JP3396247B2 - Exhaust gas purification device - Google Patents

Exhaust gas purification device

Info

Publication number
JP3396247B2
JP3396247B2 JP02535193A JP2535193A JP3396247B2 JP 3396247 B2 JP3396247 B2 JP 3396247B2 JP 02535193 A JP02535193 A JP 02535193A JP 2535193 A JP2535193 A JP 2535193A JP 3396247 B2 JP3396247 B2 JP 3396247B2
Authority
JP
Japan
Prior art keywords
exhaust passage
catalyst
temperature
exhaust gas
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02535193A
Other languages
Japanese (ja)
Other versions
JPH06241033A (en
Inventor
隆 堂ヶ原
一雄 古賀
喜朗 団野
大介 三林
耕三 飯田
暁 芹澤
敬古 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Motors Corp
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp, Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Motors Corp
Priority to JP02535193A priority Critical patent/JP3396247B2/en
Publication of JPH06241033A publication Critical patent/JPH06241033A/en
Priority to US08/621,704 priority patent/US5738832A/en
Application granted granted Critical
Publication of JP3396247B2 publication Critical patent/JP3396247B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/18Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an adsorber or absorber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/12Hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排気ガス中に含まれる
炭化水素を吸着触媒に吸着させるようにした排気ガス浄
化装置に関し、特に、エンジン始動時の炭化水素浄化性
能に優れ、しかも吸着炭化水素の後処理のための装置構
成が簡易な排気ガス浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus in which hydrocarbons contained in exhaust gas are adsorbed by an adsorption catalyst, and more particularly, it is excellent in hydrocarbon purifying performance at the time of engine starting, and further adsorbed carbonized. The present invention relates to an exhaust gas purification device having a simple device configuration for post-treatment of hydrogen.

【0002】[0002]

【従来の技術】自動車などのエンジンから排出される排
気ガスに含まれる有害物質を除去するための排気ガス浄
化装置には、炭化水素(HC),一酸化炭素(CO)及
び窒素酸化物(NOx)を同時に低減させるための三元
触媒などの触媒が用いられている。しかし、触媒が活性
温度に達するまでは、触媒の排気ガス浄化作用は充分に
発揮されず、従って、エンジン冷態始動時などには有害
なHCが大気中に排出されることになる。
2. Description of the Related Art Exhaust gas purification devices for removing harmful substances contained in exhaust gas discharged from engines of automobiles include hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx). A catalyst such as a three-way catalyst is used to simultaneously reduce). However, the exhaust gas purifying action of the catalyst is not sufficiently exerted until the catalyst reaches the activation temperature, so that harmful HC is exhausted to the atmosphere at the time of engine cold start.

【0003】そこで、エンジン冷態始動時の排気ガス中
に含まれるHCを、触媒の下流側に設けた吸着体に吸着
させ、その後、吸着体から脱離させたHCを触媒などへ
強制的に還流させるようにした構造が提案されている。
例えば、米国特許第5,142,864号には、触媒,
吸着体およびターボチャージャを用いた排気ガス処理方
法が開示されている。この方法では、エンジン冷態始動
時での排気ガスからのHC排出量を抑制すべく、エンジ
ン冷態時には、排気ガスを大気中に放出する前に、排気
ガスを触媒およびターボチャージャのタービン側を介し
て吸着体に流入させ、排気ガス中のHCを吸着体に吸着
させている。その後、吸着体温度が上昇すると、吸着体
を迂回して排気ガスを大気に排出する一方で、排気ガス
の一部分を用いて吸着体から脱離させたHCをターボチ
ャージャのコンプレッサ側を介して触媒の上流側でエン
ジンからの排気ガスに合流させ、これによりHCを触媒
で浄化している。
Therefore, the HC contained in the exhaust gas at the time of engine cold start is adsorbed by the adsorbent provided on the downstream side of the catalyst, and thereafter the HC desorbed from the adsorbent is forcibly applied to the catalyst or the like. A structure designed for reflux has been proposed.
For example, US Pat. No. 5,142,864 discloses a catalyst,
An exhaust gas treatment method using an adsorbent and a turbocharger is disclosed. In this method, in order to suppress the HC emission amount from the exhaust gas at the time of engine cold start, the exhaust gas is allowed to pass through the catalyst and the turbine side of the turbocharger before the exhaust gas is released into the atmosphere during engine cold state. The HC in the exhaust gas is adsorbed by the adsorbent through the adsorbent. Then, when the adsorbent temperature rises, the exhaust gas is bypassed and the exhaust gas is discharged to the atmosphere, while the HC desorbed from the adsorbent by using a part of the exhaust gas is catalyzed via the compressor side of the turbocharger. The exhaust gas from the engine is merged on the upstream side of the engine to purify HC by a catalyst.

【0004】また、ハイムリッヒ(Heimrich)らが19
92年2月に発表した論文「排気エミッション制御のた
めの冷態始動時の炭化水素の収集」(SAE PAPER 9208
47)には、排気系に設けた吸着体でエンジン冷態始動時
にHCを収集し、次いで吸着体から脱離させたHCを、
触媒コンバータにおいて三元触媒の下流側に設けた酸化
触媒の上流側へ強制的に還流させて浄化するようにした
装置が記載されている。又、この論文には、吸着体から
脱離させたHCをエンジンの吸気側へ強制的に還流させ
てエンジン燃焼室内で燃焼させるようにした別の装置も
記載されている。
Heimrich et al.
Paper published in February 1992, "Hydrocarbon collection at cold start for exhaust emission control" (SAE PAPER 9208
In 47), the adsorbent provided in the exhaust system collects HC during cold start of the engine and then desorbs HC from the adsorbent.
In a catalytic converter, there is described an apparatus which is forcibly refluxed to the upstream side of an oxidation catalyst provided downstream of a three-way catalyst for purification. Further, this paper also describes another device in which the HC desorbed from the adsorbent is forcibly recirculated to the intake side of the engine and burned in the engine combustion chamber.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、吸着体
から脱離させたHCを触媒で浄化する上記従来の排気ガ
ス浄化装置において、吸着体温度と触媒温度とを簡便か
つ好適に同時制御することは必ずしも容易ではなく、触
媒が活性温度に達する前に吸着体がHC脱離温度に達し
てしまうことがある。この場合、触媒の活性化が完了す
る前にHCが吸着体から脱離することになり、脱離HC
を触媒に還流させたとしても、HCが触媒で浄化されず
に装置外部に排出されてしまう。すなわち、従来装置に
よれば、所要のHC浄化を行えないことがある。
However, in the above-mentioned conventional exhaust gas purifying apparatus for purifying HC desorbed from the adsorbent with a catalyst, it is not possible to simply and suitably simultaneously control the adsorbent temperature and the catalyst temperature. It is not always easy, and the adsorbent may reach the HC desorption temperature before the catalyst reaches the activation temperature. In this case, HC will be desorbed from the adsorbent before the activation of the catalyst is completed.
Even if the carbon is returned to the catalyst, HC is not purified by the catalyst and is discharged to the outside of the apparatus. That is, according to the conventional device, the required HC purification may not be performed.

【0006】又、上記従来装置では、吸着体から脱離さ
せたHCを触媒あるいはエンジン吸気側に還流させるた
めの、例えばターボチャージャ又はエアポンプ及びこれ
に関連する管路を含むHC還流手段を設けることが必須
で、従って、吸着HCの後処理のための装置構成が複雑
になり、装置コストが増大する。そこで、本発明は、エ
ンジン冷態始動時の排気ガス中に含まれる炭化水素を吸
着触媒に吸着させるタイプであって、炭化水素浄化性能
に優れ、吸着触媒に吸着させた炭化水素の後処理のため
の装置構成が簡易な排気ガス浄化装置を提供することを
目的とする。
Further, in the above conventional apparatus, an HC recirculation means including, for example, a turbocharger or an air pump and a pipe line related thereto is provided for recirculating the HC desorbed from the adsorbent to the catalyst or the engine intake side. Is essential, and therefore the device configuration for post-treatment of the adsorbed HC becomes complicated and the device cost increases. Therefore, the present invention is a type of adsorbing hydrocarbons contained in exhaust gas at the time of engine cold start to an adsorption catalyst, which is excellent in hydrocarbon purification performance, and is used for post-treatment of hydrocarbons adsorbed on the adsorption catalyst. It is an object of the present invention to provide an exhaust gas purification device having a simple device configuration.

【0007】[0007]

【課題を解決するための手段】本発明の排気ガス浄化装
置は、専ら炭化水素吸着作用を有すると従来考えられて
いた吸着剤のうちのある種のものが所定温度領域におい
て酸化触媒作用を奏するという、本発明者などが最近知
得した新たな知見に基づいて創案されたもので、エンジ
ンの排気側に連通する主排気通路の途中に配されエンジ
ンからの排気ガスを浄化するための主触媒と、少なくと
も上流側端において主排気通路に連通する分岐排気通路
の途中に配され炭化水素を吸着させかつ吸着した炭化水
素を主触媒の活性温度よりも低い所定温度領域で酸化さ
せるための触媒作用を有する吸着剤(以下、吸着触媒と
いう)と、吸着触媒の温度が前記所定温度領域に入るよ
うに吸着触媒を加熱するための加熱手段と、分岐排気通
路の少なくとも一端における分岐排気通路と主排気通路
との連通を選択的に阻止するための排気経路選択手段と
を備えることを特徴とする。
In the exhaust gas purifying apparatus of the present invention, some of the adsorbents which have hitherto been considered to have a hydrocarbon adsorbing action exert an oxidizing catalytic action in a predetermined temperature range. That is, the present invention was created based on new knowledge recently obtained by the present inventors, and is a main catalyst for purifying exhaust gas from an engine, which is arranged in the middle of a main exhaust passage communicating with the exhaust side of the engine. And a catalytic action for adsorbing hydrocarbons arranged in the middle of the branch exhaust passage communicating with the main exhaust passage at least at the upstream end and for oxidizing the adsorbed hydrocarbons in a predetermined temperature region lower than the activation temperature of the main catalyst. And the temperature of the adsorbent containing the adsorbent (hereinafter referred to as the adsorbent catalyst) falls within the predetermined temperature range.
As described above, there is provided a heating means for heating the adsorption catalyst, and an exhaust path selecting means for selectively blocking communication between the branch exhaust passage and the main exhaust passage at least at one end of the branch exhaust passage.

【0008】好ましくは、排気ガス浄化装置は、主触媒
温度または主触媒近傍での排気ガス温度を表す出力を発
生するための温度検出手段と、加熱手段を作動させると
共に、温度検出手段の出力に応じて排気経路選択手段を
作動させるための制御手段とを含む。吸着触媒に関し
て、詳しくは、特開平3-229638,特開平3-165816,特開
平3-229620,特開平4-4045,特開平3-127628等に記載さ
れている触媒を使用することができる。
Preferably, the exhaust gas purifying device operates the temperature detecting means for generating an output indicating the temperature of the main catalyst or the exhaust gas temperature in the vicinity of the main catalyst and the heating means, and outputs the output of the temperature detecting means. And control means for actuating the exhaust path selecting means accordingly. Regarding the adsorption catalyst, the catalysts described in JP-A-3-229638, JP-A-3-165816, JP-A-3-229620, JP-A-4-4045, JP-A-3-127628 and the like can be used in detail.

【0009】本触媒は、脱水された状態において酸化物
のモル比で表して、(1±0.6)R2O・[aM2O3
・bAl2O3]・ySiO2(上記式中、Rはアルカリ
金属イオン及び/又は水素イオン、MはVIII族金属,希
土類金属,チタン,バナジウム,クロム,ニオブ,アン
チモン,ガリウムからなる群から選ばれた1種以上の金
属、a≧0,b≧0,a+b=1,y>12)の化学式
を有し、かつ表1で示されるX線回折パターンを有する
結晶性シリケートに銅を担持したものである。本触媒
を、例えば、コージェライトハニカムにウォッシュコー
トして炭化水素の吸着触媒として使用する。
This catalyst, expressed in a molar ratio of oxides in a dehydrated state, is (1 ± 0.6) R 2 O. [aM 2 O 3
.BAl2O3] .ySiO2 (wherein R is an alkali metal ion and / or hydrogen ion, M is a group selected from the group consisting of Group VIII metals, rare earth metals, titanium, vanadium, chromium, niobium, antimony and gallium The above metal is a crystalline silicate having the chemical formula of a ≧ 0, b ≧ 0, a + b = 1, y> 12) and having the X-ray diffraction pattern shown in Table 1, and copper is supported on the crystalline silicate. The present catalyst is used as a hydrocarbon adsorption catalyst by washcoating a cordierite honeycomb, for example.

【0010】[0010]

【表1】 W:弱 [照射と銅のKα線] M:中級 [I0は最も強いピーク強
度で、 S:強 I/I0は相対強度] VS:非常に強
[Table 1] W: Weak [Irradiation and copper Kα rays] M: Intermediate [I0 is the strongest peak intensity, S: Strong I / I0 is the relative intensity] VS: Very strong

【0011】[0011]

【作用】主触媒温度または主触媒近傍での排気ガス温度
が低いエンジン冷態始動時などにおいて、排気経路選択
手段による排気通路連通阻止作用が奏されないように、
排気経路選択手段を作動させる。好ましくは、温度検出
手段からの出力に基づいて主触媒温度または主触媒近傍
での排気ガス温度が所定値に達したか否かが制御手段に
より判別され、例えば主触媒温度が所定値よりも低い場
合に、制御手段は、排気通路連通阻止作用が奏されない
ように排気経路選択手段を作動させる。この結果、エン
ジンからの排気ガスは、分岐排気通路の上流側端におい
て主排気通路から分岐排気通路内へ流入し、従って、排
気ガス中に含まれる炭化水素は、分岐排気通路内に設け
た吸着触媒に吸着して、装置外部へは排出されない。
[Operation] In order to prevent the exhaust passage selecting means from exerting the effect of blocking the exhaust passage communication at the time of engine cold start when the temperature of the main catalyst or the temperature of the exhaust gas near the main catalyst is low,
The exhaust path selecting means is activated. Preferably, the control means determines based on the output from the temperature detection means whether the main catalyst temperature or the exhaust gas temperature in the vicinity of the main catalyst has reached a predetermined value. For example, the main catalyst temperature is lower than the predetermined value. In this case, the control means actuates the exhaust path selecting means so that the exhaust passage communication blocking action is not exerted. As a result, the exhaust gas from the engine flows into the branch exhaust passage from the main exhaust passage at the upstream end of the branch exhaust passage, so that the hydrocarbons contained in the exhaust gas are adsorbed in the branch exhaust passage. It is adsorbed on the catalyst and is not discharged to the outside of the device.

【0012】その後、例えば主触媒温度が上昇すると、
好ましくは、温度検出手段の出力に基づいて例えば主触
媒温度が所定値に達したと制御手段により判別される
と、好ましくは制御手段の制御下で、排気経路選択手段
が駆動されて、分岐排気通路の少なくとも一端における
分岐排気通路と主排気通路との連通が阻止される。この
結果、分岐排気通路の上流側端における主排気通路から
分岐排気通路への排気ガス流入あるいは分岐排気通路の
下流側端における分岐排気通路から主排気通路への排気
ガス流出または排気ガス流入および流出の双方が阻止さ
れ、従って、排気ガスが分岐排気通路内へ更に流入せず
に、主排気通路内を流れる。この結果、排気ガス温度が
その後上昇しても吸着触媒温度が上昇することがなく、
従って、吸着触媒温度の上昇による吸着触媒からの吸着
炭化水素の脱離は生じない。
Then, for example, when the temperature of the main catalyst rises,
Preferably, when the control means determines, for example, that the main catalyst temperature has reached a predetermined value based on the output of the temperature detection means, the exhaust path selection means is driven, preferably under the control of the control means, and the branch exhaust gas is driven. Communication between the branch exhaust passage and the main exhaust passage is prevented at at least one end of the passage. As a result, the exhaust gas flows from the main exhaust passage at the upstream end of the branch exhaust passage into the branch exhaust passage, or the exhaust gas flows out or flows into and out of the main exhaust passage from the branch exhaust passage at the downstream end of the branch exhaust passage. Both are blocked, so that the exhaust gas flows in the main exhaust passage without further flowing into the branch exhaust passage. As a result, even if the exhaust gas temperature rises thereafter, the adsorption catalyst temperature does not rise,
Therefore, desorption of adsorbed hydrocarbons from the adsorption catalyst does not occur due to the rise of the adsorption catalyst temperature.

【0013】そして、排気経路選択手段により両排気通
路の連通が阻止される以前あるいはそれ以降において、
好ましくは制御手段の制御下で、加熱手段が作動して吸
着触媒を加熱する。吸着触媒温度が所定温度領域内に入
ると、吸着触媒の酸化触媒作用が奏され、これにより吸
着炭化水素が酸化されて、無害な二酸化炭素,水などに
なる。すなわち、炭化水素が吸着触媒により浄化され、
又、次回エンジン冷態始動時などにおいて炭化水素の吸
着が可能な状態に、吸着触媒が再生される。この様に、
吸着触媒により吸着炭化水素が浄化されるので、主触媒
などへの脱離炭化水素の還流が不要となり、従って、吸
着炭化水素の後処理のための装置構成が簡易化される。
Before or after the exhaust passage selecting means blocks the communication between the exhaust passages,
The heating means operates to heat the adsorption catalyst, preferably under the control of the control means. When the temperature of the adsorption catalyst falls within a predetermined temperature range, the adsorption catalyst acts as an oxidation catalyst, whereby the adsorbed hydrocarbon is oxidized and becomes harmless carbon dioxide, water and the like. That is, hydrocarbons are purified by the adsorption catalyst,
Further, the adsorbing catalyst is regenerated so that hydrocarbons can be adsorbed at the next engine cold start. Like this
Since the adsorbed hydrocarbon is purified by the adsorbent catalyst, it is not necessary to recirculate the desorbed hydrocarbon to the main catalyst or the like, and therefore, the device configuration for the post-treatment of the adsorbed hydrocarbon is simplified.

【0014】[0014]

【実施例】以下、図1を参照して、本発明の一実施例に
よる排気ガス浄化装置を説明する。排気ガス浄化装置と
共に車両に搭載されたエンジン10の各気筒の燃焼室
(その一つを図1に符号11を付して示す)には、吸気
通路12および主排気通路13が接続され、燃焼室11
と吸気通路12又は主排気通路13は、吸気弁14又は
排気弁15の開閉動作によって連通,遮断されるように
なっている。そして、吸気通路12には、例えば、エア
クリーナ(図示略)、スロットル弁16および燃料噴射
弁(図示略)が上流側からこの順序で設けられ、主排気
通路13には、主触媒としての好ましくは三元触媒から
なる排気ガス浄化用触媒コンバータ20および図示しな
いマフラが設けられている。参照符号12aは、スロッ
トル弁16の下流側において吸気通路12に設けたサー
ジタンクを示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An exhaust gas purifying apparatus according to an embodiment of the present invention will be described below with reference to FIG. An intake passage 12 and a main exhaust passage 13 are connected to a combustion chamber of each cylinder of an engine 10 mounted on a vehicle together with an exhaust gas purifying device (one of which is indicated by reference numeral 11 in FIG. 1), and combustion is performed. Room 11
The intake passage 12 and the main exhaust passage 13 are opened and closed by opening and closing the intake valve 14 or the exhaust valve 15. Then, in the intake passage 12, for example, an air cleaner (not shown), a throttle valve 16 and a fuel injection valve (not shown) are provided in this order from the upstream side, and the main exhaust passage 13 is preferably provided with a main catalyst. An exhaust gas purifying catalytic converter 20 including a three-way catalyst and a muffler (not shown) are provided. Reference numeral 12 a indicates a surge tank provided in the intake passage 12 on the downstream side of the throttle valve 16.

【0015】三元触媒20の下流側において主排気通路
13から分岐して分岐排気通路30が設けられている。
分岐排気通路の上流側端31および下流側端32は、主
排気通路13の第1中間部及びこれよりも下流側の第2
中間部に夫々連通している。そして、分岐排気通路30
の途中には、炭化水素(HC)を吸着させかつ吸着HC
を所定温度領域で酸化させるための吸着触媒40が配さ
れている。
A branch exhaust passage 30 is provided on the downstream side of the three-way catalyst 20, branching from the main exhaust passage 13.
The upstream side end 31 and the downstream side end 32 of the branch exhaust passage are provided at a first intermediate portion of the main exhaust passage 13 and a second downstream side thereof.
It communicates with each middle part. The branch exhaust passage 30
Hydrocarbons (HC) are adsorbed and adsorbed HC
An adsorption catalyst 40 for oxidizing the carbon dioxide in a predetermined temperature range is provided.

【0016】この吸着触媒40は、例えば、沸石(ゼオ
ライト)または結晶性シリケート或はこれに類する、シ
リコン,アルミニウム,酸素などを組成成分として含む
吸着剤あるいは多孔質結晶体100重量部に対して銅を
1重量部以上含有させ、これを所定の形状,寸法に成形
したもので、HCを吸着させる吸着作用を奏すると共に
吸着HCをその回りに存する酸素で酸化させる自己酸化
作用を所定温度領域において奏するように構成されてい
る。
The adsorption catalyst 40 is, for example, a zeolite (zeolite), a crystalline silicate, or the like, which is an adsorbent containing silicon, aluminum, oxygen, etc. as a constituent component, or copper based on 100 parts by weight of a porous crystal. Is contained in an amount of 1 part by weight or more and is molded into a predetermined shape and size, and exhibits an adsorbing action for adsorbing HC and an auto-oxidizing action for oxidizing adsorbed HC with oxygen existing around it in a predetermined temperature range. Is configured.

【0017】以下、本吸着触媒40を用いて実施した炭
化水素の吸着及び脱離試験ならびに試験結果について説
明する。試験は下記の条件で実施した。 <触媒量> 1l <ガス組成> C2H4 2,000ppm C3H6 2,000ppm (THC 10,000p
pm) O2 5% CO2 10% H2O 10% NO 10% N2 残 <吸着温度> 50゜C <脱離温度> 150゜C <GHSV> 30,000/h 試験は図2に示す試験装置を用いて実施し、吸着した炭
化水素量,脱離量はFIDを装着した炭化水素計を用い
て検出した。吸着温度50゜Cの場合、上記ガス組成を
所定時間(30分)供給させ、その後、吸着触媒の温度
を150゜Cに昇温させ(昇温速度20゜C/mi
n)、所定時間(30分)保持した。温度を150゜C
に昇温させる際、炭化水素をカットして、その他のガス
はそのまま供給させ、脱離する炭化水素量をモニタする
方法を用いた。触媒の温度変化パターンを図3に示す。
上記ガス条件にて吸着温度と脱離温度を交互に繰り返し
ながら平衡になったときの炭化水素の吸着量及び脱離量
の結果を表2に示す。
The hydrocarbon adsorption and desorption tests and the test results carried out using the present adsorption catalyst 40 will be described below. The test was carried out under the following conditions. <Catalyst amount> 1 l <Gas composition> C2H4 2,000ppm C3H6 2,000ppm (THC 10,000p
pm) O2 5% CO2 10% H2O 10% NO 10% N2 Residual <Adsorption temperature> 50 ° C <Desorption temperature> 150 ° C <GHSV> 30,000 / h Test using the test equipment shown in FIG. The amount of adsorbed hydrocarbons and the amount of desorption were detected using a hydrocarbon meter equipped with an FID. When the adsorption temperature is 50 ° C, the above gas composition is supplied for a predetermined time (30 minutes), and then the temperature of the adsorption catalyst is raised to 150 ° C (heating rate 20 ° C / mi).
n) Hold for a predetermined time (30 minutes). Temperature up to 150 ° C
When the temperature was raised to 1, the hydrocarbons were cut, other gases were supplied as they were, and the amount of desorbed hydrocarbons was monitored. The temperature change pattern of the catalyst is shown in FIG.
Table 2 shows the results of the adsorption amount and desorption amount of hydrocarbons when the adsorption temperature and the desorption temperature are alternately repeated under the above gas conditions to reach equilibrium.

【0018】[0018]

【表2】 表2の結果より、本吸着触媒40を用いることにより、
50゜Cにおいて35g/l(触媒)炭化水素を吸着す
ることがわかる。さらに、炭化水素を吸着した吸着触媒
を150゜Cに昇温及び保持すると、吸着した炭化水素
がほとんど燃焼除去されて、そのまま炭化水素は脱離さ
れないことが判明している。なお、本性能は繰り返し実
施しても安定な吸着及び燃焼挙動を有するものである。
[Table 2] From the results of Table 2, by using this adsorption catalyst 40,
It can be seen that it adsorbs 35 g / l (catalyst) hydrocarbons at 50 ° C. Further, it has been found that when the temperature of the adsorption catalyst that adsorbed hydrocarbons is raised to 150 ° C. and kept, most of the adsorbed hydrocarbons are burned and removed, and the hydrocarbons are not desorbed as they are. It should be noted that this performance has stable adsorption and combustion behavior even after repeated execution.

【0019】図1を再び参照すると、分岐排気通路30
の上流側端31と主排気通路13との連通部には、両排
気通路13,30の連通を選択的に許容または阻止する
ための三方弁51が配されている。この三方弁51は、
例えば、上記連通部において互いに同一断面形状寸法に
された両排気通路13,30と断面形状寸法が略同一の
板状部材からなり、排気通路13又は30を介する排気
ガス流通を遮断可能になっている。この三方弁51は、
排気通路13,30の結合部において排気通路管壁によ
り回転自在に支持された回転軸52にこれと一体回転自
在に結合され、更に、回転軸52とリンク機構53とを
介して負圧応動弁54のダイヤフラム54aに連結され
ている。
Referring again to FIG. 1, the branch exhaust passage 30
A three-way valve 51 for selectively permitting or blocking the communication between the exhaust passages 13 and 30 is arranged in a communication portion between the upstream end 31 of the exhaust gas and the main exhaust passage 13. This three-way valve 51
For example, in the communicating portion, the exhaust passages 13 and 30 having the same cross-sectional shape and dimension are made of a plate-shaped member having substantially the same cross-sectional shape and dimension, and exhaust gas flow through the exhaust passage 13 or 30 can be blocked. There is. This three-way valve 51
A rotary shaft 52, which is rotatably supported by a wall of the exhaust passage, is rotatably connected to the rotary shaft 52 at the joint between the exhaust passages 13 and 30. Further, a negative pressure responsive valve is provided via the rotary shaft 52 and a link mechanism 53. 54 is connected to a diaphragm 54a.

【0020】負圧応動弁54は、管路55を介してサー
ジタンク12a(吸気通路12)に連通する圧力室54
bを有し、この圧力室54b内にはダイヤフラム54a
を常時外方に付勢するスプリング54cが配されてい
る。そして、管路55の途中には、この管路55を介す
る吸気通路12と圧力室54bとの連通を選択的に許容
または阻止するための開閉弁56が配されている。例え
ば、開閉弁56は、管路55を開閉するための弁体56
aと、この弁体を開弁方向に駆動するためのソレノイド
56bとを含む常閉型電磁ソレノイド弁からなる。参照
符号56cはフィルタを表す。
The negative pressure responsive valve 54 is connected to the surge tank 12a (intake passage 12) via a pipe line 55 and is connected to the pressure chamber 54.
b, a diaphragm 54a is provided in the pressure chamber 54b.
A spring 54c for constantly urging the spring is arranged. An on-off valve 56 for selectively permitting or blocking the communication between the intake passage 12 and the pressure chamber 54b via the pipeline 55 is disposed in the middle of the pipeline 55. For example, the on-off valve 56 is a valve body 56 for opening and closing the conduit 55.
It is composed of a normally closed electromagnetic solenoid valve including a and a solenoid 56b for driving the valve body in the valve opening direction. Reference numeral 56c represents a filter.

【0021】上述の要素51〜56は、分岐排気通路3
0の上流側端31における分岐排気通路30と主排気通
路13との連通を選択的に阻止するための排気経路選択
手段50を構成している。すなわち、電磁ソレノイド弁
56の弁体56aにより管路55が閉じられて負圧応動
弁54への負圧供給が遮断され、従って、負圧応動弁の
ダイヤフラム54aがスプリング54cにより外方に付
勢される通常の作動状態にあっては、三方弁51は、分
岐排気通路30の上流側端31と主排気通路13との連
通を阻止する第1作動位置(図1及び図4)をとり、分
岐排気通路30内への排気ガスの流入を阻止するように
なっている。一方、ソレノイド弁56が開弁して負圧応
動弁54の圧力室54bが吸気通路12に連通して圧力
室に負圧が導入され、従って、スプリング54cのばね
力に抗してダイヤフラム54aが内方に後退移動する
と、三方弁51が、分岐排気通路30と主排気通路13
との連通を許容する第2作動位置(図5)をとり、排気
ガスが分岐排気通路30内へ流入するようになってい
る。
The above-mentioned elements 51 to 56 correspond to the branch exhaust passage 3
The exhaust path selecting means 50 for selectively blocking the communication between the branch exhaust passage 30 and the main exhaust passage 13 at the upstream end 31 of 0 is configured. That is, the pipe 55 is closed by the valve body 56a of the electromagnetic solenoid valve 56, and the negative pressure supply to the negative pressure responsive valve 54 is cut off. Therefore, the diaphragm 54a of the negative pressure responsive valve is urged outward by the spring 54c. In the normal operating state, the three-way valve 51 takes the first operating position (FIGS. 1 and 4) that blocks the communication between the upstream end 31 of the branch exhaust passage 30 and the main exhaust passage 13, The exhaust gas is prevented from flowing into the branch exhaust passage 30. On the other hand, the solenoid valve 56 is opened so that the pressure chamber 54b of the negative pressure responsive valve 54 communicates with the intake passage 12 and a negative pressure is introduced into the pressure chamber. Therefore, the diaphragm 54a resists the spring force of the spring 54c. When it moves backward inward, the three-way valve 51 causes the branch exhaust passage 30 and the main exhaust passage 13 to move.
The exhaust gas flows into the branch exhaust passage 30 in the second operating position (FIG. 5) that allows communication with the exhaust gas.

【0022】更に、吸着触媒40の配設箇所において分
岐排気通路30の周囲には、吸着触媒40を加熱するた
めのヒータ60が配されている。ヒータ60は、ヒータ
スイッチ61を介してバッテリ62に接続されている。
ヒータスイッチ61は、例えば、常開型スイッチ接点
(図示略)と、これを閉成させるための電磁リレー(図
示略)とからなる。又、三元触媒温度を検出して三元触
媒温度を表す出力を発生するための温度センサ70が、
例えば、その温度検出部を三元触媒20に当接または挿
入させて、配されている。
Further, a heater 60 for heating the adsorption catalyst 40 is arranged around the branch exhaust passage 30 at the location where the adsorption catalyst 40 is arranged. The heater 60 is connected to the battery 62 via the heater switch 61.
The heater switch 61 includes, for example, a normally open switch contact (not shown) and an electromagnetic relay (not shown) for closing the switch contact. Further, a temperature sensor 70 for detecting the three-way catalyst temperature and generating an output representing the three-way catalyst temperature,
For example, the temperature detection unit is disposed so as to abut or be inserted into the three-way catalyst 20.

【0023】図1中、参照符号80は、図示しないマイ
クロプロセッサ,メモリ,入出力回路などからなるコン
トローラを示し、コントローラ80には、温度センサ7
0,電磁ソレノイド弁56およびヒータスイッチ61が
接続されている。コントローラ80は、三元触媒20,
吸着触媒40,排気経路選択手段50,ヒータ60,温
度センサ70などと共に排気ガス浄化装置を構成してい
る。
In FIG. 1, reference numeral 80 indicates a controller including a microprocessor, a memory, an input / output circuit, etc. (not shown).
0, the electromagnetic solenoid valve 56, and the heater switch 61 are connected. The controller 80 includes a three-way catalyst 20,
The adsorption catalyst 40, the exhaust path selecting means 50, the heater 60, the temperature sensor 70 and the like constitute an exhaust gas purifying device.

【0024】以下、図1に示す排気ガス浄化装置の作動
を説明する。図示しないイグニッションキーがオン操作
されて、エンジン10が始動すると、コントローラ80
のプロセッサは、図6に示す排気経路選択及び吸着触媒
加熱ルーチンを実行する。すなわち、プロセッサは、三
元触媒20の温度を表す温度センサ70の出力を読み込
み、この温度センサ出力に基づいて、三元触媒温度が所
定値たとえば三元触媒20の活性化が完了する約350
゜C以上であるか否かを先ず判別する(ステップS
1)。エンジン冷態始動時などにあっては、三元触媒温
度は所定値よりも小さく、従って、ステップS1での判
別結果が否定になる。この場合、プロセッサは、ソレノ
イド弁56のソレノイド56bに例えばハイレベルの制
御出力を送出してソレノイドを励磁する(ステップS
2)。
The operation of the exhaust gas purifying apparatus shown in FIG. 1 will be described below. When an ignition key (not shown) is turned on to start the engine 10, the controller 80
Executes the exhaust path selection and adsorption catalyst heating routine shown in FIG. That is, the processor reads the output of the temperature sensor 70 indicating the temperature of the three-way catalyst 20, and based on the output of the temperature sensor, the three-way catalyst temperature is a predetermined value, for example, the activation of the three-way catalyst 20 is completed about 350.
First, it is determined whether or not the temperature is above ° C (step S
1). When the engine is cold, for example, the three-way catalyst temperature is lower than the predetermined value, so the determination result in step S1 is negative. In this case, the processor sends a high-level control output to the solenoid 56b of the solenoid valve 56 to excite the solenoid (step S).
2).

【0025】この結果、弁体56aの基端部に設けたコ
ア(図示略)がソレノイド56bにより電磁的に吸引さ
れて、弁体56aが後退移動し、ソレノイド弁56が開
く。従って、サージタンク12a内の負圧が管路55を
介して負圧応動弁54の圧力室54b内に導入され、弁
54のダイヤフラム54aが内方に後退移動する。この
ダイヤフラム移動に伴って、リンク機構53を介してダ
イヤフラム54aに連結された回転軸52と一体に三方
弁51が回転し、三方弁51が、分岐排気通路30の上
流側端31において分岐排気通路30と主排気通路13
との連通を許容する第2作動位置(図5)をとるに至
る。この結果、排気ガスが分岐排気通路30内へ流入
し、活性化未了の三元触媒20を通過した後の排気ガス
中に含まれるHCは、分岐排気通路30内に設けた吸着
触媒40に吸着する。そして、HC除去後の排気ガス
は、分岐排気通路30の下流側部分と、分岐排気通路3
0の下流側端32に対応する第2中間部において分岐排
気通路30に連通する主排気通路30の下流側部分と、
マフラ(図示略)とを介して、大気中に放出される。
As a result, a core (not shown) provided at the base end of the valve body 56a is electromagnetically attracted by the solenoid 56b, the valve body 56a moves backward, and the solenoid valve 56 opens. Therefore, the negative pressure in the surge tank 12a is introduced into the pressure chamber 54b of the negative pressure responsive valve 54 through the pipe 55, and the diaphragm 54a of the valve 54 moves backward inward. Along with the movement of the diaphragm, the three-way valve 51 rotates integrally with the rotary shaft 52 connected to the diaphragm 54a via the link mechanism 53, and the three-way valve 51 moves at the upstream end 31 of the branch exhaust passage 30 at the branch exhaust passage 30. 30 and main exhaust passage 13
It reaches a second operating position (FIG. 5) that allows communication with. As a result, the exhaust gas flows into the branch exhaust passage 30, and the HC contained in the exhaust gas after passing through the unactivated three-way catalyst 20 is absorbed by the adsorption catalyst 40 provided in the branch exhaust passage 30. Adsorb. The exhaust gas from which the HC has been removed is supplied to the downstream side portion of the branch exhaust passage 30 and the branch exhaust passage 3
A downstream side portion of the main exhaust passage 30 communicating with the branch exhaust passage 30 at a second intermediate portion corresponding to the downstream end 32 of 0;
It is released into the atmosphere via a muffler (not shown).

【0026】上述のように、三方弁51が第2作動位置
をとると、分岐排気通路30の上流側端31に対応する
主排気通路13の第1中間部とこれよりも下流側の部分
とは分岐排気通路30を介してのみ連通可能であって、
主排気通路13の中間部と下流側部分との直接の連通は
三方弁51により遮断される。従って、大気中に放出さ
れる前に排気ガスは吸着触媒40を必ず通過し、三元触
媒20の活性化が未だ完了していない場合にも、HCを
含む排気ガスが大気に放出されることは殆どない。
As described above, when the three-way valve 51 takes the second operating position, the first intermediate portion of the main exhaust passage 13 corresponding to the upstream end 31 of the branch exhaust passage 30 and the portion on the downstream side thereof. Can communicate only through the branch exhaust passage 30,
The three-way valve 51 blocks direct communication between the intermediate portion and the downstream portion of the main exhaust passage 13. Therefore, the exhaust gas must pass through the adsorption catalyst 40 before being released into the atmosphere, and the exhaust gas containing HC should be released into the atmosphere even when the activation of the three-way catalyst 20 is not yet completed. There is almost no.

【0027】三元触媒温度が所定値に達していないと判
別されている限り、上述のステップS1及びS2が繰り
返し実行される。その後、三元触媒温度が所定値に達し
たとステップS1で判別すると、プロセッサは、ソレノ
イド56bに例えばローレベルの制御出力を送出してソ
レノイドを消勢する(ステップS3)。この結果、ソレ
ノイド56bの電磁吸引力が消滅して弁体56aが前進
移動し、ソレノイド弁56が閉じる。従って、管路55
を介する負圧応動弁54の圧力室54bへの負圧導入が
遮断され、スプリング54cのばね力でダイヤフラム5
4aが外方に前進移動する。このダイヤフラム移動に伴
って、リンク機構53および回転軸52を介して三方弁
51が回転し、三方弁51が、分岐排気通路30の上流
側端31において分岐排気通路30と主排気通路13と
の連通を阻止する第1作動位置(図1及び図4)をとる
に至る。
As long as it is determined that the three-way catalyst temperature has not reached the predetermined value, the above steps S1 and S2 are repeatedly executed. Thereafter, when it is determined in step S1 that the three-way catalyst temperature has reached the predetermined value, the processor sends a low-level control output to the solenoid 56b to deactivate the solenoid (step S3). As a result, the electromagnetic attraction force of the solenoid 56b disappears, the valve body 56a moves forward, and the solenoid valve 56 closes. Therefore, the pipeline 55
The introduction of the negative pressure into the pressure chamber 54b of the negative pressure responsive valve 54 is cut off via the valve 5, and the spring force of the spring 54c causes the diaphragm 5 to move.
4a moves forward outward. With the movement of the diaphragm, the three-way valve 51 rotates via the link mechanism 53 and the rotary shaft 52, and the three-way valve 51 connects the branch exhaust passage 30 and the main exhaust passage 13 at the upstream end 31 of the branch exhaust passage 30. It takes a first operating position (FIGS. 1 and 4) that blocks communication.

【0028】この結果、分岐排気通路30内への排気ガ
スの更なる流入が阻止される。その後、三元触媒温度の
上昇に伴って排気ガス温度が上昇するが、吸着触媒40
は高温の新たな排気ガスに晒されず、このため、吸着触
媒温度上昇により吸着触媒40に一旦吸着したHCが吸
着触媒から脱離して排ガスの流れに乗って流出してしま
うと云う不具合が生じることがない。
As a result, the exhaust gas is prevented from further flowing into the branch exhaust passage 30. After that, the exhaust gas temperature rises as the three-way catalyst temperature rises.
Is not exposed to new high-temperature exhaust gas, so that due to the temperature rise of the adsorption catalyst, HC once adsorbed on the adsorption catalyst 40 is desorbed from the adsorption catalyst and flows out along with the flow of exhaust gas. Never.

【0029】その一方で、分岐排気通路30の上流側端
31に対応する主排気通路13の第1中間部とこれより
も下流側の部分との連通が三方弁51により阻止された
状態が解除され、従って、排気ガスは主排気通路13を
介して大気中に放出される。この場合、三元触媒温度が
所定値に既に達し、従って、三元触媒20の活性化が既
に完了しているので、エンジン10からの排気ガス中に
含まれるHC等の有害物質が三元触媒20によって除去
され、従って特段の不都合は生じない。
On the other hand, the state in which the three-way valve 51 blocks the communication between the first intermediate portion of the main exhaust passage 13 corresponding to the upstream end 31 of the branch exhaust passage 30 and the downstream portion thereof is released. Therefore, the exhaust gas is discharged into the atmosphere through the main exhaust passage 13. In this case, the temperature of the three-way catalyst has already reached the predetermined value, and therefore the activation of the three-way catalyst 20 has already been completed, so that harmful substances such as HC contained in the exhaust gas from the engine 10 are removed by the three-way catalyst. It is eliminated by 20, so that no particular inconvenience occurs.

【0030】ステップS3に続くステップS4におい
て、プロセッサは、ヒータスイッチ61の電磁リレーに
例えばハイレベルの制御出力を送出して、ヒータスイッ
チ61の常開型スイッチ接点を閉成させ、排気経路選択
及び吸着触媒加熱ルーチンを終了する。そして、ヒータ
スイッチ61のスイッチ接点が閉成されると、ヒータス
イッチ61を介してバッテリ62からヒータ60に電力
が供給され、ヒータ60により吸着触媒40が加熱され
る。
In step S4 following step S3, the processor sends, for example, a high-level control output to the electromagnetic relay of the heater switch 61 to close the normally open switch contact of the heater switch 61 to select the exhaust path and The adsorption catalyst heating routine ends. Then, when the switch contact of the heater switch 61 is closed, electric power is supplied from the battery 62 to the heater 60 via the heater switch 61, and the heater 60 heats the adsorption catalyst 40.

【0031】その後、吸着触媒温度が、所定値例えば約
120゜Cに達し、従って、約120〜約200゜Cの
所定温度領域内に入ると、吸着触媒40の自己酸化作用
が奏される。すなわち、吸着触媒40に吸着されたHC
がその回りに存する酸素により酸化されて無害な二酸化
炭素,水などになる。そして、上述のように吸着HCが
浄化されると、吸着触媒40は、次回エンジン冷態始動
などに際してHCの吸着が可能な状態に再生されたこと
になる。
After that, when the temperature of the adsorption catalyst reaches a predetermined value, for example, about 120 ° C. Therefore, when it enters the predetermined temperature range of about 120 to about 200 ° C., the auto-oxidation action of the adsorption catalyst 40 is performed. That is, the HC adsorbed by the adsorption catalyst 40
Are oxidized by the oxygen around them to become harmless carbon dioxide and water. When the adsorbed HC is purified as described above, the adsorbed catalyst 40 is regenerated to a state capable of adsorbing HC at the next engine cold start or the like.

【0032】本発明の排気ガス浄化装置は、上記実施例
に限定されるものではない。例えば、上記実施例では、
排気経路選択手段50の主要要素としての三方弁51を
分岐排気通路30の上流側端31に配して、分岐排気通
路の上流側端において分岐排気通路と主排気通路との連
通を選択的に阻止するようにしたが、分岐排気通路の両
端が主排気経路に連通するように構成した排気ガス浄化
装置にあっては、三方弁51を分岐排気通路の下流側端
32に配しても良く、或は、分岐排気通路の上流側端お
よび下流側端の双方に配しても良い。なお、分岐排気通
路30を、その上流側端のみにおいて主排気経路13に
連通するように構成しても良い。
The exhaust gas purifying apparatus of the present invention is not limited to the above embodiment. For example, in the above embodiment,
A three-way valve 51, which is a main element of the exhaust path selecting means 50, is arranged at the upstream end 31 of the branch exhaust passage 30 to selectively connect the branch exhaust passage and the main exhaust passage at the upstream end of the branch exhaust passage. However, in the exhaust gas purifying apparatus in which both ends of the branch exhaust passage communicate with the main exhaust passage, the three-way valve 51 may be arranged at the downstream end 32 of the branch exhaust passage. Alternatively, they may be arranged at both the upstream end and the downstream end of the branch exhaust passage. The branch exhaust passage 30 may be configured to communicate with the main exhaust passage 13 only at its upstream end.

【0033】排気経路選択手段50は、板状開閉部材か
らなる三方弁51,負圧応動弁54,電磁ソレノイド弁
56等を組み合わせた実施例のものに限定されず、例え
ば、車両に装備される空圧源又は油圧源で駆動される制
御弁などで構成可能である。実施例では温度センサで三
元触媒温度を検出するようにしたが、三元触媒近傍たと
えば三元触媒の直ぐ下流側での排気ガス温度を検出して
も良い。又、温度センサ出力に応動するコントローラ8
0によって排気経路選択手段50の作動を自動的に制御
することは必須でなく、電磁ソレノイド弁56を手動ス
イッチを介してオン作動させる等して要素50の作動を
手動制御可能である。
The exhaust path selecting means 50 is not limited to the embodiment in which the three-way valve 51 composed of a plate-like opening / closing member, the negative pressure responsive valve 54, the electromagnetic solenoid valve 56 and the like are combined, and is mounted on, for example, a vehicle. It can be constituted by a control valve driven by an air pressure source or a hydraulic pressure source. Although the temperature sensor detects the three-way catalyst temperature in the embodiment, the exhaust gas temperature in the vicinity of the three-way catalyst, for example, immediately downstream of the three-way catalyst may be detected. Also, the controller 8 that responds to the temperature sensor output
It is not essential to automatically control the operation of the exhaust path selecting means 50 by 0, and the operation of the element 50 can be manually controlled by turning on the electromagnetic solenoid valve 56 via a manual switch.

【0034】上記実施例では、吸着触媒40と別体に設
けたヒータ60を加熱手段として用いたが、吸着触媒4
0と加熱手段とを一体に設けても良い。例えば、電気加
熱触媒用担体に、吸着触媒40を構成する吸着剤をコー
ティングしたものを使用可能である。又、上記実施例で
は、図6のステップS3による分岐排気通路30と主排
気通路13との連通遮断に続いてヒータ60を単にオン
するようにしたが、吸着触媒温度が所定温度領域内に維
持されるようにヒータ60をオンオフ制御可能である。
更に、吸着触媒40の加熱を分岐排気通路と主排気通路
との連通の遮断と同時に開始することは必須ではなく、
吸着HCの脱離が進行するような吸着触媒温度にならな
いようなタイミングであれば、吸着触媒の加熱を排気通
路連通遮断の前に開始しても良い。又、ヒータ60の作
動をコントローラ80で自動的に制御することは必須で
なく、ヒータスイッチ61を手動操作する等して手動制
御可能である。
In the above embodiment, the heater 60 provided separately from the adsorption catalyst 40 was used as the heating means.
0 and the heating means may be integrally provided. For example, a carrier for electric heating catalyst coated with an adsorbent that constitutes the adsorption catalyst 40 can be used. Further, in the above-described embodiment, the heater 60 is simply turned on after the communication between the branch exhaust passage 30 and the main exhaust passage 13 is blocked in step S3 of FIG. 6, but the adsorption catalyst temperature is maintained within the predetermined temperature range. As described above, the heater 60 can be on / off controlled.
Furthermore, it is not essential to start the heating of the adsorption catalyst 40 at the same time when the communication between the branch exhaust passage and the main exhaust passage is cut off.
The heating of the adsorption catalyst may be started before the communication of the exhaust passage is shut off at a timing such that the temperature of the adsorption catalyst does not reach such a degree that the desorption of the adsorbed HC proceeds. Further, it is not essential that the operation of the heater 60 be automatically controlled by the controller 80, and manual control is possible by manually operating the heater switch 61.

【0035】[0035]

【発明の効果】上述のように、本発明の排気ガス浄化装
置は、主排気通路の途中に配されエンジンからの排気ガ
スを浄化するための主触媒と、少なくとも上流側端にお
いて主排気通路に連通する分岐排気通路の途中に配され
炭化水素を吸着させかつ吸着した炭化水素を主触媒の活
性温度よりも低い所定温度領域で酸化させるための吸着
触媒と、吸着触媒の温度が前記所定温度領域に入るよう
吸着触媒を加熱するための加熱手段と、分岐排気通路
の少なくとも一端における分岐排気通路と主排気通路と
の連通を選択的に阻止するための排気経路選択手段とを
備えるので、炭化水素浄化性能に優れ、吸着触媒に吸着
させた炭化水素の後処理のための装置構成が簡易であっ
て、装置コストを低減可能である。
As described above, the exhaust gas purifying apparatus of the present invention has the main catalyst disposed in the middle of the main exhaust passage for purifying exhaust gas from the engine and the main exhaust passage at least at the upstream end. A hydrocarbon is adsorbed in the middle of the communicating branch exhaust passage, and the adsorbed hydrocarbon activates the main catalyst.
The adsorption catalyst for oxidation in a predetermined temperature range lower than the oxidation temperature, and the temperature of the adsorption catalyst falls within the predetermined temperature range.
In addition, since it is provided with a heating means for heating the adsorption catalyst and an exhaust path selecting means for selectively blocking communication between the branch exhaust passage and the main exhaust passage at at least one end of the branch exhaust passage, the hydrocarbon purification performance is improved. The device configuration for the post-treatment of hydrocarbons adsorbed on the adsorption catalyst is simple, and the device cost can be reduced.

【0036】又、主触媒温度または主触媒近傍での排気
ガス温度を表す温度検出手段出力に応動する制御手段に
より排気経路選択手段を作動させると共に制御手段の制
御下で加熱手段を作動させる本発明の特定の態様によれ
ば、両手段を好適なタイミングで作動でき、炭化水素浄
化をより適切に行える。
Further, according to the present invention, the exhaust route selecting means is operated by the control means responsive to the output of the temperature detecting means indicating the temperature of the main catalyst or the temperature of the exhaust gas near the main catalyst, and the heating means is operated under the control of the control means. According to the specific aspect of the above, both means can be operated at a suitable timing, and the hydrocarbon purification can be performed more appropriately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による排気ガス浄化装置を周
辺要素と共に示す概略図である。
FIG. 1 is a schematic diagram showing an exhaust gas purifying apparatus according to an embodiment of the present invention together with peripheral elements.

【図2】図1に示す吸着触媒に関する炭化水素の吸着及
び脱離試験に用いた試験装置を示す概略図である。
FIG. 2 is a schematic diagram showing a test apparatus used for a hydrocarbon adsorption and desorption test on the adsorption catalyst shown in FIG.

【図3】図2に示す試験装置を用いた炭化水素の吸着及
び脱離試験における触媒の温度変化パターンを示すグラ
フである。
FIG. 3 is a graph showing a temperature change pattern of a catalyst in a hydrocarbon adsorption / desorption test using the test apparatus shown in FIG.

【図4】図1に示す三方弁により分岐排気通路と主排気
通路との連通を遮断した状態を示す部分図である。
FIG. 4 is a partial view showing a state in which the communication between the branch exhaust passage and the main exhaust passage is blocked by the three-way valve shown in FIG.

【図5】三方弁が、分岐排気通路と主排気通路とを連通
させる作動位置をとった状態を示す部分図である。
FIG. 5 is a partial view showing a state where the three-way valve is in an operating position where the branch exhaust passage and the main exhaust passage are in communication with each other.

【図6】図1に示すコントローラにより実行される排気
経路選択及び吸着触媒加熱ルーチンを示すフローチャー
トである。
FIG. 6 is a flowchart showing an exhaust path selection and adsorption catalyst heating routine executed by the controller shown in FIG.

【符号の説明】[Explanation of symbols]

12 吸気通路 13 主排気通路 20 三元触媒 30 分岐排気通路 31 分岐排気通路の上流側端 32 分岐排気通路の下流側端 40 吸着触媒 50 排気経路選択手段 51 三方弁 60 ヒータ 70 温度センサ 80 コントローラ 12 Intake passage 13 Main exhaust passage 20 three way catalyst 30 branch exhaust passage 31 upstream end of branch exhaust passage 32 Downstream end of branch exhaust passage 40 Adsorption catalyst 50 Exhaust route selection means 51 three-way valve 60 heater 70 Temperature sensor 80 controller

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F01N 3/24 B01D 53/36 ZAB // B01D 53/04 ZAB 103B (72)発明者 団野 喜朗 東京都港区芝五丁目33番8号 三菱自動 車工業株式会社内 (72)発明者 三林 大介 東京都港区芝五丁目33番8号 三菱自動 車工業株式会社内 (72)発明者 飯田 耕三 広島県広島市西区観音新町四丁目6番22 号 三菱重工業株式会社 広島研究所内 (72)発明者 芹澤 暁 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社 長崎造船所内 (72)発明者 小林 敬古 東京都千代田区丸の内二丁目5番1号 三菱重工業株式会社内 (56)参考文献 特開 昭62−191609(JP,A) 特開 平4−311618(JP,A) 特開 平4−284827(JP,A) 特開 平3−141816(JP,A) 実開 平2−67020(JP,U) 実開 平1−91019(JP,U) (58)調査した分野(Int.Cl.7,DB名) F01N 3/20 B01D 53/86 B01D 53/94 F01N 3/24 B01D 53/04 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI F01N 3/24 B01D 53/36 ZAB // B01D 53/04 ZAB 103B (72) Inventor Yoshiro Danno 33, Shiba 5-chome, Minato-ku, Tokyo No. 8 Mitsubishi Motors Co., Ltd. (72) Inventor Daisuke Sanbayashi 5-3-33, Shiba, Minato-ku, Tokyo Mitsubishi Motors Co., Ltd. (72) Inventor Kozo Iida Kannon Shinmachi, Nishi-ku, Hiroshima-shi, Hiroshima 4-6-22 Mitsubishi Heavy Industries, Ltd. Hiroshima Research Institute (72) Inventor Aka Serizawa 1-1 1-1 Atsunoura-machi, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries Ltd. Nagasaki Shipyard (72) Inventor Keiko Kobayashi Chiyoda-ku, Tokyo Marunouchi 2-5-1 Mitsubishi Heavy Industries, Ltd. (56) Reference JP 62-191609 (JP, A) JP 4-311618 (JP, A) JP 4-284827 JP, A) JP flat 3-141816 (JP, A) JitsuHiraku flat 2-67020 (JP, U) JitsuHiraku flat 1-91019 (JP, U) (58 ) investigated the field (Int.Cl. 7, DB name) F01N 3/20 B01D 53/86 B01D 53/94 F01N 3/24 B01D 53/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 エンジンの排気側に連通する主排気通路
の途中に配されエンジンからの排気ガスを浄化するため
の主触媒と、少なくとも上流側端において前記主排気通
路に連通する分岐排気通路の途中に配され排気ガスに含
まれる炭化水素を吸着させかつ吸着した炭化水素を前記
主触媒の活性温度よりも低い所定温度領域で酸化させる
ための触媒作用を有した吸着剤と、前記吸着剤の温度が
前記所定温度領域に入るように前記吸着剤を加熱するた
めの加熱手段と、前記分岐排気通路の少なくとも一端に
おける前記分岐排気通路と前記主排気通路との連通を選
択的に阻止するための排気経路選択手段とを備えること
を特徴とする排気ガス浄化装置。
1. A main catalyst arranged in the middle of a main exhaust passage communicating with the exhaust side of an engine for purifying exhaust gas from the engine, and a branch exhaust passage communicating with the main exhaust passage at least at an upstream end. wherein the hydrocarbons are allowed and adsorbed adsorbing hydrocarbons contained in disposed midway the exhaust gas
An adsorbent having a catalytic action for oxidizing at a low predetermined temperature range than the activation temperature of the main catalyst, the temperature of the adsorbent
A heating means for heating the adsorbent so as to enter the predetermined temperature region, and an exhaust path for selectively blocking communication between the branch exhaust passage and the main exhaust passage at least at one end of the branch exhaust passage. An exhaust gas purifying apparatus comprising: a selecting unit.
【請求項2】 主触媒温度または主触媒近傍での排気ガ
ス温度を表す出力を発生するための温度検出手段と、前
記加熱手段を作動させると共に、前記温度検出手段の出
力に応じて前記排気経路選択手段を作動させるための制
御手段とを含むことを特徴とする請求項1の排気ガス浄
化装置。
2. A temperature detecting means for generating an output indicating a temperature of a main catalyst or an exhaust gas temperature in the vicinity of the main catalyst, and the heating means, and at the same time, the exhaust path according to the output of the temperature detecting means. The exhaust gas purifying apparatus according to claim 1, further comprising control means for operating the selecting means.
JP02535193A 1993-02-15 1993-02-15 Exhaust gas purification device Expired - Lifetime JP3396247B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP02535193A JP3396247B2 (en) 1993-02-15 1993-02-15 Exhaust gas purification device
US08/621,704 US5738832A (en) 1993-02-15 1996-03-26 Exhaust gas purifying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02535193A JP3396247B2 (en) 1993-02-15 1993-02-15 Exhaust gas purification device

Publications (2)

Publication Number Publication Date
JPH06241033A JPH06241033A (en) 1994-08-30
JP3396247B2 true JP3396247B2 (en) 2003-04-14

Family

ID=12163449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02535193A Expired - Lifetime JP3396247B2 (en) 1993-02-15 1993-02-15 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP3396247B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6980676B2 (en) * 2016-03-02 2021-12-15 ワットロー・エレクトリック・マニュファクチャリング・カンパニー Susceptors used in fluid flow systems
JP2019132237A (en) * 2018-02-01 2019-08-08 いすゞ自動車株式会社 Electromagnetic wave control device

Also Published As

Publication number Publication date
JPH06241033A (en) 1994-08-30

Similar Documents

Publication Publication Date Title
KR960004832B1 (en) Engine exhaust gas purification apparatus
US5738832A (en) Exhaust gas purifying apparatus
EP0616115B1 (en) Exhaust gas purifying apparatus and method for internal combustion engine
JP3396378B2 (en) Method and apparatus for purifying exhaust gas of an internal combustion engine
US5373696A (en) Automotive engine with exhaust hydrocarbon adsorber having oxygen sensor regeneration control
JPH0559942A (en) Cold hc adsorption removal device
WO2007145178A1 (en) Exhaust gas purifying apparatus and exhaust gas purifying method using the same
JPH10513526A (en) Performance improvement of manifold catalysts in automotive exhaust systems
US5355672A (en) Automotive engine exhaust aftertreatment system including hydrocarbon adsorber with sample processing oxygen sensor regeneration control
JP2855986B2 (en) Exhaust gas purification device
JP2006272115A (en) Exhaust gas purifying apparatus
JPH10121949A (en) Engine exhaust emission control device
JP3396247B2 (en) Exhaust gas purification device
JPH06272545A (en) Exhaust emission control device for internal combustion engine
JP3178142B2 (en) Exhaust gas purification device
JP2000204928A (en) Exhaust emission control device for internal combustion engine
JP3116627B2 (en) Exhaust gas purification device
JPH0579320A (en) Internal combustion engine, operation thereof and automobile
JPH06241028A (en) Exhaust gas purifier
JP3433461B2 (en) Exhaust gas purification device
JP2827738B2 (en) Exhaust gas purification device
JPS62189309A (en) Unburnt fuel purifier for alcohol fuel vehicle
JP2000073747A (en) Catalyst system
JPH0771237A (en) Exhaust emission control device for internal combustion engine
JP3846541B2 (en) NOx adsorbent regeneration device and regeneration method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140207

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140207

Year of fee payment: 11