / hr and then allowed to cool to room temperature. The platinum container 3 was boiled with 20% nitric acid for 8 hours, the flux was melted and the crystals were taken out.

【0029】得られた結晶は、色調が淡黄色で大きさが
25mm角×50mmLであるほぼ直方体のブロックで
あった。この結晶構造をX線回折法により調べた。その
結果、室温で菱面体のペロブスカイト型構造であること
がわかった。
The obtained crystal was a block of a substantially rectangular parallelepiped having a light yellow color tone and a size of 25 mm square × 50 mmL. This crystal structure was investigated by X-ray diffraction. As a result, it was found to have a rhombohedral perovskite structure at room temperature.

【0030】また、前記結晶の結晶構造をX線ラウエ写
真で調べたところ、明瞭なラウエ斑点を示し、かつ長手
方向がほぼ<100>方位に延びた単結晶であることを
確認した。すなわち、<100>方位に成長した単結晶
で、単結晶の現れた面(つまり晶癖)は{100}面で
あった。前記単結晶を観察すると、4つの<111>方
位に対して3回対称の成長稜が現れていた。この成長稜
の長さは20〜40mmであった。成長時間から単結晶
の成長速度は0.25mm/hrであることがわかっ
た。また、前記単結晶の粉末のICPによる化学分析か
ら前記組成;Pb[(Mg1/3 Nb2/31-x Tix
3 のx値が0.33であることを確認した。
When the crystal structure of the crystal was examined by an X-ray Laue photograph, it was confirmed that the crystal was a single crystal showing clear Laue spots and extending in the <100> orientation in the longitudinal direction. That is, in the single crystal grown in the <100> orientation, the plane in which the single crystal appeared (that is, the crystal habit) was the {100} plane. When the single crystal was observed, a growth edge having three-fold symmetry with respect to four <111> orientations appeared. The length of this growth edge was 20 to 40 mm. From the growth time, it was found that the growth rate of the single crystal was 0.25 mm / hr. Further, from the chemical analysis by ICP of the single crystal powder, the composition: Pb [(Mg 1/3 Nb 2/3 ) 1-x Ti x ].
It was confirmed that the x value of O 3 was 0.33.

【0031】次いで、得られた単結晶についてX線ラウ
エカメラを用いて<100>方位軸を出し、この軸に垂
直にカッタで厚さが1mmの{100}面単結晶板を切
り出し、研磨して0.3mm厚さに仕上げた。この板状
単結晶の内部を観察した。その結果、インクルージョン
(包有物)、成長歪などの欠陥は全く含まれていないこ
とが確認された。つづいて、前記板状単結晶の両面に銀
電極をTi/Au電極をスパッタ法により形成し、15
0〜250℃の絶縁オイル中で1kV/mmの電界を3
0分間印加した後電界冷却して分極を行なった。これを
10mm角の板にしてLCRメータを用いて静電容量を
測定した。その結果、比誘電率が3200であった。、
前記電極付き板状単結晶を幅0.15mm、厚さ0.3
mm、長さ10mmの短冊状に切断し、共振、反共振周
波数を測定した。その結果、電気機械結合係数k33´は
84〜85%で良好な圧電特性を有することが確認され
た。
Then, using the X-ray Laue camera, the <100> orientation axis of the obtained single crystal was taken out, and a {100} plane single crystal plate having a thickness of 1 mm was cut out by a cutter perpendicular to this axis and polished. To a thickness of 0.3 mm. The inside of this plate-shaped single crystal was observed. As a result, it was confirmed that defects such as inclusion (inclusion) and growth strain were not included at all. Subsequently, a silver electrode and a Ti / Au electrode were formed on both surfaces of the plate-like single crystal by a sputtering method, and 15
An electric field of 1 kV / mm is applied in insulating oil at 0 to 250 ° C for 3
After applying for 0 minutes, electric field cooling was performed to perform polarization. This was used as a 10 mm square plate and the capacitance was measured using an LCR meter. As a result, the relative dielectric constant was 3,200. ,
The plate-shaped single crystal with an electrode was 0.15 mm wide and 0.3 mm thick.
Resonance and anti-resonance frequencies were measured by cutting into strips each having a length of 10 mm and a length of 10 mm. As a result, it was confirmed that the electromechanical coupling coefficient k 33 ′ was 84% to 85%, which had good piezoelectric characteristics.

【0032】(実施例3)まず、純度が99.9%以上
のPbO、Sc23 、Nb25 、TiO2 およびB
23 を、スカンジウム酸ニオブ酸鉛(Pb[Sc1/2
Nb1/2 ]O3 ;PSNと略す)とチタン酸鉛(PbT
iO3 ;PTと略す)のモル比が58:42(つまりP
b[(Sc1/2 Nb1/21-x Tix ]O3 ,x=0.
42)で、この58PSN−42PTとフラックス(P
bO+B23 ,モル比でPbO/B23 =8/2)
とが[67PMN−33PT/(PbO+B23 )]
のモル比で30:70になるように秤量した。これらの
粉末に実施例1と同様に処理して塊状物を作製した。こ
の塊状物1.5kgを前述した図1の内径30mmの2
00ccの有底筒状白金容器3内に入れた。つづいて、
中央部の温度が1280℃、上下に4分割されたヒータ
2により上下方向に平均温度勾配が2℃/mmとした実
施例1で説明した寸法を有する縦型管状電気炉1に前記
白金容器3を吊下し、1280℃の温度まで6時間昇温
した後、12時間保持して前記容器3内のフラックスお
よび原料を溶解して溶液4を調製した。次いで、前記白
金容器3を電気炉1の中央より下部の温度勾配部分に向
かって0.5mm/hrの速度で約400mmまで下降
させ、その後室温まで放冷した。前記白金容器3を20
%硝酸で8時間煮沸し、フラックスを溶かし出して結晶
を取り出した。
Example 3 First, PbO, Sc 2 O 3 , Nb 2 O 5 , TiO 2 and B having a purity of 99.9% or more are prepared.
2 O 3 , lead scaniodate niobate (Pb [Sc 1/2
Nb 1/2 ] O 3 ; abbreviated as PSN) and lead titanate (PbT
The molar ratio of iO 3 ; PT is 58:42 (that is, P).
b [(Sc 1/2 Nb 1/2 ) 1-x Ti x ] O 3 , x = 0.
42), this 58PSN-42PT and flux (P
bO + B 2 O 3 , molar ratio of PbO / B 2 O 3 = 8/2)
Doo is [67 PMN-33PT/ (PbO + B 2 O 3)]
Was weighed so that the molar ratio was 30:70. These powders were treated in the same manner as in Example 1 to prepare lumps. 1.5 kg of this lump is used for the 2 mm of inner diameter 30 mm of FIG.
It was put in a bottomed cylindrical platinum container 3 of 00 cc. Continuing,
The platinum container 3 was placed in the vertical tubular electric furnace 1 having the dimensions described in Example 1 in which the temperature of the central portion was 1280 ° C. and the average temperature gradient in the vertical direction was 2 ° C./mm by the heater 2 divided into four parts. Was hung up, the temperature was raised to a temperature of 1280 ° C. for 6 hours, and then held for 12 hours to dissolve the flux and the raw material in the container 3 to prepare a solution 4. Next, the platinum container 3 was lowered from the center of the electric furnace 1 toward a temperature gradient portion below the electric furnace 1 at a speed of 0.5 mm / hr to about 400 mm, and then allowed to cool to room temperature. 20 for the platinum container 3
% Nitric acid, the mixture was boiled for 8 hours, the flux was dissolved and the crystals were taken out.

【0033】得られた結晶は、色調が淡黄色で大きさが
25mm角×45mmLであるほぼ直方体のブロックで
あった。この結晶構造をX線回折法により調べた。その
結果、室温で菱面体のペロブスカイト型構造であること
がわかった。
The obtained crystal was a block of a substantially rectangular parallelepiped having a pale yellow color tone and a size of 25 mm square × 45 mm L. This crystal structure was investigated by X-ray diffraction. As a result, it was found to have a rhombohedral perovskite structure at room temperature.

【0034】また、前記結晶の結晶構造をX線ラウエ写
真で調べたところ、明瞭なラウエ斑点を示し、かつ長手
方向がほぼ<100>方位に延びた単結晶であることを
確認した。すなわち、白金容器の軸方向に成長した<1
00>方位の単結晶であることが確認された。前記単結
晶を観察すると、4つの<111>方位に対して3回対
称の成長稜が現れていた。この成長稜の長さは10〜3
0mmであった。成長時間から単結晶の成長速度は0.
08mm/hrであることがわかった。また、前記単結
晶の粉末のICPによる化学分析から前記組成;Pb
[(Sc1/2 Nb1/21-x Tix ]O3 のx値が0.
42であることを確認した。
When the crystal structure of the crystal was examined by an X-ray Laue photograph, it was confirmed that the crystal was a single crystal showing clear Laue spots and extending in the <100> orientation in the longitudinal direction. That is, <1 that grew in the axial direction of the platinum container
It was confirmed that the crystal was a single crystal of 00> orientation. When the single crystal was observed, a growth edge having three-fold symmetry with respect to four <111> orientations appeared. The length of this growth edge is 10-3
It was 0 mm. The growth rate of the single crystal was 0.
It was found to be 08 mm / hr. Also, from the chemical analysis of the single crystal powder by ICP, the above composition: Pb
The x value of [(Sc 1/2 Nb 1/2 ) 1-x Ti x ] O 3 is 0.
It was confirmed to be 42.

【0035】次いで、得られた単結晶についてX線ラウ
エカメラを用いて<100>方位軸を出し、この軸に垂
直にカッタで厚さが1mmの{100}面単結晶板を切
り出し、研磨して0.3mm厚さに仕上げた。この板状
単結晶の内部を観察した。その結果、インクルージョン
(包有物)、成長歪などの欠陥は全く含まれていないこ
とが確認された。つづいて、前記板状単結晶の両面に銀
電極をTi/Au電極をスパッタ法により形成し、15
0〜250℃の絶縁オイル中で1kV/mmの電界を3
0分間印加した後電界冷却して分極を行なった。これを
10mm角の板にしてLCRメータを用いて静電容量を
測定した。その結果、比誘電率が2600であった。、
前記電極付き板状単結晶を幅0.15mm、厚さ0.3
mm、長さ10mmの短冊状に切断し、共振、反共振周
波数を測定した。その結果、電気機械結合係数k33´は
85〜86%で、ばらつきの少ない良好な圧電特性を有
することが確認された。
Then, using the X-ray Laue camera, the <100> orientation axis of the obtained single crystal was taken out, and a {100} plane single crystal plate having a thickness of 1 mm was cut out by a cutter perpendicular to this axis and polished. To a thickness of 0.3 mm. The inside of this plate-shaped single crystal was observed. As a result, it was confirmed that defects such as inclusion (inclusion) and growth strain were not included at all. Subsequently, a silver electrode and a Ti / Au electrode were formed on both surfaces of the plate-like single crystal by a sputtering method, and 15
An electric field of 1 kV / mm is applied in insulating oil at 0 to 250 ° C for 3
After applying for 0 minutes, electric field cooling was performed to perform polarization. This was used as a 10 mm square plate and the capacitance was measured using an LCR meter. As a result, the relative dielectric constant was 2,600. ,
The plate-shaped single crystal with an electrode was 0.15 mm wide and 0.3 mm thick.
Resonance and anti-resonance frequencies were measured by cutting into strips of 10 mm in length and 10 mm in length. As a result, it was confirmed that the electromechanical coupling coefficient k 33 ′ was 85 to 86%, and had good piezoelectric characteristics with little variation.

【0036】(実施例4)まず、純度が99.9%以上
のPbO、ZnO、NiO、MnO、Sc23、Yb2
3 、Nb25 、Ta25 、TiO2 およびZr
2 を、Pb[{Zn1-Q-R NiQ MnR
1/3-2W/3(Sc1-S YbSW (Nb1-T TaT
2/3-W/31-X (Ti1-U ZrUX ]O3 (Q=0.
10、R=0.05、S=0.30、T=0.05、U
=0.01、W=0.08、X=0.22;PZSNT
Zと略す)とフラックス(FLUX=PbO+ZnO+
23 ,モル比でPbO/ZnO/B23 =7/2
/1)とがモル比でPZSNTZ/FLUX=5:0/
50になるように秤量した。これらの粉末に実施例1と
同様に処理して塊状物を作製した。この塊状物1.5k
gを前述した図1の内径30mmの200ccの有底筒
状白金容器3内に入れた。つづいて、中央部の温度が1
260℃、上下に4分割されたヒータ2により上下方向
に平均温度勾配が3℃/mmとした内径80mm、長さ
1000mmの縦型管状電気炉1に前記白金容器3を吊
下し、1260℃の温度まで6時間昇温した後、12時
間保持して前記容器3内のフラックスおよび原料を溶解
して溶液4を調製した。次いで、前記白金容器3を電気
炉1の中央より下部の温度勾配部分に向かって1mm/
hrの速度で約500mmまで下降させ、その後室温ま
で放冷した。前記白金容器3を20%硝酸で8時間煮沸
し、フラックスを溶かし出して結晶を取り出した。
Example 4 First, PbO, ZnO, NiO, MnO, Sc 2 O 3 and Yb 2 having a purity of 99.9% or more.
O 3 , Nb 2 O 5 , Ta 2 O 5 , TiO 2 and Zr
O 2 is replaced by Pb [{Zn 1-QR Ni Q Mn R ).
1 / 3-2W / 3 (Sc 1-S Yb S ) W (Nb 1-T Ta T )
2 / 3-W / 3 } 1-X (Ti 1-U Zr U ) X ] O 3 (Q = 0.
10, R = 0.05, S = 0.30, T = 0.05, U
= 0.01, W = 0.08, X = 0.22; PZSNT
Z) and flux (FLUX = PbO + ZnO +)
B 2 O 3 , PbO / ZnO / B 2 O 3 = 7/2 in molar ratio
/ 1) is a molar ratio of PZSNTZ / FLUX = 5: 0 /
Weighed to 50. These powders were treated in the same manner as in Example 1 to prepare lumps. This chunk 1.5k
1 g was placed in the bottomed cylindrical platinum container 3 of 200 cc having an inner diameter of 30 mm shown in FIG. Next, the temperature in the center is 1
The platinum container 3 is hung from a vertical tubular electric furnace 1 having an inner diameter of 80 mm and a length of 1000 mm, which has an average temperature gradient of 3 ° C./mm in the up-down direction by a heater 2 which is divided into four vertically at 1260 ° C. After the temperature was raised to 6 ° C. for 6 hours, it was kept for 12 hours to dissolve the flux and the raw material in the container 3 to prepare a solution 4. Then, the platinum container 3 was moved toward the temperature gradient portion below the center of the electric furnace 1 by 1 mm /
It was lowered to about 500 mm at a speed of hr and then left to cool to room temperature. The platinum container 3 was boiled with 20% nitric acid for 8 hours, the flux was melted and the crystals were taken out.

【0037】得られた結晶は、色調が淡黄色で大きさが
25mm角×30mmLであるほぼ直方体のブロックで
あった。この結晶構造をX線回折法により調べた。その
結果、室温で菱面体のペロブスカイト型構造であること
がわかった。
The obtained crystal was a block of a substantially rectangular parallelepiped having a pale yellow color tone and a size of 25 mm square × 30 mmL. This crystal structure was investigated by X-ray diffraction. As a result, it was found to have a rhombohedral perovskite structure at room temperature.

【0038】また、前記結晶の結晶構造をX線ラウエ写
真で調べたところ、明瞭なラウエ斑点を示し、かつ長手
方向がほぼ<100>方位に延びた単結晶であることを
確認した。すなわち、白金容器の軸方向に単結晶が<1
00>方位に成長していた。この単結晶の表面に晶癖ら
しき成長面が現れていたが、この面は{100}面では
なかった。前記単結晶を観察すると、4つの<111>
方位に対して3回対称の成長稜が現れていた。この成長
稜の長さは3〜7mmであった。成長時間から単結晶の
成長速度は0.05mm/hrであることがわかった。
また、前記単結晶の粉末のICPによる化学分析を行っ
た。その結果、組成値はほぼ調合組成に近い値(±3%
以内)であることが確認された。
When the crystal structure of the crystal was examined by an X-ray Laue photograph, it was confirmed that the crystal was a single crystal showing clear Laue spots and extending in the <100> direction in the longitudinal direction. That is, a single crystal is <1 in the axial direction of the platinum container.
It was growing in the 00> direction. A growth plane that appeared to be a crystal habit appeared on the surface of this single crystal, but this plane was not the {100} plane. Observing the single crystal, four <111>
A growth edge symmetrical with respect to the azimuth three times appeared. The length of this growth edge was 3 to 7 mm. From the growth time, it was found that the growth rate of the single crystal was 0.05 mm / hr.
In addition, the single crystal powder was chemically analyzed by ICP. As a result, the composition value is close to the composition (± 3%
Within).

【0039】次いで、得られた単結晶についてX線ラウ
エカメラを用いて<100>方位軸を出し、この軸に垂
直にカッタで厚さが1mmの{100}面単結晶板を切
り出し、研磨して0.3mm厚さに仕上げた。この板状
単結晶の内部を観察した。その結果、インクルージョン
(包有物)、成長歪などの欠陥は全く含まれていないこ
とが確認された。つづいて、前記板状単結晶の両面に銀
電極をTi/Au電極をスパッタ法により形成し、15
0〜250℃の絶縁オイル中で1kV/mmの電界を3
0分間印加した後電界冷却して分極を行なった。これを
10mm角の板にしてLCRメータを用いて静電容量を
測定した。その結果、比誘電率が3500であった。前
記電極付き板状単結晶を幅0.15mm、厚さ0.3m
m、長さ10mmの短冊状に切断し、共振、反共振周波
数を測定した。その結果、電気機械結合係数k33´は8
7〜89%で、ばらつきが少ない良好な圧電特性を有す
ることが確認された。
Then, using the X-ray Laue camera, the <100> orientation axis of the obtained single crystal was taken out, and a {100} plane single crystal plate having a thickness of 1 mm was cut out by a cutter perpendicular to this axis and polished. To a thickness of 0.3 mm. The inside of this plate-shaped single crystal was observed. As a result, it was confirmed that defects such as inclusion (inclusion) and growth strain were not included at all. Subsequently, a silver electrode and a Ti / Au electrode were formed on both surfaces of the plate-like single crystal by a sputtering method, and 15
An electric field of 1 kV / mm is applied in insulating oil at 0 to 250 ° C for 3
After applying for 0 minutes, electric field cooling was performed to perform polarization. This was used as a 10 mm square plate and the capacitance was measured using an LCR meter. As a result, the relative dielectric constant was 3,500. The plate-shaped single crystal with electrodes has a width of 0.15 mm and a thickness of 0.3 m.
The sample was cut into strips of m and 10 mm in length, and the resonance and antiresonance frequencies were measured. As a result, the electromechanical coupling coefficient k 33 ′ is 8
It was confirmed that 7 to 89% had good piezoelectric characteristics with little variation.

【0040】さらに、前記単結晶を用いて前述した図2
に示すアレイ形超音波プローブを作製した。すなわち、
前記PZSNTZの圧電単結晶を加工して厚さ200μ
mの角板を作製した。得られた角板の上下面および側面
にTi/Au導体膜をスパッタ法により蒸着し、選択エ
ッチング技術により前記角板の一方の側面に位置する前
記導電膜部分および超音波送受信面となる面と反対側の
面に位置する前記導電膜の一部を除去した。つづいて、
前記角板の超音波送受信面となる面に音響マッチング層
を形成し後、フレキシブル印刷配線板18を第1電極に
供される前記導電膜部分に半田付けにより接続した。ま
た、アース電極17を第2電極に供される前記導電膜部
分に半田付けにより接続した、これらをバッキング材1
2上に接着した。なお、フレキシブル印刷配線板18お
よびアース電極17は導電ペーストを用いて前記導体膜
に接続してもよい。ひきつづき、ダイヤモンドブレード
を用いて前記音響マッチング層から前記角板に亘って切
り込み、100μmの幅で短冊状に切断した。この切断
により、前記バッキング材12上に第1、第2電極1
3、14を有する互いに分離された圧電体1と前記各圧
電体1上にそれぞれ配置された複数の音響マッチング層
15が形成された。次いで、前記音響マッチング層15
に音響レンズ16を形成した後、フレキシブル印刷配線
板18を前記各々の第1電極3にそれぞれ半田付け接続
し、アース電極板17を前記各第2電極14に半田付け
により接続し、さらに図示しない110pF/m、長さ
2mの複数の導体(ケーブル)をフレキシブル印刷配線
板18およびアース電極板17にそれぞれ接続すること
によりアレイ形超音波プローブを製造した。
Further, as shown in FIG.
An array type ultrasonic probe shown in Fig. 3 was produced. That is,
The PZSNTZ piezoelectric single crystal is processed to a thickness of 200 μm.
A square plate of m was prepared. A Ti / Au conductor film was vapor-deposited on the upper and lower surfaces and side surfaces of the obtained square plate by a sputtering method, and the conductive film portion located on one side surface of the square plate and a surface to be an ultrasonic wave transmitting / receiving surface were formed by a selective etching technique. A part of the conductive film located on the opposite surface was removed. Continuing,
After forming an acoustic matching layer on the surface of the square plate that serves as the ultrasonic transmission / reception surface, the flexible printed wiring board 18 was connected to the conductive film portion serving as the first electrode by soldering. Further, the ground electrode 17 is connected to the conductive film portion provided for the second electrode by soldering, and these are connected to the backing material 1.
Glued on 2. The flexible printed wiring board 18 and the ground electrode 17 may be connected to the conductor film using a conductive paste. Subsequently, a diamond blade was used to cut from the acoustic matching layer to the square plate, and cut into strips with a width of 100 μm. By this cutting, the first and second electrodes 1 are formed on the backing material 12.
Separated piezoelectric bodies 1 having 3 and 14 and a plurality of acoustic matching layers 15 respectively arranged on the piezoelectric bodies 1 were formed. Then, the acoustic matching layer 15
After forming the acoustic lens 16 on each of them, the flexible printed wiring board 18 is connected to each of the first electrodes 3 by soldering, and the ground electrode plate 17 is connected to each of the second electrodes 14 by soldering. An array type ultrasonic probe was manufactured by connecting a plurality of conductors (cables) having a length of 110 pF / m and a length of 2 m to the flexible printed wiring board 18 and the ground electrode board 17, respectively.

【0041】得られたアレイ形超音波プローブについ
て、パルスエコー法により反射エコーを測定した。その
結果、中心周波数が3.5MHzのエコーが全素子に亘
って得られた。また、感度は従来のセラミックスより6
dB高く、周波数帯域は−6dBで比帯域87%と広帯
域であることがわかった。
The reflection echo of the obtained array type ultrasonic probe was measured by the pulse echo method. As a result, an echo with a center frequency of 3.5 MHz was obtained over all the elements. Also, the sensitivity is 6 compared with conventional ceramics.
It was found that the frequency band was high, the frequency band was -6 dB, and the relative bandwidth was 87%.

【0042】(比較例1)まず、純度が99.9%以上
のPbO、ZnO、Nb25 およびTiO2 を、亜鉛
酸ニオブ酸鉛(Pb[Zn1/3 Nb2/3 ]O3 ;PZN
と略す)とチタン酸鉛(PbTiO3 ;PTと略す)の
モル比が91:9(つまりPb[(Zn1/3 Nb2/3
1-x Tix ]O3 ,x=0.09)で、この91PZN
−9PTとフラックスとして酸化鉛(PbO)とがモル
比で80:20になるように秤量した。これらの粉末に
実施例1と同様に処理して塊状物を作製した。この塊状
物約1.0kgを前述した図1の内径30mmの200
ccの有底筒状白金容器3内に入れた。つづいて、中央
部の温度が1220℃、上下に4分割されたヒータ2に
より上下方向に平均温度勾配が20℃/mmとした内径
80mm、長さ1000mmの縦型管状電気炉1に前記
白金容器3を吊下し、1230℃の温度まで6時間昇温
した後、12時間保持して前記容器3内のフラックスお
よび原料を溶解して溶液4を調製した。次いで、前記白
金容器3を電気炉1の中央より下部の温度勾配部分に向
かって1mm/hrの速度で約500mmまで下降さ
せ、その後室温まで放冷した。前記白金容器3を20%
硝酸で8時間煮沸し、フラックスを溶かし出して結晶を
取り出した。
Comparative Example 1 First, PbO, ZnO, Nb 2 O 5 and TiO 2 having a purity of 99.9% or more were mixed with lead niobate zincate (Pb [Zn 1/3 Nb 2/3 ] O 3). ; PZN
(Abbreviated as) and lead titanate (PbTiO 3 ; abbreviated as PT) have a molar ratio of 91: 9 (that is, Pb [(Zn 1/3 Nb 2/3 )).
1-x Ti x ] O 3 , x = 0.09), and this 91PZN
-9PT and lead oxide (PbO) as a flux were weighed so that the molar ratio was 80:20. These powders were treated in the same manner as in Example 1 to prepare lumps. Approximately 1.0 kg of this lump is 200 with an inner diameter of 30 mm shown in FIG.
It was put in a bottomed cylindrical platinum container 3 of cc. Subsequently, the temperature of the central portion is 1220 ° C., the vertical temperature is 20 ° C./mm by the heater 2 divided into four vertically, and the platinum container is placed in the vertical tubular electric furnace 1 having an inner diameter of 80 mm and a length of 1000 mm. After suspending 3 and raising the temperature to 1230 ° C. for 6 hours, it was kept for 12 hours to dissolve the flux and the raw materials in the container 3 to prepare a solution 4. Next, the platinum container 3 was lowered from the center of the electric furnace 1 toward a temperature gradient portion below the electric furnace 1 at a speed of 1 mm / hr to about 500 mm, and then allowed to cool to room temperature. 20% of the platinum container 3
It was boiled in nitric acid for 8 hours, the flux was dissolved and the crystals were taken out.

【0043】得られた結晶は、色調が淡黄色で大きさが
15mm角×100mmLであるほぼ矢じり形ブロック
であった。この結晶構造をX線回折法により調べた。そ
の結果、室温で菱面体のペロブスカイト型構造であるこ
とがわかった。
The obtained crystals were light yellow in color and were substantially arrowhead-shaped blocks having a size of 15 mm square × 100 mmL. This crystal structure was investigated by X-ray diffraction. As a result, it was found to have a rhombohedral perovskite structure at room temperature.

【0044】また、前記結晶の結晶構造をX線ラウエ写
真で調べたところ、明瞭なラウエ斑点を示し、かつ長手
方向がほぼ<111>方位に延びた単結晶であることを
確認した。すなわち、白金容器の底面に垂直方向(軸方
向)が単結晶の<111>方位になっており、白金容器
の底面より<111>方位の核発生が起こり、そのまま
白金容器の軸方向(底面と垂直方向)に単結晶が<11
1>方位に成長したことがわかった。白金容器の底面に
張り付いた面は、{111}面であった。また、実施例
1のような成長稜は観察されなかった。成長時間から単
結晶の成長速度は15mm/hrであることがわかっ
た。また、前記単結晶の粉末のICPによる化学分析を
行ったところ、核発生点から成長終点の間で組成;Pb
[(Zn1/3 Nb2/31-x Tix ]O3 のx値が0.
080〜0.105と大きく変動していることがわかっ
た。
When the crystal structure of the crystal was examined by an X-ray Laue photograph, it was confirmed that the crystal was a single crystal showing clear Laue spots and extending in the <111> direction in the longitudinal direction. That is, the vertical direction (axial direction) to the bottom surface of the platinum container is the <111> orientation of the single crystal, the nucleation of the <111> orientation occurs from the bottom surface of the platinum container, and the axial direction of the platinum container (bottom surface and <11 in the vertical direction)
It was found that the grains grew in the 1> orientation. The surface stuck to the bottom surface of the platinum container was the {111} surface. Moreover, the growth edge as in Example 1 was not observed. From the growth time, it was found that the growth rate of the single crystal was 15 mm / hr. Further, when the single crystal powder was subjected to a chemical analysis by ICP, the composition: Pb between the nucleation point and the growth end point;
The x value of [(Zn 1/3 Nb 2/3 ) 1-x Ti x ] O 3 is 0.
It was found that there was a large variation from 080 to 0.105.

【0045】次いで、得られた単結晶についてX線ラウ
エカメラを用いて<001>方位軸を出し、この軸に垂
直にカッタで厚さが1mmの単結晶板を切り出し、研磨
して0.3mm厚さに仕上げた。この板状単結晶の内部
を観察した。その結果、インクルージョン(包有物)や
双晶が多く観察された。つづいて、前記板状単結晶の両
面に銀電極をTi/Au電極をスパッタ法により形成
し、150〜250℃の絶縁オイル中で1kV/mmの
電界を30分間印加した後電界冷却して分極を行なっ
た。これを10mm角の板にしてLCRメータを用いて
静電容量を測定した。その結果、比誘電率が3500で
あった。前記電極付き板状単結晶を幅0.15mm、厚
さ0.3mm、長さ10mmの短冊状に切断し、共振、
反共振周波数を測定した。その結果、電気機械結合係数
33´は70〜82%でばらつきが大きく、圧電特性が
劣るものであった。
Then, using the X-ray Laue camera, the <001> azimuth axis of the obtained single crystal was taken out, and a 1 mm-thick single crystal plate was cut out with a cutter perpendicular to this axis and polished to 0.3 mm. Finished to thickness. The inside of this plate-shaped single crystal was observed. As a result, many inclusions and twins were observed. Subsequently, a silver electrode and a Ti / Au electrode were formed on both surfaces of the plate-shaped single crystal by a sputtering method, and an electric field of 1 kV / mm was applied for 30 minutes in insulating oil at 150 to 250 ° C., followed by electric field cooling and polarization. Was done. This was used as a 10 mm square plate and the capacitance was measured using an LCR meter. As a result, the relative dielectric constant was 3,500. The plate-shaped single crystal with electrodes was cut into strips having a width of 0.15 mm, a thickness of 0.3 mm, and a length of 10 mm, and resonance was performed.
The anti-resonance frequency was measured. As a result, the electromechanical coupling coefficient k 33 ′ was 70% to 82% with large variations and poor piezoelectric properties.

【0046】さらに、インクルージョンのない箇所を選
び前記単結晶を用いて前述した図2に示すアレイ形超音
波プローブを作製した。すなわち、前記91PZT−9
PTの圧電単結晶を加工して厚さ200μmの角板を作
製した。得られた角板の上下面および側面にTi/Au
導体膜をスパッタ法により蒸着し、選択エッチング技術
により前記角板の一方の側面に位置する前記導電膜部分
および超音波送受信面となる面と反対側の面に位置する
前記導電膜の一部を除去した。つづいて、前記角板の超
音波送受信面となる面に音響マッチング層を形成し後、
フレキシブル印刷配線板18を第1電極に供される前記
導電膜部分に半田付けにより接続した。また、アース電
極17を第2電極に供される前記導電膜部分に半田付け
により接続した、これらをバッキング材12上に接着し
た。なお、フレキシブル印刷配線板18およびアース電
極17は導電ペーストを用いて前記導体膜に接続しても
よい。ひきつづき、ダイヤモンドブレードを用いて前記
音響マッチング層から前記角板に亘って切り込み、10
0μmの幅で短冊状に切断した。この切断により、前記
バッキング材12上に第1、第2電極13、14を有す
る互いに分離された圧電体1と前記各圧電体1上にそれ
ぞれ配置された複数の音響マッチング層15が形成され
た。次いで、前記音響マッチング層15に音響レンズ1
6を形成した後、フレキシブル印刷配線板18を前記各
々の第1電極3にそれぞれ半田付け接続し、アース電極
板17を前記各第2電極14に半田付けにより接続し、
さらに図示しない110pF/m、長さ2mの複数の導
体(ケーブル)をフレキシブル印刷配線板18およびア
ース電極板17にそれぞれ接続することによりアレイ形
超音波プローブを製造した。
Further, an array-type ultrasonic probe shown in FIG. 2 was prepared by selecting a portion having no inclusion and using the single crystal. That is, the 91PZT-9
A piezoelectric single crystal of PT was processed to form a square plate having a thickness of 200 μm. Ti / Au was formed on the upper and lower surfaces and side surfaces of the obtained square plate.
A conductive film is vapor-deposited by a sputtering method, and the conductive film portion located on one side surface of the square plate and a part of the conductive film located on a surface opposite to an ultrasonic transmitting / receiving surface are selectively etched. Removed. Subsequently, after forming an acoustic matching layer on the surface of the square plate to be the ultrasonic wave transmitting / receiving surface,
The flexible printed wiring board 18 was connected to the conductive film portion serving as the first electrode by soldering. Further, the ground electrode 17 was connected to the conductive film portion serving as the second electrode by soldering, and these were bonded onto the backing material 12. The flexible printed wiring board 18 and the ground electrode 17 may be connected to the conductor film using a conductive paste. Subsequently, a diamond blade is used to cut from the acoustic matching layer to the square plate, and 10
It was cut into strips with a width of 0 μm. By this cutting, the piezoelectric bodies 1 having the first and second electrodes 13 and 14 separated from each other on the backing material 12 and a plurality of acoustic matching layers 15 respectively arranged on the respective piezoelectric bodies 1 were formed. . Then, the acoustic lens 1 is formed on the acoustic matching layer 15.
After forming 6, the flexible printed wiring board 18 is connected to each of the first electrodes 3 by soldering, and the ground electrode board 17 is connected to each of the second electrodes 14 by soldering,
Furthermore, an array-type ultrasonic probe was manufactured by connecting a plurality of conductors (cables) (not shown) having a length of 2 m and 110 pF / m to the flexible printed wiring board 18 and the ground electrode board 17, respectively.

【0047】得られたアレイ形超音波プローブについ
て、パルスエコー法により反射エコーを測定した。その
結果、中心周波数が3.5MHzのエコーが全素子に亘
って得られた。また、感度は従来のセラミックスより2
dB高くが、感度ばらつきはアレイ40素子で最大6d
Bと大きかった。また、周波数帯域も−6dBで比帯域
の平均値が60%と狭く、ばらつきも50〜80%であ
った。
The reflection echo of the obtained array type ultrasonic probe was measured by the pulse echo method. As a result, an echo with a center frequency of 3.5 MHz was obtained over all the elements. Moreover, the sensitivity is 2 compared with conventional ceramics.
Higher dB, but sensitivity variation is maximum 6d with 40 array elements
It was as big as B. Also, the frequency band was -6 dB, the average value of the ratio band was as narrow as 60%, and the variation was 50 to 80%.

【0048】[0048]

【発明の効果】以上説明したように、本発明に係わる酸
化物圧電単結晶の製造方法によれば大面積にしても単結
晶内部に包有物、成長応力歪、双晶などの欠陥が生じ
ず、しかも圧電・誘電特性に優れ、かつ均一な組成を有
する酸化物圧電単結晶を得ることができ、ひいては超音
波診断装置や超音波探傷装置などの超音波送受信素子で
ある超音波プローブ等に有効に利用できる等顕著な効果
を奏する。
As described above, according to the method for producing an oxide piezoelectric single crystal according to the present invention, defects such as inclusions, growth stress strains and twins are generated inside the single crystal even if the area is large. In addition, it is possible to obtain an oxide piezoelectric single crystal having excellent piezoelectric and dielectric properties and a uniform composition, and as a result, as an ultrasonic probe, which is an ultrasonic transmitting / receiving element for ultrasonic diagnostic equipment and ultrasonic flaw detectors. It has remarkable effects such as effective use.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる酸化物圧電単結晶を製造するた
めの育成装置を示す概略図。
FIG. 1 is a schematic view showing a growing apparatus for producing an oxide piezoelectric single crystal according to the present invention.

【図2】本発明に寄り製造された酸化物圧電単結晶が組
み込まれた超音波プローブを示す斜視図。
FIG. 2 is a perspective view showing an ultrasonic probe incorporating an oxide piezoelectric single crystal manufactured according to the present invention.

【符号の説明】[Explanation of symbols]

1…電気炉、2…ヒータ、3…白金容器、4…溶液、5
…単結晶、11…圧電体、12…バッキング材、13、
14…電極、15…音響マッチング層、16…音響レン
ズ、17…アース電極、18…フレキシブル印刷配線
板。
1 ... Electric furnace, 2 ... Heater, 3 ... Platinum container, 4 ... Solution, 5
... single crystal, 11 ... piezoelectric body, 12 ... backing material, 13,
14 ... Electrode, 15 ... Acoustic matching layer, 16 ... Acoustic lens, 17 ... Ground electrode, 18 ... Flexible printed wiring board.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 41/18 H01L 41/18 101A (72)発明者 泉 守 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝研究開発センター内 (72)発明者 河内 勝 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝研究開発センター内 (72)発明者 山下 洋八 神奈川県川崎市幸区柳町70番地 株式会 社東芝柳町工場内 (56)参考文献 特開 平6−122594(JP,A) 特開 平5−139878(JP,A) 特開 平6−345581(JP,A) 特開 平6−38963(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 41/24 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI H01L 41/18 H01L 41/18 101A (72) Inventor Mamoru Izumi 1 Komukai Toshiba Town, Kawasaki City, Kanagawa Prefecture Toshiba Research Co., Ltd. Development Center (72) Inventor Masaru Kawauchi 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Toshiba Research and Development Center (72) Inventor Yohachi Yamashita 70 Yanagi-cho, Sachi-ku, Kawasaki-shi, Kanagawa Toshiba Corporation Yanagimachi Factory (56) Reference JP-A-6-122594 (JP, A) JP-A-5-139878 (JP, A) JP-A-6-345581 (JP, A) JP-A-6-38963 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01L 41/24

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Pb[(Zn1/3Nb2/31-xTix]O
3(ただし、xは0.05≦x≦0.20を示す)、 Pb[(Mg1/3Nb2/31-yTiy]O3(ただし、y
は0.20≦y≦0.40を示す)、 Pb[(Ni1/3Nb2/31-zTiz]O3(ただし、z
は0.30≦z≦0.50を示す)、 Pb[(Co1/3Nb2/31-uTiu]O3(ただし、u
は0.10≦u≦0.30を示す)、 Pb[(A1/2Nb1/21-wTiw]O3(ただし、Aは
Sc、In、Fe、Yおよび希土類元素から選ばれる1
種、wは0.30≦w≦0.50を示す)、 にて表されるペロブスカイト型複合酸化物、もしくは前
記式中のNbの一部をTaで置換したペロブスカイト型
複合酸化物、または前記式中のPbの一部を10モル%
以内の量でNa、Sr、Ca、およびLaの少なくとも
1種で置換したペロブスカイト型複合酸化物からなる圧
電単結晶をフラックス法により製造するにあたり、 底部の曲率半径が少なくとも10mm以上の有底筒状容
器内に主に酸化鉛をフラックス、前記圧電単結晶の各成
分を原料として収容する工程と、 下方に向けて温度を下げ、その温度勾配を0.05〜2
0℃/mmとした電気炉内に前記有底筒状容器を配置し
てその有底筒状容器内の前記フラックスおよび原料を溶
融した後、前記有底筒状容器を前記温度勾配を持つ電気
炉領域を0.05〜10mm/hrの速度で下降させる
ことにより前記有底筒状容器の底部位置に<100>方
位の単結晶の核を発生させ、この単結晶の核から<10
0>方位に単結晶を成長させる工程とを含むことを特徴
とする酸化物圧電単結晶の製造方法。
1. Pb [(Zn 1/3 Nb 2/3 ) 1-x Ti x ] O
3 (where x is 0.05 ≦ x ≦ 0.20), Pb [(Mg 1/3 Nb 2/3 ) 1-y Ti y ] O 3 (however, y
Represents 0.20 ≦ y ≦ 0.40), Pb [(Ni 1/3 Nb 2/3 ) 1-z Ti z ] O 3 (however, z
Indicates 0.30 ≦ z ≦ 0.50), Pb [(Co 1/3 Nb 2/3 ) 1-u Ti u ] O 3 (however, u
Is 0.10 ≦ u ≦ 0.30), Pb [(A 1/2 Nb 1/2 ) 1-w Ti w ] O 3 (where A is Sc, In, Fe, Y and a rare earth element) 1 chosen
Seed, w represents 0.30 ≦ w ≦ 0.50), or a perovskite-type composite oxide represented by: or a perovskite-type composite oxide in which a part of Nb in the above formula is replaced by Ta, or 10 mol% of a part of Pb in the formula
In producing a piezoelectric single crystal composed of a perovskite-type composite oxide substituted with at least one of Na, Sr, Ca, and La by the flux method, a bottomed cylindrical shape with a radius of curvature of at least 10 mm or more A step of accommodating mainly lead oxide as a raw material and each component of the piezoelectric single crystal as a raw material in a container, and lowering the temperature downward to obtain a temperature gradient of 0.05 to 2
The bottomed tubular container is placed in an electric furnace set to 0 ° C./mm, the flux and the raw material in the bottomed tubular container are melted, and then the bottomed tubular container is subjected to an electric treatment with the temperature gradient. By lowering the furnace region at a speed of 0.05 to 10 mm / hr, single crystal nuclei of <100> orientation are generated at the bottom position of the bottomed cylindrical container, and <10> is generated from the single crystal nuclei.
And a step of growing the single crystal in the 0> orientation.
【請求項2】 <100>方位の単結晶の成長は、0.
05〜5mm/hrの速度でなされることを特徴とする
請求項1記載の酸化物圧電単結晶の製造方法。
2. The growth of a single crystal of <100> orientation is less than 0.
The method for producing an oxide piezoelectric single crystal according to claim 1, wherein the method is performed at a speed of 05 to 5 mm / hr.
JP23662095A 1995-09-14 1995-09-14 Manufacturing method of oxide piezoelectric single crystal Expired - Lifetime JP3397538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23662095A JP3397538B2 (en) 1995-09-14 1995-09-14 Manufacturing method of oxide piezoelectric single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23662095A JP3397538B2 (en) 1995-09-14 1995-09-14 Manufacturing method of oxide piezoelectric single crystal

Publications (2)

Publication Number Publication Date
JPH0983038A JPH0983038A (en) 1997-03-28
JP3397538B2 true JP3397538B2 (en) 2003-04-14

Family

ID=17003342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23662095A Expired - Lifetime JP3397538B2 (en) 1995-09-14 1995-09-14 Manufacturing method of oxide piezoelectric single crystal

Country Status (1)

Country Link
JP (1) JP3397538B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029850A1 (en) 2005-09-05 2007-03-15 Canon Kabushiki Kaisha Epitaxial oxide film, piezoelectric film, piezoelectric film element, and liquid delivery head and liquid delivery apparatus using piezoelectric element
US7528532B2 (en) 2005-08-23 2009-05-05 Canon Kabushiki Kaisha Piezoelectric substance and manufacturing method thereof, piezoelectric element and liquid discharge head using such piezoelectric element and liquid discharge apparatus
US7591543B2 (en) 2005-08-23 2009-09-22 Canon Kabushiki Kaisha Piezoelectric member, piezoelectric member element, liquid discharge head in use thereof, liquid discharge apparatus and method of manufacturing piezoelectric member
US7622852B2 (en) 2007-03-02 2009-11-24 Canon Kabushiki Kaisha Piezoelectric member, piezoelectric element, and liquid discharge head and liquid discharge apparatus utilizing piezoelectric element
US7948154B2 (en) 2006-07-18 2011-05-24 Canon Kabushiki Kaisha Piezoelectric substance, piezoelectric element, and liquid discharge head and liquid discharge apparatus using piezoelectric element

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005043188A1 (en) * 2003-11-03 2005-05-12 Koninklijke Philips Electronics, N.V. Ultrasonic multiple beam transmission using single crystal transducer
JP2007151561A (en) * 2004-10-15 2007-06-21 Olympus Corp Ultrasonic probe
JP5065763B2 (en) * 2007-05-18 2012-11-07 Jfeミネラル株式会社 Piezoelectric single crystal element
JP4878607B2 (en) * 2008-05-19 2012-02-15 Jfeミネラル株式会社 Manufacturing method of full-rate solid solution type piezoelectric single crystal ingot, full-rate solid solution type piezoelectric single crystal ingot, and piezoelectric single crystal element
JP6091951B2 (en) * 2013-03-25 2017-03-08 東芝メディカルシステムズ株式会社 Piezoelectric vibrator, ultrasonic probe, piezoelectric vibrator manufacturing method and ultrasonic probe manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7528532B2 (en) 2005-08-23 2009-05-05 Canon Kabushiki Kaisha Piezoelectric substance and manufacturing method thereof, piezoelectric element and liquid discharge head using such piezoelectric element and liquid discharge apparatus
US7591543B2 (en) 2005-08-23 2009-09-22 Canon Kabushiki Kaisha Piezoelectric member, piezoelectric member element, liquid discharge head in use thereof, liquid discharge apparatus and method of manufacturing piezoelectric member
WO2007029850A1 (en) 2005-09-05 2007-03-15 Canon Kabushiki Kaisha Epitaxial oxide film, piezoelectric film, piezoelectric film element, and liquid delivery head and liquid delivery apparatus using piezoelectric element
US7804231B2 (en) 2005-09-05 2010-09-28 Canon Kabushiki Kaisha Epitaxial oxide film, piezoelectric film, piezoelectric film element, liquid discharge head using the piezoelectric film element, and liquid discharge apparatus
EP2549558A1 (en) 2005-09-05 2013-01-23 Canon Kabushiki Kaisha Epitaxial oxide film, piezoelectric film, piezoelectric film element, liquid discharge head using the piezoelectric film element, and liquid discharge apparatus
US7948154B2 (en) 2006-07-18 2011-05-24 Canon Kabushiki Kaisha Piezoelectric substance, piezoelectric element, and liquid discharge head and liquid discharge apparatus using piezoelectric element
US7622852B2 (en) 2007-03-02 2009-11-24 Canon Kabushiki Kaisha Piezoelectric member, piezoelectric element, and liquid discharge head and liquid discharge apparatus utilizing piezoelectric element

Also Published As

Publication number Publication date
JPH0983038A (en) 1997-03-28

Similar Documents

Publication Publication Date Title
US6020675A (en) Ultrasonic probe
JP3345580B2 (en) Ultrasonic probe manufacturing method
US5402791A (en) Piezoelectric single crystal, ultrasonic probe, and array-type ultrasonic probe
US20060079785A1 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
CN105051926B (en) Piezoelectric vibrator, ultrasonic probe, piezoelectric vibrator manufacturing method and ultrasonic probe manufacturing method
US20080290315A1 (en) Piezoeletric Single Crystal and Method of Production of Same, Piezoelectric Element, and Dielectric Element
US6153967A (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JP3397538B2 (en) Manufacturing method of oxide piezoelectric single crystal
JP2008258183A (en) Piezoelectric ceramic material including production process and application
US5410209A (en) Piezoelectric material and ultrasonic probe
KR100480876B1 (en) Ultrasonic probe comprising new piezoelectric single crystal
JP3561238B2 (en) Ferroelectric single crystal and method for producing the same
JP3420866B2 (en) Ultrasonic probe
JP3362966B2 (en) Piezoelectric single crystal, ultrasonic probe and array type ultrasonic probe
Harada et al. Growth of Pb [(Zn1/3Nb2/3) 0.91 Tio. 09] 03 single crystal of ultrasonic transducer for medical application
JP3413025B2 (en) Piezoelectric element
JP2022132883A (en) Piezoelectric vibrator and manufacturing method thereof
JP3679957B2 (en) Ultrasonic probe and manufacturing method thereof
JP2000016900A (en) Production of piezoelectric single crystal
JPH10251093A (en) Production of oxide piezoelectric substance
JP3943731B2 (en) Piezoelectric plate for ultrasonic transducer and manufacturing method thereof
JP3343014B2 (en) Method for producing oxide single crystal
JP3477028B2 (en) Method for producing oxide single crystal and method for producing ultrasonic probe
JP2004104629A (en) Ultrasonic probe
JP3529600B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140214

Year of fee payment: 11

EXPY Cancellation because of completion of term