JP3396439B2 - Continuous annealing descaling method for stainless steel strip - Google Patents

Continuous annealing descaling method for stainless steel strip

Info

Publication number
JP3396439B2
JP3396439B2 JP02637099A JP2637099A JP3396439B2 JP 3396439 B2 JP3396439 B2 JP 3396439B2 JP 02637099 A JP02637099 A JP 02637099A JP 2637099 A JP2637099 A JP 2637099A JP 3396439 B2 JP3396439 B2 JP 3396439B2
Authority
JP
Japan
Prior art keywords
steel strip
electrolytic
stainless steel
annealing
current value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02637099A
Other languages
Japanese (ja)
Other versions
JP2000226700A (en
Inventor
正剛 菊山
義宏 佐竹
源一 石橋
聡 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP02637099A priority Critical patent/JP3396439B2/en
Publication of JP2000226700A publication Critical patent/JP2000226700A/en
Application granted granted Critical
Publication of JP3396439B2 publication Critical patent/JP3396439B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、ステンレス鋼帯の
連続焼鈍脱スケール方法に関する。 【0002】 【従来の技術】従来、冷間圧延後のステンレス鋼帯(以
下適宜単に「鋼帯」と称す)は、焼鈍により所定の材質
に調整されたのち、焼鈍中に生じたスケールを除去する
酸洗処理を施される。この酸洗処理を行う酸洗ライン
は、通常、酸洗処理を行う酸洗槽と酸洗前に電解脱スケ
ールを行う中性塩電解槽とを備えている。しかし、中性
塩電解処理に引き続き酸洗処理を施されたステンレス鋼
帯の表面は、酸により浸食された状態となり、良好な表
面性状を得るには調質圧延または研磨といった後処理工
程が必要不可欠であった。 【0003】このような後処理工程はコスト高や生産性
低下をもたらすため、これを省略可能とする技術が提案
されている。例えば、特開平9−184012号公報には、ス
テンレス鋼中のSi成分を0.3 wt%以下に制限し、焼鈍の
保持温度を950 〜1200℃に制御し、さらに中性塩電解液
のpHを0〜2.5 に制御することにより、脱スケール後の
研磨処理を不要としたステンレス鋼板の製造方法が開示
されている。これらの技術では、電解脱スケール工程の
電解電流値は、通板速度に応じて一義的に決められてい
た。 【0004】 【発明が解決しようとする課題】一方、焼鈍炉内の鋼帯
表面温度は一定に管理されるべきところ、実操業におい
ては、鋼帯長手方向の板厚偏差、炉内雰囲気・焼鈍温度
・通板速度のばらつき、鋼帯継ぎ溶接部通過時の炉温設
定の変更などによって鋼帯表面温度が管理範囲を逸脱し
て不可避的に変動することが多々ある。このような鋼帯
表面温度の変動があると、それに伴い鋼帯表面に生成す
るスケール層も変動する。 【0005】ところが、前記従来技術では、電解脱スケ
ール工程の電解電流を通板速度に応じて一義的に決める
ため、かかる変動に追従することができない。その結
果、例えば酸洗後に鋼帯表面に部分的にスケールが残っ
てしまい、品質不適合が発生する。これに対してはこれ
までに有効な処方がない。例えば鋼帯表面温度のばらつ
き実績の上限に見合った電解電流値に設定すればこのば
らつきの影響はなくなるものの、電力の過剰投入を余儀
なくされて多大なコストがかかる。 【0006】本発明の目的は、このような従来技術の問
題点を解決し、電解脱スケール工程での電力過剰投入な
く表面品質不良の発生を防止可能なステンレス鋼帯の連
続焼鈍脱スケール方法を提供することにある。 【0007】 【課題を解決するための手段】通板速度に応じて電解電
流値を設定する従来法が有効たりうる前提は、焼鈍時の
スケール生成量が一定に制御されることであるが、それ
は前記のように不可避的な鋼帯表面温度変動があって不
可能に近い。そこで、本発明者らは、スケール生成量を
あくまで一定に制御するという考え方に固執せず、生成
したスケールの厚みに応じて電解電流値をダイナミック
に制御するという考え方に立って、その具体的方法につ
いて検討した。 【0008】その結果、(1) 生成したスケール厚みに応
じてダイナミックに電解電流値を制御する方法によれば
過剰な電力を投入することなく効率的に脱スケールでき
ること、(2) スケール厚みは鋼種(成分)と焼鈍時の鋼
帯表面温度とから推定可能であること、(3) スケール厚
みの推定値に応じて電解電流値を制御することにより、
安定して経済的に良好な脱スケールが行えることを知見
し、本発明をなすに至った。 【0009】すなわち、本発明は、冷間圧延後のステン
レス鋼帯を連続的に焼鈍し続いて電解脱スケールするに
あたり、焼鈍時のステンレス鋼帯の表面温度を実測し、
この実測値および鋼種から焼鈍後のスケール厚みを推定
し、前記表面温度の実測部位が電解槽に到達する時点を
トラッキングにより予測し、この予測到達時点に同期し
て、電解脱スケール工程の電解電流値を現行値から前記
推定したスケール厚みに基づき抽出した値に設定しなお
ことを特徴とするステンレス鋼帯の連続焼鈍脱スケー
ル方法である。 【0010】 【発明の実施の形態】本発明の成否は、焼鈍後電解前に
鋼帯表面に生成しているスケールの厚みをいかに精度良
く求めることができるかにかかっている。通常、冷間圧
延後に行われる焼鈍では、数μm 程度のスケールが生成
している。このスケールの厚みをオフラインで実測でき
れば良いのであるが、現状の分析機器では正確な実測値
を得るのが困難である。 【0011】そこで、連続焼鈍中の鋼帯の温度と焼鈍後
のスケール厚みとの関係を鋭意調査したところ、両者の
間にはほぼ直線的な関係があることが判明した。この直
線は鋼種により多少異なる。ここで、鋼帯の温度データ
は、鋼帯温度が最も高くなる連続焼鈍炉内の加熱帯出側
に鋼帯温度計測器を設置しそこを通過する鋼帯の温度を
オンラインで実測することにより採取した。鋼帯温度計
測器は放射温度計で構成した。一方、スケール厚みデー
タは、サンプル板を切り出し、オフラインで、グロー放
電分析計および鋼帯表層付近のスケールを含む薄膜の透
過型電子顕微鏡観察により測定した。 【0012】次に、種々のステンレス鋼について焼鈍温
度を変えてスケール厚みデータを採取し、その結果を整
理してデータベースI を作成した。このデータベースI
は、鋼帯温度とスケール厚みとの関係を鋼種毎にテーブ
ル形式にまとめたものである。このようにして得られた
データベースI を用いることにより、鋼種毎に鋼帯表面
温度の実測値から焼鈍後のスケール厚みを十分な精度で
推定することができる。 【0013】さらに、スケール厚みを種々変えて中性塩
電解を行い、各スケール厚みに対し良好な脱スケールが
なされるための適正電解電流値を調査し、スケール厚み
と適正電解電流値との関係をテーブル形式にまとめてデ
ータベースIIを作成した。ここに、脱スケールの良否
は、酸洗後の鋼帯表面を目視観察しスケール残りがない
場合を良、スケール残りがある場合を不良と判定し、良
判定をもたらした電解電流変域の下限に若干の余裕代を
加えた値を適正電解電流値とした。このようにして得ら
れたデータベースIIを用いることにより、指定されたス
ケール厚みに対応する適正電解電流値を即座に抽出する
ことができる。この適正電解電流値は各スケール厚みに
応じてその厚みをもつスケールを過不足なく除去するに
必要かつ十分な電解電流値に相当し、この適正電解電流
値で操業することにより、電力の過剰投入を回避しなが
ら酸洗後の表面品質を良好な状態に維持することができ
る。 【0014】本発明では、上記のようにして予め作成し
たデータベースI,IIを用いて、以下に示すステップ(1)
〜(5) を所定のサンプリング周期で繰り返し実行するこ
とにより、電解脱スケール工程(中性塩電解槽)の電解
電流値を設定する。 (1) 上位コンピュータからの情報を参照して鋼帯の鋼種
を確認する。 (2) 焼鈍中の鋼帯表面温度を実測する。この温度の実測
方法は、特に限定されないが連続焼鈍炉内の加熱帯出側
に放射温度計を設置して行うのがよい。 (3) データベースI を参照して鋼種の確認値と鋼帯表面
温度の実測値に対応するスケール厚みを抽出し、これを
推定値とする。 (4) データベースIIを参照してスケール厚みの推定値に
対応する適正電解電流値を抽出する。 (5) 鋼帯の搬送速度を速度検知器で計測し、ステップ
(2) で表面温度を実測された鋼帯長手部分が中性塩電解
槽に到達する時点を予測し(常用のトラッキング手段を
使用)、この予測到達時点に同期して電解電流値を現行
値からステップ(4)で抽出した適正電解電流値に設定し
なおす。 【0015】これにより、鋼帯に部分的にスケール残り
が発生するのを抑制でき、品質不適合の発生を防止でき
る。また、スケール厚み毎に必要十分の最適な電流値で
電解を行うことができるようになり、経済的な連続焼鈍
脱スケール操業を行うことができる。ところで、本発明
によれば、中性塩電解処理のみで脱スケールが完了し、
混酸等による酸洗や研磨を施さなくても十分な光沢を得
ることができる。なお、本発明は、これ以外の処理、例
えば中性塩電解後の硝酸電解、調質圧延等の付加的な処
理は格別必要としないが、場合に応じてこれらの付加的
処理を適宜採用することに対し何ら制限を加えるもので
はない。 【0016】 【実施例】図2にレイアウトを示す連続焼鈍脱スケール
ラインに対し本発明を適用した実施例について説明す
る。このラインでは、コイル状に巻かれた鋼帯(ステン
レス鋼帯)Mをペイオフリール1で展開して払出し、順
次先後のコイル同士を溶接機2で継ぎ溶接しつつ、矢印
Aの方向に搬送しながら脱脂装置3にて脱脂後、焼鈍炉
5の加熱帯5A、冷却帯5Bに順次通して連続焼鈍し、引き
続き中性塩電解槽7に通して電解脱スケール後、随時シ
ヤー9で所定長さ(所定コイル単重)に切断しつつ、テ
ンションリール10で再度コイル状に巻き取る。なお図2
において、4、8は入側、出側ルーパで、これらはライ
ン内の異区間で生じた搬送速度差を吸収できる量の鋼帯
Mを蓄積する。 【0017】図1は、実施例における電解制御系のブロ
ック図である。図1の(a) には全体像を、(b) には電解
制御装置の詳細をそれぞれ示した。電解制御装置15に
は、中性塩電解槽7内の電極13の電位を設定する電極電
位設定手段153 、ならびに前記データベースI,IIをそれ
ぞれ格納した第1、第2の記憶手段151, 152が交信可能
に搭載されている。なお、図1において、図2と同一ま
たは相当部分には同じ符号を付し説明を省略し、常用の
トラッキング手段および上位コンピュータは図示を省略
する。 【0018】第1の記憶手段151 は、加熱帯5A出側に設
置した鋼帯表面温度計測用の放射温度計12から実測温度
T、上位コンピュータから鋼種Cを受信し、鋼種Cおよ
び実測温度Tに対応する推定スケール厚みdscを第2の
記憶手段152 に送信する。第2の記憶手段152 は受信し
た推定スケール厚みdscに対応する適正電解電流値ic
を電極電位設定手段153 に送信する。 【0019】電極電位設定手段153 は、上位コンピュー
タから鋼種C,鋼帯搬送速度(通板速度)v,鋼帯厚み
(板厚)dM を受信し、これらに対応する基準電解電流
値io 、およびこの基準電解電流値io が得られる基準
電位Φo を算出し、トラッキング機能から随時発せられ
るトラッキング信号TRC の合図で電極13の電位Φの値を
基準電位Φo に設定する。電極電位設定手段153 はさら
に、適正電解電流値ic の受信に応じて、電流偏差Δi
(=io −ic )、およびこの電流偏差Δiに見合った
電位変更量ΔΦ(=K・Δi;Kは制御ゲイン)を算出
し、トラッキング信号TRC の合図で電位Φの値を(Φo
+ΔΦ)に変更する。こうして電解電流値が現行値から
新たな適正電解電流値へと設定しなおされる。 【0020】この電解制御系を一定制御周期で作動させ
ることにより本発明を実施した。なお、本発明実施前の
電極電位設定手段は第1、第2の記憶装置を有しないも
のであった。これにより、本発明実施前は約 0.6%であ
ったスケール残りによる品質不適合発生率が、実施後で
は0%となり、また、中性塩電解槽の電力原単位が実施
前の約80%に低減した。 【0021】 【発明の効果】かくして本発明によれば、電解脱スケー
ル工程での電力の過剰投入なくスケール残りの発生を防
止できるようになるから、表面の美麗なステンレス鋼帯
を安定的かつ経済的に生産できるようになるという優れ
た効果を奏する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous annealing descaling method for a stainless steel strip. [0002] Conventionally, a stainless steel strip after cold rolling (hereinafter simply referred to as "steel strip" as appropriate) is adjusted to a predetermined material by annealing, and then scale generated during annealing is removed. A pickling treatment is performed. The pickling line for performing this pickling treatment usually includes a pickling tank for performing the pickling treatment and a neutral salt electrolytic tank for performing electrolytic descaling before the pickling. However, the surface of the stainless steel strip that has been subjected to the pickling treatment following the neutral salt electrolytic treatment is in a state of being eroded by acid, and a post-treatment step such as temper rolling or polishing is required to obtain good surface properties. Was indispensable. [0003] Since such a post-processing step results in an increase in cost and a decrease in productivity, a technique has been proposed which can omit this. For example, Japanese Patent Application Laid-Open No. 9-184012 discloses that the content of Si in stainless steel is limited to 0.3 wt% or less, the holding temperature for annealing is controlled at 950 to 1200 ° C., and the pH of the neutral salt electrolyte is set at 0%. A method for manufacturing a stainless steel plate which eliminates the need for polishing treatment after descaling by controlling it to 2.5 is disclosed. In these techniques, the electrolytic current value in the electrolytic descaling step is uniquely determined according to the passing speed. [0004] On the other hand, the surface temperature of the steel strip in the annealing furnace should be kept constant. However, in actual operation, the sheet thickness deviation in the longitudinal direction of the steel strip, the atmosphere in the furnace and the annealing. In many cases, the surface temperature of the steel strip deviates from the control range and inevitably fluctuates due to variations in the temperature and the passing speed, changes in the furnace temperature setting when passing through the welded portion of the steel strip, and the like. When the steel strip surface temperature fluctuates, the scale layer generated on the steel strip surface fluctuates accordingly. However, in the above-mentioned conventional technology, the electrolytic current in the electrolytic descaling step is uniquely determined according to the plate speed, and therefore, it is impossible to follow such a variation. As a result, for example, after pickling, scale remains partially on the surface of the steel strip, and quality mismatch occurs. There is no effective prescription for this. For example, if the electrolytic current value is set to a value corresponding to the upper limit of the actual result of the variation in the surface temperature of the steel strip, the influence of this variation is eliminated, but excessive power is forced to be applied and a large cost is required. [0006] An object of the present invention is to solve the problems of the prior art and to provide a continuous annealing descaling method for a stainless steel strip capable of preventing the occurrence of surface quality defects without excessively supplying electric power in the electrolytic descaling step. To provide. [0007] The premise that the conventional method of setting the electrolytic current value according to the passing speed may be effective is that the amount of scale generated during annealing is controlled to be constant. It is almost impossible due to the unavoidable steel surface temperature fluctuation as described above. Therefore, the present inventors do not stick to the idea of controlling the amount of scale generation to a constant level, but based on the idea of dynamically controlling the electrolytic current value according to the thickness of the generated scale. Was considered. As a result, (1) According to the method of dynamically controlling the electrolytic current value according to the generated scale thickness, it is possible to efficiently descaling without applying excessive electric power, and (2) the scale thickness depends on the steel type. (3) It can be estimated from the (component) and the steel strip surface temperature at the time of annealing. (3) By controlling the electrolytic current value according to the estimated value of the scale thickness,
The inventors have found that good descaling can be performed stably and economically, and have led to the present invention. That is, according to the present invention, when the stainless steel strip after cold rolling is continuously annealed and then electrolytically descaled, the surface temperature of the stainless steel strip during annealing is measured,
Estimate the scale thickness after annealing from this measured value and the steel type, and determine the time when the measured part of the surface temperature reaches the electrolytic cell.
Predict by tracking and synchronize with this forecast arrival point
Te, wherein the electrolytic current value of the electrolytic descaling process from the current value
Setting the extracted value based on the estimated scale thickness Shinao
A continuous annealing descaling method of stainless steel strip, characterized in that to. The success or failure of the present invention depends on how accurately the thickness of the scale formed on the steel strip surface after the annealing and before the electrolysis can be determined. Usually, in annealing performed after cold rolling, a scale of about several μm is generated. It is sufficient if the thickness of this scale can be measured off-line, but it is difficult to obtain accurate measured values with current analytical instruments. Therefore, the relationship between the temperature of the steel strip during continuous annealing and the scale thickness after annealing was intensively investigated, and it was found that there was a substantially linear relationship between the two. This straight line differs slightly depending on the steel type. Here, the steel strip temperature data is collected by installing a steel strip temperature measuring instrument on the heating strip exit side in the continuous annealing furnace where the steel strip temperature is the highest, and online measuring the temperature of the steel strip passing therethrough. did. The steel strip temperature measuring instrument was composed of a radiation thermometer. On the other hand, the scale thickness data was measured by cutting out a sample plate and conducting off-line observation with a glow discharge analyzer and a transmission electron microscope of a thin film including scale near the surface layer of a steel strip. Next, for various stainless steels, the scale thickness data was collected while changing the annealing temperature, and the results were arranged to create a database I. This database I
Table summarizes the relationship between steel strip temperature and scale thickness in a table format for each steel type. By using the database I obtained in this manner, the scale thickness after annealing can be estimated with sufficient accuracy from the actually measured values of the steel strip surface temperature for each steel type. Further, neutral salt electrolysis is performed with various scale thicknesses, and an appropriate electrolytic current value for good descaling is examined for each scale thickness, and the relationship between the scale thickness and the appropriate electrolytic current value is investigated. Into a table format to create Database II. Here, the quality of descaling is determined by visually observing the steel strip surface after pickling and determining that there is no scale residue as good, and determining that there is scale residue as bad, and the lower limit of the electrolytic current domain that resulted in good determination. The value obtained by adding a margin to the above was defined as an appropriate electrolytic current value. By using the database II obtained in this manner, an appropriate electrolytic current value corresponding to the designated scale thickness can be immediately extracted. This proper electrolysis current value corresponds to the electrolysis current value necessary and sufficient to remove the scale having the thickness according to the thickness of each scale without excess or deficiency. The surface quality after pickling can be maintained in a good state while avoiding the problem. In the present invention, the following steps (1) and (2) are performed using the databases I and II created in advance as described above.
Steps (5) to (5) are repeatedly executed at a predetermined sampling cycle to set the electrolytic current value in the electrolytic descaling step (neutral salt electrolytic cell). (1) Check the steel type of the steel strip by referring to the information from the host computer. (2) Measure the steel strip surface temperature during annealing. The method of measuring the temperature is not particularly limited, but it is preferable to install a radiation thermometer on the heating orifice side in the continuous annealing furnace. (3) With reference to Database I, extract the scale thickness corresponding to the confirmed value of the steel type and the actually measured value of the steel strip surface temperature, and use this as the estimated value. (4) Referring to Database II, extract an appropriate electrolytic current value corresponding to the estimated value of the scale thickness. (5) Measure the transport speed of the steel strip with a speed detector, and
(2) Predict when the longitudinal section of the steel strip whose surface temperature has been measured reaches the neutral salt electrolyzer (using ordinary tracking means), and synchronize the electrolysis current value with the current To the appropriate electrolytic current value extracted in step (4). As a result, it is possible to suppress the occurrence of partial scale residue in the steel strip, and to prevent the occurrence of quality mismatch. In addition, electrolysis can be performed with a necessary and sufficient optimal current value for each scale thickness, and economical continuous annealing descaling operation can be performed. By the way, according to the present invention, descaling is completed only by the neutral salt electrolytic treatment,
Sufficient luster can be obtained without pickling or polishing with a mixed acid or the like. In addition, the present invention does not particularly require additional treatments such as nitric acid electrolysis after neutral salt electrolysis and temper rolling, but appropriately employs these additional treatments as occasion demands. It does not place any restrictions on the matter. An embodiment in which the present invention is applied to a continuous annealing descaling line whose layout is shown in FIG. 2 will be described. In this line, a steel strip (stainless steel strip) M wound in a coil shape is developed and paid out by a payoff reel 1, and the preceding and succeeding coils are successively welded by a welding machine 2 and conveyed in the direction of arrow A. After degreasing with the degreasing device 3, while continuously passing through the heating zone 5A and the cooling zone 5B of the annealing furnace 5 for continuous annealing, and subsequently passing through the neutral salt electrolytic cell 7 for electrolytic de-scaling, the shear 9 is optionally used for a predetermined length. While being cut into (predetermined coil single weight), it is wound up again in a coil shape on the tension reel 10. FIG. 2
, 4 and 8 are entrance-side and exit-side loopers, which accumulate an amount of steel strip M that can absorb a difference in transport speed generated in different sections of the line. FIG. 1 is a block diagram of an electrolysis control system in the embodiment. FIG. 1 (a) shows the overall image, and FIG. 1 (b) shows details of the electrolysis controller. The electrolysis control device 15 includes an electrode potential setting means 153 for setting the potential of the electrode 13 in the neutral salt electrolyzer 7, and first and second storage means 151 and 152 storing the databases I and II, respectively. It is mounted for communication. In FIG. 1, the same or corresponding parts as those in FIG. 2 are denoted by the same reference numerals, and the description thereof will be omitted. The ordinary tracking means and the host computer will not be illustrated. The first storage means 151 receives the measured temperature T from the radiation thermometer 12 for measuring the surface temperature of the steel strip installed on the exit side of the heating zone 5A, and receives the steel type C from the host computer. Is transmitted to the second storage means 152. The second storage means 152 stores an appropriate electrolytic current value ic corresponding to the received estimated scale thickness dsc.
Is transmitted to the electrode potential setting means 153. The electrode potential setting means 153 receives the steel type C, the steel strip transport speed (sheet passing speed) v, and the steel strip thickness (plate thickness) dM from the host computer, and receives the corresponding reference electrolytic current value io, and The reference potential .PHI.o at which the reference electrolytic current value io is obtained is calculated, and the value of the potential .PHI. Of the electrode 13 is set to the reference potential .PHI.o at the signal of the tracking signal TRC generated as needed from the tracking function. The electrode potential setting means 153 further receives the current deviation Δi in response to receiving the appropriate electrolytic current value ic.
(= Io-ic) and a potential change amount .DELTA..PHI. (= K..DELTA.i; K is a control gain) corresponding to the current deviation .DELTA.i, and the value of the potential .PHI.
+ ΔΦ). Thus, the electrolysis current value is reset from the current value to a new appropriate electrolysis current value. The present invention was implemented by operating this electrolysis control system at a constant control cycle. Note that the electrode potential setting means before the embodiment of the present invention did not have the first and second storage devices. As a result, the rate of occurrence of quality nonconformity due to scale residue, which was about 0.6% before the implementation of the present invention, became 0% after the implementation, and the basic unit of power for the neutral salt electrolytic cell was reduced to about 80% before the implementation. did. As described above, according to the present invention, it is possible to prevent the generation of residual scale without excessively supplying electric power in the electrolytic descaling process, so that a stainless steel strip having a beautiful surface can be stably and economically produced. It has an excellent effect that it can be produced in a special way.

【図面の簡単な説明】 【図1】実施例における電解制御系のブロック図であ
る。 【図2】実施例で用いた連続焼鈍脱スケールラインのレ
イアウト図である。 【符号の説明】 M 鋼帯(ステンレス鋼帯) 1 ペイオフリール 2 溶接機 3 脱脂装置 4 入側ルーパ 5 焼鈍炉 5A 加熱帯 5B 冷却帯 7 中性塩電解槽 8 出側ルーパ 9 シヤー 10 テンションリール 13 電極 15 電解制御装置 151 第1の記憶手段 152 第2の記憶手段 153 電極電位設定手段
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of an electrolysis control system in an embodiment. FIG. 2 is a layout diagram of a continuous annealing descaling line used in Examples. [Description of Signs] M Steel Strip (Stainless Steel Strip) 1 Payoff Reel 2 Welding Machine 3 Degreasing Device 4 Inlet Looper 5 Annealing Furnace 5A Heating Zone 5B Cooling Zone 7 Neutral Salt Electrolyzer 8 Outlet Looper 9 Shear 10 Tension Reel 13 Electrode 15 Electrolysis controller 151 First storage means 152 Second storage means 153 Electrode potential setting means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 笠井 聡 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 千葉製鉄所内 (56)参考文献 特開 平7−305200(JP,A) 特開 昭59−209415(JP,A) 特開 昭59−21426(JP,A) 特開 平11−129018(JP,A) 特公 平7−115061(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C25F 1/00 - 7/02 B21B 45/06 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Kasai 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki Steel Corporation Chiba Works (56) References JP-A-7-305200 (JP, A) JP-A Sho 59-209415 (JP, A) JP-A-59-21426 (JP, A) JP-A-11-129018 (JP, A) JP-B 7-115061 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) C25F 1/00-7/02 B21B 45/06

Claims (1)

(57)【特許請求の範囲】 【請求項1】 冷間圧延後のステンレス鋼帯を連続的に
焼鈍し続いて電解脱スケールするにあたり、焼鈍時のス
テンレス鋼帯の表面温度を実測し、この実測値および鋼
種から焼鈍後のスケール厚みを推定し、前記表面温度の
実測部位が電解槽に到達する時点をトラッキングにより
予測し、この予測到達時点に同期して、電解脱スケール
工程の電解電流値を現行値から前記推定したスケール厚
みに基づき抽出した値に設定しなおすことを特徴とする
ステンレス鋼帯の連続焼鈍脱スケール方法。
(57) [Claims 1] When continuously annealing and successively electrolytic descaling a stainless steel strip after cold rolling, the surface temperature of the stainless steel strip during annealing was measured. Estimate the scale thickness after annealing from the measured values and steel type ,
Tracking when the measured part reaches the electrolytic cell by tracking
Predict and, in synchronization with the predicted arrival time, the electrolytic current value in the electrolytic descaling step is estimated from the current value to the estimated scale thickness.
Continuous annealing descaling method of stainless steel strip, characterized in that resetting the extracted value based on the body.
JP02637099A 1999-02-03 1999-02-03 Continuous annealing descaling method for stainless steel strip Expired - Fee Related JP3396439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02637099A JP3396439B2 (en) 1999-02-03 1999-02-03 Continuous annealing descaling method for stainless steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02637099A JP3396439B2 (en) 1999-02-03 1999-02-03 Continuous annealing descaling method for stainless steel strip

Publications (2)

Publication Number Publication Date
JP2000226700A JP2000226700A (en) 2000-08-15
JP3396439B2 true JP3396439B2 (en) 2003-04-14

Family

ID=12191629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02637099A Expired - Fee Related JP3396439B2 (en) 1999-02-03 1999-02-03 Continuous annealing descaling method for stainless steel strip

Country Status (1)

Country Link
JP (1) JP3396439B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109628709A (en) * 2018-12-29 2019-04-16 佛山市诚德新材料有限公司 A kind of method for annealing of stainless steel band

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109628709A (en) * 2018-12-29 2019-04-16 佛山市诚德新材料有限公司 A kind of method for annealing of stainless steel band

Also Published As

Publication number Publication date
JP2000226700A (en) 2000-08-15

Similar Documents

Publication Publication Date Title
JP3726770B2 (en) Continuous pickling method and continuous pickling apparatus
CN108213077A (en) The method of cold rolling >=2.5%Si high silicon steel
JP4878485B2 (en) Cold continuous rolling equipment
JP3396439B2 (en) Continuous annealing descaling method for stainless steel strip
JP4927008B2 (en) Method for predicting deformation resistance of metal strip and method for setting up cold tandem rolling mill
JP3467677B2 (en) Learning control method of rolling load in rolling mill
EP0659892B1 (en) Method of controlling oxygen deposition during decarburization annealing on steel sheets
JP3636029B2 (en) Metal plate rolling equipment and rolling method
CN116930834A (en) Cold-rolled silicon steel core loss data prediction calculation method, device and system
JPH11267729A (en) Method for cold rolling of hot rolled band-shaped sheet before pickling
JPH09155420A (en) Method for learning setup model of rolling mill
JP2003231981A (en) Method for controlling line speed in pickling tank
JP3684942B2 (en) Cold rolled steel strip manufacturing method
JP2000015315A (en) Method for controlling position of work roll and device therefor
JPH05269516A (en) Method for controlling shape in rolling of thick plate
JP2661497B2 (en) Strip crown control device and strip crown control method during hot rolling
Premendra et al. Consequences of hot rolling of recycled AA5050 on filiform corrosion
CN118159837A (en) Method for calculating film thickness of grain boundary oxide layer, method for determining plating performance, method for producing plated steel sheet, and film thickness calculating device
JP2002059210A (en) Method for controlling width of cold strip
JPH08155517A (en) Cold rolling method for metal plate
JP2002241913A (en) Plating system
JPH0627076A (en) Electrochemical measuring method for steel material in aqueous solution containing h2s
JPH09150204A (en) Treatment of stainless steel sheet
JP2004176104A (en) Hot rolled steel sheet for hot dip galvanized steel sheet
JP2008178912A (en) Thickness control method in skin pass mill, manufacturing method of metal plate using the same, and skin pass line

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees