JP2004083297A - Method for manufacturing magnetite - Google Patents

Method for manufacturing magnetite Download PDF

Info

Publication number
JP2004083297A
JP2004083297A JP2002242988A JP2002242988A JP2004083297A JP 2004083297 A JP2004083297 A JP 2004083297A JP 2002242988 A JP2002242988 A JP 2002242988A JP 2002242988 A JP2002242988 A JP 2002242988A JP 2004083297 A JP2004083297 A JP 2004083297A
Authority
JP
Japan
Prior art keywords
furnace
steam
chloride
ferrous chloride
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002242988A
Other languages
Japanese (ja)
Inventor
Masanori Tawara
俵 正憲
Kazuo Sakurai
桜井 一生
Eiki Takeshima
竹島 鋭機
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISSHIN FERRITE KK
Nippon Steel Nisshin Co Ltd
Original Assignee
NISSHIN FERRITE KK
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISSHIN FERRITE KK, Nisshin Steel Co Ltd filed Critical NISSHIN FERRITE KK
Priority to JP2002242988A priority Critical patent/JP2004083297A/en
Publication of JP2004083297A publication Critical patent/JP2004083297A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing magnetite directly from an iron source recovered from a pickling line in a steel industry. <P>SOLUTION: In the method for manufacturing magnetite, an iron (II) chloride-containing aqueous solution whose iron (III) chloride content is 0.01 times as much as iron (II) chloride content by mole ratio is sprayed or dropped into a heated roasting furnace to fill the the interior of the furnace with steam generated from the water solution and iron (II) chloride and the steam are reacted with each other while a steam atmosphere having ≤4 vol.% oxygen is maintained. Separately water other than the iron (II) chloride-containing water solution can be also sprayed or dropped into the furnace and furthermore steam can be blown into the furnace. The mole ratio of the steam to iron (II) chloride supplied into the furnace for a unit time is specified to be in the range of 20:1 to 40:1 and atmospheric temperature is preferably maintained in the range of 800 to 1,000°C. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、塩化第一鉄の水溶液から焙焼により直接的にマグネタイト粉末を製造する方法に関する。
【0002】
【従来の技術】
マグネタイト(Fe)は2価と3価のFeにより構成される磁性を有する酸化鉄である。その粉末は黒色を呈し、コピー機・レーザープリンター等の黒色トナーへの添加材,アンモニア合成触媒,顔料,インキなどに広く使用されている。
【0003】
マグネタイト粉末の工業的製法としては湿式法と乾式法が知られている。湿式法は、鉄を塩酸または硫酸に溶かした溶液にアルカリを作用させて水酸化第一鉄(Fe(OH))として沈澱させ、この沈殿物を酸化性ガスにより酸化させてマグネタイトを得るものであり、比較的粒子形状の均一性に優れ、磁気特性の良好なマグネタイト粉末が得られる点で有利であるとされる。乾式法は、ヘマタイト(α−Fe)を高温の還元性ガスで還元することによりマグネタイトを得るものであり、原料として鉄鋼酸洗ラインの酸洗槽の廃酸を処理した液(塩化第一鉄・塩化第二鉄含有液)を高温焙焼処理することによって多量に生成するヘマタイトが使用できる利点がある。
【0004】
しかし、湿式法では鉄(出発材料)→水酸化第一鉄(中間生成物)→マグネタイト(目的物)の過程を経る必要があり、乾式法では塩化第一鉄・塩化第二鉄(出発材料)→ヘマタイト(中間生成物)→マグネタイト(目的物)の過程を経る必要がある。つまり、上記従来のマグネタイト製造法はいずれも、豊富に存在する鉄源(出発物質)を一旦中間生成物にしなければならないので、エネルギー効率,コスト,生産性の面において優れているとは言えない。
【0005】
そこで、最近では、豊富に存在する鉄源から直接にマグネタイトを製造する技術が開発されている。すなわち、特開2001−163623号公報には、アルゴンなどの不活性ガス雰囲気または二酸化炭素雰囲気にした高温の焙焼炉内に塩化第一鉄および塩化第二鉄の混合水溶液を噴霧して焙焼させることにより、直接、マグネタイトの粉末を製造する技術が開示されている。
【0006】
【発明が解決しようとする課題】
特開2001−163623号公報の方法によれば、塩化第一鉄・塩化第二鉄含有液から中間生成物を経ずに直接マグネタイト粉末が得られる利点がある。しかし、炉内の雰囲気を適正化するためにアルゴンや窒素,二酸化炭素といった高価なガスを多量に使用する必要がある。また、噴霧する水溶液には塩化第一鉄と塩化第二鉄の両方が適正な組成で含有されている必要があるため、塩化第一鉄が主体で塩化第二鉄が実質的に含まれていない鉄鋼酸洗ラインの酸洗槽から回収された廃酸を処理せずにそのまま使用することは難しく、塩化第二鉄を含む組成に調整する操作が必要となる。
【0007】
本発明は、かかる現状に鑑み、塩化第一鉄が主体の鉄鋼酸洗ラインの酸洗槽廃液をそのまま使用しても、直接マグネタイトが得られる方法であって、しかも、不活性ガスや還元性ガスなどの高価な特殊ガスを使用する必要がない、簡単かつ安価な技術を提供することを目的とする。
【0008】
【課題を解決するための手段】
発明者らは種々実験を重ねた結果、加熱された焙焼炉内に塩化第一鉄の水溶液を噴霧または滴下する方法において、その水溶液に塩化第二鉄が実質的に含まれていない塩化第一鉄含有水溶液を用い、かつ、その水溶液から生じる水蒸気が炉内に充満するのに十分な蒸発量を維持して大気(すなわち酸素)の侵入を防止しながら焙焼を行ったとき、ヘマタイトをほとんど生成せずに高い収率でマグネタイトが生産できることを見出した。この場合、鉄鋼酸洗ラインの酸洗槽廃液(塩化第一鉄主体の水溶液)を直接炉内に噴霧または滴下することが可能であり、しかも、焙焼炉内に供給すべきものは基本的に当該水溶液を構成する物質のみでよく、高価な不活性ガスや取扱いに厳重な安全管理が要求される還元性ガス等は必要ないことが確認された。本発明はこのような知見に基づいて完成したものである。
【0009】
すなわち、上記目的を達成するために、請求項1の発明は、塩化第二鉄含有量がモル比において塩化第一鉄の0.01倍以下である塩化第一鉄含有水溶液を加熱された焙焼炉内に噴霧または滴下することにより前記水溶液から発生する水蒸気を炉内に充満させ、酸素が4体積%以下の水蒸気雰囲気を維持しながら前記塩化第一鉄と水蒸気とを反応させるマグネタイトの製造法を提供する。
【0010】
ここで、水蒸気雰囲気とは、水蒸気が気体成分の90体積%以上を占める雰囲気をいう。残部には、塩化第一鉄含有水溶液から生じる塩化水素が含まれるが、その他に例えば、石油系または天然ガス系燃料の燃焼ガス成分が含まれていてもよい。
【0011】
請求項2の発明は、上記のマグネタイト製造法において、炉内への水蒸気の供給を補うために、塩化第一鉄含有水溶液の他にも、別途、水を炉内に噴霧または滴下するものである。請求項3の発明は、同様に水蒸気を直接炉内に吹き込むものである。
【0012】
請求項4の発明は、上記製造法において、単位時間に炉内に供給される水蒸気と塩化第一鉄のモル比を20:1〜40:1の範囲にするものである。
ここで、炉内に供給される水蒸気とは、塩化第一鉄含有水溶液の蒸発によって生成する水蒸気の他、別途水を噴霧または滴下する場合はその水の蒸発によって生成する水蒸気を加えたものである。また、水蒸気を炉内に吹き込む場合はその水蒸気も加えられる。燃焼ガス成分として混入する場合はその水蒸気も含まれる。
【0013】
請求項5の発明は、上記製造法において、特に雰囲気温度を800〜1000℃に維持するものである。
【0014】
請求項6の発明は、以上の製造法において、炉内に噴霧または滴下する塩化第一鉄含有水溶液として、鉄鋼業の酸洗ラインにおける酸洗槽から回収された廃酸またはそれを水で希釈した液を使用するものである。
【0015】
【発明の実施の形態】
鉄鋼業の酸洗工程では、通常、酸洗槽において塩酸水溶液に鋼材を浸漬することにより酸洗を行う。このとき塩化第一鉄(FeCl)が生成する。酸洗槽から回収された廃酸は、濃縮器にて塩化第一鉄と塩化第二鉄(FeCl)の混合水溶液となり、次いで焙焼炉(ロースター)にて焙焼される。このとき、水溶液中の鉄は最終的にほとんど全部がヘマタイトになる。この過程は主として次の反応による。
【0016】
〔酸洗槽〕 Fe+2HCl → FeCl+H ……(1)
〔濃縮器〕 Fe+6HCl → 2FeCl+3HO ……(2)
〔ロースター〕 4FeCl+4HO+O → 2Fe+8HCl ……(3)
2FeCl+3HO → Fe+6HCl ……(4)
【0017】
一方、塩化第一鉄と塩化第二鉄は水蒸気または水素と次のように反応することが知られている。
3FeCl+4HO → Fe+6HCl+H ……(5)
6FeCl+3HO → 4FeCl+Fe+3H ……(6)
FeCl+H → 2FeCl+2HCl ……(7)
【0018】
また、水素ガスでヘマタイトを還元させると次の反応が生じる。
3Fe+H → Fe+HO ……(8)
Fe+4H → 3Fe+4HO ……(9)
【0019】
本発明は、焙焼炉において、(3)(4)式のヘマタイト生成反応を(5)(8)式の反応の組み合わせに変換することによってマグネタイトを直接、効率的に得ようというものである。
【0020】
(3)式の反応を抑制するには、反応系に酸素(すなわち大気)が侵入しない環境を作る必要がある。本発明では、焙焼炉内を多量の水蒸気を含む雰囲気ガスで充満させることにより、炉内への大気の侵入を抑止する。そのためには、炉の容量や炉から排出されるガスの流量に応じて、雰囲気ガスの全圧が常に大気圧以上に維持されるように、炉内に水蒸気およびその他の雰囲気ガス成分を供給し続ける。充満させるガスに水蒸気を用いるのは(5)式の反応を活発に進行させるためである。
【0021】
種々検討の結果、炉内の酸素濃度が4体積%以下であれば(3)式の反応の進行は十分に抑制されると判断された。この場合、わずかに進行する(3)式の反応により少量のヘマタイトが生成すると思われるが、実験によれば最終的にヘマタイトがほんど含まれないマグネタイト粉末を得ることが可能であることから、(3)式で少量生じたヘマタイトは、後述のように(8)式の反応で問題なくマグネタイトに転換可能であるものと考えられる。
【0022】
(4)式の反応を抑制するために、本発明では塩化第二鉄含有量がモル比において塩化第一鉄の0.01倍以下である塩化第一鉄含有水溶液を被処理液として使用する。鉄鋼業の酸洗ラインで生じる廃酸を利用する場合、酸洗槽から抽出された液は塩化第二鉄が実質的に存在しない塩化第一鉄含有水溶液であるため、これを、濃縮器で処理する前に、使用すればよい。
【0023】
塩化第一鉄と水蒸気が反応するとき、(5)式の反応によればマグネタイトが得られ、(6)式の反応によればヘマタイトが生成してしまう。発明者らは、(5)式の反応が(6)式よりも優先的に起こると考えられる条件を種々検討した。その結果、反応サイトにおいて、水蒸気が多量に存在するほどマグネタイトの生成量が増加し、ヘマタイトは減少することを知見した。具体的には、雰囲気ガスのうち90体積%以上を水蒸気が占める「水蒸気雰囲気」とする必要がある。
【0024】
ヘマタイトの混入が2質量%以下であるような高品質のマグネタイト粉末を直接得るためには、単位時間に炉内に供給される水蒸気と塩化第一鉄のモル比が20:1以上になるように、塩化第一鉄に対して過剰の水蒸気を供給することが望ましいことがわかった。この場合、(5)式の反応が優先的に起こり、(6)式の反応はほとんど進行しないと考えられる。ただし、あまり多量の水蒸気を供給してもマグネタイトの品位向上効果は飽和するので、単位時間に炉内に供給される水蒸気と塩化第一鉄のモル比は20:1〜40:1の範囲にコントロールすることが好ましい。
【0025】
炉内に供給される水蒸気と塩化第一鉄のモル比を適切にコントロールする手段としては、まず、被処理液である塩化第一鉄含有水溶液の濃度を調整することが効果的である。鉄鋼酸洗ラインの酸洗槽から回収された廃酸を使用する場合は、その原液の濃度において塩化第一鉄の量に対する水の量が不足するならば、水を加えて希釈することで適切な比率(モル比)にすることができる。また、この被処理液の他に、別途、水を炉内に噴霧または滴下することによっても水蒸気が補給できる。あるいは、外部のボイラー等で発生させた水蒸気を直接炉内に吹き込む手段を併用しても良い。
【0026】
本発明に使用する焙焼炉は、被処理液中の水や別途噴霧または滴下される水を連続的に蒸発させ続けるに十分な熱エネルギーが供給可能な加熱手段を有することが必要である。また、外部からの大気の侵入が少ない構造のものが望ましい。加熱出力の小さい炉では、被処理液や水の噴霧量をあまり大きく設定できないので、水蒸気の充満によって酸素の侵入を防止する本発明においては不利となる。熱源としては、小型の焙焼炉では電気ヒーターによる加熱が利用しやすいが、工業的に大量生産するのに適した規模の装置では石油系または天然ガス系燃料の燃焼熱を利用するのが経済的である。ただし、酸素を含む高温ガス(高温空気など)が炉内に導入されるタイプの炉は、本発明に適用できない。なお、石油系または天然ガス系燃料の燃焼排ガスが炉内に導入されるタイプの炉では、その燃焼排ガスからも相対的には少量であるが水蒸気が供給されるので、炉内に供給される水蒸気量を正確に算出する際にはこれを加える。
【0027】
反応サイトにおける雰囲気温度は800〜1000℃の範囲とすることが好ましい。800℃未満では(5)式および(8)式の反応が十分に進行しない。1000℃を超えると(6)式の反応が優先して進行するため、マグネタイトの生成量が減少する。
【0028】
以上のような条件で焙焼を行ったとき、(3)式あるいは(6)式の反応は顕著に抑制されるが、(3)式や(6)式の反応が一部進行して少量のヘマタイトが生成したとしても、そのヘマタイトは(8)式の反応で水素によって還元されマグネタイトに転換されると考えられる。また、(6)式の反応により塩化第二鉄が生成するが、この少量の塩化第二鉄は(7)式の反応により水素で還元されて塩化第一鉄となると考えられ、(4)式の反応が起こる原因にはならないと思われる。(8)式や(7)式で消費される水素は(5)式の反応が活発に進行することで十分に賄われる。
【0029】
もし、(9)式の反応が起これば、得られたマグネタイトはさらに還元されて鉄になってしまう。しかし、種々実験の結果(9)式に起因すると考えられる鉄の生成は認められないことから、(9)式の反応は事実上起こらないと思われる。これは、(8)式の反応に比べ、(9)式の反応は著しく長時間を要するためであると考えられる。
【0030】
【実施例】
〔実施例1〕
普通鋼の酸洗ラインにおける酸洗槽から採取した廃酸を用いて、ルスナー式の焙焼炉(容量約30m)にてマグネタイト粉末の直接製造を試みた。この炉は、ケロシンの燃焼排ガスを炉内に送り込んで加熱するタイプのものであり、一般的な廃酸処理用のものと同タイプである。炉頂にガス排出孔があり、生成した粉末は炉の底部から回収するようになっている。
【0031】
酸洗槽から採取した廃酸は塩化第一鉄:10質量%,塩酸:5質量%を含み、塩化第二鉄含有量はモル比において塩化第一鉄の0.01倍以下であった。これは実質的に塩化第二鉄を含まない塩化第一鉄含有水溶液であると言ってよい。この液に水を加えて希釈したものを被処理液とした。
【0032】
焙焼炉は予め800℃に加熱した状態で、炉内上部に3箇所あるスプレーノズルから水だけを噴霧し、その水の蒸発によって生じる水蒸気を炉内に充満させることにより空気を置換し、定常的に酸素が4体積%以下に低減された水蒸気雰囲気を作った。その後、上部の3本のスプレーノズルから被処理液のみを噴霧した。温度は900℃に維持した。被処理液の水分は連続的にすべて蒸発して水蒸気を発生した。単位時間に炉内に供給される水蒸気と塩化第一鉄のモル比は、燃焼ガスからの水蒸気を加えて、約15:1であった。被処理液噴霧中に炉頂から排出されるガスを採取して雰囲気ガスを分析したところ、体積%において、酸素:3.8%,水蒸気:91%,塩化水素:0.2%,二酸化炭素:1%,窒素:4%であった。約1000L(リットル)の被処理液を噴霧した後、実験を終了した。
【0033】
得られた酸化鉄の粉末は、平均粒径5μmの黒色マグネタイト主体の酸化鉄であった。分析の結果、ヘマタイトは4質量%含まれ、純度の高いマグネタイトが直接得られた。マグネタイトとしての鉄の回収率は、被処理液基準で80%と非常に高かった。
【0034】
〔実施例2〕
単位時間に炉内に供給される水蒸気と塩化第一鉄の量を変えた以外、実施例1と同じ条件で実験した。すなわち、実施例1と同じ被処理液を2本のスプレーノズルから噴霧し、残り1本のスプレーノズルからは水のみを噴霧した。ノズル1本当たりの被処理液の噴霧速度を実施例1と同じにした。ノズルから噴霧される水分は連続的にすべて蒸発して水蒸気を発生した。単位時間に炉内に供給される水蒸気と塩化第一鉄のモル比は、燃焼ガスからの水蒸気も考慮すると、約30:1であった。被処理液噴霧中の雰囲気ガスの分析値は、体積%において、酸素:2.4%,水蒸気:94%,塩化水素:0.1%,二酸化炭素:1%,窒素:2.5%であった。
【0035】
得られた酸化鉄の粉末は、平均粒径3μmの黒色マグネタイト主体の酸化鉄であった。分析の結果、含まれるヘマタイトは2質量%以下であり、非常に純度の高い高品位マグネタイトが直接得られた。マグネタイトとしての鉄の回収率は、被処理液基準で90%と非常に高かった。
【0036】
〔比較例1〕
被処理液の組成を変えた以外、実施例1と同じ条件で実験した。すなわち、従来の廃酸処理過程に従い、普通鋼の酸洗ラインにおける酸洗槽から回収した廃酸を濃縮器で処理した液を用いた。この液は、塩化第一鉄:10質量%,塩化第二鉄:2.6質量%,塩酸:5質量%を含み、塩化第二鉄はモル比において塩化第一鉄の0.02倍と高かった。この液に水を加えて希釈したものを被処理液とした。
【0037】
単位時間に炉内に供給される水蒸気と塩化第一鉄のモル比は、燃焼ガスからの水蒸気も考慮すると、約10:1であった。被処理液噴霧中の雰囲気ガスの分析値は、体積%において、酸素:8%,水蒸気:70%,塩化水素:0.4%,二酸化炭素:1%,窒素:20.6%であった。
【0038】
得られた酸化鉄の粉末は、マグネタイトとヘマタイトの混合粉であった。分析の結果、含まれるヘマタイトは40質量%と多かった。この場合、(4)式の反応が進行したものと考えられる。
【0039】
〔比較例2〕
被処理液の単位時間当たりの噴霧量を実施例1の場合の80%と少なくした以外、実施例1と同じ条件で実験した。このとき、被処理液噴霧中の雰囲気ガスの分析値は、体積%において、酸素:6%,水蒸気:80%,塩化水素:0.2%,二酸化炭素:1%,窒素:12.8%であった。
【0040】
得られた酸化鉄の粉末は、マグネタイトとヘマタイトの混合粉であった。分析の結果、含まれるヘマタイトは30質量%と多かった。この場合、(3)式の反応が進行したものと考えられる。
【0041】
【発明の効果】
本発明により、鉄鋼業の酸洗ラインにおける酸洗槽から回収される廃酸を利用して、ヘマタイトよりも格段に利用価値の高いマグネタイト粉末が焙焼法で直接製造可能になった。その焙焼処理では不活性ガスや還元性ガスなどの高価な特殊ガスを使用する必要がなく、基本的に被処理液に含まれている物質のみを用いてマグネタイトの生成を実現する。したがって、本発明は、鉄鋼廃酸処理の新たなプロセスを築くとともに、資源の有効活用に資するものである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing magnetite powder directly from an aqueous solution of ferrous chloride by roasting.
[0002]
[Prior art]
Magnetite (Fe 3 O 4 ) is a magnetic iron oxide composed of divalent and trivalent Fe. The powder has a black color, and is widely used as an additive to black toners for copiers, laser printers, etc., ammonia synthesis catalysts, pigments, inks, and the like.
[0003]
As the industrial production method of magnetite powder, a wet method and a dry method are known. In the wet method, a solution of iron dissolved in hydrochloric acid or sulfuric acid is allowed to act on alkali to precipitate it as ferrous hydroxide (Fe (OH) 2 ), and the precipitate is oxidized with an oxidizing gas to obtain magnetite. It is said to be advantageous in that a magnetite powder having relatively excellent uniformity of particle shape and good magnetic properties can be obtained. In the dry method, magnetite is obtained by reducing hematite (α-Fe 2 O 3 ) with a high-temperature reducing gas. As a raw material, a solution obtained by treating waste acid in a pickling tank of a steel pickling line (chlorination) There is an advantage that hematite generated in a large amount by roasting the ferrous / ferric chloride-containing liquid at a high temperature can be used.
[0004]
However, in the wet method, it is necessary to go through the process of iron (starting material) → ferrous hydroxide (intermediate product) → magnetite (target substance), and in the dry method, ferrous chloride / ferric chloride (starting material) ) → hematite (intermediate product) → magnetite (target). In other words, none of the above-mentioned conventional magnetite production methods is excellent in energy efficiency, cost, and productivity because an abundant iron source (starting material) must be once converted into an intermediate product. .
[0005]
Therefore, recently, a technology for producing magnetite directly from an abundant iron source has been developed. That is, JP 2001-163623 A discloses that a mixed aqueous solution of ferrous chloride and ferric chloride is sprayed into a high-temperature roasting furnace in an inert gas atmosphere such as argon or a carbon dioxide atmosphere to perform roasting. Thus, a technique for directly producing magnetite powder has been disclosed.
[0006]
[Problems to be solved by the invention]
According to the method of JP-A-2001-163623, there is an advantage that a magnetite powder can be obtained directly from a ferrous chloride / ferric chloride-containing liquid without passing through an intermediate product. However, in order to optimize the atmosphere in the furnace, it is necessary to use a large amount of expensive gas such as argon, nitrogen, and carbon dioxide. In addition, since the aqueous solution to be sprayed must contain both ferrous chloride and ferric chloride in an appropriate composition, ferrous chloride is mainly contained and ferric chloride is substantially contained. It is difficult to use the waste acid collected from the pickling tank of the steel pickling line without treatment without treatment, and an operation for adjusting the composition to a composition containing ferric chloride is required.
[0007]
In view of the current situation, the present invention is a method in which magnetite can be directly obtained even if the pickling tank waste liquid of a steel pickling line mainly composed of ferrous chloride is used, and furthermore, an inert gas or a reducing agent is used. An object of the present invention is to provide a simple and inexpensive technique that does not require the use of expensive special gas such as gas.
[0008]
[Means for Solving the Problems]
As a result of repeated experiments, the inventors have found that, in a method of spraying or dropping an aqueous solution of ferrous chloride into a heated roasting furnace, the aqueous solution contains substantially no ferric chloride. When roasting was performed using an aqueous solution containing iron and maintaining the evaporation amount sufficient to fill the furnace with water vapor generated from the aqueous solution to prevent the intrusion of the atmosphere (ie, oxygen), hematite was removed. It has been found that magnetite can be produced in high yield with almost no formation. In this case, it is possible to directly spray or drop the waste solution (an aqueous solution mainly containing ferrous chloride) of the pickling tank of the steel pickling line into the furnace. It was confirmed that only the substance constituting the aqueous solution was sufficient, and that an expensive inert gas or a reducing gas requiring strict safety management in handling was not required. The present invention has been completed based on such findings.
[0009]
That is, in order to achieve the above object, the invention of claim 1 provides a ferrous chloride-containing aqueous solution having a ferric chloride content of 0.01 times or less in terms of mole ratio of ferrous chloride and heated. Production of magnetite in which the steam generated from the aqueous solution is filled in the furnace by spraying or dripping into the furnace, and the ferrous chloride reacts with the water vapor while maintaining a water vapor atmosphere of 4% by volume or less. Provide the law.
[0010]
Here, the steam atmosphere refers to an atmosphere in which steam accounts for 90% by volume or more of the gas component. The balance includes hydrogen chloride generated from the aqueous solution containing ferrous chloride, and may further include, for example, a combustion gas component of a petroleum-based or natural gas-based fuel.
[0011]
The invention of claim 2 is that in the above magnetite production method, in addition to the ferrous chloride-containing aqueous solution, water is separately sprayed or dropped into the furnace in order to supplement the supply of steam into the furnace. is there. The invention of claim 3 similarly blows steam directly into the furnace.
[0012]
According to a fourth aspect of the present invention, in the above production method, the molar ratio of steam and ferrous chloride supplied into the furnace per unit time is in the range of 20: 1 to 40: 1.
Here, the steam to be supplied into the furnace is obtained by adding steam generated by evaporation of the water in the case where water is separately sprayed or dropped, in addition to the steam generated by evaporation of the ferrous chloride-containing aqueous solution. is there. When steam is blown into the furnace, the steam is also added. When mixed as a combustion gas component, the water vapor is also included.
[0013]
According to a fifth aspect of the present invention, in the above manufacturing method, the ambient temperature is particularly maintained at 800 to 1000 ° C.
[0014]
According to the invention of claim 6, in the above production method, as the ferrous chloride-containing aqueous solution to be sprayed or dropped into the furnace, the waste acid recovered from the pickling tank in the pickling line in the steel industry or diluted with water. The used liquid is used.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
In the pickling process of the iron and steel industry, pickling is usually performed by immersing a steel material in an aqueous hydrochloric acid solution in a pickling tank. At this time, ferrous chloride (FeCl 2 ) is generated. The waste acid recovered from the pickling tank is turned into a mixed aqueous solution of ferrous chloride and ferric chloride (FeCl 3 ) in a concentrator, and then roasted in a roaster (roaster). At this time, almost all iron in the aqueous solution becomes hematite. This process is mainly due to the following reaction.
[0016]
[Pickling tank] Fe + 2HCl → FeCl 2 + H 2 (1)
[Concentrator] Fe 2 O 3 + 6HCl → 2FeCl 3 + 3H 2 O ...... (2)
[Roaster] 4FeCl 2 + 4H 2 O + O 2 → 2Fe 2 O 3 + 8HCl (3)
2FeCl 3 + 3H 2 O → Fe 2 O 3 + 6HCl (4)
[0017]
On the other hand, it is known that ferrous chloride and ferric chloride react with steam or hydrogen as follows.
3FeCl 2 + 4H 2 O → Fe 3 O 4 + 6HCl + H 2 (5)
6FeCl 2 + 3H 2 O → 4FeCl 3 + Fe 2 O 3 + 3H 2 (6)
FeCl 3 + H 2 → 2FeCl 2 + 2HCl (7)
[0018]
When hematite is reduced with hydrogen gas, the following reaction occurs.
3Fe 2 O 3 + H 2 → Fe 3 O 4 + H 2 O (8)
Fe 3 O 4 + 4H 2 → 3Fe + 4H 2 O (9)
[0019]
The present invention aims to directly and efficiently obtain magnetite by converting the hematite formation reaction of the formulas (3) and (4) into a combination of the reactions of the formulas (5) and (8) in a roasting furnace. .
[0020]
In order to suppress the reaction of the formula (3), it is necessary to create an environment where oxygen (that is, the atmosphere) does not enter the reaction system. In the present invention, the infiltration of the atmosphere into the furnace is suppressed by filling the inside of the roasting furnace with an atmosphere gas containing a large amount of water vapor. To do so, supply steam and other atmospheric gas components into the furnace so that the total pressure of the atmospheric gas is always maintained at or above atmospheric pressure according to the capacity of the furnace and the flow rate of the gas discharged from the furnace. to continue. The reason why water vapor is used as the gas to be filled is to actively promote the reaction of the formula (5).
[0021]
As a result of various studies, it was determined that if the oxygen concentration in the furnace was 4% by volume or less, the progress of the reaction of the formula (3) was sufficiently suppressed. In this case, it is considered that a small amount of hematite is generated by the reaction of the formula (3) that proceeds slightly, but according to experiments, it is possible to finally obtain a magnetite powder containing substantially no hematite. It is considered that hematite generated in a small amount by the formula (3) can be converted into magnetite without any problem by the reaction of the formula (8) as described later.
[0022]
In order to suppress the reaction of the formula (4), in the present invention, an aqueous solution containing ferrous chloride whose ferric chloride content is 0.01 times or less in terms of molar ratio of ferrous chloride is used as the liquid to be treated. . When using the waste acid generated in the pickling line in the steel industry, the liquid extracted from the pickling tank is an aqueous solution containing ferrous chloride substantially free of ferric chloride. It can be used before processing.
[0023]
When ferrous chloride reacts with steam, magnetite is obtained according to the reaction of equation (5), and hematite is generated according to the reaction of equation (6). The inventors studied various conditions under which the reaction of the formula (5) is considered to occur preferentially over the reaction of the formula (6). As a result, it was found that the amount of magnetite generated increased and the amount of hematite decreased in the reaction site as the amount of steam increased. Specifically, it is necessary to use a “steam atmosphere” in which steam accounts for 90% by volume or more of the atmosphere gas.
[0024]
In order to directly obtain a high-quality magnetite powder in which hematite is contained in an amount of 2% by mass or less, the molar ratio of steam and ferrous chloride supplied into the furnace per unit time must be 20: 1 or more. In addition, it was found that it is desirable to supply an excess of steam to ferrous chloride. In this case, it is considered that the reaction of equation (5) occurs preferentially, and the reaction of equation (6) hardly proceeds. However, since the effect of improving the quality of magnetite is saturated even if an excessively large amount of steam is supplied, the molar ratio of steam and ferrous chloride supplied into the furnace per unit time is in the range of 20: 1 to 40: 1. It is preferable to control.
[0025]
As a means for appropriately controlling the molar ratio of steam and ferrous chloride supplied into the furnace, first, it is effective to adjust the concentration of the ferrous chloride-containing aqueous solution to be treated. When using waste acid collected from the pickling tank of the steel pickling line, if the amount of water relative to the amount of ferrous chloride is insufficient in the concentration of the stock solution, add water and dilute it. Ratio (molar ratio). In addition to the liquid to be treated, steam can be supplied by spraying or dropping water separately into the furnace. Alternatively, a means for directly blowing steam generated by an external boiler or the like into the furnace may be used.
[0026]
The roasting furnace used in the present invention needs to have a heating means capable of supplying sufficient thermal energy to continuously evaporate water in the liquid to be treated and water separately sprayed or dropped. Further, it is desirable to use a structure having a small invasion of the atmosphere from the outside. In a furnace having a small heating output, the spray amount of the liquid to be treated and water cannot be set so large, which is disadvantageous in the present invention in which oxygen is prevented from entering by filling with steam. As a heat source, heating with an electric heater is easy to use in a small roasting furnace, but it is economical to use the combustion heat of petroleum or natural gas fuel in a device suitable for industrial mass production. It is a target. However, a furnace in which a high-temperature gas containing oxygen (such as high-temperature air) is introduced into the furnace cannot be applied to the present invention. In a furnace of a type in which flue gas of petroleum or natural gas fuel is introduced into the furnace, a relatively small amount of steam is supplied from the flue gas, so the steam is supplied into the furnace. This is added when calculating the amount of water vapor accurately.
[0027]
The ambient temperature at the reaction site is preferably in the range of 800 to 1000C. If the temperature is lower than 800 ° C., the reactions of the formulas (5) and (8) do not proceed sufficiently. If the temperature exceeds 1000 ° C., the reaction of the formula (6) proceeds preferentially, and the amount of magnetite produced decreases.
[0028]
When the roasting is performed under the above conditions, the reaction of the formula (3) or the formula (6) is remarkably suppressed, but the reaction of the formula (3) or the formula (6) partially proceeds and a small amount is obtained. Even if hematite is generated, it is considered that the hematite is reduced by hydrogen by the reaction of the formula (8) and converted into magnetite. Further, ferric chloride is produced by the reaction of the formula (6), and this small amount of ferric chloride is considered to be reduced to hydrogen by the reaction of the formula (7) to become ferrous chloride. It does not appear to cause the reaction of the formula to occur. Hydrogen consumed in the equations (8) and (7) is sufficiently covered by the active progress of the equation (5).
[0029]
If the reaction of the formula (9) occurs, the obtained magnetite is further reduced to iron. However, as a result of various experiments, the production of iron considered to be caused by the equation (9) is not recognized, and it is considered that the reaction of the equation (9) does not actually occur. This is considered to be because the reaction of the formula (9) requires a significantly longer time than the reaction of the formula (8).
[0030]
【Example】
[Example 1]
An attempt was made to directly produce magnetite powder in a Lusner-type roasting furnace (capacity: about 30 m 3 ) using waste acid collected from a pickling tank in an ordinary steel pickling line. This furnace is of a type in which the combustion exhaust gas of kerosene is fed into the furnace and heated, and is the same type as that for general waste acid treatment. There is a gas exhaust hole at the top of the furnace, and the generated powder is collected from the bottom of the furnace.
[0031]
The waste acid collected from the pickling tank contained ferrous chloride: 10% by mass and hydrochloric acid: 5% by mass, and the content of ferric chloride was 0.01 times or less in terms of molar ratio of ferrous chloride. It can be said that this is an aqueous solution containing ferrous chloride substantially free of ferric chloride. A liquid to be treated was prepared by adding water and diluting the liquid.
[0032]
The roasting furnace is preheated to 800 ° C, and only water is sprayed from three spray nozzles at the upper part of the furnace, and the air is replaced by filling the furnace with steam generated by evaporation of the water to replace air. A steam atmosphere in which oxygen was reduced to 4% by volume or less was produced. Thereafter, only the liquid to be treated was sprayed from the upper three spray nozzles. The temperature was maintained at 900C. All the water in the liquid to be treated was continuously evaporated to generate water vapor. The molar ratio of steam and ferrous chloride supplied into the furnace per unit time was about 15: 1, including steam from the combustion gas. When the gas discharged from the furnace top during the spraying of the liquid to be treated was sampled and the atmospheric gas was analyzed, oxygen: 3.8%, steam: 91%, hydrogen chloride: 0.2%, carbon dioxide 1%, nitrogen: 4%. After spraying about 1000 L (liter) of the liquid to be treated, the experiment was terminated.
[0033]
The obtained iron oxide powder was black magnetite-based iron oxide having an average particle size of 5 μm. As a result of analysis, hematite was contained at 4% by mass, and high-purity magnetite was directly obtained. The recovery of iron as magnetite was as high as 80% based on the liquid to be treated.
[0034]
[Example 2]
The experiment was performed under the same conditions as in Example 1 except that the amounts of steam and ferrous chloride supplied into the furnace per unit time were changed. That is, the same liquid to be treated as in Example 1 was sprayed from two spray nozzles, and only water was sprayed from the remaining one spray nozzle. The spray rate of the liquid to be treated per nozzle was the same as in Example 1. All the water sprayed from the nozzle was continuously evaporated to generate water vapor. The molar ratio of steam and ferrous chloride supplied into the furnace per unit time was about 30: 1, taking into account the steam from the combustion gas. The analysis value of the atmosphere gas during the spraying of the liquid to be treated is as follows: in volume%, oxygen: 2.4%, water vapor: 94%, hydrogen chloride: 0.1%, carbon dioxide: 1%, nitrogen: 2.5%. there were.
[0035]
The obtained iron oxide powder was black magnetite-based iron oxide having an average particle size of 3 μm. As a result of analysis, the content of hematite was 2% by mass or less, and high-grade magnetite of extremely high purity was directly obtained. The recovery of iron as magnetite was as high as 90% based on the liquid to be treated.
[0036]
[Comparative Example 1]
An experiment was performed under the same conditions as in Example 1 except that the composition of the liquid to be treated was changed. That is, according to the conventional waste acid treatment process, a solution obtained by treating a waste acid recovered from a pickling tank in a pickling line of ordinary steel with a concentrator was used. This liquid contains ferrous chloride: 10% by mass, ferric chloride: 2.6% by mass, and hydrochloric acid: 5% by mass. Ferric chloride has a molar ratio of 0.02 times that of ferrous chloride. it was high. A liquid to be treated was prepared by adding water and diluting the liquid.
[0037]
The molar ratio of steam and ferrous chloride supplied into the furnace per unit time was about 10: 1 in consideration of steam from the combustion gas. The analysis value of the atmosphere gas during spraying of the liquid to be treated was 8% oxygen, 70% water vapor, 0.4% hydrogen chloride, 1% carbon dioxide, and 20.6% nitrogen in volume%. .
[0038]
The obtained iron oxide powder was a mixed powder of magnetite and hematite. As a result of analysis, hematite contained was as large as 40% by mass. In this case, it is considered that the reaction of the formula (4) has progressed.
[0039]
[Comparative Example 2]
The experiment was performed under the same conditions as in Example 1 except that the spray amount of the liquid to be treated per unit time was reduced to 80% of that in Example 1. At this time, the analysis value of the atmosphere gas during the spraying of the liquid to be treated is, in volume%, oxygen: 6%, water vapor: 80%, hydrogen chloride: 0.2%, carbon dioxide: 1%, nitrogen: 12.8%. Met.
[0040]
The obtained iron oxide powder was a mixed powder of magnetite and hematite. As a result of analysis, hematite contained was as large as 30% by mass. In this case, it is considered that the reaction of the formula (3) has progressed.
[0041]
【The invention's effect】
According to the present invention, magnetite powder having much higher utility value than hematite can be directly produced by a roasting method using waste acid recovered from a pickling tank in a pickling line in the steel industry. In the roasting process, it is not necessary to use an expensive special gas such as an inert gas or a reducing gas, and the generation of magnetite is basically realized using only the substances contained in the liquid to be treated. Therefore, the present invention contributes to the establishment of a new process for treating steel waste acid and effective use of resources.

Claims (6)

塩化第二鉄含有量がモル比において塩化第一鉄の0.01倍以下である塩化第一鉄含有水溶液を加熱された焙焼炉内に噴霧または滴下することにより前記水溶液から発生する水蒸気を炉内に充満させ、酸素が4体積%以下の水蒸気雰囲気を維持しながら前記塩化第一鉄と水蒸気とを反応させるマグネタイトの製造法。The water vapor generated from the ferrous chloride-containing aqueous solution having a ferric chloride content of 0.01 times or less in molar ratio by spraying or dropping the ferrous chloride-containing aqueous solution into a heated roasting furnace is used. A method for producing magnetite, wherein the ferrous chloride is reacted with water vapor while maintaining a water vapor atmosphere of not more than 4% by volume in a furnace. 塩化第一鉄含有水溶液の他にも、別途、水を炉内に噴霧または滴下する請求項1に記載の製造法。2. The method according to claim 1, wherein water is separately sprayed or dropped into the furnace in addition to the ferrous chloride-containing aqueous solution. さらに水蒸気を炉内に吹き込む請求項1または2に記載の製造法。3. The method according to claim 1, wherein steam is further blown into the furnace. 単位時間に炉内に供給される水蒸気と塩化第一鉄のモル比を20:1〜40:1の範囲にする請求項1〜3に記載の製造法。The method according to any one of claims 1 to 3, wherein the molar ratio of steam and ferrous chloride supplied into the furnace per unit time is in the range of 20: 1 to 40: 1. 雰囲気温度を800〜1000℃に維持する請求項1〜4に記載の製造法。The method according to claim 1, wherein the atmosphere temperature is maintained at 800 to 1000C. 塩化第一鉄含有水溶液が、鉄鋼業の酸洗ラインにおける酸洗槽から回収された廃酸またはそれを水で希釈したものである請求項1〜5に記載の製造法。The production method according to any one of claims 1 to 5, wherein the ferrous chloride-containing aqueous solution is waste acid recovered from a pickling tank in a pickling line in the steel industry or diluted with water.
JP2002242988A 2002-08-23 2002-08-23 Method for manufacturing magnetite Withdrawn JP2004083297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002242988A JP2004083297A (en) 2002-08-23 2002-08-23 Method for manufacturing magnetite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242988A JP2004083297A (en) 2002-08-23 2002-08-23 Method for manufacturing magnetite

Publications (1)

Publication Number Publication Date
JP2004083297A true JP2004083297A (en) 2004-03-18

Family

ID=32051865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242988A Withdrawn JP2004083297A (en) 2002-08-23 2002-08-23 Method for manufacturing magnetite

Country Status (1)

Country Link
JP (1) JP2004083297A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013076539A1 (en) * 2011-08-26 2013-05-30 Jaramillo Botero Gabriel Santiago Method for producing high-purity synthetic magnetite by oxidation from metal waste and appliance for producing same
WO2014136901A1 (en) * 2013-03-06 2014-09-12 東邦チタニウム株式会社 Method for improving quality of titanium-containing feedstock
JP2014172765A (en) * 2013-03-06 2014-09-22 Toho Titanium Co Ltd Quality improvement method of titanium-including material
JP2014181154A (en) * 2013-03-19 2014-09-29 Toho Titanium Co Ltd Method for increasing quality of titanium-containing raw material
JP2016169125A (en) * 2015-03-13 2016-09-23 Jfeケミカル株式会社 Production method of iron oxide powder
CN109987641A (en) * 2017-12-30 2019-07-09 天津友发钢管集团股份有限公司 A kind of method that red soil prepares iron oxide black

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013076539A1 (en) * 2011-08-26 2013-05-30 Jaramillo Botero Gabriel Santiago Method for producing high-purity synthetic magnetite by oxidation from metal waste and appliance for producing same
EP2749536A4 (en) * 2011-08-26 2015-07-08 Botero Gabriel Santiago Jaramillo Method for producing high-purity synthetic magnetite by oxidation from metal waste and appliance for producing same
WO2014136901A1 (en) * 2013-03-06 2014-09-12 東邦チタニウム株式会社 Method for improving quality of titanium-containing feedstock
JP2014172765A (en) * 2013-03-06 2014-09-22 Toho Titanium Co Ltd Quality improvement method of titanium-including material
US9803261B2 (en) 2013-03-06 2017-10-31 Toho Titanium Co., Ltd. Method for improving quality of titanium-containing feedstock
RU2660876C2 (en) * 2013-03-06 2018-07-10 Тохо Титаниум Ко., Лтд. Method for improving quality of titanium-containing feedstock
JP2014181154A (en) * 2013-03-19 2014-09-29 Toho Titanium Co Ltd Method for increasing quality of titanium-containing raw material
JP2016169125A (en) * 2015-03-13 2016-09-23 Jfeケミカル株式会社 Production method of iron oxide powder
CN109987641A (en) * 2017-12-30 2019-07-09 天津友发钢管集团股份有限公司 A kind of method that red soil prepares iron oxide black

Similar Documents

Publication Publication Date Title
CN107893160B (en) Thiosulfate and the technique for mentioning gold from difficult-treating gold mine is prepared in situ
US8628740B2 (en) Processing method for recovering iron oxide and hydrochloric acid
CN105772486A (en) Method for removing cyanide in waste cathode carbon in aluminum electrolysis cell
CN115894050B (en) Low-temperature roasting method for producing manganese-zinc ferrite composite material by wet method
JP2006334508A (en) Method and apparatus for simultaneously and continuously treating cyanide/ammonia-containing liquid waste continuously
JP2004083297A (en) Method for manufacturing magnetite
WO2011147426A1 (en) A process of production of concentrated ferric chloride solution from the waste hydrochloric acid pickle liquor
CN108002420A (en) A kind of production technology brightened for barite powder
WO2017201911A1 (en) Method for low temperature manufacturing of fexpo4-containing material using ferrophosphorus
CN111453768A (en) Rutile metatitanic acid, titanium white and preparation method thereof
CN110090385A (en) A kind of method of Catalytic Thermal Decomposition removing zinc cyano complex
CN106957067A (en) Reduce the sulfuric acid method titanium pigment acid hydrolysis method of reduced iron powder consumption
CN108557765B (en) Post-treatment method of pickling waste liquid containing zinc and iron ions
CN104099634B (en) The preparation method of vanadium nitride
CN106082156B (en) Preparation of Li from ferrophosphorusxFeyPzO4Method (2)
CN102701260B (en) Spray pyrolysis method for aid-containing rare earth chloride solution
CN102992361A (en) Method for directly preparing electrolyte melt containing anhydrous magnesium chloride by using hydrated magnesium chloride
JP2000264640A (en) Treatment of waste liquor of hydrochloric acid
US1955326A (en) Process for the manufacture of chromates and dichromates
CN108147466A (en) The method that sulfur-containing smoke gas prepares manganese sulfate in smelting furnace is absorbed using sulfur adsorbent
US5250276A (en) Method for preparing ferric chloride
CN114317990B (en) Method for extracting vanadium from vanadium-containing steel slag through sodium-treatment oxidation water quenching
CN113088683B (en) Method for preparing low-temperature titanium chloride slag by using low-grade titanium concentrate
CN103011102A (en) Cooling process for desalted water conveyed to nitric acid absorbing tower
JP3940651B2 (en) Method for recovering hydrofluoric acid

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101