JP3391615B2 - Air-fuel ratio control system diagnostic device - Google Patents

Air-fuel ratio control system diagnostic device

Info

Publication number
JP3391615B2
JP3391615B2 JP33297995A JP33297995A JP3391615B2 JP 3391615 B2 JP3391615 B2 JP 3391615B2 JP 33297995 A JP33297995 A JP 33297995A JP 33297995 A JP33297995 A JP 33297995A JP 3391615 B2 JP3391615 B2 JP 3391615B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
value
fuel
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33297995A
Other languages
Japanese (ja)
Other versions
JPH09170472A (en
Inventor
明 石田
益生 瀧川
達矢 中村
典宏 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Honda Motor Co Ltd
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP33297995A priority Critical patent/JP3391615B2/en
Publication of JPH09170472A publication Critical patent/JPH09170472A/en
Application granted granted Critical
Publication of JP3391615B2 publication Critical patent/JP3391615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃エンジンの燃
料噴射制御方式のガソリンエンジンに係り、特にニュー
ラルネットワークを応用してエンジンの空燃比を制御す
る制御システムの診断装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection control type gasoline engine for an internal combustion engine, and more particularly to a diagnostic device for a control system for controlling an air-fuel ratio of the engine by applying a neural network.

【0002】[0002]

【従来の技術】従来空燃比制御は、02センサやリニア
空燃比センサによるフィードバック制御が一般に行われ
ており、アイドル時などの定常運転域で特に成果を納め
ている。また、加減速などの過渡状態においては、燃料
の増量補正、減量補正をしているが、噴射した燃料が吸
気管壁面や吸気バルブなどに付着、もしくはそこから蒸
発してくる燃料があるために、加減速時などの過渡状態
においては、空燃比を正確に目標値に制御することはで
きない。
2. Description of the Related Art In conventional air-fuel ratio control, feedback control using a 0 2 sensor or a linear air-fuel ratio sensor is generally performed, and the result has been particularly achieved in a steady operation range such as during idling. In addition, in the transient state such as acceleration / deceleration, the fuel increase correction and the fuel decrease correction are performed, but the injected fuel adheres to the intake pipe wall surface or intake valve, or there is fuel that evaporates from there. In a transient state such as during acceleration / deceleration, the air-fuel ratio cannot be accurately controlled to the target value.

【0003】そこで、特開平3−235723号公報に
示すように、上記燃料付着等の非線形要素をニューラル
ネットワーク(以後NNと略す)により学習させ、過渡
時の応答性能の向上を図ろうとしている。
Therefore, as disclosed in Japanese Unexamined Patent Publication No. 3-235723, an attempt is made to improve the response performance during a transition by learning a non-linear element such as fuel adhesion by a neural network (hereinafter abbreviated as NN).

【0004】[0004]

【発明が解決しようとする課題】前記NNは、入力層へ
の各入力値に対し、予め学習している結合係数を掛け合
わせ、中間層、出力層へと進むフィードフォワード演算
であり、入力値を与えるセンサ等が劣化もしくは故障な
どを起こした場合、NNの出力値である状態推定値の精
度が保証されず、システムとして正常な挙動を行うこと
が出来なくなってしまう。そこで、本発明は、NNを用
いた空燃比制御システムにおいて、NNが正常動作して
いるのかを判定し、且つ異常の場合、システムの中でど
こが故障もしくは劣化しているのかを知らせる空燃比制
御システム診断装置を提供することを目的とする。
The NN is a feedforward operation for multiplying each input value to the input layer by a coupling coefficient that has been learned in advance and proceeding to the intermediate layer and the output layer. If a sensor or the like that gives a deterioration or failure occurs, the accuracy of the estimated state value, which is the output value of the NN, is not guaranteed, and the system cannot operate normally. Therefore, the present invention, in an air-fuel ratio control system using an NN, determines whether the NN is operating normally, and, in the case of an abnormality, an air-fuel ratio control that informs where in the system the failure or deterioration has occurred. An object is to provide a system diagnostic device.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、以下の構成とする。
In order to solve the above-mentioned problems, the following constitution is adopted.

【0006】図1に示すように、内燃エンジン10の運
転状態を検出する状態検出センサ群11と、吸入空気量
を検出する空気量検出センサ群12と、機関の排気系集
合部に於ける空燃比を検出する空燃比センサ13と、前
記各センサ出力値と、予め設定されたデータ群14よ
り、燃料噴射量を演算する燃料演算手段15と、前記燃
料演算手段15で算出された燃料量を各気筒に噴射する
燃料噴射手段16を有する内燃エンジンの空燃比制御シ
ステムに於て、前記センサ群(11、12、13)の各
検出値と、前記燃料噴射量が、ニューラルネットワーク
(NN)の入力項となるように変換する変換手段17
と、前記変換手段17により変換された各値を入力項と
し、集合部排気空燃比の予測推定値を運転状態に応じて
出力する空燃比推定手段18と、前記空燃比センサ13
出力値とストイキ値(理論空燃比)との誤差の絶対値が
ある設定値以下のとき比較指令信号を出す比較指令信号
発生手段19と、前記比較指令信号を受けて、前記空燃
比推定手段18の出力値である空燃比予測推定値と前記
空燃比センサ13出力値との偏差の絶対値がある設定値
以上の時、空燃比センサ13以外のNN入力項の内どれ
かのセンサに関して故障もしくは個体バラツキが許容値
以上バラツイていると判断し、結果を信号として出す不
具合判断手段110を有するものである。
As shown in FIG. 1, a state detection sensor group 11 for detecting an operating state of the internal combustion engine 10, an air amount detection sensor group 12 for detecting an intake air amount, and an empty space in an exhaust system collecting portion of the engine. An air-fuel ratio sensor 13 that detects a fuel ratio, a fuel calculation unit 15 that calculates a fuel injection amount from the sensor output values and a preset data group 14, and a fuel amount calculated by the fuel calculation unit 15 In an air-fuel ratio control system for an internal combustion engine having fuel injection means 16 for injecting into each cylinder, each detected value of the sensor group (11, 12, 13) and the fuel injection amount are in a neural network (NN). Conversion means 17 for converting to become an input term
And an air-fuel ratio estimating means 18 that outputs the predicted estimated value of the exhaust gas air-fuel ratio of the collecting portion in accordance with the operating condition, using each value converted by the converting means 17 as an input term, and the air-fuel ratio sensor 13.
Comparison command signal generation means 19 for issuing a comparison command signal when the absolute value of the error between the output value and the stoichiometric value (theoretical air-fuel ratio) is less than a set value, and the air-fuel ratio estimation means 18 for receiving the comparison command signal. When the absolute value of the deviation between the estimated value of the air-fuel ratio which is the output value of the air-fuel ratio sensor and the output value of the air-fuel ratio sensor 13 is greater than or equal to a certain set value, some of the NN input terms other than the air-fuel ratio sensor 13 have a failure or It has a failure determination means 110 that determines that individual variations are more than an allowable value and outputs the result as a signal.

【0007】[0007]

【発明の実施の形態】本発明によれば、量産時に於ける
システム最終チェックとして、個体バラツキが許容値以
内であるかどうか等の不具合を簡単に判定することが出
来る。また、走行中にセンサの劣化や故障を診断するこ
とができ、整備点検が必要であることをドライバーに知
らせることが出来る。
According to the present invention, a defect such as whether or not individual variation is within an allowable value can be easily determined as a system final check during mass production. In addition, it is possible to diagnose deterioration or failure of the sensor during traveling and notify the driver that maintenance or inspection is required.

【0008】空燃比制御システムに於て、予測空燃比を
出力するニューロの推定精度が悪い場合、即ち、ニュー
ロ出力である予測空燃比と空燃比センサ出力値との間に
定常バイアス等が載るとき、もともと推定精度が悪い領
域なのか、ニューロの入力層への入力値に問題があるの
か判断することが出来なかった。そこで、以下の構成と
する事により、システムとしての不具合を見つけること
ができる。
In the air-fuel ratio control system, when the estimation accuracy of the neuro that outputs the predicted air-fuel ratio is poor, that is, when a steady bias or the like is present between the predicted air-fuel ratio which is the neuro output and the air-fuel ratio sensor output value. , It was not possible to judge whether the estimation accuracy was originally in a bad area or there was a problem in the input value of the neuro input layer. Therefore, with the following configuration, it is possible to find a malfunction in the system.

【0009】図1に、本発明第1の一実施の形態に於け
る車両制御装置のブロック構成図を示す。
FIG. 1 shows a block diagram of a vehicle control device according to a first embodiment of the present invention.

【0010】内燃エンジン10の運転状態を検出する状
態検出センサ群11と、吸入空気量を検出する空気量検
出センサ群12と、機関の排気系集合部に於ける空燃比
(A/F)を検出する空燃比センサ13と、前記各セン
サ出力値と、予め設定されたデータ群14より、燃料噴
射量を演算する燃料演算手段15と、前記燃料演算手段
15で算出された燃料量を各気筒に噴射する燃料噴射手
段16を有する内燃エンジンの空燃比制御システムに於
て、前記センサ群(11、12、13)の各検出値と、
前記燃料噴射量が、ニューラルネットワーク(NN)の
入力項となるように変換する変換手段17と、前記変換
手段17により変換された各値を入力項とし、集合部排
気空燃比の予測推定値を出力とするニューロ演算を行
い、運転状態に応じて予測空燃比(A/FNN)を推定す
る空燃比推定手段18と、前記空燃比センサ13出力
(A/F)値とストイキ値(理論空燃比A/Fs=14.7)
との誤差の絶対値(|A/FーA/Fs|)がある設定値
α(例えばα=0.02)以下のとき比較指令信号Sc
を出す比較指令信号発生手段19と、前記比較指令信号
Scを受けて、前記空燃比推定手段18の出力値である
空燃比予測推定値(A/FNN)と前記空燃比センサ13
出力値(A/F)との偏差の絶対値(|A/FNN-A/
F|)がある設定値β(例えばβ=1)以上の時、空燃
比センサ13以外のNN入力項の内どれかのセンサに関
して故障もしくは個体バラツキが許容値以上バラツイて
いると判断し、その結果を信号Ss1として出す不具合
判断手段110を有するものである。
The state detection sensor group 11 for detecting the operating state of the internal combustion engine 10, the air amount detection sensor group 12 for detecting the intake air amount, and the air-fuel ratio (A / F) in the exhaust system collecting portion of the engine are shown. An air-fuel ratio sensor 13 that detects the fuel, a fuel calculation unit 15 that calculates a fuel injection amount based on each sensor output value and a preset data group 14, and a fuel amount calculated by the fuel calculation unit 15 in each cylinder. In an air-fuel ratio control system for an internal combustion engine having a fuel injection means 16 for injecting into each of the detected values, each detected value of the sensor group (11, 12, 13),
A conversion means 17 for converting the fuel injection amount to be an input term of a neural network (NN), and each value converted by the conversion means 17 are used as input terms to predict a predicted value of the exhaust gas air-fuel ratio of the collective portion. An air-fuel ratio estimating means 18 for performing a neuro calculation as an output and estimating a predicted air-fuel ratio (A / FNN) according to an operating state, an output (A / F) value of the air-fuel ratio sensor 13 and a stoichiometric value (theoretical air-fuel ratio). A / Fs = 14.7)
When the absolute value of the error (| A / FA-A / Fs |) is less than or equal to a set value α (eg, α = 0.02), the comparison command signal Sc
Receiving the comparison command signal Sc and the air-fuel ratio estimation estimated value (A / FNN) which is the output value of the air-fuel ratio estimating means 18, and the air-fuel ratio sensor 13.
Absolute value of deviation from output value (A / F) (| A / FNN-A /
When F |) is greater than or equal to a certain set value β (for example, β = 1), it is determined that any one of the NN input terms other than the air-fuel ratio sensor 13 has a failure or individual variation is more than an allowable value, and It has a failure determination means 110 which outputs the result as a signal Ss1.

【0011】ここで、前記空燃比推定手段18で用いる
ニューラルネットワークは、個体バラツキの中心値を示
す各センサを用いて学習したものを結合係数として演算
される。また、前記設定値βの設定方法としては、燃料
噴射のためのインジェクタのバラツキや各センサのバラ
ツキに於ける許容値以上の値を、それぞれ単独で与えた
場合の空燃比予測推定値(A/FNN)と前記空燃比セン
サ13出力値(A/F)との偏差の絶対値を測定し、そ
の最小値を設定すればよい。また、各センサの最大バラ
ツキ値を与えた場合の空燃比予測推定値(A/FNN)と
前記空燃比センサ13出力値(A/F)との偏差の絶対
値の大きさを知ることにより、異常センサの特定に役立
てることが出来る。
Here, the neural network used in the air-fuel ratio estimating means 18 is calculated by using a learning coefficient obtained by using each sensor indicating the center value of individual variation as a coupling coefficient. In addition, as the method of setting the set value β, the air-fuel ratio prediction estimated value (A / A) when a value which is equal to or more than an allowable value in the variation of the injector for fuel injection and the variation of each sensor is given individually The absolute value of the deviation between the FNN) and the output value (A / F) of the air-fuel ratio sensor 13 may be measured and the minimum value may be set. Further, by knowing the magnitude of the absolute value of the deviation between the air-fuel ratio prediction estimated value (A / FNN) and the air-fuel ratio sensor 13 output value (A / F) when the maximum variation value of each sensor is given, It can be used to identify the abnormality sensor.

【0012】図7に、本発明の動作をフローにて説明す
る。まず、ステップ71でエンジンスタートした後、ス
テップ72で各センサ値および燃料噴射両Gfを読み込
む。ステップ73で各センサ値およびGfをニューロ入
力項となるように変換し、ステップ74でニューロ演算
を行い予測空燃比A/FNNを算出する。次に、ステップ
75で空燃比センサ出力値である実空燃比A/Fが理論
空燃比A/Fsであるかどうか判定し、理論空燃比でな
ければステップ72へ戻る。理論空燃比であると判定し
た場合、比較指令信号Scを出す。この信号を受けてス
テップ76に進み、推定誤差(A/FNN−A/F)の絶
対値の平均値Esafを算出し、ステップ77により許容
値と比較する。ここで、Esafが許容範囲内であればス
テップ72へ戻り、範囲外のときは、ステップ78で空
燃比センサ以外のニューロ入力項センサの劣化もしくは
故障であると判定され、不具合判定信号Ss1を出し、
例えばステップ79のようにドライバーに整備・点検を
促すランプを点灯させるか、もしくはニューロによる補
正を中断させる。
FIG. 7 is a flow chart for explaining the operation of the present invention. First, after starting the engine in step 71, each sensor value and both fuel injection Gf are read in step 72. In step 73, each sensor value and Gf are converted so as to become a neuro input term, and in step 74, the neuro calculation is performed to calculate the predicted air-fuel ratio A / FNN. Next, at step 75, it is judged if the actual air-fuel ratio A / F which is the output value of the air-fuel ratio sensor is the theoretical air-fuel ratio A / Fs, and if it is not the theoretical air-fuel ratio, the routine returns to step 72. When the stoichiometric air-fuel ratio is determined, the comparison command signal Sc is issued. Receiving this signal, the routine proceeds to step 76, where the average value Esaf of the absolute values of the estimation error (A / FNN-A / F) is calculated, and at step 77 it is compared with the allowable value. Here, if Esaf is within the allowable range, the process returns to step 72, and if it is outside the range, it is determined at step 78 that the neuro input term sensor other than the air-fuel ratio sensor is deteriorated or malfunctions, and the defect determination signal Ss1 is issued. ,
For example, as in step 79, a lamp that urges the driver to perform maintenance or inspection is turned on, or correction by the neuron is interrupted.

【0013】以上の構成とすることにより、システムで
用いているセンサなどの不具合を検出することが出来
る。
With the above configuration, it is possible to detect a defect in the sensor or the like used in the system.

【0014】尚、ステップ76、77で推定誤差の絶対
値の平均値を取り判断したが、範囲外の回数をカウント
するような構成で判断するようにしてもよい。
Although the average value of the absolute values of the estimation error is determined in steps 76 and 77, the determination may be performed by a configuration in which the number of times out of the range is counted.

【0015】また、以下の構成とすることにより、空燃
非センサの経年変化による劣化を運転中に判定すること
ができ、もしくは製造時に空燃比センサの個体バラツキ
が許容範囲外あることをチェックすることができる。
Further, with the following configuration, deterioration of the air-fuel non-sensor due to aging can be judged during operation, or it is checked at the time of manufacturing that the individual variation of the air-fuel ratio sensor is out of the allowable range. be able to.

【0016】図2に、本発明第2の一実施の形態に於け
る車両制御装置のブロック構成図を示す。
FIG. 2 shows a block diagram of a vehicle control device according to a second embodiment of the present invention.

【0017】内燃エンジン10の運転状態を検出する状
態検出センサ群11と、吸入空気量を検出する空気量検
出センサ群12と、機関の排気系集合部に於ける空燃比
(A/F)を検出する空燃比センサ13と、前記各セン
サ出力値と、予め設定されたデータ群14より、燃料噴
射量を演算する燃料演算手段15と、前記燃料演算手段
15で算出された燃料量を各気筒に噴射する燃料噴射手
段16を有する内燃エンジンの空燃比制御システムに於
て、前記センサ群(11、12、13)の各検出値と、
前記燃料噴射量が、ニューラルネットワーク(NN)の
入力項となるように変換する変換手段17と、前記変換
手段17により変換された各値を入力項とし、集合部排
気空燃比の予測推定値を出力とするニューロ演算を行
い、運転状態に応じて予測空燃比(A/FNN)を推定す
る空燃比推定手段18と、前記空燃比センサ13出力
(A/F)値とストイキ値(理論空燃比A/Fs=14.7)
との誤差の絶対値(|A/FーA/Fs|)がある設定値
α(例えばα=0.02)以下のとき比較指令信号Sc
を出す比較指令信号発生手段19と、前記比較指令信号
Scを受けて、前記空燃比推定手段18の出力値である
空燃比予測推定値(A/FNN)と前記空燃比センサ13
出力値(A/F)との偏差の絶対値(|A/FNN-A/
F|)がある設定値γ(例えばγ=0.02)以下で、
且つ、前記比較指令信号Scが発生していないときに、
前記空燃比推定手段18の出力値である空燃比予測推定
値と前記空燃比センサ13出力値との偏差の絶対値があ
る設定値ε(例えばε=1)以上のとき、前記空燃比セ
ンサの劣化が起こっている、もしくは個体バラツキが許
容値以上バラツイていると判定し信号Ss2を出す空燃
比センサ判定手段21を有するものである。
The state detection sensor group 11 for detecting the operating state of the internal combustion engine 10, the air amount detection sensor group 12 for detecting the intake air amount, and the air-fuel ratio (A / F) in the exhaust system collecting portion of the engine are shown. An air-fuel ratio sensor 13 that detects the fuel, a fuel calculation unit 15 that calculates a fuel injection amount based on each sensor output value and a preset data group 14, and a fuel amount calculated by the fuel calculation unit 15 in each cylinder. In an air-fuel ratio control system for an internal combustion engine having a fuel injection means 16 for injecting into each of the detected values, each detected value of the sensor group (11, 12, 13),
A conversion means 17 for converting the fuel injection amount to be an input term of a neural network (NN), and each value converted by the conversion means 17 are used as input terms to predict a predicted value of the exhaust gas air-fuel ratio of the collective portion. An air-fuel ratio estimating means 18 for performing a neuro calculation as an output and estimating a predicted air-fuel ratio (A / FNN) according to an operating state, an output (A / F) value of the air-fuel ratio sensor 13 and a stoichiometric value (theoretical air-fuel ratio). A / Fs = 14.7)
When the absolute value of the error (| A / FA-A / Fs |) is less than or equal to a set value α (eg, α = 0.02), the comparison command signal Sc
Receiving the comparison command signal Sc and the air-fuel ratio estimation estimated value (A / FNN) which is the output value of the air-fuel ratio estimating means 18, and the air-fuel ratio sensor 13.
Absolute value of deviation from output value (A / F) (| A / FNN-A /
F |) is below a certain set value γ (eg γ = 0.02),
Moreover, when the comparison command signal Sc is not generated,
When the absolute value of the deviation between the estimated value of the air-fuel ratio which is the output value of the air-fuel ratio estimating means 18 and the output value of the air-fuel ratio sensor 13 is a set value ε (eg ε = 1) or more, the air-fuel ratio sensor The air-fuel ratio sensor determination means 21 outputs a signal Ss2 when it is determined that the deterioration is occurring or the individual variation is more than an allowable value.

【0018】ここで、前記空燃比推定手段18で用いる
ニューラルネットワークは、個体バラツキの中心値を示
す各センサを用いて学習したものを結合係数として演算
される。また、前記設定値εの設定方法としては、空燃
比センサのバラツキに於ける許容値以上の値を与えた場
合の空燃比予測推定値(A/FNN)と前記空燃比センサ
13出力値(A/F)との偏差の絶対値を測定し、その
値を設定すればよい。
Here, the neural network used in the air-fuel ratio estimating means 18 is calculated by using a learning coefficient obtained by using each sensor indicating the center value of individual variation as a coupling coefficient. Further, as the setting method of the set value ε, the estimated value of the air-fuel ratio (A / FNN) and the output value (A of the air-fuel ratio sensor 13 when the value more than the allowable value in the variation of the air-fuel ratio sensor is given. The absolute value of the deviation from / F) may be measured and the value may be set.

【0019】図8に、本発明の動作をフローにて説明す
る。まず、ステップ71でエンジンスタートした後、ス
テップ72で各センサ値および燃料噴射両Gfを読み込
む。ステップ73で各センサ値およびGfをニューロ入
力項となるように変換し、ステップ74でニューロ演算
を行い予測空燃比A/FNNを算出する。次に、ステップ
75で空燃比センサ出力値である実空燃比A/Fが理論
空燃比A/Fsであるかどうか判定し、理論空燃比であ
ると判定した場合、比較指令信号Scを出す。この信号
を受けてステップ76に進み、推定誤差(A/FNN−A
/F)の絶対値の平均値Esafを算出し、ステップ77
により許容値と比較する。ここで、Esafが許容範囲内
であればステップ81へ、範囲外のときはステップ82
へ進み、それぞれEフラグをセットおよびリセットし、
ステップ72へ戻る。次にステップ75で空燃比センサ
出力値である実空燃比A/Fが理論空燃比A/Fsであ
るかどうか判定し、理論空燃比でなければステップ83
へ進み、Eフラグがセットされているかどうか判定し、
セットされていなければステップ72へ戻り、セットさ
れていればステップ84へ進む。ステップ84では、推
定誤差(A/FNN−A/F)の絶対値の平均値Eafを算
出し、ステップ85により許容値と比較する。ここで、
Eafが許容範囲内であればステップ72へ戻り、範囲外
のときは、ステップ86で空燃比センサの劣化もしくは
特性バラツキが大であると判定され、不具合判定信号S
s2を出し、例えばステップ79のようにドライバーに
整備・点検を促すランプを点灯させるか、もしくはニュ
ーロによる補正を中断させる。
FIG. 8 is a flow chart showing the operation of the present invention. First, after starting the engine in step 71, each sensor value and both fuel injection Gf are read in step 72. In step 73, each sensor value and Gf are converted so as to become a neuro input term, and in step 74, the neuro calculation is performed to calculate the predicted air-fuel ratio A / FNN. Next, at step 75, it is judged whether the actual air-fuel ratio A / F which is the output value of the air-fuel ratio sensor is the theoretical air-fuel ratio A / Fs, and when it is judged that it is the theoretical air-fuel ratio, the comparison command signal Sc is issued. Receiving this signal, the process proceeds to step 76, where the estimation error (A / FNN-A
/ F) calculates the average value Esaf of the absolute values of
Compare with the allowable value. Here, if Esaf is within the allowable range, go to step 81, and if it is out of the range, step 82.
To set and reset the E flag,
Return to step 72. Next, at step 75, it is judged if the actual air-fuel ratio A / F which is the output value of the air-fuel ratio sensor is the stoichiometric air-fuel ratio A / Fs.
Go to, determine if the E flag is set,
If it is not set, the process returns to step 72, and if it is set, the process proceeds to step 84. In step 84, the average value Eaf of the absolute values of the estimation error (A / FNN-A / F) is calculated, and in step 85, it is compared with the allowable value. here,
If Eaf is within the allowable range, the process returns to step 72. If it is out of the range, it is determined in step 86 that the air-fuel ratio sensor is deteriorated or the characteristic variation is large, and the failure determination signal S
s2 is issued, and a lamp urging the driver to perform maintenance / inspection is turned on, for example, as in step 79, or correction by the neuro is interrupted.

【0020】以上の構成とすることにより、システムで
用いている空燃比センサの不具合を検出することが出
来、製造工程時のチェックや走行中のセンサ交換時期の
警告を行うことができる。
With the above-mentioned structure, it is possible to detect a defect in the air-fuel ratio sensor used in the system, and it is possible to perform a check during the manufacturing process and give a warning about the sensor replacement time during running.

【0021】尚、ステップ84、85で推定誤差の絶対
値の平均値を取り判断したが、範囲外の回数をカウント
するような構成で判断するようにしてもよい。
Although the average value of the absolute values of the estimation errors is determined in steps 84 and 85, the determination may be made by counting the number of times out of the range.

【0022】更に、以下の構成とすることにより、各気
筒別の不具合チェックを行うことが可能となる。
Further, with the following configuration, it is possible to check the malfunction for each cylinder.

【0023】図3に、本発明第3の一実施の形態に於け
る車両制御装置のブロック構成図を示す。
FIG. 3 shows a block diagram of a vehicle control device according to a third embodiment of the present invention.

【0024】内燃エンジン10の運転状態を検出する状
態検出センサ群11と、吸入空気量を検出する空気量検
出センサ群12と、機関の排気系集合部に於ける空燃比
(A/F)を検出する空燃比センサ13と、前記各セン
サ出力値と、予め設定されたデータ群14より、燃料噴
射量を演算する燃料演算手段15と、前記燃料演算手段
15で算出された燃料量を各気筒に噴射する燃料噴射手
段16を有する内燃エンジンの空燃比制御システムに於
て、前記センサ群(11、12、13)の各検出値と、
前記燃料噴射量が、ニューラルネットワーク(NN)の
入力項となるように変換する変換手段17と、前記変換
手段17により変換された各値を入力項とし、集合部排
気に対する気筒別排気の混合率(例えば4気筒エンジン
ではC1,C2,C3,C4)を運転状態に応じて出力
する排気混合率推定手段31と、前記変換手段17によ
り変換された各値をNN入力項とし、前記排気混合率推
定手段31の出力値である気筒別排気混合率を用いて、
各気筒別空燃比(λ1,λ2,λ3,λ4)を出力とす
る気筒別空燃比推定手段32と、前記気筒別空燃比推定
手段32の出力値を用いて、各気筒の空燃比が目標空燃
比となるように燃料噴射補正量を算出する制御補正量算
出手段33と、前記燃料演算手段15により算出された
燃料噴射量と前記燃料噴射補正量を加算した値をエンジ
ンに噴射する燃料噴射手段16と、前記気筒別空燃比推
定手段32の出力値である気筒別空燃比と前記排気混合
率推定手段31の出力である気筒別排気混合率より集合
部の空燃比予測推定値(A/FNN)を算出する集合部空
燃比算出手段34と、前記空燃比センサ13出力値とス
トイキ値(理論空燃比)との誤差の絶対値がある設定値
以下のとき比較指令信号Scを出す比較指令信号発生手
段19と、前記比較指令信号Scを受けて、前記集合部
空燃比算出手段34の出力である集合部空燃比(A/F
NN)と前記空燃比センサ13出力値(A/F)との偏差
の絶対値が特定の気筒の排気混合率が最も大きいタイミ
ングの時のみ、ある設定値以上の時、その対応する気筒
のインジェクタのバラツキが大であるか、点火プラグの
異常などによる不具合が生じていることを判断し結果を
信号として出す気筒別不具合判断手段35を有するもの
である。
The state detection sensor group 11 for detecting the operating state of the internal combustion engine 10, the air amount detection sensor group 12 for detecting the intake air amount, and the air-fuel ratio (A / F) in the exhaust system collecting portion of the engine are shown. An air-fuel ratio sensor 13 that detects the fuel, a fuel calculation unit 15 that calculates a fuel injection amount based on each sensor output value and a preset data group 14, and a fuel amount calculated by the fuel calculation unit 15 in each cylinder. In an air-fuel ratio control system for an internal combustion engine having a fuel injection means 16 for injecting into each of the detected values, each detected value of the sensor group (11, 12, 13),
A conversion unit 17 for converting the fuel injection amount into an input term of a neural network (NN), and each value converted by the conversion unit 17 as an input term. (For example, in a four-cylinder engine, C1, C2, C3, C4) is output according to the operating state, and an exhaust gas mixture ratio estimating means 31 and each value converted by the converting means 17 are used as NN input terms. Using the cylinder-by-cylinder exhaust gas mixture ratio, which is the output value of the estimation means 31,
By using the cylinder-by-cylinder air-fuel ratio estimating means 32 which outputs the cylinder-by-cylinder air-fuel ratio (λ1, λ2, λ3, λ4) and the output value of the cylinder-by-cylinder air-fuel ratio estimating means 32, the air-fuel ratio of each cylinder is set to the target air-fuel ratio. A control correction amount calculation means 33 for calculating a fuel injection correction amount so as to obtain a fuel ratio, and a fuel injection means for injecting into the engine a value obtained by adding the fuel injection amount calculated by the fuel calculation means 15 and the fuel injection correction amount. 16, the estimated air-fuel ratio (A / FNN) of the collecting portion based on the individual cylinder air-fuel ratio which is the output value of the individual cylinder air-fuel ratio estimating means 32 and the individual cylinder exhaust gas mixture ratio which is the output of the exhaust gas mixture ratio estimating means 31. ), And a comparison command signal that outputs a comparison command signal Sc when the absolute value of the error between the output value of the air-fuel ratio sensor 13 and the stoichiometric value (theoretical air-fuel ratio) is less than a set value. Generating means 19 and the comparison finger In response to the command signal Sc, the collecting portion air-fuel ratio (A / F) output from the collecting portion air-fuel ratio calculating means 34 is output.
NN) and the output value (A / F) of the air-fuel ratio sensor 13 is greater than a certain set value only at the timing when the exhaust gas mixture ratio of a specific cylinder is the maximum, and the injector of the corresponding cylinder The cylinder-by-cylinder defect determining means 35 for determining whether there is a large variation or a defect due to an abnormality of the spark plug and outputting the result as a signal is provided.

【0025】図4は、4気筒エンジンの場合の、各気筒
の排気ガスに対する集合部空燃比への影響度合い(C
1,C2,C3,C4)を模式的に表した図である。
FIG. 4 shows the degree of influence (C) of the exhaust gas of each cylinder on the air-fuel ratio of the collecting portion in the case of a four-cylinder engine.
1, C2, C3, C4) is a diagram schematically showing.

【0026】図5に、この排気混合率(C1,C2,C
3,C4)を推定する排気混合率推定手段31で用いら
れるニューラルネットワーク(NN)の結合係数の学習
方法を示す。集合部の空燃比λcpは、排気混合率および
各気筒の空燃比を用いて以下の関係式で表すことができ
る。
FIG. 5 shows this exhaust gas mixture ratio (C1, C2, C
3, C4) for estimating the coupling coefficient of the neural network (NN) used in the exhaust gas mixture ratio estimating means 31. The air-fuel ratio λcp of the collecting portion can be expressed by the following relational expression using the exhaust gas mixture ratio and the air-fuel ratio of each cylinder.

【0027】[0027]

【数1】 [Equation 1]

【0028】ここで、C1>C2>C3>C4 λ1、λ2、λ3、λ4はそれぞれの混合率に応じた気
筒の空燃比である。
Here, C1>C2>C3> C4 λ1, λ2, λ3, λ4 are the air-fuel ratios of the cylinders corresponding to the respective mixing ratios.

【0029】よって、図5のように排気混合率(C1,
C2,C3,C4)を出力とするNNを構成し、集合部
空燃比を教師信号Tλcpとし、
Therefore, as shown in FIG. 5, the exhaust gas mixture ratio (C1,
C2, C3, C4) is configured as an output, and the air-fuel ratio of the collecting portion is set as a teacher signal Tλcp,

【0030】[0030]

【数2】 [Equation 2]

【0031】となるように、So that

【0032】[0032]

【数3】 [Equation 3]

【0033】が、小さくなるよう、NNの結合係数を学
習していく。この学習方法として、様々な方法がある
が、例えばバックプロパゲーション法などにより学習を
進めることができる。
However, the NN coupling coefficient is learned so that it becomes smaller. There are various learning methods, and the learning can be performed by, for example, the back propagation method.

【0034】次に、気筒別排気混合率(C1,C2,C
3,C4)を用いて、各気筒別空燃比(λ1,λ2,λ
3,λ4)を出力とする気筒別空燃比推定手段32で用
いられる、ニューラルネットワーク(NN2)の結合係
数の学習方法について図6を用いて説明する。
Next, the exhaust gas mixture ratio for each cylinder (C1, C2, C
3, C4), the air-fuel ratio for each cylinder (λ1, λ2, λ
3, the method of learning the coupling coefficient of the neural network (NN2), which is used in the cylinder-by-cylinder air-fuel ratio estimating means 32 that outputs (λ4), will be described with reference to FIG.

【0035】図6のように各気筒別空燃比(λ1,λ
2,λ3,λ4)を出力とするNN2を構成し、集合部
空燃比を教師信号Tλcpとし、前期排気混合率推定手段
31で用いられるニューラルネットワーク(NN1)の
出力である排気混合率を用い、
As shown in FIG. 6, the air-fuel ratio for each cylinder (λ1, λ
2, λ3, λ4) as an output, the collecting portion air-fuel ratio is used as a teacher signal Tλcp, and the exhaust gas mixture ratio which is the output of the neural network (NN1) used in the exhaust gas mixture ratio estimating means 31 is used.

【0036】[0036]

【数4】 [Equation 4]

【0037】となるように、So that

【0038】[0038]

【数5】 [Equation 5]

【0039】が、小さくなるよう、NNの結合係数を学
習していく。ここで、(数4)で用いられる排気混合率
(C1’,C2’,C3’,C4’)は、NN1の出力
である排気混合率(C1,C2,C3,C4)を各気筒
に対応して与えて演算する。これにより、運転状態に応
じて各気筒の排気空燃比を推定するニューラルネットワ
ークNN2を学習させることができる。
However, the NN coupling coefficient is learned so that it becomes smaller. Here, the exhaust gas mixture ratio (C1 ′, C2 ′, C3 ′, C4 ′) used in (Equation 4) corresponds to the exhaust gas mixture ratio (C1, C2, C3, C4) which is the output of NN1 for each cylinder. Then, give and calculate. As a result, the neural network NN2 that estimates the exhaust air-fuel ratio of each cylinder according to the operating state can be learned.

【0040】以上の学習により、精度の良い気筒別空燃
比が推定することが可能となり、この気筒別空燃比を用
いて、集合部空燃比算出手段34により、集合部の空燃
比予測推定値(A/FNN)を算出でき、比較指令信号発
生手段19の比較指令信号Scを受けて、前記集合部空
燃比算出手段34の出力である集合部空燃比(A/FN
N)と前記空燃比センサ13出力値(A/F)との偏差
の絶対値が特定の気筒の排気混合率が最も大きいタイミ
ング時のみに、ある設定値以上の大きくずれるとき、そ
の対応する気筒のインジェクタのバラツキが大である
か、点火プラグの異常などによる不具合が生じていると
判断でき、気筒別の不具合判断を正確に行うことが可能
となる。
By the above learning, it is possible to accurately estimate the cylinder-by-cylinder air-fuel ratio, and by using this cylinder-by-cylinder air-fuel ratio, the collective-part air-fuel ratio calculating means 34 estimates the predicted value of the collective-part air-fuel ratio ( A / FNN) can be calculated, and in response to the comparison command signal Sc of the comparison command signal generating means 19, the collecting part air-fuel ratio (A / FN) output from the collecting part air-fuel ratio calculating means 34.
N) and the output value (A / F) of the air-fuel ratio sensor 13 deviates more than a certain set value only at the timing when the exhaust gas mixture ratio of the specific cylinder is the largest, the corresponding cylinder It can be determined that there is a large variation in the injectors or there is a defect due to an abnormality in the spark plug, and it is possible to accurately make a defect determination for each cylinder.

【0041】[0041]

【発明の効果】以上のように本発明によれば、ニューラ
ルネットワークにより運転状態に応じた排気管集合部空
燃比を推定する空燃比推定手段18の出力を用いた不具
合判断手段110により、推定誤差(A/FNN−A/
F)の絶対値の平均値Esafを算出し、許容値と比較す
ることにより、空燃比センサ以外のニューロ入力項セン
サの劣化もしくは故障であると不具合判定信号Ss1を
出すことができ、例えばドライバーに整備・点検を促す
ランプを点灯させるか、もしくはニューロによる補正を
中断させることが可能となる。以上により、システムで
用いているセンサなどの不具合を検出することが出来
る。
As described above, according to the present invention, the estimation error is caused by the malfunction judging means 110 using the output of the air-fuel ratio estimating means 18 for estimating the exhaust pipe collecting portion air-fuel ratio according to the operating state by the neural network. (A / FNN-A /
By calculating the average value Esaf of the absolute values of F) and comparing it with the allowable value, it is possible to issue a defect determination signal Ss1 to indicate that the neuro input term sensor other than the air-fuel ratio sensor has deteriorated or failed. It is possible to turn on a lamp that calls for maintenance or inspection, or to stop correction by neuro. As described above, it is possible to detect a malfunction of the sensor used in the system.

【0042】また、空燃比センサ判定手段21により、
推定誤差(A/FNN−A/F)の絶対値の平均値Eafを
算出し許容値と比較することにより、空燃比センサの劣
化もしくは特性バラツキが大であると判定でき、不具合
判定信号Ss2を出し例えばドライバーに整備・点検を
促すランプを点灯させるか、もしくはニューロによる補
正を中断させることが可能となる。以上により、システ
ムで用いている空燃比センサの不具合を検出することが
出来、製造工程時のチェックや走行中のセンサ交換時期
の警告を行うことができる。
Further, by the air-fuel ratio sensor determination means 21,
By calculating the average value Eaf of the absolute values of the estimation error (A / FNN-A / F) and comparing it with the allowable value, it can be determined that the deterioration of the air-fuel ratio sensor or the characteristic variation is large, and the failure determination signal Ss2 can be determined. For example, it is possible to turn on a lamp that prompts the driver to perform maintenance or inspection, or to interrupt the correction by the neuro. As described above, it is possible to detect a defect in the air-fuel ratio sensor used in the system, and it is possible to perform a check during the manufacturing process and give a warning about the sensor replacement time during running.

【0043】更に、気筒別空燃比推定手段32により、
気筒別の空燃比を求めることが可能となり、この出力値
を用いた集合部空燃比算出手段34の出力より、気筒別
不具合判断手段35において、集合部空燃比と空燃比セ
ンサ13出力値(A/F)との偏差の絶対値が特定の気
筒の排気混合率が最も大きいタイミング時のみに、ある
設定値以上の大きくずれるとき、その対応する気筒のイ
ンジェクタのバラツキが大であるか、点火プラグの異常
などによる不具合が生じていると判断でき、気筒別の不
具合判断を正確に行うことが可能となる。
Further, by the cylinder-by-cylinder air-fuel ratio estimating means 32,
It is possible to obtain the air-fuel ratio for each cylinder, and from the output of the collecting-unit air-fuel ratio calculating means 34 using this output value, in the cylinder-specific malfunction determining means 35, the collecting-part air-fuel ratio and the output value of the air-fuel ratio sensor 13 (A / F) when the absolute value of the deviation from the specific cylinder deviates more than a certain set value only at the timing when the exhaust gas mixture ratio of the specific cylinder is the largest, whether there is a large variation in the injector of the corresponding cylinder, or the spark plug. It is possible to determine that a malfunction has occurred due to an abnormality in the cylinder, and it is possible to accurately determine the malfunction for each cylinder.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第1の一実施の形態のブロック構成図FIG. 1 is a block configuration diagram of a first embodiment of the present invention.

【図2】本発明第2の一実施の形態のブロック構成図FIG. 2 is a block diagram of a second embodiment of the present invention.

【図3】本発明第3の一実施の形態のブロック構成図FIG. 3 is a block configuration diagram of a third embodiment of the present invention.

【図4】エンジンモデル説明図FIG. 4 is an explanatory diagram of an engine model

【図5】本発明第3のニューロ学習方法説明図FIG. 5 is an explanatory diagram of a third neurolearning method of the present invention.

【図6】本発明第3のニューロ学習方法説明図FIG. 6 is an explanatory diagram of a third neurolearning method of the present invention.

【図7】本発明第1の動作説明フローチャートFIG. 7 is a flowchart for explaining the first operation of the present invention.

【図8】本発明第2の動作説明フローチャートFIG. 8 is a flowchart for explaining the second operation of the present invention.

【符号の説明】[Explanation of symbols]

10 エンジン 11 状態検出センサ群 12 空気量検出センサ群 13 空燃比センサ 14 データ群 15 燃料演算手段 16 燃料噴射手段 17 変換手段 18 空燃比推定手段 19 比較指令信号発生手段 110 不具合判断手段 21 空燃比センサ判定手段 31 排気混合率推定手段 32 気筒別空燃比推定手段 33 制御補正量算出手段 34 集合部空燃比算出手段 35 気筒別不具合判断手段 10 engine 11 Status detection sensor group 12 Air amount detection sensor group 13 Air-fuel ratio sensor 14 data groups 15 Fuel calculation means 16 Fuel injection means 17 Conversion means 18 Air-fuel ratio estimating means 19 Comparison command signal generating means 110 Failure judgment means 21 Air-fuel ratio sensor determination means 31 Exhaust gas mixture ratio estimating means 32 cylinder air-fuel ratio estimation means 33 control correction amount calculation means 34 Collecting portion air-fuel ratio calculating means 35 Cylinder-specific malfunction determination means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 達矢 横浜市港北区綱島東四丁目3番1号 松 下通信工業株式会社内 (72)発明者 藤岡 典宏 横浜市港北区綱島東四丁目3番1号 松 下通信工業株式会社内 (56)参考文献 特開 平1−277647(JP,A) 特開 平6−212994(JP,A) 特開 平7−71234(JP,A) 特開 平5−180040(JP,A) 特開 平8−232725(JP,A) 特開 平3−235723(JP,A) 特開 平6−317114(JP,A) 特開 平5−297946(JP,A) 特開 平6−81702(JP,A) 特開 昭62−91644(JP,A) 特開 平7−310585(JP,A) 実開 平2−20761(JP,U) 特表 平6−506752(JP,A) (58)調査した分野(Int.Cl.7,DB名) F02D 41/00 - 45/00 395 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuya Nakamura 4-3-1, Tsunashima-higashi, Kohoku-ku, Yokohama Matsushita Communication Industrial Co., Ltd. (72) Norihiro Fujioka 4-chome, Tsunashima-higashi, Kohoku-ku, Yokohama No. 1 in Matsushita Communication Industry Co., Ltd. (56) Reference JP-A-1-277647 (JP, A) JP-A-6-212994 (JP, A) JP-A-7-71234 (JP, A) JP-A-7-71234 5-180040 (JP, A) JP 8-232725 (JP, A) JP 3-235723 (JP, A) JP 6-317114 (JP, A) JP 5-297946 (JP, A) JP-A-6-81702 (JP, A) JP-A-62-91644 (JP, A) JP-A-7-310585 (JP, A) Actually open 2-20761 (JP, U) −506752 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) F02D 41/00-45/00 3 95

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内燃エンジンの運転状態を検出する状態検
出センサ群と、吸入空気量を検出する空気量検出センサ
群と、機関の排気系集合部に於ける空燃比を検出する空
燃比センサと、前記各センサ出力値と、予め設定された
データ群より、燃料噴射量を演算する燃料演算手段と、
前記燃料演算手段で算出された燃料量を各気筒に噴射す
る燃料噴射手段を有する内燃エンジンの空燃比制御シス
テムに於て、前記センサ群の各検出値および前記燃料噴
射量が、ニューラルネットワーク(以下NN)の入力項
となるように変換する変換手段と、前記変換手段により
変換された各値を入力項とし、集合部排気空燃比の予測
推定値を運転状態に応じて出力する空燃比推定手段と、
前記空燃比センサ出力値とストイキ値(理論空燃比)と
の誤差の絶対値がある設定値以下のとき比較指令信号を
出す比較指令信号発生手段と、前記比較指令信号を受け
て、前記空燃比推定手段の出力値である空燃比予測推定
値と前記空燃比センサ出力値との偏差の絶対値がある設
定値以上の時、空燃比センサ以外のNN入力項の内どれ
かのセンサに関して故障もしくは個体バラツキが許容値
以上バラツイていると判断し信号を出す不具合判断手段
を有することを特徴とする空燃比制御システム診断装
置。
1. A state detection sensor group for detecting an operating state of an internal combustion engine, an air amount detection sensor group for detecting an intake air amount, and an air-fuel ratio sensor for detecting an air-fuel ratio in an exhaust system collecting portion of the engine. A fuel calculation means for calculating a fuel injection amount from the sensor output values and a preset data group,
In an air-fuel ratio control system of an internal combustion engine having fuel injection means for injecting the fuel amount calculated by the fuel calculation means into each cylinder, each detected value of the sensor group and the fuel injection amount are controlled by a neural network (hereinafter NN), and a conversion unit for converting the input unit to each value converted by the conversion unit, and an air-fuel ratio estimation unit for outputting a predicted estimated value of the exhaust gas air-fuel ratio of the collective portion according to an operating state. When,
Comparison command signal generating means for issuing a comparison command signal when the absolute value of the error between the air-fuel ratio sensor output value and the stoichiometric value (theoretical air-fuel ratio) is less than or equal to a set value, and the air-fuel ratio upon receiving the comparison command signal. When the absolute value of the deviation between the estimated value of the air-fuel ratio, which is the output value of the estimation means, and the output value of the air-fuel ratio sensor is equal to or greater than a set value, some sensor in the NN input terms other than the air-fuel ratio sensor has failed or An air-fuel ratio control system diagnostic device, comprising: failure determining means for outputting a signal when it is determined that individual variation is more than an allowable value.
【請求項2】前記比較指令信号発生手段もしくは不具合
判断手段に於ける偏差の絶対値と設定値との比較に於
て、比較する偏差の絶対値をあるサンプリング間の偏差
の絶対値の平均とすることを特徴とする請求項1記載の
空燃比制御システム診断装置。
2. When comparing the absolute value of the deviation in the comparison command signal generating means or the malfunction judging means with a set value, the absolute value of the deviation to be compared is an average of the absolute values of the deviations between certain samplings. The air-fuel ratio control system diagnostic device according to claim 1, wherein:
【請求項3】内燃エンジンの運転状態を検出する状態検
出センサ群と、吸入空気量を検出する空気量検出センサ
群と、機関の排気系集合部に於ける空燃比を検出する空
燃比センサと、前記各センサ出力値と、予め設定された
データ群より、燃料噴射量を演算する燃料演算手段と、
前記燃料演算手段で算出された燃料量を各気筒に噴射す
る燃料噴射手段を有する内燃エンジンの空燃比制御シス
テムに於て、前記センサ群の各検出値および前記燃料噴
射量が、ニューラルネットワーク(以下NN)の入力項
となるように変換する変換手段と、前記変換手段により
変換された各値を入力項とし、集合部排気空燃比の予測
推定値を運転状態に応じて出力する空燃比推定手段と、
前記空燃比センサ出力値とストイキ値(理論空燃比)と
の誤差の絶対値がある設定値以下のとき比較指令信号を
出す比較指令信号発生手段と、前記比較指令信号を受け
て、前記空燃比推定手段の出力値である空燃比予測推定
値と前記空燃比センサ出力値との偏差の絶対値がある設
定値以下で、且つ、前記比較指令信号が発生していない
ときに、前記空燃比推定手段の出力値である空燃比予測
推定値と前記空燃比センサ出力値との偏差の絶対値があ
る設定値以上のとき、前記空燃比センサの劣化が起こっ
ている、もしくは個体バラツキが許容値以上バラツイて
いると判定し信号を出す空燃比センサ判定手段を有する
ことを特徴とする空燃比制御システム診断装置。
3. A state detection sensor group for detecting an operating state of an internal combustion engine, an air amount detection sensor group for detecting an intake air amount, and an air-fuel ratio sensor for detecting an air-fuel ratio in an exhaust system collecting portion of the engine. A fuel calculation means for calculating a fuel injection amount from the sensor output values and a preset data group,
In an air-fuel ratio control system of an internal combustion engine having fuel injection means for injecting the fuel amount calculated by the fuel calculation means into each cylinder, each detected value of the sensor group and the fuel injection amount are controlled by a neural network (hereinafter NN), and a conversion unit for converting the input unit to each value converted by the conversion unit, and an air-fuel ratio estimation unit for outputting a predicted estimated value of the exhaust gas air-fuel ratio of the collective portion according to an operating state. When,
Comparison command signal generating means for issuing a comparison command signal when the absolute value of the error between the air-fuel ratio sensor output value and the stoichiometric value (theoretical air-fuel ratio) is less than or equal to a set value, and the air-fuel ratio upon receiving the comparison command signal. When the absolute value of the deviation between the estimated value of the air-fuel ratio which is the output value of the estimation means and the output value of the air-fuel ratio sensor is less than or equal to a set value and the comparison command signal is not generated, the air-fuel ratio estimation is performed. When the absolute value of the deviation between the estimated value of the air-fuel ratio which is the output value of the means and the output value of the air-fuel ratio sensor is a set value or more, deterioration of the air-fuel ratio sensor occurs, or individual variation is more than an allowable value. An air-fuel ratio control system diagnostic device comprising air-fuel ratio sensor determination means for determining that there is a variation and outputting a signal.
【請求項4】前記比較指令信号発生手段もしくは空燃比
センサ判定手段内に於ける各偏差の絶対値と設定値との
比較に於て、比較する偏差の絶対値をあるサンプリング
間の偏差の絶対値の平均とすることを特徴とする請求項
3記載の空燃比制御システム診断装置。
4. When comparing the absolute value of each deviation in the comparison command signal generating means or the air-fuel ratio sensor determining means with a set value, the absolute value of the deviation to be compared is the absolute value of the deviation between certain samplings. The air-fuel ratio control system diagnostic device according to claim 3, wherein an average of the values is used.
【請求項5】内燃エンジンの運転状態を検出する状態検
出センサ群と、吸入空気量を検出する空気量検出センサ
群と、機関の排気系集合部に於ける空燃比を検出する空
燃比センサと、前記各センサ出力値と、予め設定された
データ群より、燃料噴射量を演算する燃料演算手段と、
燃料噴射量を各気筒に噴射する燃料噴射手段を有する内
燃エンジンの空燃比制御システムに於て、前記センサ群
の各検出値および前記燃料噴射量が、ニューラルネット
ワーク(以下NN)の入力項となるように変換する変換
手段と、前記変換手段により変換された各値を入力項と
し、集合部排気に対する気筒別排気の混合率を運転状態
に応じて出力する排気混合率推定手段と、前記変換手段
により変換された各値をNN入力項とし、前記排気混合
率推定手段の出力値である気筒別排気混合率を用いて、
各気筒別空燃比を出力とする気筒別空燃比推定手段と、
前記気筒別空燃比推定手段の出力値を用いて、各気筒の
空燃比が目標空燃比となるように燃料噴射補正量を算出
する制御補正量算出手段と、前記燃料演算手段により算
出された燃料噴射量と前記燃料噴射補正量を加算した値
をエンジンに噴射する燃料噴射手段と、前記気筒別空燃
比推定手段の出力値である気筒別空燃比と前記排気混合
率推定手段の出力である気筒別排気混合率より集合部の
空燃比予測推定値算出する集合部空燃比算出手段と、前
記空燃比センサ出力値とストイキ値(理論空燃比)との
誤差の絶対値がある設定値以下のとき比較指令信号を出
す比較指令信号発生手段と、前記比較指令信号を受け
て、前記集合部空燃比算出手段の出力である集合部空燃
比と前記空燃比センサ出力値との偏差の絶対値が特定の
気筒の排気混合率が最も大きいタイミングの時のみ、あ
る設定値以上の時、その対応する気筒のインジェクタの
バラツキが大であるか、点火プラグの異常などによる不
具合が生じていることを判断し結果を信号として出す気
筒別不具合判断手段を有することを特徴とする空燃比制
御装置。
5. A state detection sensor group for detecting an operating state of an internal combustion engine, an air amount detection sensor group for detecting an intake air amount, and an air-fuel ratio sensor for detecting an air-fuel ratio in an exhaust system collecting portion of the engine. A fuel calculation means for calculating a fuel injection amount from the sensor output values and a preset data group,
In an air-fuel ratio control system for an internal combustion engine having fuel injection means for injecting a fuel injection amount into each cylinder, each detected value of the sensor group and the fuel injection amount serve as an input term of a neural network (NN). And a conversion means for converting each value converted by the conversion means as an input term, and an exhaust gas mixture ratio estimation means for outputting a mixing ratio of the exhaust gas for each cylinder to the exhaust gas in the collecting portion according to an operating state, and the conversion means. By using each value converted by the above as an NN input term, and using the cylinder-by-cylinder exhaust gas mixture ratio which is the output value of the exhaust gas mixture ratio estimating means,
Cylinder-by-cylinder air-fuel ratio estimating means for outputting each cylinder-by-cylinder air-fuel ratio,
Using the output value of the cylinder-by-cylinder air-fuel ratio estimating means, a control correction amount calculating means for calculating a fuel injection correction amount so that the air-fuel ratio of each cylinder becomes the target air-fuel ratio, and the fuel calculated by the fuel calculating means. Fuel injection means for injecting into the engine a value obtained by adding the injection quantity and the fuel injection correction quantity, a cylinder air-fuel ratio which is the output value of the cylinder air-fuel ratio estimation means, and a cylinder which is the output of the exhaust gas mixture ratio estimation means When the collective air-fuel ratio calculating means for calculating the predicted air-fuel ratio of the collective portion from the different exhaust gas mixture ratios and the absolute value of the error between the air-fuel ratio sensor output value and the stoichiometric value (theoretical air-fuel ratio) is below a certain set value A comparison command signal generating means for issuing a comparison command signal, and an absolute value of a deviation between the air-fuel ratio sensor output value and the air-fuel ratio sensor of the fuel assembly, which is the output of the air-fuel ratio calculating means of the fuel tank, are specified by receiving the comparison command signal. Exhaust gas mixture ratio of cylinder Also, only when the timing is large, when the value exceeds a certain set value, it is judged that there is a large variation in the injectors of the corresponding cylinders, or there is a problem due to an abnormality in the spark plug, etc. An air-fuel ratio control device having a failure determination means.
【請求項6】前記比較指令信号発生手段もしくは気筒別
不具合判断手段内に於ける各偏差の絶対値と設定値との
比較に於て、比較する偏差の絶対値をあるサンプリング
間の偏差の絶対値の平均とすることを特徴とする請求項
5記載の空燃比制御システム診断装置。
6. In comparing the absolute value of each deviation in the comparison command signal generating means or the cylinder-specific malfunction judging means with a set value, the absolute value of the deviation to be compared is determined as the absolute value of the deviation between certain samplings. The air-fuel ratio control system diagnostic device according to claim 5, wherein an average of the values is used.
JP33297995A 1995-12-21 1995-12-21 Air-fuel ratio control system diagnostic device Expired - Fee Related JP3391615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33297995A JP3391615B2 (en) 1995-12-21 1995-12-21 Air-fuel ratio control system diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33297995A JP3391615B2 (en) 1995-12-21 1995-12-21 Air-fuel ratio control system diagnostic device

Publications (2)

Publication Number Publication Date
JPH09170472A JPH09170472A (en) 1997-06-30
JP3391615B2 true JP3391615B2 (en) 2003-03-31

Family

ID=18260961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33297995A Expired - Fee Related JP3391615B2 (en) 1995-12-21 1995-12-21 Air-fuel ratio control system diagnostic device

Country Status (1)

Country Link
JP (1) JP3391615B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4673787B2 (en) * 2006-05-10 2011-04-20 本田技研工業株式会社 Air-fuel ratio control device for internal combustion engine
JP4736998B2 (en) * 2006-07-31 2011-07-27 株式会社デンソー Control device for internal combustion engine and method for manufacturing engine actuator
JP5560275B2 (en) * 2009-07-03 2014-07-23 本田技研工業株式会社 Intake control device for internal combustion engine
US9528914B2 (en) * 2013-09-27 2016-12-27 Rosemount, Inc. Non-intrusive sensor system

Also Published As

Publication number Publication date
JPH09170472A (en) 1997-06-30

Similar Documents

Publication Publication Date Title
EP1705359B1 (en) Method of feedforward controlling a multi-cylinder internal combustion engine and relative feedforward fuel injection control system
US7287525B2 (en) Method of feedforward controlling a multi-cylinder internal combustion engine and associated feedforward fuel injection control system
US7299123B2 (en) Method and device for estimating the inlet air flow in a combustion chamber of a cylinder of an internal combustion engine
US6314952B1 (en) Individual cylinder fuel control method
US7631550B2 (en) Air-fuel ratio controller for internal combustion engine and diagnosis apparatus for intake sensors
JP3943835B2 (en) Apparatus for diagnosing faults and fault conditions in a fuel system of an internal combustion engine
Gertler et al. Model-based on-board fault detection and diagnosis for automotive engines
EP0926032A2 (en) Brake booster negative pressure controller
US7181334B2 (en) Method and apparatus to diagnose intake airflow
KR101369788B1 (en) Method and device for monitoring an exhaust gas probe
US7389683B2 (en) Method and device for detecting a combustion misfire
US7894972B2 (en) Method and device for operating an internal combustion engine
CN112443410B (en) Method for diagnosing a combustion failure of an internal combustion engine
JP3323700B2 (en) Diagnostic device for exhaust gas recirculation system of internal combustion engine
EP2324225B1 (en) Burned-gas passage amount computing method and system used in exhaust gas recirculation system
US20090090338A1 (en) Method and Device for Adapting the Recording of a Measured Signal for an Exhaust Probe
JP3391615B2 (en) Air-fuel ratio control system diagnostic device
JP4646819B2 (en) Abnormality determination device for internal combustion engine
US6654680B2 (en) CPU diagnosing device and method
US7621175B2 (en) Monitoring of a cam profile switching system in internal combustion engines
US20090112446A1 (en) Oxygen sensor monitoring
US10989147B2 (en) Air-fuel ratio control method reflecting brake booster inflow flow rate
JPH04237851A (en) Air-fuel ratio sensor deterioration diagnostic device
JP7431381B2 (en) Internal combustion engine control device
JP3234418B2 (en) Lean limit detection method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees