JP3395803B2 - Method for producing iron oxide by roasting method - Google Patents

Method for producing iron oxide by roasting method

Info

Publication number
JP3395803B2
JP3395803B2 JP14789494A JP14789494A JP3395803B2 JP 3395803 B2 JP3395803 B2 JP 3395803B2 JP 14789494 A JP14789494 A JP 14789494A JP 14789494 A JP14789494 A JP 14789494A JP 3395803 B2 JP3395803 B2 JP 3395803B2
Authority
JP
Japan
Prior art keywords
iron oxide
roasting
amount
average particle
fuel gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14789494A
Other languages
Japanese (ja)
Other versions
JPH0812339A (en
Inventor
内 徹 竹
野 憲 一 矢
口 倫 昭 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP14789494A priority Critical patent/JP3395803B2/en
Publication of JPH0812339A publication Critical patent/JPH0812339A/en
Application granted granted Critical
Publication of JP3395803B2 publication Critical patent/JP3395803B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼材を酸洗したときに
発生する塩化鉄を含む廃塩酸溶液から焙焼法により酸化
鉄を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing iron oxide by a roasting method from a waste hydrochloric acid solution containing iron chloride generated when a steel material is pickled.

【0002】[0002]

【従来の技術】廃塩酸溶液を焙焼して酸化鉄を作る際に
使用される焙焼炉の概略を図1に示す。焙焼炉の上部か
らスプレーされた廃塩酸のスプレー物2が焙焼炉内でコ
ークス炉ガス(以下、COGとする)の燃焼ガスによっ
て作られる旋回流5と接触し、下記式(1)および式
(2)で示す反応により酸化鉄9となる。 〔焙焼炉内での反応〕 2FeCl2 +2H2 O+1/2O2 →Fe2 3 +4HCl……(1) FeCl3 +3H2 O→Fe2 3 +6HCl………………………(2) そして、酸化鉄の平均粒子径(島津製作所SS−100
を使い空気透過法により測定、以下同じ)を制御するの
に、従来は、m値(空気比)を一定にして焙焼炉内の雰
囲気温度を変える方法をとっていた。
2. Description of the Related Art An outline of a roasting furnace used for roasting a waste hydrochloric acid solution to produce iron oxide is shown in FIG. The sprayed product 2 of waste hydrochloric acid sprayed from the upper part of the roasting furnace comes into contact with the swirl flow 5 created by the combustion gas of the coke oven gas (hereinafter referred to as COG) in the roasting furnace, and the following formula (1) and Iron oxide 9 is obtained by the reaction represented by the formula (2). [Reaction in roasting furnace] 2FeCl 2 + 2H 2 O + 1 / 2O 2 → Fe 2 O 3 + 4HCl …… (1) FeCl 3 + 3H 2 O → Fe 2 O 3 + 6HCl …………………… (2 ) And the average particle diameter of iron oxide (Shimadzu SS-100
In the conventional method, the m value (air ratio) is kept constant and the atmospheric temperature in the roasting furnace is changed in order to control the measurement by the air permeation method using the above method and the same hereinafter.

【0003】また、酸化鉄生成メカニズムから考える
と、まずスプレーされた液滴の表面からH2 O、HCl
が蒸発し、液滴表面に析出したFeCl2 の薄膜ができ
る。次に、FeCl2 の結晶水が離脱し分解が起こると
ともに生成反応によりFe2 3 が生成する。その後、
熱を受けることにより、Fe2 3 の粒子同志が結合成
長することで一次粒子を形成すると考えられる。従っ
て、粒子に加わる熱エネルギーが大きいほど、すなわち
胴部温度が高いほど粒子の結合速度は大きくなるので、
一次粒子の平均粒径は大きくなる。
Considering the mechanism of iron oxide formation
First, from the surface of the sprayed droplet, H2O, HCl
Evaporates and precipitates on the droplet surface2A thin film of
It Next, FeCl2When the water of crystallization of
Fe produced by the reaction2O 3Is generated. afterwards,
By receiving heat, Fe2O3Particles of each other join together
It is considered that the lengthening leads to the formation of primary particles. Obey
The greater the thermal energy applied to the particles,
The higher the body temperature, the higher the particle binding rate, so
The average particle size of the primary particles becomes large.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来か
ら行われている胴部温度を変える方法では、特に平均粒
子径を大きくする場合に、COG量が多くなり、エネル
ギー原単位が高くなるという問題点があった。
However, in the conventional method of changing the body temperature, there is a problem that the COG amount increases and the energy consumption rate increases, especially when the average particle diameter is increased. was there.

【0005】例えば、平均粒子径0.71μmを0.9
2μmに変えるときの例を示すと、スプレー量4.0m
3 /h、胴部温度540℃、COG量550N(標準状
態)m3 /hの操業条件で焙焼し、平均粒子径0.71
μmを得ていた酸化鉄を、平均粒子径を0.92μとす
るには、スプレー量が同じで、胴部温度610℃、CO
G量620Nm3 /hが必要であり、必要とするエネル
ギー原単位は増大する。ここで、エネルギー原単位と
は、〔必要なエネルギー量(必要なエネルギー経費+C
OGガスのエネルギー経費)/酸化鉄製造量(g)〕を
いう。そこで、本発明は、このような問題点を解決した
平均粒子径を増大させる技術を提供することを目的とす
る。
For example, the average particle diameter of 0.71 μm is 0.9
When changing to 2 μm, the spray amount is 4.0 m.
3 / h, body temperature 540 ° C., COG amount 550 N (standard state) m 3 / h, roasted under operating conditions, average particle size 0.71
To obtain an average particle size of 0.92μ, the iron oxide that had obtained μm had the same spray amount, the body temperature was 610 ° C., and the CO
A G amount of 620 Nm 3 / h is required, and the required energy intensity increases. Here, the energy intensity is [the required amount of energy (the required energy cost + C
OG gas energy cost) / iron oxide production (g)]. Therefore, an object of the present invention is to provide a technique for increasing the average particle diameter, which solves such problems.

【0006】[0006]

【課題を解決するための手段】本発明はこのような問題
点を解決するために、胴部温度は変えず、すなわちほと
んどCOG量を変えることなく、燃料ガスに加える燃焼
用空気量を増やすと平均粒子径は増大することを知見
し、本発明に至った。これは、実操業に適用するもので
ある。すなわち、本発明は、塩化鉄を含む廃塩酸溶液か
ら焙焼法により酸化鉄を製造する方法において、焙焼時
の焙焼炉胴部温度と燃料ガス量とm値を同時に制御し
て、エネルギー原単位を上げずに酸化鉄の平均粒子径を
制御する焙焼法による酸化鉄の製造方法を提供する。ま
た、塩化鉄を含む廃塩酸溶液から焙焼法により酸化鉄を
製造する方法において、焙焼炉胴部温度を上げずに焙焼
時の燃料ガス量に対する燃焼用空気量の体積比を上げる
ことにより酸化鉄の平均粒子径を増大させる焙焼法によ
る酸化鉄の製造方法を提供する。
In order to solve such a problem, the present invention is to increase the combustion air amount added to the fuel gas without changing the body temperature, that is, the COG amount is hardly changed. The inventors have found that the average particle diameter increases and have reached the present invention. This applies to actual operations. That is, the present invention is a method of producing iron oxide by a roasting method from a waste hydrochloric acid solution containing iron chloride, by simultaneously controlling the roasting furnace body temperature, the fuel gas amount, and the m value during roasting, and Provided is a method for producing iron oxide by a roasting method in which the average particle size of iron oxide is controlled without increasing the unit consumption. Further, in a method for producing iron oxide from a waste hydrochloric acid solution containing iron chloride by a roasting method, increasing the volume ratio of the combustion air amount to the fuel gas amount during roasting without raising the temperature of the body of the roasting furnace. Provides a method for producing iron oxide by a roasting method, which increases the average particle size of iron oxide.

【0007】以下に、本発明を詳細に説明する。廃塩酸
から酸化鉄を製造するのに用いられる焙焼炉の断面図の
1例を図1に示し、これを用いて本発明を説明する。図
1に示されるとおり、廃塩酸のスプレー物2がスプレー
ノズル1から噴霧される。一方、燃料ガス入り口4から
注入されるCOGと空気の燃焼ガスは焙焼炉本体8中で
旋回流5を生じる。噴霧された廃塩酸のスプレー物2
は、燃焼ガスによる旋回流5と接触し、酸化鉄生成反応
により酸化鉄9を生成する。このとき、平均粒子径を制
御するには、従来の方法では、胴部温度計6にて示す胴
部温度を変化させることにより実施していた。これを比
較例1として表2に示すが、胴部温度が上昇するにつれ
平均粒子径も増加しているが、同時に燃料ガス量も増加
している。例えば、平均粒子径を0.7μmから0.9
μmに増加させるには使用する燃料ガスが約13体積%
増え、エネルギー原単位が増加するのが一般的であっ
た。
The present invention will be described in detail below. An example of a cross-sectional view of a roasting furnace used for producing iron oxide from waste hydrochloric acid is shown in FIG. 1, and the present invention will be described using this. As shown in FIG. 1, a sprayed product 2 of waste hydrochloric acid is sprayed from a spray nozzle 1. On the other hand, the combustion gas of COG and air injected from the fuel gas inlet 4 produces a swirling flow 5 in the roasting furnace main body 8. Sprayed waste hydrochloric acid 2
Comes into contact with the swirl flow 5 of the combustion gas and produces iron oxide 9 by the iron oxide production reaction. At this time, in order to control the average particle diameter, according to the conventional method, the body temperature shown by the body thermometer 6 is changed. This is shown in Table 2 as Comparative Example 1, and the average particle size increases as the body temperature rises, but at the same time, the fuel gas amount also increases. For example, an average particle size of 0.7 μm to 0.9
About 13% by volume of fuel gas is used to increase to μm
It was common for the energy consumption rate to increase as well.

【0008】これに対して、本発明では、焙焼炉胴部温
度と燃料ガス量とm値を同時に変化させて、エネルギー
原単位を上げずに平均粒子径を制御することができる。
特に、燃料ガスの注入量は同程度に保ちながら、混合す
る燃焼用空気量の注入量を増加させることにより、製造
される酸化鉄の平均粒子径を増大することが出来る。本
発明に用いる廃塩酸溶液は、鋼板酸洗等により生じるF
eCl2 ,FeCl 3 などを含有する塩酸の廃液であれ
ばいかなるものであってもよい。廃塩酸溶液中には、通
常鉄イオンが180〜280gイオン/m3 含有されて
いる。廃塩酸溶液のスプレー量は、2.5〜4.5m3
/h程度であるのが好ましい。本発明に用いる燃料ガス
は、コークス炉などから発生するガスを使用することが
できる。燃料ガスを焙焼炉に注入する際に燃焼用空気と
混合して焙焼炉に注入する。燃料ガスと燃焼用空気の混
合割合は、空気比で1.3〜2.1、好ましくは1.5
〜1.8にする。1.3未満では、燃焼温度が高く燃焼
室を破損し、2.1超では、燃焼温度が低く、十分な焙
焼が行われない。焙焼炉胴部温度は、好ましくは530
〜560℃、より好ましくは530〜540℃とする。
この範囲にするのは、焙焼炉胴部温度をこの範囲より高
くすると、エネルギー原単位が上がり経済的でないから
である。そして、焙焼炉胴部温度を従来より上げずに、
燃料ガス量も従来より上げずにm値を増大させると、エ
ネルギー原単位を上げずに、平均粒子径0.70〜0.
95μm、特に0.90〜0.92μmの大きい酸化鉄
粒子が得られる。燃料ガスと燃焼用空気の注入量は、焙
焼炉の規模により変化するが、例えば、直径6.5m、
高さ16mの円筒状の焙焼炉では、燃料ガス量が500
〜700Nm3 /h、燃焼用空気量が、3225〜54
20Nm3 /hであるのが好ましい。本発明の酸化鉄の
製造にもちいる焙焼炉としては、通常の焙焼法による酸
化鉄の製造に用いるものであればよいが、例えば直径
6.5m、高さ16mの円筒径の焙焼炉が挙げられる。
On the other hand, in the present invention, the temperature of the body of the roasting furnace is
At the same time as the fuel gas amount and m value
The average particle size can be controlled without increasing the unit consumption.
In particular, mix while maintaining the same amount of fuel gas injection.
Manufacturing by increasing the injection amount of combustion air
It is possible to increase the average particle diameter of iron oxide. Book
The waste hydrochloric acid solution used in the invention is F produced by pickling steel sheets.
eCl2, FeCl 3Waste liquid of hydrochloric acid containing
It can be anything. In the waste hydrochloric acid solution,
180 to 280 g of iron ions / m3Contained
There is. Spray amount of waste hydrochloric acid solution is 2.5-4.5m3
/ H is preferable. Fuel gas used in the present invention
Can use gas generated from coke ovens, etc.
it can. When injecting fuel gas into the roasting furnace,
Mix and pour into a roasting furnace. Mixing fuel gas and combustion air
The total ratio is 1.3 to 2.1, preferably 1.5 in terms of air ratio.
Set to ~ 1.8. Below 1.3, the combustion temperature is high
The chamber was damaged, and if it exceeds 2.1, the combustion temperature is low,
Not baked. The roasting furnace body temperature is preferably 530
-560 degreeC, More preferably, it is 530-540 degreeC.
It is necessary to keep the temperature of the body of the roasting furnace higher than this range.
If it goes down, the energy consumption rate goes up and it is not economical
Is. And without raising the temperature of the body of the roasting furnace more than before,
If the m value is increased without increasing the fuel gas amount,
Without increasing the energy intensity, the average particle size is 0.70 to 0.
Large iron oxide of 95 μm, especially 0.90 to 0.92 μm
Particles are obtained. The injection amount of fuel gas and combustion air is
Depending on the scale of the furnace, for example, a diameter of 6.5m,
In a cylindrical roasting furnace with a height of 16 m, the fuel gas amount is 500
~ 700 Nm3/ H, the amount of combustion air is 3225 to 54
20 Nm3/ H is preferable. The iron oxide of the present invention
As the roasting furnace used for manufacturing, the acid produced by the normal roasting method is used.
Any material can be used as long as it is used for the production of iron oxide, for example, the diameter
A roasting furnace having a cylindrical diameter of 6.5 m and a height of 16 m can be mentioned.

【0009】本発明の焙焼炉を用いた酸化鉄の製造方法
では、焙焼炉、例えば図1に示されるような焙焼炉を使
用し、焙焼炉本体8の側面にある燃料ガス入口4から燃
料ガスと燃焼用空気を適切な空気比で注入して、焙焼炉
胴部温度を上昇させ、一方、焙焼炉本体8の上部にある
スプレーノズル1から廃塩酸溶液をスプレーし、スプレ
ーされた廃塩酸溶液の粒子を燃焼ガスによる旋回流と接
触させ、反応させて酸化鉄9を生じさせる。この反応に
より発生するHClおよび燃焼ガスは、燃焼ガス及びH
Cl出口7から排出される。そして、燃料ガス量と燃焼
用空気量を制御することにより、エネルギー原単位を増
加させることなく所望の平均粒子径の酸化鉄を得ること
ができる。
In the method for producing iron oxide using the roasting furnace of the present invention, a roasting furnace, for example, a roasting furnace as shown in FIG. 1 is used, and the fuel gas inlet on the side surface of the roasting furnace body 8 is used. Injecting fuel gas and combustion air from 4 at an appropriate air ratio to raise the temperature of the body of the roasting furnace, while spraying the waste hydrochloric acid solution from the spray nozzle 1 at the top of the body 8 of the roasting furnace, The sprayed particles of the waste hydrochloric acid solution are brought into contact with the swirling flow of the combustion gas and reacted to produce iron oxide 9. HCl and combustion gas generated by this reaction are
It is discharged from the Cl outlet 7. Then, by controlling the fuel gas amount and the combustion air amount, iron oxide having a desired average particle diameter can be obtained without increasing the energy consumption rate.

【0010】(作用)次に、粒子径の成長原因について
述べる。廃塩酸溶液中のFeCl2 が、水分及び大気中
あるいは燃料ガス中の酸素と反応してFe2 3 粒子を
生成するとき熱エネルギーを必要とする。胴部温度を高
くしたとき、すなわち単位時間あたりに与えられるエネ
ルギー量を大きくすることでこの反応は短時間で早く起
こる。つまり、反応速度が速い。そして、スプレーの
後、焙焼炉底に落下するまでの間反応が起こり続けると
すれば、落下している時間が一定のときには反応速度が
速いだけ粒子径の成長は進み、平均粒子径は大きくな
る。これが、胴部温度を上げたときの平均粒子径増大原
理である。
(Operation) Next, the cause of growth of the particle size will be described. FeCl 2 in the waste hydrochloric acid solution requires thermal energy when it reacts with moisture and oxygen in the atmosphere or fuel gas to produce Fe 2 O 3 particles. When the body temperature is raised, that is, when the amount of energy given per unit time is increased, this reaction occurs quickly in a short time. That is, the reaction speed is fast. After the spraying, if the reaction continues to occur until it falls to the bottom of the roasting furnace, if the dropping time is constant, the particle size grows as the reaction speed increases, and the average particle size increases. Become. This is the principle of increasing the average particle size when the body temperature is increased.

【0011】一方、本発明によれば胴部温度は上げない
ので反応速度は変わらないが、燃焼用空気量を増やすこ
とで焙焼炉内の旋回流量を増やし、スプレー後の粒子に
揚力を与えて粒子が焙焼炉底に落下するまでの時間を長
くする。落下する間反応が起こるので、粒子の成長が進
むことになり、平均粒子径が大きくなる。これが本発明
の燃焼用空気量増加による平均粒子径増大原理であり、
発明者はこの原理を知見し、本発明に至ったものであ
る。
On the other hand, according to the present invention, the reaction rate does not change because the body temperature is not raised, but the swirling flow rate in the roasting furnace is increased by increasing the amount of combustion air to give lift to the particles after spraying. The particles to fall to the bottom of the roasting furnace. Since a reaction occurs while falling, the growth of particles progresses and the average particle size increases. This is the principle of increasing the average particle size by increasing the combustion air amount of the present invention,
The inventor has found out this principle and arrived at the present invention.

【0012】この酸化鉄は、フェライト用酸化鉄、顔料
用酸化鉄等として有用である。
This iron oxide is useful as iron oxide for ferrite, iron oxide for pigments and the like.

【0013】[0013]

【実施例】以下に、本発明の実施例に基づいて具体的に
説明するが、これによって本発明が制限されるものでは
ない。 (実施例1)図1に示される直径6.5m、高さ16m
の円筒形の焙焼炉の上部から廃塩酸溶液を4m3 /hで
スプレーし、焙焼炉本体の下方にある燃料ガス入口から
COGと空気を下記表1に示すとおりに注入し、焙焼し
た。そして、焙焼温度が各々表1に示した温度に達した
時点から、燃料ガス量を観察しながら燃料ガス量と燃焼
用空気量を変化させて焙焼を継続した。このとき、胴部
温度、m値、平均粒子径を測定し、その結果を表1に示
した。
EXAMPLES The present invention will be specifically described below based on examples of the present invention, but the present invention is not limited thereto. (Example 1) Diameter 6.5m and height 16m shown in FIG.
The waste hydrochloric acid solution was sprayed at 4 m 3 / h from the upper part of the cylindrical roasting furnace, and COG and air were injected from the fuel gas inlet below the main body of the roasting furnace as shown in Table 1 below, and roasting was performed. did. Then, when the roasting temperatures reached the temperatures shown in Table 1, the roasting was continued while changing the fuel gas amount and the combustion air amount while observing the fuel gas amount. At this time, the body temperature, m value, and average particle size were measured, and the results are shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】胴部温度を上げずに空気量を増加、つまり
m値を増加させたときであるが、平均粒子径が0.7μ
mから0.9μmまで増加している。このときは胴部温
度を増加させる必要がないので燃料ガス量は増加してお
らず、エネルギー原単位を増加させることなく平均粒子
径の制御が可能となる。
When the amount of air was increased without increasing the temperature of the body, that is, the m value was increased, the average particle size was 0.7 μm.
m to 0.9 μm. At this time, since it is not necessary to increase the temperature of the body, the amount of fuel gas has not increased, and the average particle size can be controlled without increasing the energy intensity.

【0016】(比較例1)実施例1と同様の焙焼炉を使
用し、焙焼炉の上部から廃塩酸溶液を4m3 /hでスプ
レーし、下方にある燃料ガス入口からCOGと空気を下
記表2に示すとおりに注入し、焙焼した。そして、焙焼
温度が表2に示す温度に達した時点から、燃料ガス量お
よび空気量を表2に示す供給量にして焙焼を継続した。
このとき、胴部温度、m値、平均粒子径を測定し、その
結果を表2に示した。
(Comparative Example 1) Using the same roasting furnace as in Example 1, the waste hydrochloric acid solution was sprayed at 4 m 3 / h from the upper part of the roasting furnace, and COG and air were supplied from the fuel gas inlet located below. It was injected and roasted as shown in Table 2 below. Then, from the time when the roasting temperature reached the temperature shown in Table 2, the amount of fuel gas and the amount of air were set to the supply amounts shown in Table 2, and roasting was continued.
At this time, the body temperature, m value, and average particle size were measured, and the results are shown in Table 2.

【0017】[0017]

【表2】 [Table 2]

【0018】表2に示される従来の方法によれば、胴部
温度が上昇するにつれ平均粒子径も増加しているが、同
時に燃料ガス量も増加している。すなわち、平均粒子径
を0.7μmから0.9μmに増加させるには約13体
積%燃料ガス量が増え、エネルギー原単位が増加した。
According to the conventional method shown in Table 2, the average particle size increases as the body temperature rises, but at the same time, the fuel gas amount also increases. That is, in order to increase the average particle diameter from 0.7 μm to 0.9 μm, the fuel gas amount increased by about 13% by volume, and the energy consumption rate increased.

【0019】[0019]

【発明の効果】本発明は、酸化鉄を焙焼炉により製造す
る際に、焙焼炉に注入する燃料ガスと空気量の比を変化
させることで酸化鉄の平均粒子径を制御を可能とした。
これによって、従来技術のように燃料ガス量を増やし胴
部温度を変化させることによらないため、平均粒子径を
増加させるときも、エネルギー原単位を増加させること
なく制御を行うことが可能となった。
INDUSTRIAL APPLICABILITY The present invention makes it possible to control the average particle diameter of iron oxide by changing the ratio of the fuel gas and the amount of air injected into the roasting furnace when producing the iron oxide in the roasting furnace. did.
This makes it possible to perform control without increasing the energy intensity even when increasing the average particle diameter, because it does not depend on increasing the fuel gas amount and changing the body temperature as in the conventional technique. It was

【図面の簡単な説明】[Brief description of drawings]

【図1】 焙焼法により廃塩酸から酸化鉄を製造すると
きの概要を示すための焙焼装置の断面図である。
FIG. 1 is a cross-sectional view of a roasting apparatus for showing an outline when iron oxide is produced from waste hydrochloric acid by a roasting method.

【符号の説明】[Explanation of symbols]

1. スプレーノズル 2. 廃塩酸のスプレー液 3. ロータリーバブル 4. 燃料ガス入口(COG+空気) 5. 燃焼ガスによる旋回流 6. 胴部温度計 7. 燃焼ガス及びHCl出口 8. 焙焼炉本体 9. 酸化鉄 1. spray nozzle 2. Waste hydrochloric acid spray liquid 3. Rotary bubble 4. Fuel gas inlet (COG + air) 5. Swirling flow due to combustion gas 6. Body thermometer 7. Combustion gas and HCl outlet 8. Roasting furnace body 9. iron oxide

フロントページの続き (56)参考文献 特開 平7−41320(JP,A) 特開 平7−71881(JP,A) 特開 平6−56431(JP,A) 特開 平7−89727(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01G 49/00 - 49/08 C04B 35/26 - 35/40 H01F 1/12 - 1/375 Continuation of front page (56) Reference JP-A-7-41320 (JP, A) JP-A-7-71881 (JP, A) JP-A-6-56431 (JP, A) JP-A-7-89727 (JP , A) (58) Fields surveyed (Int.Cl. 7 , DB name) C01G 49/00-49/08 C04B 35/26-35/40 H01F 1/12-1/375

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】塩化鉄を含む廃塩酸溶液から焙焼法により
酸化鉄を製造する方法において、焙焼時の焙焼炉胴部温
度と燃料ガス量とm値(空気比)を同時に制御して、エ
ネルギー原単位を上げずに酸化鉄の平均粒子径を制御す
ることを特徴とする焙焼法による酸化鉄の製造方法。
1. A method for producing iron oxide from a waste hydrochloric acid solution containing iron chloride by a roasting method, in which the temperature of the roasting furnace body, the amount of fuel gas and the m value (air ratio) are simultaneously controlled during roasting. And controlling the average particle size of iron oxide without increasing the energy consumption rate.
【請求項2】塩化鉄を含む廃塩酸溶液から焙焼法により
酸化鉄を製造する方法において、焙焼炉胴部温度を上げ
ずに焙焼時の燃料ガス量に対する燃焼用空気量の体積比
を上げることにより酸化鉄の平均粒子径を増大させるこ
とを特徴とする焙焼法による酸化鉄の製造方法。
2. A method for producing iron oxide from a waste hydrochloric acid solution containing iron chloride by a roasting method, wherein the volume ratio of the amount of combustion air to the amount of fuel gas during roasting is increased without raising the temperature of the body of the roasting furnace. A method for producing iron oxide by a roasting method, characterized in that the average particle size of iron oxide is increased by increasing the temperature.
JP14789494A 1994-06-29 1994-06-29 Method for producing iron oxide by roasting method Expired - Fee Related JP3395803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14789494A JP3395803B2 (en) 1994-06-29 1994-06-29 Method for producing iron oxide by roasting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14789494A JP3395803B2 (en) 1994-06-29 1994-06-29 Method for producing iron oxide by roasting method

Publications (2)

Publication Number Publication Date
JPH0812339A JPH0812339A (en) 1996-01-16
JP3395803B2 true JP3395803B2 (en) 2003-04-14

Family

ID=15440573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14789494A Expired - Fee Related JP3395803B2 (en) 1994-06-29 1994-06-29 Method for producing iron oxide by roasting method

Country Status (1)

Country Link
JP (1) JP3395803B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008233547A (en) * 2007-03-20 2008-10-02 Hoya Corp Lens glass material for on-vehicle camera and lens for on-vehicle camera
CN103818969B (en) * 2014-01-07 2016-02-10 中国神华能源股份有限公司 Red iron oxide and preparation method thereof
CN103818968B (en) * 2014-01-07 2016-08-24 中国神华能源股份有限公司 The preparation method of iron oxide red

Also Published As

Publication number Publication date
JPH0812339A (en) 1996-01-16

Similar Documents

Publication Publication Date Title
EP1963228B1 (en) Process for preparing pulverulent solids
JP6596347B2 (en) Method for producing vanadium dioxide
JPH08198605A (en) Preparation of mixed oxidized metal powder and mixed oxidized metal powder prepared by this method
CN110256075B (en) Doped modified Gd2Zr2O7 ceramic material and preparation method thereof
JP3395803B2 (en) Method for producing iron oxide by roasting method
JP4191811B2 (en) Method for producing metal oxide powder
JPS62105920A (en) Production of fine powder of high-purity magnesium oxide
US3966455A (en) Process for ilmenite ore reduction
US5158643A (en) Method for manufacturing zinc oxide whiskers
EP0277245A1 (en) Process for producing complex oxide to be used for producing ferrite
Dhas et al. Combustion synthesis and properties of fine particle spinel manganites
CN108863354B (en) Preparation method of Y-TZP powder based on low-temperature self-propagating combustion
JPH05139900A (en) Zinc oxide crystals and production thereof
US2909408A (en) Production of brown cobaltous oxide and cobalt salts
JP3046473B2 (en) Production method of iron oxide for ferrite
JP2004083297A (en) Method for manufacturing magnetite
JP3029304B2 (en) Production method of ferrite raw material iron oxide
JP3554693B2 (en) Manufacturing method of black ceramic products
JP3397421B2 (en) Method for producing Ni-Zn ferrite raw material oxide
JPH0519487B2 (en)
CN1133604C (en) Preparation method of rare-earth copper oxide ceramic powder body
JPS6059976B2 (en) Method for desiliconization of manganese iron alloys
JPS61204342A (en) Manufacture of sintered ore
JPS6241941Y2 (en)
SE410199B (en) PROCEDURE FOR EXTRACTING METALS FROM OXIDIZED ORES OR CONCENTRATED WHICH EVEN CONTAINS IRON

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030107

LAPS Cancellation because of no payment of annual fees