JP3396714B2 - Seismic element - Google Patents

Seismic element

Info

Publication number
JP3396714B2
JP3396714B2 JP04787094A JP4787094A JP3396714B2 JP 3396714 B2 JP3396714 B2 JP 3396714B2 JP 04787094 A JP04787094 A JP 04787094A JP 4787094 A JP4787094 A JP 4787094A JP 3396714 B2 JP3396714 B2 JP 3396714B2
Authority
JP
Japan
Prior art keywords
contact member
contact
conductive terminal
conductive
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04787094A
Other languages
Japanese (ja)
Other versions
JPH07229786A (en
Inventor
慎司 木下
秀樹 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ubukata Industries Co Ltd
Original Assignee
Ubukata Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ubukata Industries Co Ltd filed Critical Ubukata Industries Co Ltd
Priority to JP04787094A priority Critical patent/JP3396714B2/en
Publication of JPH07229786A publication Critical patent/JPH07229786A/en
Application granted granted Critical
Publication of JP3396714B2 publication Critical patent/JP3396714B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は例えば都市ガスやプロパ
ンガス等のマイコンメーターに取付けられたり、石油暖
房機やガス燃焼機器や電気機器の制御装置等に取付けら
れ、地震等の震動を感知して前記マイコンメーターや制
御装置に検知信号を送る感震器に使用される感震素子に
関するものである。 【0002】 【従来の技術】従来、この種の加速度応動スイッチとし
ては例えば特願平4−272387の「感震器」等があ
る。この感震器に使用される感震素子101は図5に示
す如く金属製の密閉容器102内にガラス103により
この容器とは電気的に絶縁して固定された接点部材10
4を有するとともに導電球105を揺動可能に収納し、
この導電球が震動により揺動すると電極に接触すること
により容器と電極との間を電気的に短絡接続し検知信号
を発するものである。 【0003】近年、この様な感震器を各家庭に設置され
る都市ガスやプロパンガスなどのガス流量計に取り付
け、単に流量を記録するだけではなく地震による火災な
どの二次災害の防止やガス洩れなどの早期発見の為の機
能を付与するために所謂マイコンを内蔵したマイコン式
ガス流量計(以下マイコンメーターという。)が使用さ
れ始めている。このマイコンメーターはマイコンと電池
を内蔵し、地震による振動や転倒、ガスの異常な大量流
出や少量ながら長期的な流出等を検知して内蔵した電磁
弁等を閉鎖したり警報器から警報を発したりするなどの
制御を行ない、これらを原因とする事故を未然に防ぐも
のである。 【0004】このうち地震の検知に関しては、マイコン
メーターへの飛来物の衝突とか、自動車の走行や工事現
場などを原因とする人為的な振動と地震の振動とを見分
ける必要がある。そのためには感震器が地震の振動領域
である周波数帯域に於いては所定の動作特性を示し、そ
れ以外の周波数帯域に於いては別の動作特性を示すよう
にする必要がある。 【0005】例えば、地震の震動は色々な周波数の振動
が複合したものであるが、主に10Hz以下、特に5Hz以
下の振動を中心としており、感震装置の検査などにおい
ては地震の代用特性として例えば3.3Hz,2Hz,1.4
3Hzの正弦波振動を印加して行なわれる。そこで例えば
前述の導電球などの慣性子の揺動によってオン−オフ動
作をする接点を有した感震器を使用する感震装置におい
ては、例えば1回の継続時間が40ミリ秒以上のオン信
号及びオフ信号が所定の時間内、例えば3秒間に3回以
上出力された時に、マイコンにより地震と判断して信号
を出力する構造とし、その他の外乱振動とを区別してい
る。 【0006】 【発明が解決しようとする課題】地震はその発生場所が
予測不可能であり限定されないので、感震器はどの方向
からの地震波にも同一の特性を持つように指向性を持た
ない構造とする必要がある。そのため前述の「感震器」
の感震素子101は容器の底面に中心部から外側に向か
って同心円状に緩やかに上昇する傾斜面が形成され、図
6(A)、(B)に示す如く容器上蓋102Aのほぼ中
心にガラス103により絶縁固定された導電端子ピン1
06の端部に導電端子ピン106を中心とした記号Aで
示す円上に接触部を配設するように接点部材104が導
電的に固着され、導電球105が震動により揺動すると
接点部材104に接触することにより容器102と接点
部材104との間を電気的に短絡接続し検知信号を発す
るものである。なお図6(A)は図5の感震器の上蓋1
02Aの容器本体102Bへの固着前の状態を示す断面
図であり、図6(B)は図6(A)のB方向からの矢視
図である。また107は導電球105が接点部材104
と導電端子ピン106との固着部近傍に直接当接して変
形させることのないようにするための保護板である。 【0007】しかし、この「感震器」の感震素子101
においては接点部材104と導電球105との接触時に
発生する所謂チャタリングやバウンシングを防ぐために
その接触が剛体同士の衝突とならないように接点部材1
04をしなやかな構造としている。そのため例えば接点
部材104に板厚の薄い導電材料、例えば厚さ50μm
のリン青銅を使用した場合には、溶接等の方法で導電端
子ピン106に固着した時に発生する熱等により接点部
材104が歪を生ずる。この歪は固着部では僅かなもの
だが接点部材104の先端104Aにおいては拡大され
てしまい、その結果、接点部材の先端104A近傍に位
置する接触部の位置関係は固着前と固着後では変化する
ためその変化量を見込んで部品の設計をする必要があ
る。さらにまた図7(A)とそのC方向からの矢視図で
ある図7(B)に示す如く導電端子ピン106を中心と
した円上に位置するべき接触部が大きく歪み記号Dで示
す楕円形など非円形になってしまった場合には、導電球
105が転動した時に接触部に達するまでの中心からの
距離がその転動方向によってばらついてしまうために導
電球105が接点部材104に所定時間接触するために
必要な加速度がその加振方向によって変動してしまい、
結果的に感震素子101の特性は予測不可能な指向性を
有する事になる。 【0008】そこで接点部材104を直接固着するので
はなく、導電端子ピン106と保護板107とにより挟
み保持することにより溶接時に接点部材104が発熱し
ないようにした構造のものも考えられているが、導電端
子ピン106と保護板107との溶接部近傍で接点部材
104を挟む構造であるため溶接時の熱が接点部材に伝
わってしまい容認される以上の歪を発生することがあっ
た。 【0009】 【課題を解決するための手段】本発明の感震素子は、円
形の金属板のほぼ中心に穿たれた孔に導電端子ピンを貫
通して電気的に絶縁して固定した蓋板と、有底円筒形の
導電性のハウジングを有し、該ハウジングの底面にはほ
ぼ中心部から外側に向かって同心円状に緩やかに上昇す
る傾斜面が形成され、前記蓋板の周縁部にハウジングの
開口端が固着されて容器を形成し、蓋板の導電端子ピン
端部には導電端子ピンを中心としてほぼ円上に接触部を
配設する複数のしなやかな弾性を有した羽根状部を持つ
導電材製の接点部材が導電的に固定され、前記容器の内
部には導電性の固体の慣性球が正規姿勢において静止時
には重力によりハウジングのほぼ中央部に位置するよう
に収納され、振動を受ける事により慣性球が揺動し接点
部材と接触して変位させるとともに摺動し同時にハウジ
ング内面と接点部材との間を慣性球を介して短絡するよ
うに構成された感震素子において、前記接点部材の導電
端子ピンとの固定部近傍には固定時に発生する熱及びこ
の熱による歪を外周部に伝達させないためのスリットが
設けられている事を特徴としている。 【0010】 【実施例】以下、図を参照しながら本発明の実施例につ
いて説明する。図1は本発明の感震素子1の断面図であ
り、図2は本発明に使用される接点部材の一例の平面図
を示し図2(A)はその平面図、図2(B)は図2
(A)の2点鎖線で囲まれたE部の拡大図である。この
感震素子1は金属板2にガラスやセラミックスなどの絶
縁材料3により導電端子ピン4を気密に貫通固定した蓋
板5と、有底円筒型のハウジング6を有し、蓋板5の周
縁部をハウジング6の開口部にリングプロジェクション
溶接などにより固着することにより密閉容器を構成して
いる。 【0011】密閉容器内部には鉄や銅やその合金などの
導電性の固体の慣性球たる導電球7が転動可能に収納さ
れており、通常はハウジング6の中心部から外側に向か
って同心円状に緩やかに上昇する傾斜面6Aの中央に載
置され、後述の接点部材に対して全方向で所定の距離を
保っている。導電端子ピン4の密閉容器内側端部には導
電端子ピンを中心としてほぼ円上に接触部を配設する複
数のしなやかな弾性を有した羽根状部8Aを持つリン青
銅などの導電材製の接点部材8が導電的に固定され、前
述の導電球7と接触可能にされている。尚、ハウジング
6の内壁には突起6Bが数箇所設けられており、例えば
感震素子が大きな衝撃等を受け導電球7がハウジング6
の内壁に沿って周回運動を始めようとする時にこの突起
6Bが衝接部としてはたらき、導電球7の運動方向を急
激に変えて接点部材8と導電球7の接触を一時的に断ち
オン信号の連続出力を避けるとともに、導電球7の運動
エネルギーを突起6Bとの衝突により急速に減少させ慣
性球の周回運動を早期に収束させ正常な往復運動に戻す
ことができる。 【0012】接点部材8には図2に示すようにその中心
部には貫通孔8Bが穿たれており、接点部材8の導電端
子ピン4への固定はこの貫通孔8Bを介して導電端子ピ
ン4に保護板9を溶接等の方法で導電的に固着すること
により行われる。つまり接点部材8は直接導電端子ピン
等に固着されるのではなく、導電端子ピン4と保護板9
とにより挟まれて保持される。保護板9は接点部材の固
定に使われるのみではなく、保護板9を設けることによ
り、導電球7の接点部材8の根元附近への衝接による接
点部材の変形を防止している。 【0013】さらに本発明においては、接点部材8の貫
通孔8Bの周囲にスリット8Cがほぼ全周にわたって設
けられ、接点部材8の固定時に発生した熱による歪をそ
の外周部に伝達しないようにされている。この点につい
て図1の2点鎖線で示すF部の拡大図である図3を参照
して説明すると、保護板9はその溶接部9Aを接点部材
8の貫通孔8Bに挿通され導電端子ピン4の端部に電気
抵抗溶接等の方法で固着される。同時に接点部材8はそ
の貫通孔8Bの周縁部8D付近を保護板9の溶接部9A
の周囲に設けられた挟持部9Bと導電端子ピン4の端部
により挟み保持される。 【0014】保護板9の導電端子ピン4への溶接時に保
護板の溶接部9A付近は瞬時高温となる。このとき接点
部材8の貫通孔8Bは位置決めの為に保護板9の溶接部
9Aの直径とほぼ同じ大きさとされその内周部が溶接部
に隣接していることから、溶接時の熱は貫通孔8B内周
から周縁部8Dに伝達される。この溶接熱により周縁部
8Dには歪みが発生するがその周囲にスリット8Cがほ
ぼ全周にわたって設けられているため、発生した歪はス
リット8Cより外側への伝達を妨げられると共に、歪ん
でいないスリット外周部分を挟持部で保持するため、接
点部材先端の位置関係に影響を及ぼす事はほとんどな
い。また溶接熱もスリット8Cの外側にはほとんど伝え
られないため、スリットの外周で歪みが発生して接点部
材先端の位置関係に影響を及ぼす事もない。 【0015】なお本実施例ではスリット8Cは3つの円
弧であるがその数はこれに限定されるものではなく、さ
らに寸法上又は強度上問題がなければ図4に示すように
二重以上にすれば更に効果的であることはいうまでもな
い。 【0016】また実施例では蓋板とハウジングにより密
閉容器を構成している感震素子を例に説明したが、例え
ば非汚損雰囲気中で使用されたり接点部材や導電球及び
ハウジング内面をメッキする等して汚損防止処置がとら
れている場合には、ハウジングの開口部に蓋板をカシメ
等の方法で取付けるような非密閉構造としてもよい。 【0017】 【発明の効果】本発明の感震素子によれば、接点部材の
固定部をほぼ全周にわたって囲むようにスリットを設け
た事により、溶接等による固定時に発生する熱やこの熱
による歪をスリットより外側に伝達しないようにされて
いるため、板厚が非常に薄い接点部材を使用した場合に
おいて固定部周辺に発生した歪により先端部の位置関係
が変化してしまう事はない。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to a microcomputer meter of, for example, city gas or propane gas, or to a control device of an oil heater, a gas combustion device or an electric device. The present invention relates to a seismic element used for a seismic sensor which is attached and sends a detection signal to the microcomputer meter or the control device upon sensing a vibration such as an earthquake. 2. Description of the Related Art Conventionally, as this kind of acceleration responsive switch, there is, for example, a "seismic sensor" of Japanese Patent Application No. 4-27287. As shown in FIG. 5, a seismic element 101 used in this seismic device is a contact member 10 which is fixed in a metal hermetically sealed container 102 by glass 103 so as to be electrically insulated from the container.
4 and the conductive ball 105 is stored so as to be swingable,
When the conductive ball oscillates due to vibration, it comes into contact with the electrode, thereby electrically short-circuiting between the container and the electrode to generate a detection signal. [0003] In recent years, such a seismic sensor has been attached to a gas flow meter such as a city gas or a propane gas installed in each household to not only record the flow rate but also prevent a secondary disaster such as a fire caused by an earthquake. In order to provide a function for early detection of gas leakage or the like, a microcomputer type gas flow meter (hereinafter referred to as a microcomputer meter) incorporating a so-called microcomputer has begun to be used. This microcomputer meter has a built-in microcomputer and battery, detects vibrations and overturns caused by earthquakes, abnormally large outflow of gas and long-term outflow even though it is a small amount, closes the built-in solenoid valve etc. and issues an alarm from an alarm Control to prevent accidents caused by these. [0004] Among them, regarding the detection of an earthquake, it is necessary to discriminate between a collision of a flying object with a microcomputer meter and an artificial vibration caused by an automobile running or a construction site from an earthquake vibration. For this purpose, it is necessary for the seismic sensor to exhibit a predetermined operating characteristic in a frequency band which is a vibration region of an earthquake, and to exhibit another operating characteristic in other frequency bands. For example, the vibration of an earthquake is a compound of vibrations of various frequencies, but mainly the vibration of 10 Hz or less, especially 5 Hz or less. For example, 3.3Hz, 2Hz, 1.4
This is performed by applying a 3 Hz sine wave vibration. Therefore, for example, in a seismic device using a seismic sensor having a contact that is turned on and off by the oscillation of an inertia such as the above-described conductive sphere, for example, an ON signal having a duration of 40 ms or more for one time is used. When an off signal is output within a predetermined period of time, for example, three times or more in three seconds, the microcomputer determines that an earthquake has occurred and outputs a signal to distinguish it from other disturbance vibrations. [0006] Since the place where the earthquake occurs is unpredictable and unlimited, the seismic sensor does not have directivity so that it has the same characteristics to seismic waves from any direction. It must be structured. For this reason, the above-mentioned “seismic device”
The seismic element 101 has an inclined surface gradually rising concentrically from the center to the outside on the bottom surface of the container. As shown in FIG. 6A and FIG. Conductive terminal pin 1 insulated and fixed by 103
The contact member 104 is conductively fixed to the end of the contact 06 so that the contact portion is disposed on a circle indicated by the symbol A centering on the conductive terminal pin 106. When the conductive ball 105 swings due to vibration, the contact member 104 is contacted. , The container 102 and the contact member 104 are electrically short-circuited to generate a detection signal. FIG. 6A shows the upper cover 1 of the seismic sensor of FIG.
FIG. 6B is a cross-sectional view showing a state before fixing of 02A to the container main body 102B, and FIG. 6B is a view from the direction of arrow B in FIG. 6A. Reference numeral 107 denotes a conductive ball 105 which is a contact member 104.
And a protective plate for preventing direct deformation in the vicinity of the fixed portion between the conductive pin 106 and the conductive terminal pin 106. However, the seismic element 101 of this "seismic element"
In order to prevent so-called chattering and bouncing that occurs when the contact member 104 and the conductive ball 105 come into contact with each other, the contact member 1 is used so that the contact does not cause a collision between rigid bodies.
04 has a flexible structure. Therefore, for example, a thin conductive material such as 50 μm
When phosphor bronze is used, the contact member 104 is distorted by heat or the like generated when it is fixed to the conductive terminal pin 106 by welding or the like. Although this distortion is slight at the fixed portion, it is enlarged at the tip 104A of the contact member 104, and as a result, the positional relationship of the contact portion located near the tip 104A of the contact member changes before and after the fixation. It is necessary to design parts in anticipation of the change. Further, as shown in FIG. 7 (A) and FIG. 7 (B) which is a view from the direction C, the contact portion to be located on the circle centered on the conductive terminal pin 106 is large, and the ellipse indicated by the distortion symbol D is large. When the conductive sphere 105 rolls, the distance from the center until reaching the contact portion when the conductive sphere 105 rolls varies depending on the rolling direction. The acceleration required for contacting for a predetermined time fluctuates depending on the direction of the vibration,
As a result, the characteristics of the seismic element 101 have an unpredictable directivity. Therefore, instead of directly fixing the contact member 104, a structure in which the contact member 104 does not generate heat during welding by sandwiching and holding the conductive terminal pin 106 and the protection plate 107 has been considered. Since the contact member 104 is sandwiched in the vicinity of the welded portion between the conductive terminal pin 106 and the protective plate 107, heat during welding is transmitted to the contact member, which may generate more distortion than is allowed. According to the present invention, there is provided a seismic element comprising a cover plate fixedly electrically insulated by penetrating conductive terminal pins into a hole formed substantially in the center of a circular metal plate. And a conductive housing having a bottomed cylindrical shape, and a slope that gradually rises concentrically from the center to the outside is formed on the bottom surface of the housing, and a housing is formed on the peripheral edge of the lid plate. The open end of the cover is fixed to form a container, and a plurality of flexible elastic wing-like portions are provided at the end of the conductive terminal pin of the lid plate, in which the contact portion is disposed substantially in a circle around the conductive terminal pin. A conductive contact member made of a conductive material is conductively fixed, and a conductive solid inertial sphere is housed inside the container so as to be positioned substantially at the center of the housing by gravity when stationary in a normal posture, and vibration is suppressed. The inertia ball swings by receiving it, and the contact member In the seismic element configured to contact and displace and slide and simultaneously short-circuit between the inner surface of the housing and the contact member via the inertial sphere, in the vicinity of the fixed portion of the contact member with the conductive terminal pin, A slit is provided to prevent heat generated during fixing and distortion caused by the heat from being transmitted to the outer peripheral portion. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a seismic element 1 of the present invention, FIG. 2 is a plan view of an example of a contact member used in the present invention, FIG. 2 (A) is a plan view thereof, and FIG. FIG.
It is an enlarged view of the E section enclosed by the two-dot chain line of (A). The seismic sensor 1 has a cover plate 5 in which conductive terminal pins 4 are hermetically sealed through a metal plate 2 with an insulating material 3 such as glass or ceramics, and a bottomed cylindrical housing 6. The hermetic container is constituted by fixing the portion to the opening of the housing 6 by ring projection welding or the like. Inside the sealed container, a conductive ball 7, which is a conductive solid inertia ball such as iron, copper, or an alloy thereof, is rotatably accommodated, and is usually concentric from the center of the housing 6 to the outside. It is placed at the center of the inclined surface 6A that gradually rises in a shape, and keeps a predetermined distance in all directions with respect to a contact member described later. A conductive material such as phosphor bronze having a plurality of flexible elastic wing-shaped portions 8A in which a contact portion is disposed substantially in a circle around the conductive terminal pin at the inner end of the conductive terminal pin 4 is provided. The contact member 8 is conductively fixed, and can be brought into contact with the above-mentioned conductive ball 7. Note that several projections 6B are provided on the inner wall of the housing 6, and for example, the conductive ball 7
The projection 6B acts as an abutting portion when the orbital movement is started along the inner wall of the contact hole, and the direction of movement of the conductive sphere 7 is suddenly changed to temporarily break the contact between the contact member 8 and the conductive sphere 7 to turn on the signal. , The kinetic energy of the conductive sphere 7 is rapidly reduced by the collision with the projection 6B, and the orbital motion of the inertial sphere is converged early to return to the normal reciprocating motion. As shown in FIG. 2, a through hole 8B is formed in the center of the contact member 8, and the contact member 8 is fixed to the conductive terminal pin 4 through the through hole 8B. The protective plate 9 is conductively fixed to the substrate 4 by welding or the like. That is, the contact member 8 is not directly fixed to the conductive terminal pins or the like, but is connected to the conductive terminal pins 4 and the protection plate 9.
And held between them. The protection plate 9 is used not only for fixing the contact member, but also by providing the protection plate 9 to prevent the deformation of the contact member due to the contact of the conductive ball 7 near the base of the contact member 8. Further, in the present invention, a slit 8C is provided substantially all around the through hole 8B of the contact member 8, so that distortion due to heat generated when the contact member 8 is fixed is not transmitted to the outer peripheral portion. ing. This point will be described with reference to FIG. 3, which is an enlarged view of a portion F indicated by a two-dot chain line in FIG. 1. The protection plate 9 has its welded portion 9A inserted through the through hole 8B of the contact member 8, and the conductive terminal pin 4 Is fixed to the end of the substrate by a method such as electric resistance welding. At the same time, the contact member 8 closes the periphery 8D of the through hole 8B to the welding portion 9A of the protection plate 9.
Is pinched and held by the pinching portion 9B provided around the end of the conductive terminal pin 4. When the protective plate 9 is welded to the conductive terminal pins 4, the temperature near the welded portion 9A of the protective plate becomes instantaneously high. At this time, since the through hole 8B of the contact member 8 is approximately the same size as the diameter of the welded portion 9A of the protection plate 9 for positioning, and the inner peripheral portion thereof is adjacent to the welded portion, heat during welding is penetrated. The power is transmitted from the inner periphery of the hole 8B to the peripheral portion 8D. Distortion is generated in the peripheral portion 8D due to the welding heat, but since the slit 8C is provided almost all around the peripheral portion 8D, the generated distortion is prevented from being transmitted to the outside of the slit 8C, and the slit which is not distorted. Since the outer peripheral portion is held by the holding portion, it hardly affects the positional relationship of the tip of the contact member. Also, almost no welding heat is transmitted to the outside of the slit 8C, so that distortion does not occur on the outer periphery of the slit and does not affect the positional relationship of the tip of the contact member. In this embodiment, the slit 8C has three arcs, but the number of the arcs is not limited to three. If there is no problem in dimension or strength, the slit 8C may be double or more as shown in FIG. Needless to say, it is even more effective. Further, in the embodiment, the seismic element in which the lid plate and the housing constitute a closed container is described as an example. However, for example, the seismic element is used in a non-fouling atmosphere, or the contact member, the conductive ball and the inner surface of the housing are plated. When the antifouling treatment is performed, a non-hermetic structure may be adopted in which a cover plate is attached to the opening of the housing by caulking or the like. According to the seismic element of the present invention, since the slit is provided so as to surround the fixed portion of the contact member over substantially the entire circumference, the heat generated at the time of fixing by welding or the like or the heat generated by this heat is used. Since the strain is not transmitted to the outside of the slit, when a contact member having a very small thickness is used, the positional relationship of the distal end portion does not change due to the strain generated around the fixed portion.

【図面の簡単な説明】 【図1】本発明の感震素子の一例の断面図 【図2】本発明の感震素子に使用される接点部材の一例
であり、(A)は平面図、(B)はその部分拡大図 【図3】図1の感震素子の部分拡大図 【図4】本発明の感震素子に使用される接点部材の他の
実施例の部分拡大図 【図5】従来の感震素子の一例 【図6】従来の感震素子に使用される接点部材とその周
辺部材の一例であり、(A)は平面図、(B)はそのB
方向からの矢視図 【図7】図6の接点部材の変形例を示す図であり、
(A)は平面図、(B)はそのC方向からの矢視図 【符号の説明】 1:感震素子 2:金属板 3:絶縁材料 4:導電端子ピン 5:蓋板 6:ハウジング 7:導電球 8:接点部材 8A:羽根状部 8B:貫通孔 8C:スリット 9:保護板
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of an example of a seismic element of the present invention. FIG. 2 is an example of a contact member used in the seismic element of the present invention. (B) is a partial enlarged view of FIG. 3; FIG. 4 is a partial enlarged view of the seismic element of FIG. 1; FIG. 4 is a partial enlarged view of another embodiment of the contact member used in the seismic element of the present invention; FIG. 6 is an example of a contact member and its peripheral members used in a conventional seismic element, (A) is a plan view, and (B) is a B thereof.
FIG. 7 is a view showing a modification of the contact member of FIG. 6;
(A) is a plan view, and (B) is a view from the direction of C. [Description of References] 1: Seismic element 2: Metal plate 3: Insulating material 4: Conductive terminal pin 5: Cover plate 6: Housing 7 : Conductive ball 8: contact member 8A: wing portion 8B: through hole 8C: slit 9: protective plate

Claims (1)

(57)【特許請求の範囲】 【請求項1】 円形の金属板のほぼ中心に穿たれた孔に
導電端子ピンを貫通して電気的に絶縁して固定した蓋板
と、有底円筒形の導電性のハウジングを有し、該ハウジ
ングの底面にはほぼ中心部から外側に向かって同心円状
に緩やかに上昇する傾斜面が形成され、前記蓋板の周縁
部にハウジングの開口端が固着されて容器を形成し、蓋
板の導電端子ピン端部には導電端子ピンを中心としてほ
ぼ円上に接触部を配設する複数のしなやかな弾性を有し
た羽根状部を持つ導電材製の接点部材が導電的に固定さ
れ、前記容器の内部には導電性の固体の慣性球が正規姿
勢において静止時には重力によりハウジングのほぼ中央
部に位置するように収納され、振動を受ける事により慣
性球が揺動し接点部材と接触して変位させるとともに摺
動し同時にハウジング内面と接点部材との間を慣性球を
介して短絡するように構成された感震素子において、前
記接点部材の導電端子ピンとの固定部近傍には固定時に
発生する熱及びこの熱による歪を外周部に伝達させない
ためのスリットが設けられている事を特徴とする感震素
子。
(57) [Claim 1] A cover plate which is electrically insulated and fixed by penetrating conductive terminal pins into a hole formed substantially in the center of a circular metal plate, and a bottomed cylindrical shape. An inclined surface is formed on the bottom surface of the housing, which gradually rises concentrically from the center toward the outside, and the open end of the housing is fixed to the peripheral edge of the lid plate. A contact made of a conductive material having a plurality of flexible elastic wing-shaped portions at the ends of the conductive terminal pins of the cover plate, and arranging the contact portions substantially in a circle around the conductive terminal pins at the ends of the cover plate The member is conductively fixed, and a conductive solid inertial sphere is housed inside the container so as to be located at a substantially central portion of the housing by gravity when stationary in a normal posture, and the inertial sphere is subjected to vibration and the inertial sphere is received. Swing and contact with the contact member to displace In the seismic element configured to slide and simultaneously short-circuit between the inner surface of the housing and the contact member via the inertial sphere, heat generated at the time of fixation near the fixing portion of the contact member with the conductive terminal pin, A seismic element characterized by having a slit to prevent heat distortion from being transmitted to the outer periphery.
JP04787094A 1994-02-21 1994-02-21 Seismic element Expired - Fee Related JP3396714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04787094A JP3396714B2 (en) 1994-02-21 1994-02-21 Seismic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04787094A JP3396714B2 (en) 1994-02-21 1994-02-21 Seismic element

Publications (2)

Publication Number Publication Date
JPH07229786A JPH07229786A (en) 1995-08-29
JP3396714B2 true JP3396714B2 (en) 2003-04-14

Family

ID=12787419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04787094A Expired - Fee Related JP3396714B2 (en) 1994-02-21 1994-02-21 Seismic element

Country Status (1)

Country Link
JP (1) JP3396714B2 (en)

Also Published As

Publication number Publication date
JPH07229786A (en) 1995-08-29

Similar Documents

Publication Publication Date Title
US5955713A (en) Tilt switch array for electronic orientation detection
US4789762A (en) Miniature multiplanar acceleration switch
JP2007033089A (en) Acceleration switch
JP3655644B2 (en) Explosion-proof valve group and sealed secondary battery using the same
US3673362A (en) Electric impact switch
JP3649491B2 (en) Batteries with explosion-proof function
JP3396714B2 (en) Seismic element
US5600109A (en) Acceleration responsive switch and method of making the same
JP2934597B2 (en) Seismic element
JP3565580B2 (en) Battery with explosion-proof safety device and method of manufacturing the same
KR100197064B1 (en) Earthquake detecting element
JP2887556B2 (en) Acceleration response switch
JP2006226957A (en) Acceleration switch
US3527907A (en) Centrifugal switch with normally closed contacts
JP2914859B2 (en) Acceleration response switch
JP2827085B2 (en) Seismic element
JP2892559B2 (en) Seismic sensor
JP2935485B2 (en) Seismic sensor
JP2827098B2 (en) Seismic element
JPH08273504A (en) Acceleration reacting switch
JP2930491B2 (en) Seismic sensor
JP2935490B2 (en) Seismic element and manufacturing method thereof
JP2872199B2 (en) Tilt vibration sensor
JP3080926B2 (en) Sensor
JPH081493Y2 (en) Oxygen sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140214

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees