JP3392456B2 - Rubber composition for tire tread - Google Patents

Rubber composition for tire tread

Info

Publication number
JP3392456B2
JP3392456B2 JP08707893A JP8707893A JP3392456B2 JP 3392456 B2 JP3392456 B2 JP 3392456B2 JP 08707893 A JP08707893 A JP 08707893A JP 8707893 A JP8707893 A JP 8707893A JP 3392456 B2 JP3392456 B2 JP 3392456B2
Authority
JP
Japan
Prior art keywords
polymer
low
glass transition
temperature
tire tread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08707893A
Other languages
Japanese (ja)
Other versions
JPH06299002A (en
Inventor
也寸志 菊地
修一 福谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP08707893A priority Critical patent/JP3392456B2/en
Publication of JPH06299002A publication Critical patent/JPH06299002A/en
Application granted granted Critical
Publication of JP3392456B2 publication Critical patent/JP3392456B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、グリップ力(路面把握
力)、耐摩耗性、および耐低温脆化性に優れたタイヤト
レッド用ゴム組成物に関する。 【0002】 【従来の技術】従来、自動車の高速化に対応してタイヤ
トレッドのグリップ力を高めるために、タイヤトレッド
用ゴム組成物にはガラス転移温度の高いスチレン−ブタ
ジエン共重合体ゴムを用いたり、粒子径の小さいカーボ
ンブラックを多量に配合したりしていた。 【0003】しかしながら、この場合、グリップ力の向
上につれてタイヤトレッドの耐摩耗性が悪化し、さらに
は−10℃〜−30℃以下の温度下ではタイヤトレッドが脆
化してしまうという耐低温脆化性に問題があった。 【0004】 【発明が解決しようとする課題】本発明は、グリップ力
に優れると共に、耐摩耗性および耐低温脆化性に優れた
タイヤトレッド用ゴム組成物を提供することを目的とす
る。 【0005】 【課題を解決するための手段】本発明のタイヤトレッド
用ゴム組成物は、ガラス転移温度が−20℃〜−40℃の乳
化重合スチレン−ブタジエン共重合体ゴム(A)10〜30
重量部に対し、全体が100 重量部となるように、ガラス
転移温度が前記(A)よりも20℃〜40℃高い溶液重合ス
チレン−ブタジエン共重合体ゴム(B)およびガラス転
移温度が前記(A)よりも30℃〜50℃低い溶液重合スチ
レン−ブタジエン共重合体ゴム(C)を配合してなり、
BとCとの重量比B/Cが0.25〜1.0 であることを特徴
とする。 【0006】このように本発明では、ガラス転移温度が
それぞれ異なる3種類のスチレン−ブタジエン共重合体
ゴムを用いるために、すなわち前記(A)を中心に2種
のスチレン−ブタジエン共重合体ゴム(B)、(C)
(高ガラス転移温度/低ガラス転移温度)を配合するた
めに、グリップ力、耐摩耗性、および耐低温脆化性を共
に向上させることが可能となる。 【0007】以下、本発明の構成につき詳しく説明す
る。 ガラス転移温度が−20℃〜−40℃の乳化重合スチレ
ン−ブタジエン共重合体ゴム(A)(以下、ポリマーA
という)。このポリマーAにおいて、ガラス転移温度
(Tg) を−20℃〜−40℃としたのは、−20℃超ではゴム
組成物としてのTgが高くなりすぎるためにグリップ力は
高くなるものの耐摩耗性と耐低温脆化性が悪化し、好ま
しくなく、一方、−40℃未満では耐摩耗性および耐低温
脆化性は改良されるもののグリップ力が低下する。した
がって、本発明の目的を達するためには−20℃〜−40℃
の範囲が必要である。また、乳化重合としたのは、後述
するポリマーBとポリマーCが溶液重合であるためポリ
マーAも溶液重合であるとゴム組成物が溶液重合のSB
Rのみから構成され、十分な強度が得られないからであ
る。 【0008】 ガラス転移温度が前記(A)、すなわ
ちポリマーAよりも20℃〜40℃高い溶液重合スチレン−
ブタジエン共重合体ゴム(B)(以下、ポリマーBとい
う)。このポリマーBにおいて、ガラス転移温度(Tg)
をポリマーAよりも20℃〜40℃高いとしたのは、高くな
いと十分なグリップ力が得られないからである。また、
その差が20℃未満ではポリマーAとガラス転移温度(T
g) の差異があまりなくなるのでポリマーAとポリマー
Bが相溶化してしまいポリマーBの高いTgによる高グリ
ップ力が得られにくくなるためである。一方、その差が
40℃超ではガラス転移温度(Tg) の差異が大きくなりす
ぎてポリマーAの影響が強く発現されすぎるため耐摩耗
性や耐低温脆化性を著しく低下させる原因となってしま
う。溶液重合としたのは、このようなTgの範囲のSBR
を製造するのが乳化重合では困難であり、仮に乳化重合
で製造されたとしてもスチレンのブロック成分が多くな
り、発熱等を悪化させてしまうからである。 【0009】 ガラス転移温度が前記(A)、すなわ
ちポリマーAよりも30℃〜50℃低い溶液重合スチレン−
ブタジエン共重合体ゴム(C)(以下、ポリマーCとい
う)。このポリマーCにおいて、ガラス転移温度(Tg)
をポリマーAよりも30℃〜50℃低いとしたのは、この範
囲のSBR成分が含まれていないと耐摩耗性と耐低温脆
化性の十分な改良が得られないからである。また、その
差が30℃未満ではポリマーAとポリマーCとが相溶化し
てしまいポリマーCの低Tgによる耐摩耗性と耐低温脆化
性とが十分に改良されにくくなる。一方、その差が50℃
超では耐摩耗性と耐低温脆化性は改良されるものの高い
グリップ力を得るのが困難となる。溶液重合としたの
は、乳化重合では耐摩耗性に有効な高分子量化と狭い分
子量分布を実現するのが困難なことと本発明に規定され
たTgの範囲のSBRを製造するのに限界があるからであ
る。 【0010】 本発明のタイヤトレッド用ゴム組成物
は、ポリマーAの10〜30重量部に対し、全体が100 重量
部となるように、ポリマーBおよびポリマーCを配合し
てなる。ポリマーCに対するポリマーBの配合割合、す
なわちポリマーBとポリマーCとの重量比B/Cは、0.
25〜1.2 、好ましくは0.35〜1.0 である。ポリマーAの
配合割合を10〜30重量部としたのは、10重量部未満では
本発明の目的とする物性の改良が得られないだけでなく
引張強さが低下し好ましくなく、一方、30重量部を超え
るとグリップ力と耐摩耗性と耐低温脆化性の良好なバラ
ンスが得られないからである。また、ポリマーBとポリ
マーCとの重量比B/Cを0.25〜1.2 としたのは、0.25
未満ではグリップ力が不十分となり、1.2 を超えると耐
摩耗性と耐低温脆化性は改良されるものの反発弾性が高
くなり、グリップ力が不足するからである。本発明のゴ
ム組成物には、必要に応じて、硫黄、カーボンブラック
等の配合剤を配合することができる。 【0011】 【実施例】 実施例1〜3、比較例1〜8 表1に示す配合内容(重量部)でゴム組成物を作製し、
これを常法によって加硫することにより(加硫条件160
℃×20分) 、150mm ×150mm ×2mmの試料を調製した
(実施例1〜3、比較例1〜8)。なお、表1中、E-SB
R は乳化重合スチレン−ブタジエン共重合体ゴムを、S-
SBR は溶液重合スチレン−ブタジエン共重合体ゴムを、
Tgはガラス転移温度を、Stはスチレン含量を、VNはビニ
ル含量をそれぞれ示す。 【0012】この試料について、下記により引張強さ、
反発弾性、耐摩耗性、低温脆化温度を評価した。この結
果を表1に示す。引張強さ(kg/cm2)、反発弾性(0℃、60℃) 、低温脆化
温度(℃) :JIS K 6301に準拠する。反発弾性は数値が
小さい方がグリップ力に優れ、0℃はウエット路面で
の、60℃はドライ路面でのグリップ力に相当する。低温
脆化温度は低い方が耐低温脆化性に優れる。 【0013】耐摩耗性:ASTM D2228に準拠する。(比較
例1の摩耗量)×100 /(試料の摩耗量)で指数表示。
数値が大きい方が耐摩耗性良好。 【0014】 【表1】 【0015】注2) E-SBR-1 : Nipol 9520 (日本ゼオン株式会社製) 。 E-SBR-2 : Buna EM 1721 (ヒュルス社製) 。 E-SBR-3 : Nipol 1712 (日本ゼオン株式会社製) 。 S-SBR-3 : Tufdene 1534 (旭化成株式会社製) 。 【0016】 S-SBR-4 : Solprene 1538(日本エラストマー株式会社製) 。 BR : Nipol BR 1441(日本ゼオン株式会社製) 。 他のポリマーは試作品。 注3) ISAFカーボンブラック : ショウブラック N220 、(昭和キャボット株 式会社製) 。 老化防止剤 : (N-(1,3-ジメチルブチル)-N'-フェニル-p-フェニレン ジアミン。 加硫促進剤 : N-シクロヘキシル-2-ベンゾチアジル-スルフェンアミ ド。 比較例は、ポリマーBのポリマーCに対する比率が0.
25〜1.2 をはずれた場合であるが、低温脆化、摩耗、反
発弾性(60 ℃) のいずれかが悪化する。 【0017】比較例は、ポリマーCのTgが本発明の範
囲内よりも低い場合であるが、反発弾性が高くなってお
り、グリップ力が低下する。比較例は、ポリマーCの
Tgが本発明の範囲内よりも高い場合であるが、低温脆化
と摩耗が十分でない。比較例は、E-SBR を使用しない
場合であるが、引張強さと耐摩耗性に問題かある。 【0018】比較例は、ポリマーBのTgが本発明の範
囲内よりも低い場合であるが、反発弾性(60 ℃) が高く
なっている。比較例は、E-SBR を2種類(ポリマーB
としてS-SBR でなくE-SBR を使用)用いた場合である
が、この場合も反発弾性が高くなりすぎる。これに対
し、実施例1〜3は、反発弾性を低いままに維持し(グ
リップ力を低下させることなく)、摩耗と低温脆化の大
幅な向上を示している。 【0019】 【発明の効果】以上説明したように本発明によれば、ガ
ラス転移温度がそれぞれ異なる3種類のスチレン−ブタ
ジエン共重合体ゴムの所定量でタイヤトレッド用ゴム組
成物を構成するために、グリップ力、耐摩耗性、および
耐低温脆化性を共に向上させることが可能となる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rubber composition for a tire tread excellent in gripping force (road surface grasping force), abrasion resistance and low-temperature embrittlement resistance. 2. Description of the Related Art Conventionally, a styrene-butadiene copolymer rubber having a high glass transition temperature has been used as a rubber composition for a tire tread in order to increase the grip force of the tire tread in response to the speeding up of automobiles. Or a large amount of carbon black having a small particle size was blended. However, in this case, the wear resistance of the tire tread deteriorates as the grip force is improved, and further, the tire tread is embrittled at a temperature of -10 ° C to -30 ° C or less, and the low-temperature embrittlement resistance is low. Had a problem. SUMMARY OF THE INVENTION An object of the present invention is to provide a rubber composition for a tire tread which is excellent in gripping force and excellent in wear resistance and low-temperature embrittlement resistance. [0005] The rubber composition for a tire tread of the present invention has an emulsion-polymerized styrene-butadiene copolymer rubber (A) having a glass transition temperature of -20 ° C to -40 ° C.
The solution-polymerized styrene-butadiene copolymer rubber (B) whose glass transition temperature is higher by 20 ° C. to 40 ° C. than that of the above (A) and the glass transition temperature are the same as (B) so that the whole becomes 100 parts by weight with respect to the parts by weight. A) a solution-polymerized styrene-butadiene copolymer rubber (C) that is 30 ° C to 50 ° C lower than A),
The weight ratio B / C of B and C is 0.25 to 1.0. As described above, in the present invention, three types of styrene-butadiene copolymer rubbers having different glass transition temperatures are used, that is, two types of styrene-butadiene copolymer rubber ( B), (C)
By blending (high glass transition temperature / low glass transition temperature), it is possible to improve both the grip force, the wear resistance, and the low-temperature embrittlement resistance. Hereinafter, the configuration of the present invention will be described in detail. Emulsion-polymerized styrene-butadiene copolymer rubber (A) having a glass transition temperature of -20 ° C to -40 ° C (hereinafter referred to as polymer A
). In this polymer A, the glass transition temperature (Tg) is set to -20 ° C to -40 ° C. If the temperature exceeds -20 ° C, the Tg of the rubber composition becomes too high, so that the grip force is increased but the wear resistance is increased. On the other hand, when the temperature is lower than −40 ° C., the abrasion resistance and the low temperature embrittlement resistance are improved, but the grip strength is lowered. Therefore, in order to achieve the object of the present invention, -20 ° C to -40 ° C
Range is required. In addition, the emulsion polymerization is performed because the polymer A and the polymer C, which will be described later, are solution-polymerized.
This is because it is composed only of R, and sufficient strength cannot be obtained. Solution-polymerized styrene having a glass transition temperature of (A), that is, 20 ° C. to 40 ° C. higher than that of polymer A
Butadiene copolymer rubber (B) (hereinafter referred to as polymer B). In this polymer B, the glass transition temperature (Tg)
Is set to be higher by 20 ° C. to 40 ° C. than that of the polymer A, because if it is not high, a sufficient grip force cannot be obtained. Also,
If the difference is less than 20 ° C, polymer A and glass transition temperature (T
This is because the difference in g) is so small that the polymer A and the polymer B are compatibilized, and it is difficult to obtain a high grip force due to the high Tg of the polymer B. On the other hand, the difference
If it exceeds 40 ° C., the difference in the glass transition temperature (Tg) becomes too large, and the effect of the polymer A is too strong, which causes the wear resistance and the low-temperature embrittlement resistance to be significantly reduced. Solution polymerization was carried out in such a Tg range of SBR.
This is because it is difficult to produce styrene by emulsion polymerization, and even if it is produced by emulsion polymerization, the amount of styrene block components increases and heat generation and the like deteriorate. Solution-polymerized styrene having a glass transition temperature of (A), that is, 30 ° C. to 50 ° C. lower than that of polymer A
Butadiene copolymer rubber (C) (hereinafter referred to as polymer C). In this polymer C, the glass transition temperature (Tg)
Is 30 ° C. to 50 ° C. lower than that of the polymer A, because if the SBR component in this range is not contained, sufficient improvement in wear resistance and low-temperature embrittlement resistance cannot be obtained. If the difference is less than 30 ° C., the polymer A and the polymer C become compatible with each other, and it becomes difficult to sufficiently improve the wear resistance and the low-temperature embrittlement resistance due to the low Tg of the polymer C. On the other hand, the difference is 50 ℃
If it is more than abrasion resistance, low-temperature embrittlement resistance is improved, but it is difficult to obtain a high grip force. The solution polymerization is used because it is difficult to realize a high molecular weight effective for abrasion resistance and a narrow molecular weight distribution by emulsion polymerization, and there is a limit in producing SBR in the Tg range specified in the present invention. Because there is. [0010] The rubber composition for a tire tread of the present invention is prepared by blending a polymer B and a polymer C such that the total amount is 100 parts by weight with respect to 10 to 30 parts by weight of the polymer A. The mixing ratio of the polymer B to the polymer C, that is, the weight ratio B / C of the polymer B and the polymer C is 0.
It is 25-1.2, preferably 0.35-1.0. The reason why the mixing ratio of the polymer A is set to 10 to 30 parts by weight is that if the amount is less than 10 parts by weight, not only the improvement of the physical properties aimed at by the present invention is not obtained, but also the tensile strength decreases, which is not preferable. This is because if the ratio exceeds the part, a good balance between grip force, wear resistance and low-temperature embrittlement resistance cannot be obtained. The reason that the weight ratio B / C between the polymer B and the polymer C is 0.25 to 1.2 is 0.25 to 0.25.
If it is less than 1.2, the gripping force will be insufficient, and if it exceeds 1.2, the abrasion resistance and low-temperature embrittlement resistance will be improved, but the rebound resilience will be high and the gripping power will be insufficient. If necessary, a compounding agent such as sulfur or carbon black can be added to the rubber composition of the present invention. Examples 1 to 3 and Comparative Examples 1 to 8 Rubber compositions were prepared according to the compounding contents (parts by weight) shown in Table 1,
This is vulcanized by a conventional method (vulcanization conditions 160
(° C. × 20 minutes), and samples of 150 mm × 150 mm × 2 mm were prepared (Examples 1 to 3 and Comparative Examples 1 to 8). In Table 1, E-SB
R is an emulsion polymerized styrene-butadiene copolymer rubber, S-
SBR is a solution polymerized styrene-butadiene copolymer rubber,
Tg indicates the glass transition temperature, St indicates the styrene content, and VN indicates the vinyl content. For this sample, the tensile strength is as follows:
The rebound resilience, wear resistance, and low-temperature embrittlement temperature were evaluated. Table 1 shows the results. Tensile strength (kg / cm 2 ), rebound resilience (0 ° C, 60 ° C), low temperature embrittlement
Temperature (° C) : Conforms to JIS K 6301. The smaller the value of the rebound resilience, the better the grip force. 0 ° C. corresponds to the grip force on a wet road surface, and 60 ° C. corresponds to the grip force on a dry road surface. The lower the low-temperature embrittlement temperature, the better the low-temperature embrittlement resistance. Abrasion resistance : According to ASTM D2228. (Abrasion amount of Comparative Example 1) × 100 / (abrasion amount of sample) is indicated by an index.
The higher the value, the better the wear resistance. [Table 1] Note 2) E-SBR-1: Nipol 9520 (manufactured by Zeon Corporation). E-SBR-2: Buna EM 1721 (manufactured by Huls). E-SBR-3: Nipol 1712 (manufactured by Zeon Corporation). S-SBR-3: Tufdene 1534 (manufactured by Asahi Kasei Corporation). S-SBR-4: Solprene 1538 (manufactured by Nippon Elastomer Co., Ltd.). BR: Nipol BR 1441 (manufactured by Zeon Corporation). Other polymers are prototypes. Note 3) ISAF carbon black: Show Black N220 (manufactured by Showa Cabot Corporation). . Antioxidant: (N- (1,3- dimethylbutyl)-N'-phenyl -p- phenylene diamine vulcanization accelerator:. N-cyclohexyl-2-benzothiazyl - Surufen'ami de Comparative Example 2, the polymer B The ratio to polymer C is 0.
If it is out of the range of 25 to 1.2, any of low temperature embrittlement, abrasion and rebound resilience (60 ° C) deteriorate. Comparative Example 3 is a case where the Tg of the polymer C is lower than the range of the present invention. However, the rebound resilience is high and the grip force is low. Comparative Example 4 shows that polymer C
When Tg is higher than the range of the present invention, low-temperature embrittlement and wear are not enough. Comparative Example 5 is a case where E-SBR is not used, but has a problem in tensile strength and abrasion resistance. Comparative Example 6 is the case where the Tg of polymer B is lower than the range of the present invention, but the rebound resilience (60 ° C.) is high. In Comparative Example 7 , two types of E-SBR (polymer B
In this case, E-SBR is used instead of S-SBR), but also in this case, the rebound resilience is too high. On the other hand, Examples 1 to 3 show that the rebound resilience is kept low (without lowering the gripping force) and the wear and low-temperature embrittlement are greatly improved. As described above, according to the present invention, in order to constitute a rubber composition for a tire tread with a predetermined amount of three kinds of styrene-butadiene copolymer rubbers having different glass transition temperatures, respectively. In addition, it is possible to improve the grip force, abrasion resistance, and low-temperature embrittlement resistance together.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C08L 9/00 C08L 9/06 ──────────────────────────────────────────────────続 き Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) C08L 9/00 C08L 9/06

Claims (1)

(57)【特許請求の範囲】 【請求項1】 ガラス転移温度が−20℃〜−40℃の乳化
重合スチレン−ブタジエン共重合体ゴム(A)10〜30重
量部に対し、全体が100 重量部となるように、ガラス転
移温度が前記(A)よりも20℃〜40℃高い溶液重合スチ
レン−ブタジエン共重合体ゴム(B)およびガラス転移
温度が前記(A)よりも30℃〜50℃低い溶液重合スチレ
ン−ブタジエン共重合体ゴム(C)を配合してなり、B
とCとの重量比B/Cが0.25〜1.2 であるタイヤトレッ
ド用ゴム組成物。
(57) [Claims] [Claim 1] 100 to 100 parts by weight based on 10 to 30 parts by weight of an emulsion-polymerized styrene-butadiene copolymer rubber (A) having a glass transition temperature of -20 ° C to -40 ° C. The solution-polymerized styrene-butadiene copolymer rubber (B) having a glass transition temperature higher by 20 ° C. to 40 ° C. than the above (A) and the glass transition temperature is 30 ° C. to 50 ° C. higher than the above (A) A low solution polymerized styrene-butadiene copolymer rubber (C) is blended,
A rubber composition for a tire tread, wherein the weight ratio B / C of C and C is 0.25 to 1.2.
JP08707893A 1993-04-14 1993-04-14 Rubber composition for tire tread Expired - Fee Related JP3392456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08707893A JP3392456B2 (en) 1993-04-14 1993-04-14 Rubber composition for tire tread

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08707893A JP3392456B2 (en) 1993-04-14 1993-04-14 Rubber composition for tire tread

Publications (2)

Publication Number Publication Date
JPH06299002A JPH06299002A (en) 1994-10-25
JP3392456B2 true JP3392456B2 (en) 2003-03-31

Family

ID=13904915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08707893A Expired - Fee Related JP3392456B2 (en) 1993-04-14 1993-04-14 Rubber composition for tire tread

Country Status (1)

Country Link
JP (1) JP3392456B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3392246B2 (en) * 1995-01-06 2003-03-31 横浜ゴム株式会社 Rubber composition and method for producing the same
JP3392249B2 (en) * 1994-12-28 2003-03-31 横浜ゴム株式会社 Rubber composition and method for producing the same
JP2001214004A (en) * 2000-02-03 2001-08-07 Ohtsu Tire & Rubber Co Ltd :The Rubber composition for tire tread
JP5868250B2 (en) * 2012-04-12 2016-02-24 住友ゴム工業株式会社 Rubber composition for tread of high performance tire and pneumatic tire using the same
US10301459B2 (en) * 2016-07-19 2019-05-28 The Goodyear Tire & Rubber Company Tire with rubber tread containing a combination of styrene/butadiene elastomers and traction resins and pre-hydrophobated precipitated silica reinforcement
US11441018B2 (en) 2019-09-12 2022-09-13 The Goodyear Tire & Rubber Company Pneumatic tire having tread with three elastomers
KR102348847B1 (en) * 2020-06-01 2022-01-10 한국타이어앤테크놀로지 주식회사 Rubber composition for tire tread and tire manufactured by using the same

Also Published As

Publication number Publication date
JPH06299002A (en) 1994-10-25

Similar Documents

Publication Publication Date Title
JP4294070B2 (en) Rubber composition for tire
JP5291858B2 (en) Rubber composition and pneumatic tire using the same
JPH06271706A (en) Tread rubber composition
JP2008169314A (en) Pneumatic tire
JP3717257B2 (en) Rubber composition for tire tread
JP2008138086A (en) Rubber composition for tire tread
JP3392456B2 (en) Rubber composition for tire tread
JPH10195238A (en) Tire tread rubber composition for racing
JPH07330959A (en) Rubber composition for tire tread
JPH0598078A (en) Rubber composition for tire tread
JP2001026672A (en) Tire tread rubber composition and tire using the same
JPH0912784A (en) Rubber composition
JP5479015B2 (en) Rubber composition for tire tread and pneumatic tire
JPH05339424A (en) Rubber composition
JPH1149894A (en) Rubber composition for high-performance tire tread
JP2691426B2 (en) Rubber composition for tire tread
JPH05287126A (en) Tread rubber composition for high performance tire
JP4111765B2 (en) Rubber composition for tire tread
JPH0621192B2 (en) Vulcanized rubber composition for tire tread
JP3184249B2 (en) Rubber composition for tire tread
JP3494575B2 (en) Rubber composition for tire tread
JP2002179844A (en) Rubber composition for tire
JPH07233286A (en) Tire tread rubber composition
JP2000080204A (en) Rubber composition for tire tread and pneumatic tire using the same
JPS61133245A (en) Rubber composition for tire tread

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees