JP3393538B2 - Organic compound thin film and method for producing the same - Google Patents

Organic compound thin film and method for producing the same

Info

Publication number
JP3393538B2
JP3393538B2 JP15198493A JP15198493A JP3393538B2 JP 3393538 B2 JP3393538 B2 JP 3393538B2 JP 15198493 A JP15198493 A JP 15198493A JP 15198493 A JP15198493 A JP 15198493A JP 3393538 B2 JP3393538 B2 JP 3393538B2
Authority
JP
Japan
Prior art keywords
thin film
substrate
organic compound
compound thin
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15198493A
Other languages
Japanese (ja)
Other versions
JPH0710698A (en
Inventor
敦央 井上
与志郎 赤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP15198493A priority Critical patent/JP3393538B2/en
Publication of JPH0710698A publication Critical patent/JPH0710698A/en
Application granted granted Critical
Publication of JP3393538B2 publication Critical patent/JP3393538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機化合物薄膜及びそ
の製造方法に関する。更に詳しくは、主として発光素
子、光変調素子、光論理素子、光記録体等のオプトエレ
クトロニクスデバイスの分野で利用される有機化合物薄
膜及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic compound thin film and a method for manufacturing the same. More specifically, the present invention relates to an organic compound thin film mainly used in the field of optoelectronic devices such as a light emitting device, a light modulation device, an optical logic device, and an optical recording medium, and a method for manufacturing the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
高配向薄膜あるいは単結晶有機化合物薄膜の製造方法に
は、乾式法及び湿式法が使用されている。このような製
造方法のうち、乾式法としては、真空蒸着法、分子線エ
ピタキシャル(MBE)法が挙げられ、湿式法として
は、溶媒蒸発法、融液法、ラングミュア−ブロジェット
法(LB法)が挙げられる。
2. Description of the Related Art Conventionally, the problems to be solved by the invention
A dry method and a wet method are used as a method for producing a highly oriented thin film or a single crystal organic compound thin film. Among such manufacturing methods, a vacuum method and a molecular beam epitaxial (MBE) method can be given as a dry method, and a solvent evaporation method, a melt method, a Langmuir-Blodgett method (LB method) can be given as a wet method. Is mentioned.

【0003】湿式法のうち、溶媒蒸発法あるいは融液法
は、バルク単結晶の製造方法として一般的に用いられて
いる。これらの方法は、例えば2枚の平らなガラス板の
間隙に溶液あるいは融液を毛細管現象を利用して吸い上
げて、結晶化させることによって単結晶薄膜を製造する
方法である。しかしながら、上記の方法は湿式法である
ために、不純物混入の機会が多く、しかも、膜厚の精密
な制御が困難なので、nmオーダーの膜厚の薄膜を製造
することが難しい。
Among the wet methods, the solvent evaporation method or the melt method is generally used as a method for producing a bulk single crystal. These methods are methods for producing a single crystal thin film by sucking a solution or a melt into a gap between two flat glass plates by utilizing a capillary phenomenon and crystallizing the solution or the melt. However, since the above method is a wet method, there are many opportunities to mix impurities and it is difficult to precisely control the film thickness, so it is difficult to manufacture a thin film having a film thickness of nm order.

【0004】次にLB法は気水界面に展開された単分子
膜を基板上にすくいとって積層し、所望の層数(膜厚)
の薄膜を得る方法である。このLB法は、膜厚の制御に
優れた方法であるが、膜面に垂直な方向には周期構造が
存在するものの、膜面内では無秩序である場合がほとん
どである。乾式法である真空蒸着法及びMBE法は、不
純物混入の機会が少なく、膜厚の制御性が優れている。
しかしながら、配向制御、単結晶成長させることができ
る材料と基板との組み合わせが非常に限定されている。
Next, in the LB method, the monomolecular film developed at the air-water interface is scooped and laminated on the substrate to obtain a desired number of layers (film thickness).
Is a method of obtaining a thin film of. The LB method is an excellent method for controlling the film thickness, but although there is a periodic structure in the direction perpendicular to the film surface, in most cases it is disordered in the film surface. The vacuum deposition method and the MBE method, which are dry methods, have few opportunities to mix impurities and have excellent controllability of the film thickness.
However, there are very limited combinations of materials and substrates that can control orientation and grow single crystals.

【0005】また、KCl等のアルカリハライド基板の
{001}面は、フタロシアニン系化合物に代表される
多くの有機化合物を、真空蒸着法及びMBE法を使用し
てエピタキシャル成長させて薄膜を形成することができ
ることが古くから知られている。アルカリハライド基板
の清浄な{001}面は、陽イオン性の極めて強い第I
族原子と陰イオン性の極めて強い第VII 族原子が規則正
しく配列している。この基板に薄膜が成長できるのは、
規則正しく配列した基板表面原子と、基板上に供給され
た分子との間の静電気力が、エピタキシャル成長の際に
成膜に寄与するためであると考えられている。
On the {001} plane of an alkali halide substrate such as KCl, a thin film can be formed by epitaxially growing many organic compounds represented by phthalocyanine compounds by using the vacuum deposition method and the MBE method. It has long been known that it can be done. The clean {001} surface of the alkali halide substrate has a very strong cation
Group atoms and extremely strongly anionic Group VII atoms are regularly arranged. The thin film can be grown on this substrate is
It is considered that the electrostatic force between the regularly-arranged substrate surface atoms and the molecules supplied on the substrate contributes to film formation during epitaxial growth.

【0006】ところが、基板表面原子の配列が4回(9
0°)対称性であるので、一般に、面内で互いに垂直で
等価な2方向に配向し、単結晶あるいは2軸配向膜(基
板表面に垂直な方向と基板表面に平行な方向の2方向共
に揃った多結晶膜)とはならないので、実用化すること
が困難であった。以上のように、従来の有機化合物薄膜
の製造方法においては、実用上必要な品質の単結晶、2
軸配向結晶薄膜を製造することが非常に困難である。本
発明は、このような事情に鑑みてなされたものであり、
2軸配向あるいは単結晶薄膜の製造方法を提供すること
を目的としている。
However, the arrangement of atoms on the substrate surface is repeated four times (9
Since it is (0 °) symmetry, it is generally oriented in two planes that are perpendicular to each other and equivalent to each other, and a single crystal or biaxial orientation film (both in the direction perpendicular to the substrate surface and in the direction parallel to the substrate surface) It is difficult to put it into practical use because it is not a uniform polycrystalline film. As described above, in the conventional method for manufacturing an organic compound thin film, a single crystal having a quality necessary for practical use, 2
It is very difficult to manufacture an axially oriented crystal thin film. The present invention has been made in view of such circumstances,
It is an object to provide a method for producing a biaxially oriented or single crystal thin film.

【0007】[0007]

【課題を解決するための手段】かくして本発明によれ
ば、基板として面の方位が{110}であるイオン性結
晶基板を使用し、該イオン性結晶基板上に単結晶あるい
は2軸配向の有機化合物薄膜が成膜されていることを特
徴とする有機化合物薄膜が提供される。更に、本発明に
よれば、基板として使用される{110}方位のイオン
性結晶基板上に、有機化合物を成長させ単結晶あるいは
2軸配向の薄膜を形成することを特徴とする有機化合物
薄膜の製造方法が提供される。
Thus, according to the present invention, an ionic crystal substrate having a plane orientation of {110} is used as a substrate, and a single crystal or biaxially oriented organic substrate is formed on the ionic crystal substrate. There is provided an organic compound thin film characterized in that a compound thin film is formed. Furthermore, according to the present invention, a single crystal or biaxially oriented thin film is formed by growing an organic compound on an ionic crystal substrate having a {110} orientation used as a substrate. A manufacturing method is provided.

【0008】本発明に用いられるイオン性結晶基板とし
ては、蛍石型結晶構造、NaCl型結晶構造、CsCl
型結晶構造あるいは逆蛍石型結晶構造のいずれでも使用
することができる。蛍石型結晶構造を有する化合物とし
ては、第II族と第VII 族の元素の組み合わせからなる化
合物が使用でき、そのような化合物としてCaF2 (格
子定数:0.546nm ),SrF2 (格子定数:0.580nm
),BaF2 (格子定数:0.620nm )等が挙げられ
る。またそれ以外にも蛍石型結晶構造を有するCeO2
(格子定数:0.541nm ),UO2 (格子定数:0.547nm
)等も使用することができるNaCl型結晶構造を有
する化合物としては、KCl(格子定数:0.629nm ),
NaCl(格子定数:0.564nm ),KBr(格子定数:
0.660nm )等が挙げられる。
The ionic crystal substrate used in the present invention includes fluorite type crystal structure, NaCl type crystal structure, and CsCl.
Either a crystal structure of inverted type or a crystal structure of inverted fluorite type can be used. As the compound having a fluorite crystal structure, a compound composed of a combination of elements of Group II and Group VII can be used, and as such a compound, CaF 2 (lattice constant: 0.546 nm) and SrF 2 (lattice constant: 0.580 nm
), BaF 2 (lattice constant: 0.620 nm) and the like. In addition to that, CeO 2 having a fluorite type crystal structure
(Lattice constant: 0.541nm), UO 2 (Lattice constant: 0.547nm)
) And the like can be used as a compound having a NaCl type crystal structure, KCl (lattice constant: 0.629 nm),
NaCl (lattice constant: 0.564 nm), KBr (lattice constant:
0.660 nm) and the like.

【0009】CsCl型結晶構造を有する化合物として
は、CsCl(格子定数:0.412nm),TlCl(格子
定数:0.384nm )等が挙げられる。逆蛍石型結晶構造を
有する化合物としては、Li2 O(格子定数:0.461nm
),Na2 O(格子定数:0.556nm ),Li 2S(格
子定数:0.571nm ),Na 2S(格子定数:0.654nm
),K 2S(格子定数:0.741nm )等が挙げられる。
Examples of compounds having a CsCl type crystal structure include CsCl (lattice constant: 0.412 nm) and TlCl (lattice constant: 0.384 nm). As a compound having an inverted fluorite crystal structure, Li 2 O (lattice constant: 0.461 nm
), Na 2 O (lattice constant: 0.556 nm), Li 2 S (lattice constant: 0.571 nm), Na 2 S (lattice constant: 0.654 nm)
), K 2 S (lattice constant: 0.741 nm) and the like.

【0010】上記のイオン性結晶基板は、公知の方法で
{110}方位の面を形成することができる。例えば、
形成方法として2種類の方法を挙げることができる。ま
ず第1の方法では、それぞれのバルク単結晶を{11
0}面で切り出し、研磨し、化学エッチングあるいはイ
オンエッチングによりダメージ層を除去し、真空中で熱
処理を施して、清浄な{110}面を得ることができ
る。第2の方法では、格子整合性のよい基板(例えば、
CaF2 の{110}面に対しては、シリコンの{11
0}面の基板)を選択し、真空蒸着法あるいは分子線エ
ピタキシー法等の気相エピタキシャル成長により成膜す
ることができる。
The above-mentioned ionic crystal substrate can form a plane having a {110} orientation by a known method. For example,
There are two types of forming methods. First, in the first method, each bulk single crystal is
It is possible to obtain a clean {110} plane by cutting out at 0 plane, polishing, removing the damaged layer by chemical etching or ion etching, and performing heat treatment in vacuum. In the second method, a substrate having a good lattice matching (for example,
For the {110} plane of CaF 2 , {11} of silicon
It is possible to form a film by vapor phase epitaxial growth such as a vacuum vapor deposition method or a molecular beam epitaxy method.

【0011】更にこれら化合物は混晶させて使用するこ
ともできる。混晶は、気相エピタキシャル成長させるこ
とで形成できる。混晶化合物として、例えば、(CaX
・Sr1-X )F2 、(SrX ・Ba1-X )F2 、(Na
X ・K1-X )Cl(0≦x≦1)を使用することができ
る。また、これら混晶化合物に、例えば蛍石型結晶構造
を有する化合物を使用した場合、その化合物は0.546 〜
0.620nm の格子定数を有するので、成長させる有機化合
物の分子配列から決定される格子定数の大きさに合わせ
ることができる。
Further, these compounds can be used as a mixed crystal. The mixed crystal can be formed by vapor phase epitaxial growth. As the mixed crystal compound, for example, (Ca X
· Sr 1-X) F 2 , (Sr X · Ba 1-X) F 2, (Na
X · K 1-X ) Cl (0 ≦ x ≦ 1) can be used. In addition, when a compound having a fluorite type crystal structure is used for these mixed crystal compounds, the compound is 0.546
Since it has a lattice constant of 0.620 nm, it can be adjusted to the size of the lattice constant determined from the molecular arrangement of the organic compound to be grown.

【0012】上記のように選択され形成された結晶の面
方位は、応用上、できるだけ単純な面指数の方位を有す
ることが好ましい。例えばCaF2 (110)面のイオ
ン配列は、図1に示すような2回(180 °)回転対称で
あり、互いに直交する方位である〈110〉と〈−11
0〉方位のイオン配列の周期の比が、陰イオンでは約1:
0.7 であり、陽イオンでは約1:1.4 であり、いずれも整
数倍の値を取らない。このような結晶面には、格子定数
の整合により、有機化合物の2軸配向あるいは単結晶薄
膜を成長させることができる。
The plane orientation of the crystal selected and formed as described above preferably has an orientation of plane index as simple as possible from the viewpoint of application. For example, the ion array on the CaF 2 (110) plane has a two-fold (180 °) rotational symmetry as shown in FIG. 1, and the orientations are <110> and <-11 which are orthogonal to each other.
The ratio of the period of the 0> direction ion array is about 1: for negative ions.
It is 0.7, and it is about 1: 1.4 for positive ions, neither of which is an integer multiple. A biaxial orientation of an organic compound or a single crystal thin film can be grown on such a crystal plane by matching the lattice constant.

【0013】上記のイオン性結晶基板はそのまま用いる
こともできるが、半導体等の基板上に成膜することもで
きる。基板材料としては、その上にイオン性結晶基板を
成長させることができれば、無機・有機、結晶・非結晶
質を問わずいかなる材料でも使用することができる。こ
のような基板として、例えば、各種ガラス、石英あるい
はアモルファスSiO2 、Al2 3 、Ta2 5 、T
iO2 及びMgO等の酸化物、アモルファスSi、Ga
As及びAl1-X GaX As等の半導体材料、ポリカー
ボネイト、ポリスチレン及びポリメチルメタクリレート
(PMMA)等の高分子化合物、Al、Ti、Cu、A
g、Au、W及びMo等の金属、フタロシアニン類ポリ
フィリン等の有機半導体が挙げられる。
The above-mentioned ionic crystal substrate can be used as it is, but it can also be formed on a substrate such as a semiconductor. As the substrate material, any material can be used, whether inorganic or organic, crystalline or amorphous, as long as an ionic crystal substrate can be grown on it. As such a substrate, for example, various kinds of glass, quartz or amorphous SiO 2 , Al 2 O 3 , Ta 2 O 5 , T
Oxides such as iO 2 and MgO, amorphous Si, Ga
Semiconductor materials such as As and Al 1-X Ga X As, polymer compounds such as polycarbonate, polystyrene and polymethylmethacrylate (PMMA), Al, Ti, Cu, A
Examples thereof include metals such as g, Au, W, and Mo, and organic semiconductors such as phthalocyanine porphyrin.

【0014】次に本発明の有機化合物薄膜は、非線形光
学材料、光電変換、光記録材料、発光材料、導電材料等
に使用することができる。例えば、非線形光学材料に使
用できる有機化合物薄膜としては、4−(N,N−ジメ
チルアミノ)−3−アセトアミドニトロベンゼン(DA
N)、メロシアニン−pTS錯体(MC)、4′−ニト
ロベンジリデン−3−アセトアミノ−4−メトキシアニ
リン(MNBA)、2−メチル−4−ニトロアニリン
(MNA)、3−メチル−4−メトキシ−4′−ニトロ
スチルベン(MNONS)、4−ニトロ−4′−メチル
ベンジリデンアニリン(NMBA)、3,5−ジメチル
−1−(4−ニトロフェニル)−ピラゾール(DMN
P)、N−(4′−ニトロフェニル)−(L)−プロリ
ノール(NPP)、2−(N−プロリノール)−5−ニ
トロピリジン(PNP)、2−(α−メチルベンジルア
ミノ)−5−ニトロピリジン(MBANP)、2−シク
ロオクチルアミノ−5−ニトロピリジン(COAN
P)、3−メチル−4−ニトロピリジン−1−オキシド
(POM)、4−(N,N−ジメチルアミノ)ベンジリ
デン−4−ニトロアニリン(DBNA)及び1,6−ジ
(N−カルバゾリル)−2,4−ジヘキサジエン(DC
HD)等が挙げられる。
Next, the organic compound thin film of the present invention can be used as a nonlinear optical material, photoelectric conversion, optical recording material, light emitting material, conductive material and the like. For example, as an organic compound thin film that can be used for a nonlinear optical material, 4- (N, N-dimethylamino) -3-acetamidonitrobenzene (DA
N), merocyanine-pTS complex (MC), 4'-nitrobenzylidene-3-acetamino-4-methoxyaniline (MNBA), 2-methyl-4-nitroaniline (MNA), 3-methyl-4-methoxy-4. ′ -Nitrostilbene (MNONS), 4-nitro-4′-methylbenzylideneaniline (NMBA), 3,5-dimethyl-1- (4-nitrophenyl) -pyrazole (DMN)
P), N- (4′-nitrophenyl)-(L) -prolinol (NPP), 2- (N-prolinol) -5-nitropyridine (PNP), 2- (α-methylbenzylamino)- 5-nitropyridine (MBANP), 2-cyclooctylamino-5-nitropyridine (COAN)
P), 3-methyl-4-nitropyridine-1-oxide (POM), 4- (N, N-dimethylamino) benzylidene-4-nitroaniline (DBNA) and 1,6-di (N-carbazolyl)-. 2,4-dihexadiene (DC
HD) and the like.

【0015】また、光電変換、光記録材料に使用できる
有機化合物薄膜としては、無金属フタロシアニン類、各
種金属(Cu,Pb,Al,Sn,VO,TiO等)フ
タロシアニン類、塩素化各種金属(Cu,Pb,Al,
Sn,VO,TiO等)フタロシアニン類、フッ素化各
種金属(Cu,Pb,Al,Sn,VO,TiO等)フ
タロシアニン類、ナフタロシアニン類等が挙げられる。
As the organic compound thin film that can be used for photoelectric conversion and optical recording materials, metal-free phthalocyanines, various metals (Cu, Pb, Al, Sn, VO, TiO, etc.) phthalocyanines, various chlorinated metals (Cu). , Pb, Al,
Sn, VO, TiO, etc.) phthalocyanines, various fluorinated metals (Cu, Pb, Al, Sn, VO, TiO, etc.) phthalocyanines, naphthalocyanines and the like.

【0016】次に、発光材料に使用できる有機化合物薄
膜としては、ペリレン、フタロペリレン、アルミキノリ
ン、アルミキノリニウム錯体等のキノリノール系金属錯
体、ジスチリルベンゼン類、アントラセン誘導体、アン
トラセン誘導体、トリアゾール誘導体及びシクロペンタ
ジエン等が挙げられる。更に、導電材料に使用できる有
機化合物薄膜としては、TTF−TCNQ錯体等に代表
される電荷移動錯体が挙げられる。
Next, as an organic compound thin film that can be used as a light emitting material, quinolinol type metal complexes such as perylene, phthaloperylene, aluminum quinoline and aluminum quinolinium complex, distyrylbenzenes, anthracene derivatives, anthracene derivatives, triazole derivatives and Examples include cyclopentadiene. Furthermore, examples of the organic compound thin film that can be used for the conductive material include charge transfer complexes represented by TTF-TCNQ complexes and the like.

【0017】上記基板材料と有機化合物薄膜の組合せと
しては、DANとKCl、DANとBaF2 、MNAと
KCl、DBNAとKCl、DCHDとKCl、DAN
と(Sr・Ba)F2 等が挙げられる。有機化合物薄膜
の形成方法には、真空蒸着法、融液からの再結晶、溶液
からの析出等の公知の方法が使用できる。
As the combination of the substrate material and the organic compound thin film, DAN and KCl, DAN and BaF 2 , MNA and KCl, DBNA and KCl, DCHD and KCl, DAN are available.
And (Sr.Ba) F 2 and the like. As a method for forming the organic compound thin film, a known method such as a vacuum vapor deposition method, recrystallization from a melt, or precipitation from a solution can be used.

【0018】例えば、蒸着法を使用する場合、系内の圧
力が10-2Pa以下で有機化合物材料を加熱し、ガス化
させることによって、薄膜を形成させることができる。
また、融液から再結晶させるときは、融点近傍に精密に
制御された有機化合物の融液に基板を浸漬し、徐冷し、
基板上に有機化合物の薄膜を析出させる。この際、成長
速度は温度降下速度で制御し、膜厚は予め測定しておい
た成長速度と温度降下速度との関係から成長時間で制御
する。
For example, when the vapor deposition method is used, a thin film can be formed by heating and gasifying an organic compound material at a system pressure of 10 -2 Pa or less.
When recrystallizing from a melt, the substrate is immersed in a melt of an organic compound precisely controlled in the vicinity of the melting point and then slowly cooled,
A thin film of an organic compound is deposited on the substrate. At this time, the growth rate is controlled by the temperature decrease rate, and the film thickness is controlled by the growth time based on the previously measured relationship between the growth rate and the temperature decrease rate.

【0019】更に、溶液からの析出させる場合、精密に
温度制御された有機化合物の飽和溶液に基板を浸漬し、
溶液を徐冷し、基板上に有機化合物の薄膜を析出させ
る。この際、成長速度は温度降下速度で制御し、膜厚は
予め測定しておいた成長速度と温度降下速度との関係か
ら成長時間で制御する。
Further, in the case of precipitating from a solution, the substrate is immersed in a saturated solution of an organic compound whose temperature is precisely controlled,
The solution is gradually cooled to deposit a thin film of an organic compound on the substrate. At this time, the growth rate is controlled by the temperature decrease rate, and the film thickness is controlled by the growth time based on the previously measured relationship between the growth rate and the temperature decrease rate.

【0020】本発明の有機化合物薄膜の形成に使用でき
る形成装置としては、公知の装置を使用することがで
き、例えば真空蒸着法を用いて成膜する場合、図2に示
すような装置が使用できる。
As a forming apparatus which can be used for forming the organic compound thin film of the present invention, a known apparatus can be used. For example, when a film is formed by a vacuum evaporation method, the apparatus shown in FIG. 2 is used. it can.

【0021】[0021]

【作用】先に述べたように、I−VII 属系化合物(アル
カリハライド)基板の{001}面を用いる方法では、
陽イオン及び陰イオンの配列での4回対称性が、互いに
直交する2方向の配向の原因となっている。そこで、本
発明では、陽イオン及び陰イオンの強い静電引力を利用
しうるイオン性の強い化合物単結晶で、かつ、基板表面
の原子配列の対称性が低いため、面内の異なる2方向で
原子(イオン)の配列周期が、互いに異なる基板を用い
る。
As described above, in the method using the {001} plane of the I-VII group compound (alkali halide) substrate,
The 4-fold symmetry in the arrangement of cations and anions is responsible for the orientation in two directions orthogonal to each other. Therefore, in the present invention, since the compound single crystal having a strong ionicity capable of utilizing the strong electrostatic attraction of the cation and the anion and the symmetry of the atomic arrangement on the substrate surface is low, the two directions in different planes are different. Substrates having mutually different arrangement periods of atoms (ions) are used.

【0022】このような基板の上に有機化合物薄膜を形
成すると、蒸着材料の結晶構造と基板のイオン配列の周
期との組み合わせにより、基板結晶に対しある特定の一
方向に面内配向した2軸配向膜あるいは単結晶膜の作成
が可能となる。
When an organic compound thin film is formed on such a substrate, biaxially oriented in one specific direction with respect to the substrate crystal by a combination of the crystal structure of the vapor deposition material and the period of the ion arrangement of the substrate. It is possible to form an alignment film or a single crystal film.

【0023】[0023]

【実施例】以下に、本発明の実施例を示す。なお本発明
は以下の材料、工程及びその条件等に限定されるもので
はない。
EXAMPLES Examples of the present invention will be shown below. The present invention is not limited to the following materials, processes and conditions thereof.

【0024】実施例1 BaF2 の(110)面からなる基板14を、予めアセト
ン、エタノール、純水でそれぞれ洗浄したあと、図2に
示した真空蒸着装置の基板搬送系18で分析室3に移動さ
せたあと、10-6Pa台の真空中で、800 ℃で加熱するこ
とによって表面清浄化処理を施した。この基板14を分析
室3に移し、低速電子線回折装置(LEED)11を用い
て観察し、清浄表面が得られていることを確認し、成長
室2に配置した。原料のDANには、Kセル上部のゲー
トバルブ9を閉じた状態で、10 -4台の真空下で50℃、
2時間以上の加熱処理を施した。その後ゲートバルブ9
を開け、ベローズ式直線移動機構17によりKセル12を成
長室2に導入し、基板−Kセル12間距離を150 mmとし
たあと、Kセル12の温度を65℃に加熱し、原料を昇華さ
せ、膜厚モニター13により膜厚を約0.5 μmに制御し、
薄膜を基板上に形成した。
Example 1 BaF2The substrate 14 consisting of the (110) plane of
After washing with ethanol, ethanol, and pure water respectively,
It is moved to the analysis chamber 3 by the substrate transfer system 18 of the vacuum evaporation system shown.
After letting it, 10-6It should be heated at 800 ° C in a vacuum of Pa level.
The surface cleaning treatment was performed by and. Analyze this board 14
Moved to chamber 3 and used low-energy electron diffraction equipment (LEED) 11
, Confirm that a clean surface is obtained, and grow.
Placed in chamber 2. The DAN of the raw material is the game above the K cell.
10 with the valve 9 closed. -Four50 ℃ under the vacuum of the table,
Heat treatment was performed for 2 hours or more. Then the gate valve 9
Open and open the K cell 12 with the bellows type linear movement mechanism 17.
It was introduced into the long chamber 2 and the distance between the substrate and the K cell 12 was set to 150 mm.
After that, the temperature of K cell 12 is heated to 65 ° C to sublimate the raw material.
The film thickness monitor 13 controls the film thickness to about 0.5 μm,
A thin film was formed on the substrate.

【0025】この薄膜を透過電子顕微鏡、走査電子顕微
鏡及びX線回折装置により測定した結果、図5に示すよ
うに基板面に垂直な方向にDAN結晶子の〈001〉方
向が揃っており、粒界が観察されるものの、結晶子のb
軸方向(基板に平行な軸)が基板の1方向に配向成長し
た極めて単結晶に近い薄膜であることが分かった。
As a result of measuring this thin film with a transmission electron microscope, a scanning electron microscope and an X-ray diffractometer, as shown in FIG. 5, the <001> direction of DAN crystallites was aligned in the direction perpendicular to the substrate surface, and Field is observed, but crystallite b
It was found that the axial direction (axis parallel to the substrate) was a thin film that was oriented and grown in one direction of the substrate and was extremely close to a single crystal.

【0026】実施例2 (Sr0.1 ・Ba0.9 )F2 基板14の(110)面を実
施例1に示したようにして表面清浄化処理を施した。次
に、膜厚約0.5 μmのDANを実施例1と同様にして上
記基板14上に形成した。この薄膜を透過電子顕微鏡、走
査電子顕微鏡及びX線回折装置により測定した結果、図
5に示すように基板面に垂直な方向にDAN結晶子の
〈001〉方向が揃っており、粒界が観察されるもの
の、結晶子のb軸方向が基板の1方向に配向成長した極
めて単結晶に近い薄膜であることが分かった。
Example 2 The (Sr 0.1 .Ba 0.9 ) F 2 substrate 14 was subjected to surface cleaning treatment in the same manner as in Example 1 on the (110) surface. Next, DAN having a film thickness of about 0.5 μm was formed on the substrate 14 in the same manner as in Example 1. As a result of measuring this thin film with a transmission electron microscope, a scanning electron microscope and an X-ray diffractometer, the <001> direction of the DAN crystallites was aligned in the direction perpendicular to the substrate surface as shown in FIG. 5, and grain boundaries were observed. However, it has been found that the b-axis direction of the crystallite is a thin film which is oriented and grown in one direction of the substrate and is extremely close to a single crystal.

【0027】実施例3 KCl基板14の(110)面を実施例1に示したように
して表面清浄化処理を施した。但し、清浄表面を形成す
るための条件を、加熱温度は600 ℃とし、加熱時間を3
時間とした。次に、膜厚約0.5 μmのDANを実施例1
と同様にして上記基板14上に形成した。この薄膜を透過
電子顕微鏡、走査電子顕微鏡及びX線回折装置により測
定した結果、図5に示すように基板面に垂直な方向にD
AN結晶子の〈001〉方向が揃っており、粒界が観察
されるものの、結晶子のb軸方向が基板の1方向に配向
成長した極めて単結晶に近い薄膜であることが分かっ
た。
Example 3 The (110) plane of the KCl substrate 14 was surface-cleaned as described in Example 1. However, the condition for forming a clean surface is that the heating temperature is 600 ° C and the heating time is 3
It was time. Next, a DAN having a film thickness of about 0.5 μm was used in Example 1.
It was formed on the substrate 14 in the same manner as. This thin film was measured by a transmission electron microscope, a scanning electron microscope and an X-ray diffractometer, and as a result, as shown in FIG.
Although the <001> directions of the AN crystallites were aligned and grain boundaries were observed, it was found that the thin film was a crystallite whose b-axis direction was oriented and grown in one direction of the substrate and was extremely close to a single crystal.

【0028】比較例1 KCl単結晶基板14の(001)面で劈開し、直ちに装
置内に導入した。清浄表面を形成するために10-6Pa
台の真空中で800 ℃で2時間加熱し、LEEDパターン
で清浄表面を確認した。次に、膜厚約0.5 μmのDAN
を実施例1と同様にして上記基板14上に形成した。この
薄膜を透過電子顕微鏡、走査電子顕微鏡及びX線回折装
置により測定した結果、図6に示すような基板面に垂直
な方向にDAN結晶子の〈001〉方向が揃っている
が、粒界が観察され、結晶子のb軸方向が、基板の互い
に直交する(110)と〈−110〉の2方向に配向成
長した薄膜が得られた。
Comparative Example 1 KCl single crystal substrate 14 was cleaved along the (001) plane and immediately introduced into the apparatus. 10 -6 Pa to form a clean surface
It was heated at 800 ° C. for 2 hours in the vacuum of the table, and the clean surface was confirmed by the LEED pattern. Next, DAN with a film thickness of about 0.5 μm
Was formed on the substrate 14 in the same manner as in Example 1. As a result of measuring this thin film with a transmission electron microscope, a scanning electron microscope and an X-ray diffractometer, the <001> direction of the DAN crystallites was aligned in the direction perpendicular to the substrate surface as shown in FIG. Observed, a thin film was obtained in which the b-axis direction of the crystallite was oriented and grown in two directions of (110) and <−110> of the substrate which were orthogonal to each other.

【0029】比較例2 BaF2単結晶基板14の(001)面を実施例1に示し
たように処理し、清浄表面を得た。次に、膜厚約0.5μ
mのDANを実施例1と同様にして上記基板14上に形成
した。この薄膜を透過電子顕微鏡、走査電子顕微鏡及び
X線回折装置により測定した結果、基板面に垂直な方向
にDAN結晶子の<001>方向が揃っているが、粒界
が観察され、基板表面内では一方向に配向しなかった。
Comparative Example 2 The (001) plane of the BaF 2 single crystal substrate 14 was treated as shown in Example 1 to obtain a clean surface. Next, the film thickness is about 0.5μ
m of DAN was formed on the substrate 14 in the same manner as in Example 1. As a result of measuring this thin film with a transmission electron microscope, a scanning electron microscope and an X-ray diffractometer, the <001> direction of the DAN crystallites is aligned in the direction perpendicular to the substrate surface, but grain boundaries are observed and Then, it was not oriented in one direction.

【0030】[0030]

【発明の効果】本発明の薄膜製造方法により、従来得る
ことが困難であった、2軸配向あるいは単結晶有機化合
物薄膜を形成することが可能となった
According to the thin film manufacturing method of the present invention, it has become possible to form a biaxially oriented or single crystal organic compound thin film, which has been difficult to obtain conventionally.

【図面の簡単な説明】[Brief description of drawings]

【図1】CaF2 の(110)面の最表面原子(イオ
ン)配列を示す図である。
FIG. 1 is a view showing an arrangement of atoms (ions) on the outermost surface of a (110) plane of CaF 2 .

【図2】本発明の実施例で使用した超高真空蒸着装置の
上面図及び断面図である。
FIG. 2 is a top view and a cross-sectional view of an ultra-high vacuum vapor deposition apparatus used in an example of the present invention.

【図3】(CaX ・Sr1-X )F2 の混晶比x(0≦x
≦1)と格子定数aの関係を示す図である。
FIG. 3 is a mixed crystal ratio of (Ca X · Sr 1-X ) F 2 x (0 ≦ x
It is a figure which shows the relationship of <= 1) and the lattice constant a.

【図4】(SrX ・Ba1-X )F2 の混晶比x(0≦x
≦1)と格子定数aの関係を示す図である。
FIG. 4 is a mixed crystal ratio x (0 ≦ x of (Sr X · Ba 1 -X ) F 2
It is a figure which shows the relationship of <= 1) and the lattice constant a.

【図5】本発明の結晶子の配向方向をしめす模式図であ
る。
FIG. 5 is a schematic view showing the orientation direction of the crystallite of the present invention.

【図6】従来法の結晶子の配向方向をしめす模式図であ
る。
FIG. 6 is a schematic view showing the orientation direction of crystallites in a conventional method.

【符号の説明】[Explanation of symbols]

1 交換室 2 成長室 3 分析室 4、5 ターボ分子ポンプ 6 イオンポンプ 7、8、9 ゲートバルブ 10 メタルバルブ 11 低速電子線回折装置(LEED) 12 Kセル 13 膜厚モニター 14 基板 15 液体窒素シュラウド 16 Kセル部排気用配管 17 ベローズ式直線移動機構 18 基板搬送系 1 exchange room 2 growth room 3 analysis room 4, 5 turbo molecular pump 6 ion pump 7,8,9 gate valve 10 Metal valve 11 Low-speed electron beam diffractometer (LEED) 12 K cell 13 Thickness monitor 14 board 15 Liquid nitrogen shroud 16 K cell part exhaust pipe 17 Bellows type linear movement mechanism 18 Substrate transfer system

フロントページの続き (56)参考文献 特開 平5−188417(JP,A) 特開 平2−197822(JP,A) 特開 平3−197394(JP,A) 特開 平3−197395(JP,A) 特開 平3−197399(JP,A) 特開 平4−97994(JP,A) 特開 平4−104996(JP,A) (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 G02F 1/35 CA(STN) WPI/L(QUESTEL)Continuation of front page (56) Reference JP-A-5-188417 (JP, A) JP-A-2-197822 (JP, A) JP-A-3-197394 (JP, A) JP-A-3-197395 (JP , A) JP 3-197399 (JP, A) JP 4-97994 (JP, A) JP 4-104996 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB) Name) C30B 1/00-35/00 G02F 1/35 CA (STN) WPI / L (QUESTEL)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板として面の方位が{110}である
イオン性結晶基板上に、単結晶あるいは2軸配向の有機
化合物薄膜が成膜されていることを特徴とする有機化合
物薄膜。
1. An organic compound thin film comprising a single crystal or biaxially oriented organic compound thin film formed on an ionic crystal substrate having a plane orientation of {110} as a substrate.
【請求項2】 イオン性結晶基板が、蛍石型結晶構造、
NaCl型結晶構造、CsCl型結晶構造あるいは逆蛍
石型結晶構造からなる請求項1記載の有機化合物薄膜。
2. The ionic crystal substrate is a fluorite crystal structure,
The organic compound thin film according to claim 1, comprising an NaCl type crystal structure, a CsCl type crystal structure, or an inverted fluorite type crystal structure.
【請求項3】 基板として使用される{110}方位の
イオン性結晶基板上に、有機化合物を成長させ単結晶あ
るいは2軸配向の薄膜を形成することを特徴とする有機
化合物薄膜の製造方法。
3. A method for producing an organic compound thin film, which comprises growing a single crystal or biaxially oriented thin film on an ionic crystal substrate having a {110} orientation used as a substrate.
【請求項4】 有機化合物薄膜の成長方法が、蒸着法、
融液からの析出法あるいは溶液からの再結晶法からなる
請求項3記載の有機化合物薄膜の製造方法。
4. A growth method of an organic compound thin film is a vapor deposition method,
The method for producing an organic compound thin film according to claim 3, which comprises a precipitation method from a melt or a recrystallization method from a solution.
JP15198493A 1993-06-23 1993-06-23 Organic compound thin film and method for producing the same Expired - Fee Related JP3393538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15198493A JP3393538B2 (en) 1993-06-23 1993-06-23 Organic compound thin film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15198493A JP3393538B2 (en) 1993-06-23 1993-06-23 Organic compound thin film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0710698A JPH0710698A (en) 1995-01-13
JP3393538B2 true JP3393538B2 (en) 2003-04-07

Family

ID=15530523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15198493A Expired - Fee Related JP3393538B2 (en) 1993-06-23 1993-06-23 Organic compound thin film and method for producing the same

Country Status (1)

Country Link
JP (1) JP3393538B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2762046B2 (en) * 1995-03-27 1998-06-04 東京大学長 Fabrication of Fine Structure Pattern of Highly Oriented Aggregates of Organic Molecular Substances Using Difference in Growth Rate Depending on Substrate Material
JP4519281B2 (en) * 2000-07-14 2010-08-04 パナソニック株式会社 Laminated superstructure and electro-optic device using the same

Also Published As

Publication number Publication date
JPH0710698A (en) 1995-01-13

Similar Documents

Publication Publication Date Title
US5323023A (en) Epitaxial magnesium oxide as a buffer layer on (111) tetrahedral semiconductors
US6400489B1 (en) Solid-state displacement element, optical element, and interference filter
US7291223B2 (en) Epitaxial organic layered structure and method for making
US4737232A (en) Process for depositing and crystallizing a thin layer of organic material by means of a beam of energy
Feigelson Epitaxial growth of lithium niobate thin films by the solid source MOCVD method
WO1992009917A1 (en) Thin film of lithium niobate single crystal
JP3393538B2 (en) Organic compound thin film and method for producing the same
El Mandouh et al. Some physical properties of evaporated thin films of antimony trisulphide
JPH03182725A (en) Non-linear optical element and manufacture thereof
Fölsch et al. Epitaxial C60 films on CaF2 (111) grown by molecular beam deposition
Al-Saqa et al. Effect of substrate temperature on the optical and structural properties of CaZnO3 perovskite thin films
JP2762046B2 (en) Fabrication of Fine Structure Pattern of Highly Oriented Aggregates of Organic Molecular Substances Using Difference in Growth Rate Depending on Substrate Material
US7153551B2 (en) Single-crystalline film and process for production thereof
JPS61222109A (en) Manufacture of rare earth iron garner film
Eichorst et al. Sol-gel processing of lithium niobate thin layers for optical applications
JPH0517295A (en) Lithium niobate single crystal thin film subjected to domain inversion treatment
Yase et al. Direct observation of linear-chain organic films prepared by physical vapor deposition
JPH02197822A (en) Production of organic compound thin-film
JP2973333B2 (en) Method for forming single crystal thin film on substrate
Gerbaux et al. Applicability of the epitaxial nucleation in submicroscopic holes (ENSH) method to vapour growth: Preparation of oriented thin films of naphthalene, durene, benzoic acid and tellurium
Zhang et al. Epitaxial growth of long‐chain molecules on potassium hydrogen phthalate and potassium chloride substrates from the vapor phase
JPH02184594A (en) Production of single crystal thin film
JPH04204427A (en) Production of laminate type organic nonlinear optical crystal with patterned layer
Poghosyan et al. Periodical poling of lithium niobate crystals with Li-enriched surface layer
Lou et al. Fabrication and optical properties of multilayer epitaxial ferroelectric n X (SrTiO3/PbTiO3) thin films by the sol-gel technique

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080131

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110131

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees