JP3391652B2 - Equipment for processing zinc-containing dust - Google Patents

Equipment for processing zinc-containing dust

Info

Publication number
JP3391652B2
JP3391652B2 JP09872397A JP9872397A JP3391652B2 JP 3391652 B2 JP3391652 B2 JP 3391652B2 JP 09872397 A JP09872397 A JP 09872397A JP 9872397 A JP9872397 A JP 9872397A JP 3391652 B2 JP3391652 B2 JP 3391652B2
Authority
JP
Japan
Prior art keywords
zinc
vacuum
processing
stirring
dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09872397A
Other languages
Japanese (ja)
Other versions
JPH10287933A (en
Inventor
裕二 岡田
敏勝 原
博彦 笹本
和弘 鈴木
好良 中谷
紀之 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Toyota Motor Corp
Aichi Steel Corp
Original Assignee
Chugai Ro Co Ltd
Toyota Motor Corp
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd, Toyota Motor Corp, Aichi Steel Corp filed Critical Chugai Ro Co Ltd
Priority to JP09872397A priority Critical patent/JP3391652B2/en
Publication of JPH10287933A publication Critical patent/JPH10287933A/en
Application granted granted Critical
Publication of JP3391652B2 publication Critical patent/JP3391652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は亜鉛含有ダストの
理設備、特に、製鋼ダスト等の亜鉛含有ダストから亜鉛
を分離回収するための処理設備に関するものである。
TECHNICAL FIELD The present invention relates to the treatment of zinc-containing dust.
The present invention relates to processing equipment , particularly processing equipment for separating and recovering zinc from zinc-containing dust such as steelmaking dust.

【0002】[0002]

【従来の技術】近年、資源を再生利用する観点から産業
廃棄物から各種金属を回収する研究が行われ、亜鉛を酸
化物の形態で含む廃棄物、例えば、製鋼ダストなどの亜
鉛含有ダストから亜鉛を回収する方法が提案されてい
る。例えば、特開平8−134557号には、製鋼ダス
トとカーボン粉末等の還元剤とを混合し、その混合物を
真空還元炉の処理容器内に充填して真空下で加熱するこ
とにより酸化亜鉛を還元するとともに蒸発させ、その蒸
気亜鉛を空気で冷却して酸化亜鉛として回収する真空還
元法が開示されている。
2. Description of the Related Art In recent years, research has been conducted to recover various metals from industrial waste from the viewpoint of recycling resources, and wastes containing zinc in the form of oxides, for example, zinc-containing dust such as steelmaking dust Have been proposed. For example, in Japanese Unexamined Patent Publication No. 8-134557, zinc oxide is reduced by mixing steelmaking dust with a reducing agent such as carbon powder, filling the mixture in a processing container of a vacuum reduction furnace, and heating it under vacuum. A vacuum reduction method is disclosed in which the vaporized zinc is evaporated and the vaporized zinc is cooled with air to be recovered as zinc oxide.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記真
空還元法では処理容器内に製鋼ダストと還元剤とを混合
した物を充填状態で加熱するため、亜鉛だけでなく製鋼
ダスト中の鉛その他の非鉄金属も同時に還元蒸発し、回
収した亜鉛中に鉛等の非鉄金属が混入するとともに、粉
体である製鋼ダストが充填状態であるため、加熱効率が
悪く回収率の低下を生じるという問題がある。しかも、
回収した亜鉛は酸化物の形態であるため、その融点が1
975℃程度と極めて高く金属亜鉛として再生するため
には多大の熱量を要するという問題もある。従って、本
発明は、製鋼ダスト中の亜鉛を高純度の金属亜鉛として
直接回収できるようにするとともに、高効率で行うこと
を技術的課題とするものである。
However, in the above-mentioned vacuum reduction method, since a mixture of steelmaking dust and a reducing agent is heated in a filling state in a processing container, not only zinc but also lead and other non-ferrous metals in steelmaking dust are heated. At the same time, the metal is also reduced and evaporated, and non-ferrous metals such as lead are mixed in the recovered zinc, and since the steelmaking dust that is powder is in a filled state, there is a problem that the heating efficiency is poor and the recovery rate decreases. Moreover,
Since the recovered zinc is in the form of oxide, its melting point is 1
There is also a problem that a very large amount of heat is required to regenerate it as metallic zinc, which is extremely high at about 975 ° C. Therefore, the present invention has a technical object to enable zinc in steelmaking dust to be directly recovered as high-purity metallic zinc and to perform it with high efficiency.

【0004】[0004]

【課題を解決するための手段】本発明は、課題を解決す
るための手段として、亜鉛含有ダスト単体を減圧下で加
熱して酸化鉄と酸化亜鉛を主体とするダストを得、得ら
れたダストを還元剤と混合し、減圧下で加熱して亜鉛を
還元蒸発させ、発生した蒸気亜鉛を真空下で冷却して金
属亜鉛とするようにしたものである。
Means for Solving the Problems As a means for solving the problems, the present invention provides a dust obtained by heating a zinc-containing dust simple substance under reduced pressure to obtain dust mainly containing iron oxide and zinc oxide. Is mixed with a reducing agent, heated under reduced pressure to reduce and evaporate zinc, and the generated vapor zinc is cooled under vacuum to form metallic zinc.

【0005】即ち、本発明は、亜鉛含有ダストの処理設
備を撹拌アームを備えた多段式炉で構成し、当該多段式
炉の各段に真空排気装置を接続すると共に、最上段に亜
鉛含有ダスト供給装置を、下段に還元剤供給装置を設
け、かつ、下段の真空排気管途中に亜鉛回収装置を設け
るようにしたものである。
That is, the present invention relates to a treatment apparatus for zinc-containing dust.
The equipment is composed of a multi-stage furnace equipped with a stirring arm, a vacuum exhaust device is connected to each stage of the multi-stage furnace, a zinc-containing dust supply device is provided in the uppermost stage, and a reducing agent supply device is provided in the lower stage, and The zinc recovery device is provided in the middle of the lower vacuum exhaust pipe.

【0006】本発明の処理設備においては、まず、亜鉛
含有ダスト単体を減圧下で加熱すると、亜鉛含有ダスト
から油分、塩素等の非金属成分と鉛等の亜鉛以外の低融
点非鉄金属が蒸発するのでこれらを除去して酸化鉄と酸
化亜鉛を主体とするダストを得、これに還元剤を混合し
て減圧下で加熱すると、酸化亜鉛が還元されて蒸発する
ので、これを真空下で冷却して凝固させることによって
金属亜鉛として回収することができる。以下、本発明
係る処理設備の一例を示す添付の図面を参照して本発明
を具体的に説明する。
In the treatment facility of the present invention, first, when zinc-containing dust alone is heated under reduced pressure, non-metal components such as oil and chlorine and low-melting non-ferrous metals other than zinc such as lead evaporate from the zinc-containing dust. Therefore, these are removed to obtain dust mainly composed of iron oxide and zinc oxide, and when this is mixed with a reducing agent and heated under reduced pressure, zinc oxide is reduced and evaporated, so cool it under vacuum. It can be recovered as metallic zinc by solidifying it. Below, in the present invention
The present invention will be described in detail with reference to the accompanying drawings showing an example of such processing equipment .

【0007】[0007]

【発明の実施の形態】図1に示す本発明に係る亜鉛含有
ダストの処理設備は、基本的には、多段式真空還元炉1
と、該真空還元炉1の各段に接続され各処理室2A、2
B、2C、2D内を真空排気する真空排気装置9A、9
B、9C、9Dと、前記真空還元炉1の最上段の処理室
2Aに亜鉛含有ダストを供給する亜鉛含有ダスト供給装
置10と、前記真空還元炉1の下段の処理室2Cに還元
剤を供給する還元剤供給装置20と、亜鉛を還元蒸発さ
せる処理室2C、2Dと、前記各真空排気装置9A、9
B、9C、9Dの排気管系に配設され該排気管内を流動
する排気ガスから金属を回収する金属回収装置33A、
33B、33C、33Dとで構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION The zinc-containing dust treatment facility according to the present invention shown in FIG. 1 is basically a multi-stage vacuum reduction furnace 1
And each processing chamber 2A, 2 connected to each stage of the vacuum reduction furnace 1
Vacuum evacuation devices 9A, 9 for evacuating the inside of B, 2C, 2D
B, 9C, 9D, a zinc-containing dust supply device 10 for supplying zinc-containing dust to the uppermost processing chamber 2A of the vacuum reducing furnace 1, and a reducing agent for the lower processing chamber 2C of the vacuum reducing furnace 1. Reducing agent supply device 20, processing chambers 2C and 2D for reducing and evaporating zinc, and the respective vacuum exhaust devices 9A and 9A
A metal recovery device 33A disposed in the exhaust pipe system B, 9C, 9D for recovering metal from the exhaust gas flowing in the exhaust pipe,
33B, 33C, 33D.

【0008】前記真空還元炉1は、炉本体2と、その内
部を複数の処理室2A、2B、2C、2Dに区画する炉
床3A、3B、3C、3Dと、前記炉本体2を貫通しそ
の中心軸と同軸に回転可能に配設された駆動軸4と、該
駆動軸4に放射状に取り付けられ各処理室2A、2B、
2C、2D内のダストを撹伴しながら炉本体2の中心部
又は周縁部側へ移動させる複数の撹拌アーム5とで構成
され、その炉壁には各処理室内を所定温度に加熱維持す
る複数の加熱手段(例えば、ラジアントチューブバーナ)
6が配設されている。また、前記駆動軸4の両端支持部
近傍から微量のN2等の不活性ガスを供給して、該駆動
軸4の駆動部に金属蒸気が付着凝固するのを防止してい
る。各処理室2A、2B、2C、2Dには、それぞれダ
ストフィルター7A、7B、7C、7D及び真空弁8
A、8B、8C、8Dを介して真空排気装置9A、9
B、9C、9Dが接続されている。前記駆動軸4はその
下端側に配設された減速機52を介して駆動モータ53
に連結されている。なお、前記真空還元炉1の各処理室
内での製鋼ダストの温度の制御は、ダスト供給位置、炉
床中央位置および排出位置にそれぞれ熱電対(図示せ
ず)を設け、各熱電対による検出温度に基づいて撹拌ア
ーム5の回転速度を制御することによって行なわれる。
The vacuum reduction furnace 1 penetrates through the furnace body 2 and the furnace floors 3A, 3B, 3C and 3D that divide the interior of the furnace body 2 into a plurality of processing chambers 2A, 2B, 2C and 2D. A drive shaft 4 rotatably arranged coaxially with the central axis, and processing chambers 2A, 2B radially attached to the drive shaft 4 and
2C and 2D, and a plurality of stirring arms 5 that move to the central portion or the peripheral portion side of the furnace body 2 while agitating the dust in the furnace body 2. Heating means (eg radiant tube burner)
6 are provided. Further, a small amount of an inert gas such as N 2 is supplied from the vicinity of the support portions of both ends of the drive shaft 4 to prevent the metal vapor from adhering and solidifying to the drive portion of the drive shaft 4. Dust filters 7A, 7B, 7C, 7D and a vacuum valve 8 are provided in each of the processing chambers 2A, 2B, 2C, 2D.
A vacuum exhaust device 9A, 9 through A, 8B, 8C, 8D
B, 9C and 9D are connected. The drive shaft 4 is driven by a drive motor 53 via a speed reducer 52 arranged at the lower end side.
Are linked to. The temperature of the steelmaking dust in each processing chamber of the vacuum reduction furnace 1 is controlled by providing thermocouples (not shown) at the dust supply position, the hearth center position, and the discharge position, and detecting the temperature by each thermocouple. The rotation speed of the stirring arm 5 is controlled based on the above.

【0009】亜鉛含有ダストは、後述の亜鉛含有ダスト
供給装置10により炉本体2の側壁部から最上段の処理
室2Aに供給され、撹拌アーム5により撹拌されつつ最
上段の炉床3Aの中心部に向かって移動し、その中央部
に設けた貫通口と駆動軸との間の連通路2aを通って次
段の炉床3Bの中央部に供給され、そこから撹拌アーム
5により撹拌されつつ炉床3Bの周縁部に向かって移動
し、炉床3Bの周縁部に設けた連通路2bを通って還元
剤供給用フィーダ27の前部27aに供給され、そこで
還元剤と混合された後、次段の炉床3Cに供給される。
以後は同様にして炉床3Cの周縁部から中央部へ次いで
次段の炉床3Dの中央部から周縁部へと撹拌されながら
移動して、最下段の炉床3Dの周縁部に設けた排出口2
dを経て残査として炉外へ排出される。この排出口2d
には収容室50a、50bを含むホッパーが配設され、
真空仕切弁51a、51b、51cでそれぞれ遮断可能
にしてある。排出の際には、まず、真空仕切弁51bが
閉の状態で真空仕切弁51aを開いて所定量の残査を排
出口2dから上部収容室50aに供給し、真空仕切弁5
1aを閉じて上部収容室50aを排出口2dから遮断し
た後、真空仕切弁51bを開いて上部収容室50a内の
残査を下部収容室50bに供給し、次いで前記真空仕切
弁51bを閉じて上部収容室50aと下部収容室50b
とを遮断した後、真空切替弁51cを開いて下部収容室
50b内の残査を炉外へ排出される。なお、図示の炉で
は4段式真空還元炉を採用しているが、これに限定され
るものではなく、2段、3段或は5段以上の炉床を有す
る真空還元炉を使用できることは言うまでもない。
The zinc-containing dust is supplied from the side wall of the furnace main body 2 to the uppermost processing chamber 2A by a zinc-containing dust supply device 10 described later, and is agitated by a stirring arm 5 while the central part of the uppermost furnace floor 3A. To the center of the next-stage hearth 3B through the communication passage 2a between the through-hole provided in the center and the drive shaft, and from there, the furnace is stirred by the stirring arm 5 It moves toward the peripheral portion of the floor 3B, is supplied to the front portion 27a of the reducing agent supply feeder 27 through the communication passage 2b provided in the peripheral portion of the hearth 3B, and after being mixed with the reducing agent there, It is supplied to the stage hearth 3C.
Thereafter, similarly, the furnace moves from the peripheral portion of the hearth 3C to the central portion and then from the central portion of the next-stage hearth 3D to the peripheral portion while being agitated, and the discharge provided at the peripheral portion of the lowermost hearth 3D is performed. Exit 2
After d, it is discharged outside the furnace as a residue. This outlet 2d
Is provided with a hopper including storage chambers 50a and 50b,
The vacuum sluice valves 51a, 51b and 51c can be shut off respectively. When discharging, first, the vacuum sluice valve 51b is closed and the vacuum sluice valve 51a is opened to supply a predetermined amount of residue to the upper storage chamber 50a through the discharge port 2d.
After closing 1a to shut off the upper accommodation chamber 50a from the outlet 2d, the vacuum sluice valve 51b is opened to supply the residue in the upper accommodation chamber 50a to the lower sac chamber 50b, and then the vacuum sluice valve 51b is closed. Upper accommodation chamber 50a and lower accommodation chamber 50b
After shutting off, the vacuum switching valve 51c is opened and the residue in the lower storage chamber 50b is discharged to the outside of the furnace. Although the illustrated furnace employs a four-stage vacuum reduction furnace, the present invention is not limited to this, and a vacuum reduction furnace having a two-stage, three-stage, or five-stage or higher hearth can be used. Needless to say.

【0010】前記亜鉛含有ダスト供給装置10は、基本
的には図2に示すように、第1ホッパー11、第1スク
リューフィーダ12、第2ホッパー13及び第2スクリ
ューフィーダ14で構成されている。前記第2ホッパー
13は、上部収容室13a、中間収容室13b及び下部
収容室13cからなり、その上部収容室13aと中間収
容室13bの間及び中間収容室13bと下部収容室13
cとの間には、前記真空仕切弁51a、51b、51c
と同様な真空仕切弁(図示せず)がそれぞれ配設され、そ
の中間収容室13bはバグフィルタ15及び真空弁16
を介して真空排気装置17に接続され、下部収容室13
cは真空弁18を介して真空排気装置19に接続されて
いる。
The zinc-containing dust supplying device 10 is basically composed of a first hopper 11, a first screw feeder 12, a second hopper 13 and a second screw feeder 14, as shown in FIG. The second hopper 13 is composed of an upper storage chamber 13a, an intermediate storage chamber 13b and a lower storage chamber 13c, and the space between the upper storage chamber 13a and the intermediate storage chamber 13b and between the intermediate storage chamber 13b and the lower storage chamber 13b.
between the vacuum sluice valves 51a, 51b and 51c.
Vacuum sluice valves (not shown) similar to the above are respectively arranged, and the intermediate storage chamber 13b has a bag filter 15 and a vacuum valve 16 respectively.
Connected to the vacuum exhaust device 17 via the
c is connected to a vacuum exhaust device 19 via a vacuum valve 18.

【0011】亜鉛含有ダストは亜鉛含有ダスト供給装置
10の第一ホッパー11に投入され、その下端に連結さ
れた第1スクリューフィーダ12により搬送され、第2
ホッパー13の上部収容室13aに供給される。上部収
容室13a内の亜鉛含有ダストは上部中間収容室13
a、13bの間の真空切換弁を開として中間収容室13
bに供給され、前記真空切替弁を閉じ両者を遮断され
る。次いで、真空排気装置17、19により中間収容室
13bと下部収容室13cとを真空排気した後、中間収
容室13bと下部収容室13c間の真空切替弁を開とし
て中間収容室13b内の亜鉛含有ダストが下部収容室1
3bに供給される。以後、上部収容室13aに供給され
た亜鉛含有ダストは、各真空仕切弁の開閉により所定量
づつ下方の下部収容室13cに供給され、そこから第2
スクリューフィーダ14により側壁部から最上段の処理
室2Aに供給される。
The zinc-containing dust is thrown into the first hopper 11 of the zinc-containing dust supply device 10, conveyed by the first screw feeder 12 connected to the lower end of the first hopper 11, and then fed to the second hopper.
It is supplied to the upper storage chamber 13a of the hopper 13. The zinc-containing dust in the upper accommodation chamber 13a is
The vacuum switching valve between a and 13b is opened to open the intermediate storage chamber 13
b, the vacuum switching valve is closed, and both are shut off. Then, after vacuum-evacuating the intermediate storage chamber 13b and the lower storage chamber 13c by the vacuum exhaust devices 17 and 19, the vacuum switching valve between the intermediate storage chamber 13b and the lower storage chamber 13c is opened to contain zinc in the intermediate storage chamber 13b. Dust is in the lower chamber 1
3b. After that, the zinc-containing dust supplied to the upper storage chamber 13a is supplied to the lower storage chamber 13c below by a predetermined amount by opening and closing each vacuum sluice valve, and then from the second storage chamber 13c.
It is supplied from the side wall portion to the uppermost processing chamber 2A by the screw feeder 14.

【0012】前記還元剤供給装置20は、基本的には図
3に示すように、第1ホッパー21、還元剤移送手段2
2、乾燥装置23、粉砕機24、第2ホッパー25、予
熱装置26及び還元剤供給用スクリューフィーダ27で
構成され、前記還元剤移送手段22はバケットコンベア
22A及びスクリューフィーダ22Bとからなり、第1
ホッパー21に投入された還元剤をバケットコンベア2
2Aで上方に持上げてスクリューフィーダ22Bに搬送
し、該スクリューフィーダ22Bにより乾燥装置23に
供給するようにしてある。乾燥装置23の排出端に接続
された粉砕機24は乾燥により固まった還元剤を粉砕し
て第2ホッパー25に供給するようにしてある。第2ホ
ッパー25は、上部収容室25a、中間収容室25b及
び下部収容室25cからなり、上部収容室25aと中間
収容室25bとの間及び中間収容室25bと下部収容室
25cとの間にはそれぞれ真空仕切弁(図示せず)が配設
されている。第2ホッパー25の中間収容室25bはバ
グフィルタ28及び真空弁29を介して真空排気装置3
0に接続され、下部収容室25cは真空弁31を介して
真空排気装置32に接続されている。
The reducing agent supply device 20 basically has a first hopper 21 and a reducing agent transfer means 2 as shown in FIG.
2, a drying device 23, a crusher 24, a second hopper 25, a preheating device 26 and a reducing agent supply screw feeder 27, and the reducing agent transfer means 22 comprises a bucket conveyor 22A and a screw feeder 22B.
The reducing agent charged in the hopper 21 is transferred to the bucket conveyor 2
2A is lifted up and conveyed to the screw feeder 22B, and is supplied to the drying device 23 by the screw feeder 22B. The crusher 24 connected to the discharge end of the drying device 23 crushes the reducing agent hardened by drying and supplies it to the second hopper 25. The second hopper 25 includes an upper storage chamber 25a, an intermediate storage chamber 25b, and a lower storage chamber 25c, and between the upper storage chamber 25a and the intermediate storage chamber 25b and between the intermediate storage chamber 25b and the lower storage chamber 25c. A vacuum gate valve (not shown) is arranged in each case. The intermediate storage chamber 25b of the second hopper 25 is evacuated to the vacuum exhaust device 3 via the bag filter 28 and the vacuum valve 29.
0, and the lower storage chamber 25c is connected to a vacuum exhaust device 32 via a vacuum valve 31.

【0013】前記金属回収装置33A、33B、33
C、33Dは、各真空排気装置9A、9B、9C、9D
の排気系に設けられ、図4に示すように、それぞれ水冷
式回転ローラ34および該回転ローラ34の表面に付着
した金属を掻き取るスクレーパ35とで構成され、ロー
ラ表面から掻き取られた金属を回収する回収装置ホッパ
ー38は真空仕切弁37を介して金属回収装置33A、
33B、33C、33Dの排出管36に接続されてい
る。前記回転ローラ34はその軸心が真空排気装置9の
排気管の軸線上にそれと直行して配設され、その表面を
その内部に供給される冷却水Wにより冷却される。この
冷却水Wは回転ローラ34を回転駆動する駆動軸Sの一
端側から供給され、その他端側から回転ローラ外に排出
される。前記各回収装置ホッパー38はフィルタその他
の除塵器39及び真空弁40を介して真空排気装置41
に接続されている。なお、図面の簡明化のため、金属回
収装置33B及び33Cに接続された各回収装置ホッパ
ー38の排気系統については、最上段と最下段の金属回
収装置33A及び33Dに接続された排気系統と同一構
成であるので、除塵器39、真空弁40及び真空排気装
置41は省略してある。
The metal recovery devices 33A, 33B, 33
C and 33D are vacuum exhaust devices 9A, 9B, 9C and 9D.
As shown in FIG. 4, the exhaust system is provided with a water-cooled rotary roller 34 and a scraper 35 for scraping metal adhered to the surface of the rotary roller 34, respectively. The collecting device hopper 38 for collecting is provided with a metal collecting device 33A via a vacuum gate valve 37,
It is connected to the discharge pipe 36 of 33B, 33C, 33D. The axis of the rotary roller 34 is arranged on the axis of the exhaust pipe of the vacuum exhaust device 9 so as to be orthogonal thereto, and the surface thereof is cooled by the cooling water W supplied therein. The cooling water W is supplied from one end side of the drive shaft S that rotationally drives the rotating roller 34, and is discharged from the other end side to the outside of the rotating roller. Each of the recovery device hoppers 38 has a vacuum exhaust device 41 through a dust remover 39 such as a filter and a vacuum valve 40.
It is connected to the. In addition, for simplification of the drawings, the exhaust system of each recovery device hopper 38 connected to the metal recovery devices 33B and 33C is the same as the exhaust system connected to the uppermost and lowermost metal recovery devices 33A and 33D. Since it has a configuration, the dust remover 39, the vacuum valve 40, and the vacuum exhaust device 41 are omitted.

【0014】前記構成の本発明に係る処理設備による亜
鉛含有ダストの処理は、次のように実施することができ
る。亜鉛含有ダストとして製鋼ダストを処理する場合を
例に挙げて説明すると、まず、多段式真空還元炉1の各
処理室2A、2B、2C、2D内は、それぞれ真空排気
装置9A、9B、9C、9Dによって数Torr〜10
−2Torrに調整されると共に、加熱手段6によって最上
段と二段目の処理室2A、2B内は約900℃に、三段
目と四段目の処理室2C、2D内は約950℃に調整さ
れる。
A sub-system using the processing equipment according to the present invention having the above structure
The treatment of lead-containing dust can be carried out as follows . The case where steelmaking dust is treated as zinc-containing dust will be described as an example. First, in each of the processing chambers 2A, 2B, 2C, and 2D of the multistage vacuum reduction furnace 1, vacuum exhaust devices 9A, 9B, and 9C, Number Torr-10 by 9D
The temperature is adjusted to -2 Torr, and by the heating means 6, the insides of the uppermost and second processing chambers 2A and 2B are set to about 900 ° C, and the third and fourth processing chambers 2C and 2D are set to about 950 ° C. Adjusted to.

【0015】この状態で、製鋼ダストは亜鉛含有ダスト
供給装置10のスクリューフィーダ14によって真空還
元炉1の側壁部から最上段の処理室2Aに水平方向に供
給される。なお、水平供給することにより供給時におけ
るダストの炉内飛散が防止される。最上段の処理室2A
に投入された製鋼ダストは、撹拌アーム5により撹拌さ
れながら炉床3Aの中央側へ移動し、その過程で600
〜700℃に加熱された後、最上段の炉床3Aの連通路
2aを経て二段目の処理室2Bに移行する。最上段での
加熱中、製鋼ダスト中の油分、フッ素、塩素等の非金属
成分が気化すると共に、鉛の一部が蒸発気化するが、こ
れらは排ガスとして真空排気装置9Aの作用により処理
室2Aから金属回収部33Aに送られる。金属回収部3
3Aに吸引された排ガスが水冷式回転ローラ34に当た
ると、排ガス中の鉛が回転ローラ34の表面で冷却され
て凝固しその表面に付着堆積するが、この鉛は回転ロー
ラによってスクレーパ側に搬送され、スクレーパ35に
より掻き落とされて回収装置ホッパー38で回収され
る。排ガスは、公知のトラップ装置(図示せず)により
フッ素、塩素等を除去された後、大気に放出される。
In this state, the steelmaking dust is horizontally supplied from the side wall of the vacuum reduction furnace 1 to the uppermost processing chamber 2A by the screw feeder 14 of the zinc-containing dust supply device 10. The horizontal supply prevents dust from scattering in the furnace during supply. Uppermost processing chamber 2A
Steelmaking dust introduced into the furnace moves to the center of the hearth 3A while being stirred by the stirring arm 5, and 600
After being heated to ˜700 ° C., it is transferred to the second stage processing chamber 2B through the communication path 2a of the uppermost hearth 3A. During heating in the uppermost stage, oil, fluorine, chlorine and other non-metal components in the steelmaking dust are vaporized, and part of lead is vaporized and vaporized. Sent to the metal recovery unit 33A. Metal recovery unit 3
When the exhaust gas sucked into 3A hits the water-cooled rotary roller 34, the lead in the exhaust gas is cooled on the surface of the rotary roller 34 and solidifies and adheres and deposits on the surface. The lead is conveyed to the scraper side by the rotary roller. , Scraped by the scraper 35 and collected by the collecting device hopper 38. The exhaust gas is released to the atmosphere after removing fluorine, chlorine and the like by a known trap device (not shown).

【0016】二段目の処理室2Bに移行した製鋼ダスト
は、撹拌アーム5により撹拌されながら炉床3B上をそ
の中央部から周縁部に向かって移動し、約900℃に加
熱される。この過程でも製鋼ダスト中の鉛が蒸発気化
し、排ガスとして真空排気装置9Bの作用により処理室
2Bから金属回収部33Bに送られ、最上段の処理室2
Aの場合と同様にして鉛が回収され、排ガスは適当な排
ガス処理を施して非金属成分を除去した後、大気に放出
される。
The steel-making dust transferred to the second-stage processing chamber 2B moves on the hearth 3B from the central portion toward the peripheral portion while being stirred by the stirring arm 5, and is heated to about 900.degree. In this process as well, lead in the steelmaking dust is vaporized and vaporized, and is sent as exhaust gas from the processing chamber 2B to the metal recovery unit 33B by the action of the vacuum exhaust device 9B, and the uppermost processing chamber 2 is discharged.
Lead is recovered in the same manner as in case A, the exhaust gas is subjected to an appropriate exhaust gas treatment to remove non-metallic components, and then released to the atmosphere.

【0017】二段目の炉床3Bの周縁部に達した製鋼ダ
ストは、その底部に設けた連通路2bを介して還元剤供
給用スクリューフィーダ27の前部27aに供給され
る。なお、前記連通路2bは、操業時においては製鋼ダ
クトが充満した状態となるので、処理室2B、2C内で
の発生ガス等が各処理室2B、2Cに侵入することはな
い。そして、前記製鋼ダクトは搬送中に還元剤と混合さ
れて三段目の処理室2Cに供給される。なお、この還元
剤は、乾燥装置23で水分が除去され、予熱装置26で
約420℃に加熱される。次いで、製鋼ダストは、撹拌
アーム5により撹拌されつつ炉床3C上をその周縁部か
ら中央部に向かって移動し、更に900〜950℃に加
熱される。この際、製鋼ダスト中の亜鉛酸化物は、還元
剤の作用により還元されると共に蒸発し、この亜鉛蒸気
は排ガスとして真空排気装置9Cの作用により処理室2
Cから金属回収部33Cに吸引される。金属回収部33
Cに吸引された排ガスは水冷式回転ローラ34に衝突し
て冷却されて、排ガス中の亜鉛蒸気が回転ローラ34の
表面で凝固し、その表面に付着堆積する。この付着堆積
物(金属亜鉛)は回転ローラ34が一回転する間にスク
レーバ35により掻き落とされ、回収装置ホッパーに収
容される。
The steel-making dust reaching the peripheral portion of the second-stage hearth 3B is supplied to the front portion 27a of the reducing agent supply screw feeder 27 through a communication passage 2b provided at the bottom thereof. Since the communication passage 2b is filled with the steelmaking duct during operation, the gas generated in the processing chambers 2B and 2C does not enter the processing chambers 2B and 2C. Then, the steelmaking duct is mixed with the reducing agent during transportation and supplied to the processing chamber 2C of the third stage. The reducing agent is dehydrated by the drying device 23 and heated to about 420 ° C. by the preheating device 26. Next, the steelmaking dust moves from the peripheral portion toward the central portion on the hearth 3C while being stirred by the stirring arm 5, and is further heated to 900 to 950 ° C. At this time, the zinc oxide in the steelmaking dust is reduced and evaporated by the action of the reducing agent, and this zinc vapor is used as exhaust gas by the action of the vacuum evacuation device 9C and the processing chamber 2
It is sucked from C to the metal recovery unit 33C. Metal recovery unit 33
The exhaust gas sucked by C collides with the water-cooled rotary roller 34 and is cooled, and zinc vapor in the exhaust gas is solidified on the surface of the rotary roller 34 and adheres and deposits on the surface. The attached deposit (metal zinc) is scraped off by the scraper 35 while the rotating roller 34 makes one rotation, and is stored in the recovery device hopper.

【0018】一方、処理室2Cの中央部に撹拌されなが
ら移動した製鋼ダストは、炉床3Cに設けた連通路2c
を経て四段目の処理室2Dに移動し、そこで撹拌アーム
5により撹拌されながら炉床3D上をその中央部から周
縁部に向かって移動する。この処理室2D内は900〜
950℃の範囲内の温度に維持されているため、製鋼ダ
スト中の残部の亜鉛が蒸発し、排ガスとして真空排気装
置9Dの作用により処理室2Dから金属回収部33Dに
送られ、三段目の処理室33Cの場合と同様にして回収
される。
On the other hand, the steelmaking dust moved to the central portion of the processing chamber 2C while being agitated is the communication passage 2c provided in the hearth 3C.
Through the processing chamber 2D of the fourth stage, and while being stirred by the stirring arm 5 there, it moves on the hearth 3D from the central portion toward the peripheral portion. The inside of this processing chamber 2D is 900-
Since the temperature is maintained within the range of 950 ° C., the remaining zinc in the steelmaking dust evaporates and is sent as exhaust gas from the processing chamber 2D to the metal recovery unit 33D by the action of the vacuum exhaust device 9D, and the third stage It is recovered as in the case of the processing chamber 33C.

【0019】[0019]

【実施例】亜鉛含有ダストとしてFe,Mn,Cr,N
i,Pb,Zn及びClを含み、含水率0.1%以下、
Zn含有量20%、Pb 含有量3%を含有し、かさ密
度0.8〜0.9、粒度100μ以下の製鋼ダストを、還
元剤としてホットスカーファ(FeO、含水率:7〜1
0%、かさ密度:2.5 〜 3.0、粒度:3mm以
下)をそれぞれ用い、前記装置により処理した。回収さ
れたZnの純度93%以上で、処理後ダスト中のZn含
有量は平均0.5%以下であった。
[Example] Fe, Mn, Cr, N as zinc-containing dust
i, Pb, Zn and Cl are included, the water content is 0.1% or less,
Steel scar with Zn content of 20%, Pb content of 3%, bulk density of 0.8 to 0.9 and grain size of 100 μ or less is used as a reducing agent for hot scarfer (FeO, water content: 7-1).
0%, bulk density: 2.5 to 3.0, particle size: 3 mm or less), and treated by the above apparatus. The recovered Zn had a purity of 93% or more, and the Zn content in the treated dust was 0.5% or less on average.

【0020】[0020]

【発明の効果】以上の説明から明らかなように、本発明
は、亜鉛含有ダスト単体を減圧下で加熱して亜鉛以外の
非鉄金属及び非金属成分を除去し、その残留ダストを還
元剤と混合して減圧下で加熱して亜鉛を還元蒸発させ、
発生した蒸気亜鉛を真空下で冷却して亜鉛を凝固させる
ようにしたので、還元前に鉛その他の非鉄金属や非金属
成分の大部分が除去され、従って、回収した金属亜鉛が
不純物を含まず、純度の高い亜鉛を回収できる。また、
減圧下での加熱を撹拌しながら行うので、高効率で均一
な処理ができ、回収装置により回収金属が自動的に回収
されるため、金属取出しのために真空還元炉を停止する
必要はなく、連続操業できるなど、優れた効果が得られ
る。
As is apparent from the above description, according to the present invention, a simple substance containing zinc is heated under reduced pressure to remove non-ferrous metals and non-metallic components other than zinc, and the residual dust is mixed with a reducing agent. And heated under reduced pressure to reduce and evaporate zinc,
Since the generated steam zinc was cooled in a vacuum to solidify the zinc, most of lead and other non-ferrous metals and non-metallic components were removed before reduction, and thus the recovered metallic zinc contained no impurities. , High-purity zinc can be recovered. Also,
Since heating under reduced pressure is performed while stirring, highly efficient and uniform processing can be performed, and since the recovered metal is automatically recovered by the recovery device, it is not necessary to stop the vacuum reduction furnace for metal extraction, Excellent effects such as continuous operation can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る亜鉛含有ダストの処理設備の構
成図。
FIG. 1 is a configuration diagram of a zinc-containing dust processing facility according to the present invention.

【図2】 図1の亜鉛含有ダスト処理設備における亜鉛
含有ダスト供給装置の構成図。
FIG. 2 is a configuration diagram of a zinc-containing dust supply device in the zinc-containing dust processing facility of FIG.

【図3】 図1の亜鉛含有ダスト処理設備における還元
剤供給装置の構成図。
FIG. 3 is a configuration diagram of a reducing agent supply device in the zinc-containing dust treatment facility of FIG. 1.

【図4】 図1の亜鉛含有ダスト処理設備における金属
回収装置の構成図。
FIG. 4 is a configuration diagram of a metal recovery device in the zinc-containing dust treatment facility of FIG. 1.

【符号の説明】[Explanation of symbols]

1: 多段式真空還元炉 2: 炉本体 2A、2B、2C、2D: 処理室 3A、3B、3C、3D: 炉床 4: 駆動軸 5: 撹拌アーム 6: 加熱手段(バーナ) 9A、9B、9C、9D: 真空排気装置 10: 亜鉛含有ダスト供給装置 20: 還元剤供給装置 33A、33B、33C、33D: 金属回収装置 1: Multi-stage vacuum reduction furnace 2: Main body of furnace 2A, 2B, 2C, 2D: Processing room 3A, 3B, 3C, 3D: Hearth 4: Drive shaft 5: Stirring arm 6: Heating means (burner) 9A, 9B, 9C, 9D: Vacuum exhaust device 10: Zinc-containing dust supply device 20: Reductant supply device 33A, 33B, 33C, 33D: Metal recovery device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 裕二 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 原 敏勝 愛知県東海市荒尾町ワノ割1番地 愛知 製鋼株式会社内 (72)発明者 笹本 博彦 愛知県東海市荒尾町ワノ割1番地 愛知 製鋼株式会社内 (72)発明者 鈴木 和弘 愛知県豊田市鴻ノ巣町3丁目33番地 ト ヨキン株式会社内 (72)発明者 中谷 好良 大阪府大阪市西区京町堀2丁目4番7号 中外炉工業株式会社内 (72)発明者 野村 紀之 大阪府大阪市西区京町堀2丁目4番7号 中外炉工業株式会社内 (56)参考文献 特開 平9−202927(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22B 1/00 - 61/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuji Okada 1 Toyota-cho, Toyota-shi, Aichi Toyota Motor Co., Ltd. (72) Inventor Toshikatsu Hara 1 Wano-wari, Arao-cho, Tokai-shi, Aichi Aichi Steel Co., Ltd. (72) Inventor Hirohiko Sasamoto 1 Wanowari, Arao-cho, Tokai-shi, Aichi Aichi Steel Co., Ltd. (72) Inventor Kazuhiro Suzuki 3-33 Konosu-cho, Toyota-shi, Aichi Toyokin Co., Ltd. (72) Inventor Nakatani Good, 2-4-7 Kyomachibori, Nishi-ku, Osaka-shi, Osaka Prefecture Chugai Furnace Industry Co., Ltd. (72) Noriyuki Nomura, 2-4-7, Kyomachibori, Nishi-ku, Osaka-shi, Osaka Prefecture (56) Reference: JP-A-9-202927 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C22B 1/00 -61/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 内部を複数の処理室に多段に区画する複
数の炉床を備えた炉本体と、前記炉本体の各段に接続さ
れ各処理室内を真空排気する真空排気装置と、前記炉本
体の最上段の処理室に亜鉛含有ダストを供給する被処理
材供給装置と、前記各処理室内の被処理材を攪拌する攪
拌手段と、前記炉本体の下段側の処理室に還元剤を供給
する還元剤供給装置と、前記各処理室から真空排気装置
への各排気管系に配設された金属回収装置とからなり、
前記攪拌手段が、炉本体を貫通して回転可能に配設され
た駆動軸と、該駆動軸に取り付けられ各処理室内の被処
理材を攪拌しながら所定方向へ移動させる攪拌アームと
からなり、前記各炉床が前記攪拌アームにより攪拌移動
させられる被処理材を下段側の処理室へ供給する連通路
を備えてなることを特徴とする亜鉛含有ダストの処理設
備。
1. A plurality of processing chambers are divided into a plurality of processing chambers in multiple stages.
Furnace body with several hearths and connected to each stage of the furnace body
A vacuum exhaust device for vacuum exhausting each processing chamber, and the furnace book
Supply of zinc-containing dust to the uppermost treatment chamber of the body
A material supply device and a stirrer for stirring the material to be processed in each of the processing chambers.
Supplying a reducing agent to the stirring means and the processing chamber on the lower side of the furnace body
Reducing agent supply device and vacuum exhaust device from each processing chamber
And a metal recovery device installed in each exhaust pipe system to
The stirring means is rotatably arranged to penetrate the furnace body.
Drive shaft and the processing target in each processing chamber attached to the drive shaft.
A stirring arm that moves the material in a predetermined direction while stirring it
And each of the hearths is moved by stirring by the stirring arm.
Communication passage for supplying the processed material to the lower processing chamber
Zinc-containing dust treatment equipment characterized by comprising
Be prepared.
【請求項2】 前記炉本体がその側壁に前記各処理室内
を所定温度に加熱維持する加熱手段を備え、適宜の段の
炉床に温度検出器が配設されている、請求項1に記載の
処理設備。
2. The furnace body is provided on a side wall of each of the processing chambers.
Equipped with heating means for heating and maintaining
The temperature detector is arranged in the hearth according to claim 1.
Processing equipment.
JP09872397A 1997-04-16 1997-04-16 Equipment for processing zinc-containing dust Expired - Fee Related JP3391652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09872397A JP3391652B2 (en) 1997-04-16 1997-04-16 Equipment for processing zinc-containing dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09872397A JP3391652B2 (en) 1997-04-16 1997-04-16 Equipment for processing zinc-containing dust

Publications (2)

Publication Number Publication Date
JPH10287933A JPH10287933A (en) 1998-10-27
JP3391652B2 true JP3391652B2 (en) 2003-03-31

Family

ID=14227449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09872397A Expired - Fee Related JP3391652B2 (en) 1997-04-16 1997-04-16 Equipment for processing zinc-containing dust

Country Status (1)

Country Link
JP (1) JP3391652B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2200717B1 (en) * 2000-12-29 2005-05-01 Fundacion, Leia Centro De Desarrollo Tecnologico PROCEDURE FOR THE ELIMINATION AND RECOVERY OF THE CINC CONTAINED IN COMPACT GALVANIZED CHATARRA, AS WELL AS CORRESPONDING INSTALLATION.
WO2002053789A1 (en) * 2000-12-29 2002-07-11 Fundación, Leia Centro De Desarrollo Tecnológico Method for eliminating and recovering zinc contained in compacted galvanized scrap and corresponding facility

Also Published As

Publication number Publication date
JPH10287933A (en) 1998-10-27

Similar Documents

Publication Publication Date Title
US5735933A (en) Method for processing metallic waste
US4191559A (en) Skim removal
JPH0380851B2 (en)
JP3339638B2 (en) Method and apparatus for removing lead and zinc from casting dust
JPS6011093B2 (en) Method and apparatus for treating scum and molten dross resulting from melting and remelting equipment
JP3391652B2 (en) Equipment for processing zinc-containing dust
JP2002241850A (en) Method for removing zinc in zinc-containing iron oxide using rotary kiln
DE60017808T2 (en) METHOD FOR TREATING PANEL SLAG
RU2285048C2 (en) Method of production of iron-nickel alloys and nickel from oxide materials and plant for realization of this method
JP2869853B2 (en) Induction heating dezincing equipment
JP2014513202A (en) How to treat aluminum slag
US4033760A (en) Aluminum dross recovery method
WO2003020989A1 (en) High temperature metal recovery process
CN101395287A (en) Waste material processing oven and method
JP2012112021A (en) Recovering method and recovering device
JP3093067B2 (en) Method and apparatus for removing zinc from galvanized steel sheet waste
JPH0816248B2 (en) Vacuum evaporation recovery method
JPH1150165A (en) Recovery of zinc from iron-making dust
JP2002153835A (en) Method for treating heavy metal-containing salts
JP2528388B2 (en) Method and apparatus for continuously cleaning solid surface
JPH108153A (en) Vacuum heat treatment apparatus for powdery and granular material
CN115747510A (en) Crude zinc purification process
JPH08134556A (en) Treatment of metal-containing waste
JP2679101B2 (en) How to load sinter into the blast furnace
JPH1017949A (en) Vacuum heat treating device of powder and granular material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120124

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees