JP3390388B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP3390388B2
JP3390388B2 JP33809399A JP33809399A JP3390388B2 JP 3390388 B2 JP3390388 B2 JP 3390388B2 JP 33809399 A JP33809399 A JP 33809399A JP 33809399 A JP33809399 A JP 33809399A JP 3390388 B2 JP3390388 B2 JP 3390388B2
Authority
JP
Japan
Prior art keywords
wiring
straight line
film thickness
semiconductor device
straight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33809399A
Other languages
Japanese (ja)
Other versions
JP2001156069A (en
Inventor
義郁 蛭田
Original Assignee
エヌイーシーマイクロシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌイーシーマイクロシステム株式会社 filed Critical エヌイーシーマイクロシステム株式会社
Priority to JP33809399A priority Critical patent/JP3390388B2/en
Publication of JP2001156069A publication Critical patent/JP2001156069A/en
Application granted granted Critical
Publication of JP3390388B2 publication Critical patent/JP3390388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の導電
性薄膜で形成された配線に関し、特に同一配線層内で屈
曲している屈曲配線の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wiring formed of a conductive thin film of a semiconductor device, and more particularly to a structure of a bent wiring bent in the same wiring layer.

【0002】[0002]

【従来の技術】半導体装置の大規模化、高性能化に伴
い、半導体装置のチップにおける必要な配線領域面積が
ますます増加してきている。従って、チップ面積の増加
を抑制しながら更なる大規模化、高性能化を進めるため
には、配線の多層化と微細化が必須であり、色々な技術
開発が進められている。
2. Description of the Related Art With the increase in scale and performance of semiconductor devices, the required wiring area of a semiconductor device chip is increasing more and more. Therefore, in order to further increase the scale and performance while suppressing the increase in the chip area, it is necessary to make the wiring multi-layered and miniaturized, and various technological developments are being made.

【0003】しかし、配線パターンの微細化は、エレク
トロマイグレーション(以下、EMとする)による配線
寿命の劣化という別の大きな問題を引き起こす。特に、
微細な信号配線において形状が変化する屈曲部が存在す
る配線のEM耐性は、屈曲部においてこの配線を流れる
電流の流路に偏りが生じ、直線部のみの配線のEM耐性
よりも低下するという問題もある。
However, miniaturization of the wiring pattern causes another big problem of deterioration of wiring life due to electromigration (hereinafter referred to as EM). In particular,
The problem that the EM resistance of a wiring having a bent portion whose shape changes in a fine signal wiring is lower than the EM resistance of a wiring having only a straight portion due to uneven distribution of the flow path of the current flowing through this wiring in the bent portion. There is also.

【0004】図10は、この屈曲部における問題を説明
するための図で、屈曲した配線パターンとその配線中の
電流の流路を模式的に示す平面図である。
FIG. 10 is a view for explaining the problem at the bent portion, and is a plan view schematically showing the bent wiring pattern and the current flow path in the wiring.

【0005】図10を参照すると、この配線101のM
点からN点に電流を流した場合、屈曲部102の内角側
屈曲点K側に偏って電流が流れることになる。このた
め、配線101が直線部102,103で所定の電流密
度基準を満足する配線幅を有していても、屈曲部104
においてEMによる配線故障を生じることがある。
Referring to FIG. 10, the M of the wiring 101 is
When a current is passed from the point to the N point, the current is biased toward the inner corner side bending point K side of the bending portion 102. Therefore, even if the wiring 101 has a wiring width satisfying a predetermined current density standard in the straight portions 102 and 103, the bent portion 104
In some cases, wiring failure due to EM may occur.

【0006】これらの問題の解決策の一つとして、特開
昭62−237747号公報(以下、公知例1とする)
に配線面積の増大なしでEM耐性を向上させる方法が開
示されている。
As one of the solutions to these problems, Japanese Unexamined Patent Publication No. 62-237747 (hereinafter, referred to as known example 1).
Discloses a method of improving EM resistance without increasing the wiring area.

【0007】図11はこの公知例1に開示された半導体
集積回路の電源配線部と信号配線部を含む配線の模式的
な断面図で、(a),(b)はそれぞれ従来の方法によ
る配線及びこの公知例1で提案された方法による配線の
断面図である。
FIG. 11 is a schematic cross-sectional view of a wiring including a power supply wiring portion and a signal wiring portion of a semiconductor integrated circuit disclosed in the prior art example 1, and FIGS. 11A and 11B are wirings according to a conventional method. 3A and 3B are cross-sectional views of a wiring according to the method proposed in this known example 1.

【0008】図11(a),(b)を参照すると、従来
電源配線116のように大電流が流れる配線の場合には
EM対策として断面積を大きくするために、電源配線幅
を単純に広げていた。しかし、これでは半導体集積回路
のチップ面積に対する電源配線面積の占める割合が大き
くなり、高集積化への障害となっていた。そのため、信
号配線112と同一の配線幅で電源配線に必要な断面積
を得られるように配線の膜厚を厚くして、配線面積を増
加させることなく電源配線116の断面積と同じ断面積
の電源配線111を形成している。
Referring to FIGS. 11 (a) and 11 (b), in the case of a wiring through which a large current flows like the conventional power wiring 116, the power wiring width is simply widened in order to increase the cross-sectional area as an EM countermeasure. Was there. However, this increases the ratio of the power supply wiring area to the chip area of the semiconductor integrated circuit, which is an obstacle to high integration. Therefore, the film thickness of the wiring is increased to obtain the cross-sectional area required for the power wiring with the same wiring width as the signal wiring 112, and the same cross-sectional area as that of the power wiring 116 is obtained without increasing the wiring area. The power supply wiring 111 is formed.

【0009】また、特開昭63−164337号公報
(以下、公知例2とする)には、配線形状が大きく変化
する部位に緩やかな曲率を持たせて、EM不良を抑制す
る方法が開示されている。
Further, Japanese Patent Application Laid-Open No. 63-164337 (hereinafter, referred to as known example 2) discloses a method of suppressing EM failure by giving a gentle curvature to a portion where the wiring shape largely changes. ing.

【0010】図12は、公知例2に開示された配線パタ
ーンの平面図で,(a),(b)はそれぞれ複数の引込
み配線が接続された電源配線及び屈曲部のある配線のパ
ターンを示している。
FIG. 12 is a plan view of the wiring pattern disclosed in the known example 2, and (a) and (b) respectively show a pattern of a power supply wiring to which a plurality of lead-in wirings are connected and a wiring having a bent portion. ing.

【0011】図12(a),(b)を参照すると、電源
配線121に接続された複数の引込み配線122との分
岐部123において配線輪郭形状に緩やかな曲率(具体
的には、引込み配線122の幅と開口をそれぞれw及び
z、分岐部123の曲率半径をrとしたとき、r=2
w,z=5w)が設けられ、また配線125の屈曲部1
6の配線輪郭形状に緩やかな曲率(例えば、r=3w)
を与えている。これにより、電流ストレスによる配線中
のボイド形成を抑制し配線のEM耐性を向上させてい
る。
With reference to FIGS. 12A and 12B, the wiring contour shape has a gentle curvature (specifically, the lead-in wiring 122) at the branch portion 123 with the plurality of lead-in wirings 122 connected to the power supply wiring 121. Where w is the width and z is the opening and r is the radius of curvature of the branch portion 123, r = 2
w, z = 5w), and the bent portion 1 of the wiring 125.
The wiring contour shape of 6 has a gentle curvature (for example, r = 3w)
Is giving. This suppresses the formation of voids in the wiring due to the current stress and improves the EM resistance of the wiring.

【0012】また、図13のように配線方向がL字に9
0°曲がる部分で例えば45°ずつ2回に分けて方向を
変化させ、屈曲部での電流集中を緩和する手法もある。
In addition, as shown in FIG. 13, the wiring direction is L-shaped.
There is also a method of relaxing the current concentration at the bent portion by changing the direction in two portions, for example, 45 degrees at the 0 ° bend portion.

【0013】[0013]

【発明が解決しようとする課題】公知例1に開示された
方法を用いれば、配線面積の縮小に効果が見られる。し
かし、この方法を例えばバスラインのような複数の長い
配線が隣接して克つ平行に引き回される信号配線に適用
した場合、別の問題が生じる。
If the method disclosed in the known example 1 is used, it is effective in reducing the wiring area. However, when this method is applied to a signal wiring in which a plurality of long wirings, such as a bus line, are routed adjacent to each other in parallel, another problem occurs.

【0014】図14は、この問題を説明するための隣接
する信号配線の任意の位置の断面を示す図で,(a),
(b)は、それぞれ配線膜厚を増加させた場合と、増加
させていない場合の断面図である。
FIG. 14 is a view showing a cross section at an arbitrary position of adjacent signal wiring for explaining this problem.
(B) is a cross-sectional view when the wiring film thickness is increased and when it is not increased.

【0015】図14を参照すると、公知例1に開示され
た方法では、配線の断面積を増加させるための膜厚増加
が、当該配線全体に一律に適用されるため、信号配線同
士は、(a)の信号配線141,信号配線142のよう
な状態となる。(尚、配線膜厚を増加させた場合、増加
させていない場合いずれにおいても配線幅及び隣接配線
間距離は一定とする。)配線膜厚を増加させていない信
号配線143,信号配線144の断面図(b)と比較す
ると、両者の間では、チップ上に占める配線面積に違い
はないが、配線膜厚を増すことにより信号配線間の対向
する面積が増えることになる。このため、配線141,
142の間の配線間容量C1、配線143,144の間
の配線間容量C2よりも大きくなってしまい、信号伝達
特性上の問題(例えば、信号の遅延や信号線間の相互干
渉等)を生じることがある。
Referring to FIG. 14, in the method disclosed in the known example 1, the increase in the film thickness for increasing the cross-sectional area of the wiring is uniformly applied to the entire wiring. The state becomes like the signal wiring 141 and the signal wiring 142 of a). (Note that the wiring width and the distance between adjacent wirings are constant regardless of whether the wiring film thickness is increased or not.) Sections of the signal wiring 143 and the signal wiring 144 whose wiring film thickness is not increased Although there is no difference in the wiring area occupied on the chip between the two as compared with FIG. 6B, the area of the signal wirings facing each other increases by increasing the wiring film thickness. Therefore, the wiring 141,
It becomes larger than the inter-wiring capacitance C1 between 142 and the inter-wiring capacitance C2 between the wirings 143 and 144, which causes a problem in signal transfer characteristics (for example, signal delay and mutual interference between signal lines). Sometimes.

【0016】また、多層配線構造を用いた半導体装置に
おいて、膜厚の異なる信号配線を最上層以外の同一配線
層内に混在させたときには、製造上の問題も生じる。
Further, in a semiconductor device having a multilayer wiring structure, when signal wirings having different film thicknesses are mixed in the same wiring layer other than the uppermost layer, a manufacturing problem occurs.

【0017】図15は、最上層以外の同一配線層内に膜
厚の異なる配線を混在させたときの模式的な断面図であ
る。
FIG. 15 is a schematic sectional view when wirings having different film thicknesses are mixed in the same wiring layer other than the uppermost layer.

【0018】図15を参照すると、配線151と配線1
52は同一配線層に形成された配線で、例えば、配線1
51の膜厚が通常の膜厚の配線152よりも膜厚をより
も増加させてあるものとする。また、配線153,15
4は配線151,152よりも上層に形成された配線
で、配線151と配線153,配線152と配線154
がそれぞれ信号を伝達するために、接続開口155,1
56を介して接続されているものとする。
Referring to FIG. 15, wiring 151 and wiring 1
Reference numeral 52 is a wiring formed in the same wiring layer, for example, wiring 1
It is assumed that the film thickness of 51 is larger than that of the wiring 152 having a normal film thickness. Also, the wiring 153, 15
Reference numeral 4 is a wiring formed in a layer higher than the wirings 151 and 152, which are wiring 151 and wiring 153, wiring 152 and wiring 154.
For transmitting signals respectively, the connection openings 155, 1
It is assumed that they are connected via 56.

【0019】この配線151と配線153或いは配線1
52と配線154の接続には、さまざまな手法の製造工
程が考えられるが、接続開口155,156の深さが異
なるため、接続開口155の形成と、接続開口156の
形成は、別々又は少なくとも2段階の製造工程で行われ
るのが通常である。
The wiring 151 and the wiring 153 or the wiring 1
Although various manufacturing methods can be considered for connecting the wiring 52 and the wiring 154, since the connection openings 155 and 156 have different depths, the formation of the connection opening 155 and the formation of the connection opening 156 are performed separately or at least two times. It is usually performed in a step-wise manufacturing process.

【0020】従って、同一配線層内に膜厚の異なる配線
を混在させることにより、少なくとも後工程の上層の配
線との接続のための開口を形成する工程を一括で処理す
ることが困難になり、製造工程の更なる追加或いは複雑
化を引き起こすという問題がある。
Therefore, by mixing wirings having different film thicknesses in the same wiring layer, it becomes difficult to collectively process at least the step of forming an opening for connection with the wiring of the upper layer in the subsequent step. There is a problem that the manufacturing process is further added or complicated.

【0021】また、公知例2或いはそれに関連する方法
を用いた場合については、屈曲部の電流集中を緩和する
という点については、一応の効果をもたらしているが、
これらは、いずれも屈曲部においてある程度の曲率或い
は角度で曲線部分或いは斜めの部分を形成しなければな
らず、電流集中を緩和しなければならない信号配線の周
囲に少なからず、影響を与えてしまう。
Further, in the case of using the known example 2 or the method related thereto, the effect of alleviating the current concentration at the bent portion brings a certain effect,
All of these have to form a curved portion or an inclined portion with a certain degree of curvature or angle at the bent portion, and have a considerable influence on the periphery of the signal wiring for which current concentration must be relaxed.

【0022】図16は、この公知例2或いはそれに関連
する方法を用いた場合の問題を説明するための図で、
(a),(b)は、それぞれ配線方向がL字に90°曲
がる部分で、例えば45°ずつ2回に分けて方向を変化
させた場合と単純に1回で90°変化させた場合の内角
側素子配置領域164と(167+168)を模式的に
示す概略平面図である。
FIG. 16 is a view for explaining a problem when using this known example 2 or a method related thereto,
(A) and (b) are portions in which the wiring direction bends in an L-shape by 90 °, for example, when the direction is changed by dividing it by 45 ° in two times and when it is simply changed by 90 ° in one time. It is a schematic plan view which shows typically the inside angle side element arrangement | positioning area | region 164 and (167 + 168).

【0023】図16を参照すると、(a)の配線16
1,162のように45°ずつ2回に分けて方向をL字
に90°曲げた場合の素子配置領域164は、斜め配線
部163が内角側に入り込むため、(b)の配線16
5,166のように単純に1回で90°変化させた場合
の素子配置領域167,168のうち素子配置領域16
8が使用できなくなり、素子配置領域が狭くなるか或い
は素子配置領域を確保するには屈曲部での配線面積が増
大することになる。
Referring to FIG. 16, the wiring 16 of FIG.
In the element arrangement region 164 in the case where the direction is bent 90 degrees into an L shape by dividing the direction into 45 degrees like 1, 162 in FIG.
5 and 166, the element arrangement region 16 of the element arrangement regions 167 and 168 simply changed by 90 ° at one time.
8 cannot be used, and the element arrangement area becomes narrower, or the wiring area at the bent portion increases in order to secure the element arrangement area.

【0024】本発明の主な目的の一つは、半導体装置の
チップ上の屈曲部のある配線のEM耐性を、配線面積を
増加させることなく向上させた半導体装置を提供するこ
とにある。
One of the main objects of the present invention is to provide a semiconductor device in which the EM resistance of the wiring having a bent portion on the chip of the semiconductor device is improved without increasing the wiring area.

【0025】また、本発明の他の目的は、屈曲部のEM
耐性を向上させることによる信号伝達特性の劣化がな
く、且つEM耐性を向上させるための製造工程の追加が
最小限になる配線構造を備えた半導体装置を提供するこ
とにある。
Another object of the present invention is the EM of the bent portion.
It is an object of the present invention to provide a semiconductor device having a wiring structure in which the signal transfer characteristics are not deteriorated by improving the resistance and the number of manufacturing steps for improving the EM resistance is minimized.

【0026】[0026]

【課題を解決するための手段】本発明の半導体装置は、
同一層内の連続した配線であって、第1の導電性薄膜で
形成された所定の膜厚の基準膜厚部と、少なくとも前記
第1の導電性薄膜を含んで形成され且つ膜厚が前記基準
膜厚部の膜厚よりも厚い,他の配線層との接続のための
接続開口部とは異なる補強膜厚部とを備えると共に同一
層内で配線方向が変化する屈曲部を備え、この屈曲部が
補強膜厚部となっている配線を有している。
The semiconductor device of the present invention comprises:
A continuous wiring in the same layer, which is formed by including a reference film thickness portion of a predetermined film thickness formed of a first conductive thin film and at least the first conductive thin film, thicker than the reference thickness portion, Rutotomoni same and a different reinforcing film thickness portion and the connection opening for connection to other wiring layers
Equipped with a bend that changes the wiring direction within the layer, this bend
It has a wiring that is a reinforced film thickness portion .

【0027】[0027]

【0028】また、配線の平面形状が、第1の方向で幅
がW1の第1直線部と,この第1直線部と連続し且つ前
記第1の方向と異なる第2の方向に屈曲した幅がW2の
第2直線部と,前記配線の幅を画定する縁端部が第1の
方向から第2の方向に屈曲する屈曲点であって内角側に
前記第1直線部及び前記第2直線部を含む外角側屈曲点
と含まない内角側屈曲点を備え、前記内角側屈曲点を通
り前記第1直線部及び前記第2直線部をそれぞれ直角に
横断する直線で囲まれ且つ前記内角側屈曲点と前記外角
側屈曲点とを結ぶ接合部が存在する領域を少なくとも含
むように屈曲部を画定することができる。
Further, the plane shape of the wiring is such that a first straight line portion having a width W1 in the first direction and a width that is continuous with the first straight line portion and is bent in a second direction different from the first direction. Is a second straight line portion of W2 and a bending point at which an edge portion that defines the width of the wiring bends from the first direction to the second direction, and the first straight line portion and the second straight line are on the inner angle side. An inner corner side bending point that does not include a portion and an inner corner side bending point that does not include a portion, and the inner angle side bending point is surrounded by straight lines that pass through the inner angle side bending point and cross each of the first straight line portion and the second straight line portion at a right angle. The bent portion can be defined so as to include at least a region in which there is a joint connecting the point and the bending point on the outside corner side.

【0029】また、屈曲部は、第1直線部及び第2直線
部の内角側屈曲点をなす縁端部上の内角側屈曲点からの
距離がそれぞれW1及びW2の位置を通り第1直線部及
び第2直線部それぞれを直角に横断する直線で囲まれ且
つ接合部を含む領域とすることもできる。
Further, the bent portion passes through the positions of W1 and W2 from the inner angle side bending point on the edge portion forming the inner angle side bending point of the first straight portion and the second straight portion, respectively, and passes through the first straight portion. Alternatively, the region may be surrounded by a straight line that crosses each of the second straight line portions at a right angle and that includes the joint portion.

【0030】或いは、第1直線部及び第2直線部の内角
側屈曲点をなす縁端部上の内角側屈曲点からの距離がそ
れぞれW2及びW1の位置を通り接合部に平行な直線で
囲まれ且つ接合部を含む領域を屈曲部としてもよい。
Alternatively, each of the first straight line portion and the second straight line portion is surrounded by a straight line parallel to the joint portion, the distances from the inner angle side bending point on the edge portion forming the inner angle side bending point passing through the positions W2 and W1, respectively. The bent portion may be a region including the joint portion.

【0031】また、内角側屈曲点を通り第1直線部,第
2直線部それぞれを直角に横断する直線と第1直線部及
び第2直線部の外角側屈曲点をなす縁端部との交点と、
外角側屈曲点との間の距離をそれぞれh1,h2とする
とき、第1直線部及び第2直線部の内角側屈曲点をなす
縁端部上の内角側屈曲点からの距離がそれぞれh1,h
2の位置を通りそれぞれ第1直線部,第2直線部を直角
に横断する直線で囲まれ且つ接合部を含む領域を、屈曲
部としてもよい。
Further, an intersection of a straight line that passes through the inner corner side bending point and crosses each of the first straight line portion and the second straight line portion at a right angle, and an edge portion that forms the outer corner side bending point of the first straight line portion and the second straight line portion. When,
When the distances to the outside corner side bending points are respectively h1 and h2, the distances from the inside corner side bending points on the edge portions forming the inside angle side bending points of the first straight line portion and the second straight line portion are h1 and h2, respectively. h
The bent portion may be a region that is surrounded by straight lines that pass through the position 2 and crosses the first straight line portion and the second straight line portion at a right angle and that includes the joint portion.

【0032】更に、内角側屈曲点を通り第1直線部,第
2直線部それぞれを直角に横断する直線と第1直線部及
び第2直線部の外角側屈曲点をなす縁端部との交点と、
外角側屈曲点との間の距離をそれぞれh1,h2とする
とき、第1直線部及び第2直線部の内角側屈曲点をなす
縁端部上の内角側屈曲点からの距離がそれぞれh1,h
2の位置を通り接合部に平行な直線で囲まれ且つ接合部
を含む領域を、屈曲部としてもよい。
Further, an intersection of a straight line that passes through the inner corner side bending point and crosses each of the first straight line portion and the second straight line portion at a right angle and an edge portion that forms the outer corner side bending point of the first straight line portion and the second straight line portion. When,
When the distances to the outside corner side bending points are respectively h1 and h2, the distances from the inside corner side bending points on the edge portions forming the inside angle side bending points of the first straight line portion and the second straight line portion are h1 and h2, respectively. h
A region surrounded by a straight line passing through the position 2 and parallel to the joint and including the joint may be the bent portion.

【0033】また、補強膜厚部は、基準膜厚部よりも上
層側に突出させて形成する、或いは、下層側に突出させ
て形成し少なくとも突出部を下層側層間絶縁膜中に埋没
させて形成することもできる。尚、補強膜厚部を、基準
膜厚部よりも上層側に突出させて形成した場合、この配
線と上層の配線との接続は、屈曲部を避けた位置で行う
のが好ましい。
The reinforcing film thickness portion is formed so as to project above the reference film thickness portion, or is formed so as to project toward the lower layer side, and at least the projecting portion is buried in the lower layer side interlayer insulating film. It can also be formed. When the reinforcing film thickness portion is formed so as to project to the upper layer side with respect to the reference film thickness portion, it is preferable to connect this wiring and the wiring of the upper layer at a position avoiding the bent portion.

【0034】また、補強膜厚部は、少なくとも基準膜厚
部を形成する第1の導電性薄膜を含むが、この第1の導
電性薄膜と異なる第2の導電性薄膜を更に含んで形成す
ることもできる。
The reinforcing film thickness portion includes at least the first conductive thin film forming the reference film thickness portion, but further includes the second conductive thin film different from the first conductive thin film. You can also

【0035】これらの構成による配線断面積の増加は、
屈曲部での電流集中を緩和するという役目を果たす。従
って、屈曲部の電流集中によるエレクトロマイグレーシ
ョン耐性を向上させるという効果が得られる。
The increase in the wiring cross-sectional area due to these configurations is
It plays the role of alleviating the current concentration at the bend. Therefore, the effect of improving electromigration resistance due to current concentration at the bent portion can be obtained.

【0036】これらの構成による効果は、微細化の進ん
だ信号配線に適用したときに、特に顕著に表れる。
The effects of these configurations are particularly remarkable when applied to a signal wiring which has been miniaturized.

【0037】[0037]

【発明の実施の形態】次に、本発明について、図を参照
して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described with reference to the drawings.

【0038】図1は、本発明の第1の実施形態の半導体
装置のチップの配線の屈曲部を模式的に示す斜視図であ
り、図2(a),(b)は、それぞれ図1の配線の模式
的な平面図と(a)のA−A’線断面を模式的に示す断
面図である。
FIG. 1 is a perspective view schematically showing a bent portion of a wiring of a chip of a semiconductor device according to a first embodiment of the present invention, and FIGS. 2A and 2B are each a view of FIG. FIG. 3 is a schematic plan view of the wiring and a cross-sectional view schematically showing a cross section taken along the line AA ′ of FIG.

【0039】図1,2を参照すると、本実施形態の半導
体装置の配線1は、幅がW1で第1の方向の第1直線部
11と幅がW2で第2の方向の第2直線部12とが内角
側屈曲点P0と外角側屈曲点Q0とを結ぶ仮想的な接合
部2で例えば直角に屈曲し、この接合部2から内角側屈
曲点をなす縁端部上で第1直線部11側にW1の距離の
位置P1を通り第1直線部11を直角に横断する第1の
直線16と第2直線部12側にW2の距離の位置P2を
通り第2直線部12を直角に横断する第2の直線17で
囲まれた領域を屈曲部3としている。
Referring to FIGS. 1 and 2, the wiring 1 of the semiconductor device of this embodiment has a first straight line portion 11 having a width W1 and a first direction and a second straight line portion 11 having a width W2 and a second direction. 12 is an imaginary joint 2 that connects the inner-angle-side bending point P0 and the outer-angle-side bending point Q0, and is bent at a right angle, for example, and the first straight line portion is formed on the edge portion that forms the inner-angle-side bending point from the joint 2. The first straight line 16 that passes through the position P1 at the distance W1 on the 11 side and crosses the first straight line portion 11 at a right angle, and the second straight line portion 12 at the right angle through the position P2 at the distance W2 on the second straight line portion 12 side. The region surrounded by the second straight line 17 that crosses is the bent portion 3.

【0040】この屈曲部3は、第1の導電性薄膜を用い
て形成された配線膜厚sの基準膜厚部10の上に膜厚Δ
sの膜厚追加部13を形成して配線膜厚t(t=s+Δ
s)を基準膜厚部10の膜厚sよりもΔsだけ上層側に
凸状に厚くして断面積を増大させている。すなわち、屈
曲部3は、基準膜厚部10よりも膜厚の厚い、基準膜厚
部よりも上層側に突出した膜厚補強部となっている。
The bent portion 3 has a film thickness Δ on the reference film thickness portion 10 of the wiring film thickness s formed by using the first conductive thin film.
The film thickness adding portion 13 of s is formed to form the wiring film thickness t (t = s + Δ
s) is thicker than the film thickness s of the reference film thickness portion 10 by Δs in a convex shape on the upper layer side to increase the cross-sectional area. That is, the bent portion 3 is a film thickness reinforcing portion that is thicker than the reference film thickness portion 10 and protrudes above the reference film thickness portion.

【0041】尚、膜厚補強の確実な効果を得るには、t
/s≧1.1が望ましい。また、W1とW2の関係は、
W1=W2となるのが通常であるが、W1≠W2であっ
てもよい。
To obtain a reliable effect of film thickness reinforcement, t
/S≧1.1 is desirable. The relationship between W1 and W2 is
Normally, W1 = W2, but W1 ≠ W2 may be satisfied.

【0042】次に、本実施形態の半導体装置の配線1の
製造方法の一例の概略を説明する。
Next, an outline of an example of a method of manufacturing the wiring 1 of the semiconductor device of this embodiment will be described.

【0043】図3は、この製造方法を説明するための主
要工程での断面概略を模式的に示す断面図で、(a1)
〜(a4)は図2(a)のA−A’線断面に相当する部
分であり、(b1)〜(b4)は同一配線層内に形成さ
れる通常配線部である。
FIG. 3 is a sectional view schematically showing a sectional outline in a main step for explaining this manufacturing method.
2 to (a4) are portions corresponding to the cross section along the line AA 'in FIG. 2 (a), and (b1) to (b4) are normal wiring portions formed in the same wiring layer.

【0044】図3を参照すると、本実施形態の半導体装
置は、まず、周知の素子形成方法により素子が形成され
た半導体チップの基板20上の第1の絶縁膜21の上に
所定の膜厚sの例えばアルミニウム(Al)のような第
1の導電性薄膜22を堆積し(a1,b1)、フォトリ
ソグラフィ技術を用いて配線1の基準膜厚部10及び所
望の通常配線110パターンを形成した後、全面に第2
の絶縁膜23を基準膜厚部10,通常配線110の表面
が被覆されるように堆積する(a2,b2)。
Referring to FIG. 3, in the semiconductor device of this embodiment, first, a predetermined film thickness is formed on a first insulating film 21 on a substrate 20 of a semiconductor chip on which elements are formed by a known element forming method. A first conductive thin film 22 of s, for example, aluminum (Al) is deposited (a1, b1), and the reference film thickness portion 10 of the wiring 1 and a desired normal wiring 110 pattern are formed by using a photolithography technique. After that, the second on the entire surface
The insulating film 23 is deposited so as to cover the surface of the reference film thickness portion 10 and the normal wiring 110 (a2, b2).

【0045】次に、フォトリソグラフィ技術を用いて配
線1の屈曲部3の上部のみ第2の絶縁膜23を除去して
開口部24を形成し、全面に例えば第1の導電性薄膜と
同じAlのような第2の導電性薄膜25を所定の膜厚Δ
sだけ堆積し開口部24の部分での導電性薄膜の膜厚
(第1及び第2の導電性薄膜の膜厚の和)が所望の膜厚
tになるようにする(a3,b3)。
Next, using photolithography, the second insulating film 23 is removed only on the upper portion of the bent portion 3 of the wiring 1 to form an opening 24, and the same Al as that of the first conductive thin film is formed on the entire surface. A second conductive thin film 25 such as
Only s is deposited so that the film thickness of the conductive thin film (the sum of the film thicknesses of the first and second conductive thin films) at the opening 24 becomes a desired film thickness t (a3, b3).

【0046】次に、フォトリソグラフィ技術を用いて開
口部24の部分以外の第2の導電性薄膜25を除去し、
第3の絶縁膜26を全面に堆積する(a4,b4)こと
により、屈曲部3の部分の膜厚tが基準膜厚部10の膜
厚sよりもΔsだけ厚く且つ基準膜厚部よりも上層側に
突出する補強膜厚部となった配線1が形成される。
Next, the second conductive thin film 25 other than the portion of the opening 24 is removed by using the photolithography technique,
By depositing the third insulating film 26 on the entire surface (a4, b4), the film thickness t of the bent portion 3 is Δs thicker than the film thickness s of the reference film thickness portion 10 and more than the reference film thickness portion. The wiring 1 is formed as a reinforcing film thickness portion protruding to the upper layer side.

【0047】以後は、周知の多層配線技術を用いて上層
の配線を形成することは容易であるので説明は省略す
る。尚、このとき上層の配線と接続するためのスルーホ
ールは、屈曲部3を避けて配置するのが望ましい。これ
により、スルーホールの深さがほぼ一定になり、スルー
ホール開口工程の複雑化が避けられる。
After that, since it is easy to form the upper layer wiring by using the well-known multilayer wiring technique, the description thereof will be omitted. At this time, it is desirable to dispose the through hole for connecting to the wiring of the upper layer while avoiding the bent portion 3. As a result, the depth of the through hole becomes substantially constant, and the complexity of the through hole opening process can be avoided.

【0048】上述の通り、本実施形態の半導体装置の配
線1は、接合部2を含む屈曲部3の配線膜厚tが基準膜
厚部10と同じ膜厚の直線領域の配線膜厚sよりもΔs
だけ厚くなっており、屈曲部3における電流の集中があ
っても屈曲部3の電流密度を緩和して、EM耐性を向上
させることができる。
As described above, in the wiring 1 of the semiconductor device of this embodiment, the wiring film thickness t of the bent portion 3 including the joint 2 is smaller than the wiring film thickness s of the linear region having the same film thickness as the reference film thickness portion 10. Also Δs
Therefore, even if the current is concentrated in the bent portion 3, the current density in the bent portion 3 can be relaxed and the EM resistance can be improved.

【0049】また、膜厚追加部13により配線膜厚を増
加させた膜厚補強部を、電流の集中によってEM耐性に
問題が生じやすい部分に限定しているので、隣接する配
線間容量の増加は最小限に抑制されており、信号伝達特
性等への影響も実質的に検知されない範囲に抑制されて
いる。
Further, since the film thickness reinforcing portion in which the wiring film thickness is increased by the film thickness adding portion 13 is limited to the portion where the problem of EM resistance is likely to occur due to the concentration of current, the capacitance between the adjacent wirings is increased. Is suppressed to a minimum, and the influence on the signal transfer characteristic and the like is suppressed to a range where it is not substantially detected.

【0050】尚、上述の実施形態の配線1の製造方法で
は、屈曲部3の配線膜厚を厚くするための膜厚追加部1
3を形成する第2の導電性薄膜25に、基準膜厚部10
を形成する第1の導電性薄膜22と同じ材料のAlを用
いた例で説明したが、製造方法はこれに限定されるもの
でなく、材料・成膜方法を含めて種々変更が可能であ
る。例えば、導電性薄膜材料としては、銅(Cu)等の
低抵抗金属膜でもよく、また、第1の導電性薄膜22と
第2の導電性薄膜25とを一体で膜厚補強部の所望膜厚
まで成膜し、エッチングにより通常配線110や配線1
の基準膜厚部10と同じ膜厚の直線部分等の膜厚を制御
して形成することもできる。更に、膜厚追加部13形成
する第2の導電性薄膜25は、例えばタングステン
(W)等の高融点金属のように第1の導電性薄膜22と
異なる材料であってもよい。
In the method of manufacturing the wiring 1 according to the above-described embodiment, the film thickness addition portion 1 for increasing the wiring film thickness of the bent portion 3 is formed.
3 is formed on the second conductive thin film 25 forming the reference film thickness portion 10
Although the example of using Al of the same material as that of the first conductive thin film 22 for forming is described, the manufacturing method is not limited to this, and various changes can be made including the material and the film forming method. . For example, the conductive thin film material may be a low resistance metal film such as copper (Cu), and the first conductive thin film 22 and the second conductive thin film 25 are integrally formed into a desired film for the film thickness reinforcing portion. The normal wiring 110 and the wiring 1 are formed by forming a film to a thickness and etching.
It is also possible to form the film by controlling the film thickness of a linear portion or the like having the same film thickness as the reference film thickness part 10. Furthermore, the second conductive thin film 25 formed in the film thickness adding portion 13 may be made of a material different from that of the first conductive thin film 22, such as a refractory metal such as tungsten (W).

【0051】次に、本発明の第2の実施形態について説
明する。
Next, a second embodiment of the present invention will be described.

【0052】本実施形態の半導体装置の配線も平面形状
は第1の実施形態と同様になるので、平面図については
図2(a)を参照する。図4は、本実施形態の半導体装
置の配線を説明するための図で、(a)は配線の屈曲部
を模式的に示す斜視図であり、(b)は図2(a)にお
けるA−A’線断面を模式的に示す断面図である。
Since the wiring of the semiconductor device of this embodiment has the same planar shape as that of the first embodiment, refer to FIG. 2A for a plan view. 4A and 4B are views for explaining the wiring of the semiconductor device of the present embodiment, FIG. 4A is a perspective view schematically showing a bent portion of the wiring, and FIG. 4B is a line A- in FIG. It is sectional drawing which shows the A'line cross section typically.

【0053】尚、本実施形態の屈曲配線5は、平面形状
とともに屈曲部の領域定義も第1の実施形態と同様にな
るので、屈曲部の領域定義の説明は省略する。
In the bent wiring 5 of this embodiment, the area definition of the bent portion is the same as that of the first embodiment together with the planar shape, and therefore the description of the area definition of the bent portion is omitted.

【0054】図2(a),図4を参照すると、本実施形
態の半導体装置の配線5も、第1の方向の第1直線部4
1と第1の方向と異なる第2の方向の第2直線部42と
が接合部2で直角に屈曲し、屈曲部3は同一配線層内に
形成される通常配線(図示せず)と同じ配線材料・配線
膜厚sで形成された基準膜厚部40の下に膜厚Δsの膜
厚追加部43を備えており、配線膜厚t(但し、t=s
+Δs)を基準膜厚部40の膜厚sよりもΔsだけ下層
側に凸状に厚くして断面積を増大させている。
With reference to FIGS. 2A and 4, the wiring 5 of the semiconductor device of this embodiment also includes the first straight line portion 4 in the first direction.
1 and a second straight portion 42 in a second direction different from the first direction are bent at a right angle at the joint portion 2, and the bent portion 3 is the same as a normal wiring (not shown) formed in the same wiring layer. A film thickness addition portion 43 having a film thickness Δs is provided below the reference film thickness portion 40 formed of the wiring material / wiring film thickness s, and the wiring film thickness t (where t = s
The cross-sectional area is increased by making + Δs) thicker by Δs than the film thickness s of the reference film thickness portion 40 to the lower layer side.

【0055】すなわち、本実施形態の半導体装置の配線
5の屈曲部3は、第1の実施形態と異なり、膜厚追加部
43を基準膜厚部40の下層側に凸状に設けて配線膜厚
を厚くしており、基準膜厚部40よりも下層側に突出し
た膜厚補強部となっている。
That is, in the bent portion 3 of the wiring 5 of the semiconductor device of the present embodiment, unlike the first embodiment, the film thickness addition portion 43 is provided in a convex shape on the lower layer side of the reference film thickness portion 40 to form a wiring film. The thickness is increased, and the film thickness reinforcing portion projects to the lower layer side than the reference film thickness portion 40.

【0056】次に、本実施形態の半導体装置の配線5の
製造方法の一例の概略を説明する。
Next, an outline of an example of a method of manufacturing the wiring 5 of the semiconductor device of this embodiment will be described.

【0057】図5は、この製造方法を説明するための主
要工程での断面概略を模式的に示す断面図で、(a1)
〜(a4)は図2(a)のA−A’線断面に相当する部
分であり、(b1)〜(b4)は同一配線層内に形成さ
れる通常配線部である。。
FIG. 5 is a sectional view schematically showing a sectional outline in a main step for explaining this manufacturing method.
2 to (a4) are portions corresponding to the cross section along the line AA 'in FIG. 2 (a), and (b1) to (b4) are normal wiring portions formed in the same wiring layer. .

【0058】図5を参照すると、本実施形態の半導体装
置は、まず、第1の実施形態の場合と同様、周知の素子
形成方法により素子が形成された半導体チップの基板5
0上の第1の絶縁膜51の上であって、配線5の膜厚を
厚くしたい屈曲部3が配置される部分にフォトリソグラ
フィ技術等を用いて深さΔsの凹部52を形成する(a
1,b1)。
Referring to FIG. 5, in the semiconductor device of the present embodiment, first, as in the case of the first embodiment, the substrate 5 of the semiconductor chip on which the elements are formed by the well-known element forming method.
On the first insulating film 51 above 0, a recess 52 having a depth Δs is formed by photolithography or the like in a portion where the bent portion 3 where the film thickness of the wiring 5 is desired to be thick is arranged (a
1, b1).

【0059】次に、所定の膜厚t’(t’>tが望まし
い)の例えばアルミニウム(Al)のような導電性薄膜
53を堆積する(a2,b2)。
Next, a conductive thin film 53 such as aluminum (Al) having a predetermined film thickness t '(t'> t is desirable) is deposited (a2, b2).

【0060】次に、例えばエッチバック技術或いは化学
機械研磨(CMP)技術等を用いて、基準膜厚部40及
び通常配線部の膜厚がsになるように導電性薄膜53を
エッチング或いは研磨した後、フォトリソグラフィ技術
等を用いて配線5及び所望の通常配線120を含むパタ
ーンを形成(c)した後、全面に層間絶縁膜となる第4
の絶縁膜54を所定の膜厚だけ堆積して(d)本実施形
態の半導体装置の配線5が形成される。
Then, the conductive thin film 53 is etched or polished by using, for example, an etch back technique or a chemical mechanical polishing (CMP) technique so that the reference film thickness portion 40 and the normal wiring portion have a thickness of s. After that, a pattern including the wiring 5 and the desired normal wiring 120 is formed (c) by using a photolithography technique or the like, and then a fourth interlayer insulating film is formed on the entire surface.
The insulating film 54 is deposited to a predetermined thickness (d) to form the wiring 5 of the semiconductor device of this embodiment.

【0061】以後は、第1の実施形態の場合と同様、周
知の多層配線技術を用いて容易に上層の配線を形成する
ことができるので説明は省略する。
After that, as in the case of the first embodiment, the upper layer wiring can be easily formed by using the well-known multilayer wiring technique, and therefore the description thereof is omitted.

【0062】上述の通り、本実施形態の半導体装置は、
第1の絶縁膜51の所定の領域(配線5の屈曲部3が配
置される領域)に深さがΔsの凹部52を予め形成した
後、導電性薄膜53を膜厚t’だけ堆積し、通常配線1
20及び配線5の基準膜厚部40の配線膜厚が所望の膜
厚sになるようにエッチング或いは研磨しているので、
表面が平坦化されるとともに屈曲部3の膜厚tが基準膜
厚部40の配線膜厚sよりもΔsだけ厚くなる。
As described above, the semiconductor device of this embodiment is
After forming a recess 52 having a depth of Δs in a predetermined region of the first insulating film 51 (a region where the bent portion 3 of the wiring 5 is arranged), a conductive thin film 53 is deposited by a film thickness t ′. Normal wiring 1
20 and the reference film thickness portion 40 of the wiring 5 are etched or polished so that the wiring film thickness becomes a desired film thickness s.
While the surface is flattened, the film thickness t of the bent portion 3 becomes thicker than the wiring film thickness s of the reference film thickness portion 40 by Δs.

【0063】すなわち、本実施形態の半導体装置の配線
5は、屈曲部3が基準膜厚部40よりも膜厚の厚い且つ
基準膜厚部40よりも下層側に突出した膜厚補強部とな
っている。
That is, the wiring 5 of the semiconductor device of this embodiment is a film thickness reinforcing portion in which the bent portion 3 is thicker than the reference film thickness portion 40 and protrudes below the reference film thickness portion 40. ing.

【0064】従って、屈曲部3における電流の集中があ
っても屈曲部3の電流密度を緩和して、第1の実施形態
と同様にEM耐性を向上させている。
Therefore, even if the current is concentrated in the bent portion 3, the current density in the bent portion 3 is relaxed, and the EM resistance is improved as in the first embodiment.

【0065】また、膜厚追加部43により配線膜厚を増
加させた膜厚補強部を、電流の集中によってEM耐性に
問題が生じやすい部分に限定しているので、隣接する配
線間容量の増加は最小限に抑制されており、信号伝達特
性等への影響が実質的に検知されない範囲に抑制されて
いる点も第1の実施形態と同様である。
Further, since the film thickness reinforcing portion in which the wiring film thickness is increased by the film thickness adding portion 43 is limited to the portion where the problem of the EM resistance is likely to occur due to the concentration of the current, the capacitance between the adjacent wirings is increased. Is suppressed to the minimum, and the point that the influence on the signal transfer characteristics and the like is suppressed to a range where it is not substantially detected is the same as in the first embodiment.

【0066】更に、本実施形態の場合、膜厚追加部43
が下層の第1の絶縁膜51中に埋設された形状となって
いるので、チップ表面の凹凸を緩和でき、後工程の処理
が容易になるという効果もある。
Further, in the case of the present embodiment, the film thickness adding portion 43
Has a shape embedded in the lower first insulating film 51, so that the unevenness of the chip surface can be alleviated and the subsequent process can be easily performed.

【0067】次に本発明の第3の実施形態について説明
する。
Next, a third embodiment of the present invention will be described.

【0068】本実施形態の半導体装置の配線も平面図
は、第1,第2の実施形態と同様になるので、平面図に
ついては図2(a)を参照する。図6は、本実施形態の
半導体装置の配線を説明するための図で、(a)は配線
の屈曲部を模式的に示す斜視図であり、(b)は図2
(a)におけるA−A’線断面を模式的に示す断面図で
ある。
The plan view of the wiring of the semiconductor device of this embodiment is the same as that of the first and second embodiments, so refer to FIG. 2A for the plan view. 6A and 6B are views for explaining the wiring of the semiconductor device of this embodiment, FIG. 6A is a perspective view schematically showing a bent portion of the wiring, and FIG.
It is sectional drawing which shows the AA 'line cross section in (a) typically.

【0069】本実施形態の配線7も、屈曲部の領域定義
を含めて平面形状が第1,第2の実施形態と同様になる
ので、屈曲部の領域定義の説明は省略する。
Since the wiring 7 of this embodiment has the same planar shape as that of the first and second embodiments including the area definition of the bent portion, the description of the area definition of the bent portion will be omitted.

【0070】図2(a),図6を参照すると、本実施形
態の半導体装置の配線7も第1の方向の第1直線部61
と第1の方向と異なる第2の方向の第2直線部62とが
接合部2で直角に屈曲し、屈曲部3には膜厚sの基準膜
厚部60の上層側と下層側にそれぞれが例えば膜厚Δs
/2の上層側膜厚追加部63と下層側膜厚追加部64を
設けている。従って、屈曲部3の配線膜厚tが、基準膜
厚部60の膜厚sよりもΔsだけ厚くなっており、屈曲
部3が、基準膜厚部60よりも膜厚の厚い膜厚補強部と
なっている。
With reference to FIGS. 2A and 6, the wiring 7 of the semiconductor device of this embodiment also includes the first straight line portion 61 in the first direction.
And a second straight line portion 62 in a second direction different from the first direction are bent at a right angle at the joint portion 2, and the bent portion 3 has an upper layer side and a lower layer side of the reference film thickness portion 60 having a film thickness s, respectively. Is, for example, the film thickness Δs
An upper layer side film thickness addition section 63 and a lower layer side film thickness addition section 64 are provided. Therefore, the wiring film thickness t of the bent portion 3 is thicker than the film thickness s of the reference film thickness portion 60 by Δs, and the bent portion 3 is thicker than the reference film thickness portion 60. Has become.

【0071】すなわち、本実施形態の半導体装置の配線
7は、屈曲部3の配線膜厚を厚くする際に、第1の実施
形態では上層側に突出させ,第2の実施形態では下層側
に突出させて厚くしたのに対し、上層側・下層側双方に
突出させて厚くしている点が第1,第2の実施形態との
違いである。
That is, the wiring 7 of the semiconductor device of this embodiment is made to project to the upper layer side in the first embodiment and to the lower layer side in the second embodiment when increasing the wiring film thickness of the bent portion 3. This is different from the first and second embodiments in that it is made thicker by projecting it on both the upper layer side and the lower layer side, while it is made thicker by projecting.

【0072】尚、上述の実施形態の説明では、屈曲部3
の膜厚を厚くする上層側膜厚追加部63と下層側膜厚追
加部64の膜厚を等しくした例で説明したが、これらの
膜厚追加部の膜厚は上層側・下層側で異なっていてもよ
く、それぞれどのように配分するかは、製造の容易性等
他の要因も考慮して適宜定めればよい。また、本実施形
態の半導体装置の配線7は、第1の実施形態と第2の実
施形態の製造方法を組み合わせれば容易に製造できるの
で、製造方法の説明は省略する。
In the description of the above embodiment, the bent portion 3
The thicknesses of the upper layer side film thickness addition portion 63 and the lower layer side film thickness addition portion 64 are made equal to each other, but the film thicknesses of these film thickness addition portions are different between the upper layer side and the lower layer side. However, how to allocate each may be appropriately determined in consideration of other factors such as ease of manufacturing. Further, the wiring 7 of the semiconductor device of the present embodiment can be easily manufactured by combining the manufacturing methods of the first and second embodiments, and therefore the description of the manufacturing method is omitted.

【0073】また、上述の第1,第2,第3の実施形態
のいずれの場合も、基準膜厚部よりも配線膜厚を厚くし
た膜厚補強部である屈曲部領域を、図2(a)の所定位
置P1,P2を通りそれぞれの直線部を直角に横断する
直線で囲まれた接合部を含む領域としたが、図7のよう
に所定位置P1,P2を通る接合部2に平行な第3の直
線76と第4の直線77で囲まれた接合部2を含む領域
としてもよい。
Further, in any of the above-described first, second and third embodiments, the bent portion area which is the film thickness reinforcing portion in which the wiring film thickness is made thicker than the reference film thickness portion is shown in FIG. Although the region including the joint portion surrounded by the straight line that passes through the predetermined positions P1 and P2 and crosses each straight line at a right angle in a) is defined as parallel to the joint portion 2 that passes the predetermined positions P1 and P2 as shown in FIG. It may be a region including the joint portion 2 surrounded by the third straight line 76 and the fourth straight line 77.

【0074】また、上述の第1,第2,第3の実施形態
のいずれの場合も屈曲部がL字状に90度屈曲した例で
説明したが、これに限定されるものでなく、任意角度で
屈曲していてもよい。
In each of the above-described first, second and third embodiments, the example in which the bent portion is bent 90 degrees in an L-shape has been described, but the present invention is not limited to this and is arbitrary. It may be bent at an angle.

【0075】例えば、図8(a)のように、配線8の幅
がW1の第1直線部81に対し幅がW2の第2直線部8
2が直角でない任意角度で屈曲している場合も、内角側
屈曲点P0からこの内角側屈曲点P0をなす縁端部上で
第1直線部81側に距離がW1の位置P1と第2直線部
82側に距離がW2の位置P2を通りそれぞれ第1直線
部81を直角に横断する第1の直線86と第2直線部8
2を直角に横断する第2の直線87とで囲まれた接合部
2を含む領域を屈曲部83として配線膜厚を厚くした膜
厚補強部にすればよい。
For example, as shown in FIG. 8A, the wiring 8 has a first straight portion 81 having a width W1 and a second straight portion 8 having a width W2.
Even when 2 is bent at an arbitrary angle that is not a right angle, the position P1 and the second straight line where the distance is W1 from the inner angle side bending point P0 to the first straight line portion 81 side on the edge portion forming the inner angle side bending point P0. The first straight line 86 and the second straight line portion 8 that pass through the position P2 with the distance W2 toward the portion 82 side and cross the first straight line portion 81 at a right angle.
A region including the joint portion 2 surrounded by the second straight line 87 that crosses 2 at a right angle may be used as the bent portion 83 to form a film thickness reinforced portion in which the wiring film thickness is increased.

【0076】また、図8(b)のようにこのP1,P2
を通る接合部2に平行な第3の直線88,第4の直線8
9で囲まれた接合部2を含む領域を屈曲部84とし配線
膜厚を厚くしてもよい。
Further, as shown in FIG. 8B, these P1 and P2 are
Third straight line 88 and fourth straight line 8 parallel to the joint 2 passing through
A region including the joint portion 2 surrounded by 9 may be a bent portion 84 to increase the wiring film thickness.

【0077】更に、これまでの説明では、屈曲部の屈曲
角度に関わらず、いずれの場合も所定位置P1は、内角
側屈曲点P0から第1直線部の幅W1の距離の位置と
し、所定位置P2は、内角側屈曲点から第2直線部の幅
W2の距離の位置としたが、少なくとも内角側屈曲点P
0を通り第1直線部及び第2直線部をそれぞれ直角に横
断する直線で囲まれた接合部が存在する領域を含んでい
れば、配線間容量その他の要因を考慮して適宜定めても
よい。
Further, in the above description, regardless of the bending angle of the bent portion, in any case, the predetermined position P1 is the position of the distance of the width W1 of the first straight portion from the inner-angle-side bending point P0 and the predetermined position. P2 is set at the position of the distance of the width W2 of the second straight portion from the inner corner side bending point, but at least the inner corner side bending point P
It may be appropriately determined in consideration of the inter-wiring capacitance and other factors as long as it includes a region where there is a junction surrounded by straight lines that pass through 0 and cross the first straight line portion and the second straight line portion at right angles. .

【0078】例えば図9のように、配線9の内角側屈曲
点P0を通り第1直線部91及び第2直線部92それぞ
れを直角に横断する直線と第1直線部91及び第2直線
部92の外角側屈曲点Q0をなす縁端部との交点をそれ
ぞれQ1,Q2とし、Q0とQ1,Q2との間の距離を
それぞれh1,h2として、内角側屈曲点P0からこの
内角側屈曲点P0をなす縁端部上で第1直線部91側に
h1,第2直線部92側にh2の距離の位置をそれぞれ
所定位置P1,P2とすることもできる。
For example, as shown in FIG. 9, a straight line that passes through the inner corner side bending point P0 of the wiring 9 and crosses the first straight line portion 91 and the second straight line portion 92 at a right angle, and the first straight line portion 91 and the second straight line portion 92. The intersections with the edge portion forming the outer corner side bending point Q0 are Q1 and Q2, and the distances between Q0 and Q1 and Q2 are h1 and h2, respectively. It is also possible to set the positions of the distance h1 on the side of the first straight line portion 91 and the distance h2 on the side of the second straight line portion 92 on the edge portion that forms the predetermined positions P1, P2, respectively.

【0079】[0079]

【発明の効果】以上説明したとおり、本発明の導電性薄
膜で形成され、同一層内に屈曲部がある連続した配線を
有する半導体装置は、所望の屈曲部が配線を構成してい
る基準膜厚部の配線膜厚より厚い膜厚追加部となってい
るので断面積が増大しており、屈曲部における電流の集
中があっても配線面積を増大させることなく屈曲部の電
流密度を緩和して、EM耐性を向上させることができる
という効果が得られる。
As described above, a semiconductor device having a continuous wiring formed of the conductive thin film of the present invention and having a bent portion in the same layer is a reference film in which a desired bent portion constitutes wiring. The cross-sectional area is increased because it is an additional film thickness that is thicker than the wiring thickness of the thick part, and even if there is current concentration in the bent portion, the current density in the bent portion is relaxed without increasing the wiring area. As a result, the effect that the EM resistance can be improved is obtained.

【0080】しかも、このとき配線膜厚を増加させた膜
厚追加部を、電流の集中によってEM耐性に問題が生じ
やすい部分に限定しているので、隣接する配線間容量の
増加は最小限に抑制されており、信号伝達特性等への影
響が実質的に検知されない範囲に抑制されるという効果
も得られる。
Moreover, at this time, since the film thickness additional portion where the wiring film thickness is increased is limited to the portion where the problem of EM resistance is likely to occur due to the current concentration, the increase in the capacitance between adjacent wirings is minimized. It is suppressed, and the effect of suppressing the influence on the signal transfer characteristic and the like to a range where it is not substantially detected is also obtained.

【0081】また、配線膜厚の増加を屈曲部のみに限定
しているので、多層配線構造を用いる半導体装置に適用
した場合、上層の配線と接続するためのスルーホールを
屈曲部を避けて配置することにより、製造工程のいっそ
うの追加や複雑化を抑制できるという効果も得られる。
Further, since the increase of the wiring film thickness is limited only to the bent portion, when applied to the semiconductor device using the multilayer wiring structure, the through hole for connecting with the wiring of the upper layer is arranged avoiding the bent portion. By doing so, it is possible to obtain the effect that it is possible to suppress further addition and complication of the manufacturing process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態の半導体装置のチップ
の屈曲部を備えた配線の屈曲部を模式的に示す斜視図で
ある。
FIG. 1 is a perspective view schematically showing a bent portion of a wiring having a bent portion of a chip of a semiconductor device according to a first embodiment of the present invention.

【図2】図1の配線の模式的な平面図(a)と、(a)
のA−A’線断面を模式的に示す断面図(b)である。
2A and 2B are schematic plan views of the wiring of FIG. 1A and FIG.
FIG. 6B is a cross-sectional view (b) schematically showing a cross section taken along line AA ′ of FIG.

【図3】本発明の第1の実施形態の半導体装置の配線の
製造方法の一例を説明するための主要工程での断面概略
を模式的に示す断面図である。
FIG. 3 is a cross sectional view schematically showing a cross sectional outline in a main step for explaining an example of the method for manufacturing the wiring of the semiconductor device of the first embodiment of the present invention.

【図4】本発明の第2の実施形態の半導体装置の配線を
説明するための図で、(a)は配線の屈曲部を模式的に
示す斜視図であり、(b)は図2(a)におけるA−
A’線断面を模式的に示す断面図である。
4A and 4B are views for explaining the wiring of the semiconductor device according to the second embodiment of the present invention, FIG. 4A is a perspective view schematically showing a bent portion of the wiring, and FIG. A- in a)
It is sectional drawing which shows the A'line cross section typically.

【図5】本発明の第2の実施形態の半導体装置の配線の
製造方法の一例を説明するための主要工程での断面概略
を模式的に示す断面図である。
FIG. 5 is a cross sectional view schematically showing a cross sectional outline in a main step for explaining an example of the method for manufacturing the wiring of the semiconductor device according to the second embodiment of the present invention.

【図6】本発明の第3の実施形態の半導体装置の配線を
説明するための図で、(a)は配線の屈曲部を模式的に
示す斜視図であり、(b)は図2(a)におけるA−
A’線断面を模式的に示す断面図である。
6A and 6B are views for explaining wiring of a semiconductor device according to a third embodiment of the present invention, FIG. 6A is a perspective view schematically showing a bent portion of the wiring, and FIG. A- in a)
It is sectional drawing which shows the A'line cross section typically.

【図7】屈曲部を定義する境界線の設定方法の他の一例
を説明するための模式的な平面図である。
FIG. 7 is a schematic plan view for explaining another example of a method of setting a boundary line that defines a bent portion.

【図8】任意角度で屈曲している場合の屈曲部の例を模
式的に示す平面図である。
FIG. 8 is a plan view schematically showing an example of a bent portion when bent at an arbitrary angle.

【図9】屈曲部を定義する境界線の位置の設定方法の他
の一例を説明するための模式的な平面図である。
FIG. 9 is a schematic plan view for explaining another example of the method of setting the position of the boundary line that defines the bent portion.

【図10】任意角度で屈曲している場合の屈曲部の他の
例を模式的に示す平面図である。
FIG. 10 is a plan view schematically showing another example of a bent portion when bent at an arbitrary angle.

【図11】特開昭62−237747号公報に開示され
た半導体集積回路の電源配線部と信号配線部を含む配線
の模式的な断面図である。
FIG. 11 is a schematic cross-sectional view of a wiring including a power supply wiring portion and a signal wiring portion of the semiconductor integrated circuit disclosed in Japanese Patent Laid-Open No. 62-237747.

【図12】特開昭63−164337号公報に開示され
た配線パターンを示す図で、(a),(b)はそれぞれ
複数の引込み配線が接続された電源配線及び屈曲部のあ
る配線パターンの平面図である。
FIG. 12 is a diagram showing a wiring pattern disclosed in Japanese Patent Application Laid-Open No. 63-164337, wherein (a) and (b) respectively show a power supply wiring to which a plurality of lead-in wirings are connected and a wiring pattern having a bent portion. It is a top view.

【図13】屈曲部での電流集中を緩和する手法の例を説
明するための図で、配線方向を45°ずつ2回に分けて
方向を変化させ、L字に90°曲げた部分の模式的な平
面図である。
FIG. 13 is a diagram for explaining an example of a method for relaxing current concentration at a bent portion, which is a schematic view of a portion bent by 90 ° into an L shape by changing the wiring direction by 45 ° twice. FIG.

【図14】特開昭62−237747号公報に開示され
た方法により配線断面積を増加させた際の隣接する信号
配線の任意の位置の断面を示す図で,(a),(b)
は、それぞれ配線膜厚を増加させた場合と、増加させて
いない場合の断面図である。
FIG. 14 is a diagram showing a cross section at an arbitrary position of an adjacent signal wiring when the wiring cross sectional area is increased by the method disclosed in Japanese Patent Laid-Open No. 62-237747, (a) and (b).
FIG. 3A is a cross-sectional view of the case where the wiring film thickness is increased and FIG.

【図15】最上層以外の同一配線層内に膜厚の異なる配
線を混在させたときの模式的な断面図である。
FIG. 15 is a schematic cross-sectional view when wirings having different film thicknesses are mixed in the same wiring layer other than the uppermost layer.

【図16】配線方向がL字に90°曲がる部分で、45
°ずつ2回に分けて方向を変化させた場合の素子配置領
域への影響を説明するための模式的な概略平面図であ
る。
FIG. 16 is a portion in which the wiring direction bends 90 ° in an L shape,
FIG. 6 is a schematic plan view for explaining the influence on the element arrangement region when the direction is changed by dividing the angle into two parts.

【符号の説明】[Explanation of symbols]

1,5,7,8,9 配線 2 接合部 3,83 屈曲部 10,40,60 基準膜厚部 11,41,61,81,91 第1直線部 12,42,62,82,92 第2直線部 13,43 膜厚追加部 16,86 第1の直線 17,87 第2の直線 20,50 基板 21,51 第1の絶縁膜 22 第1の導電性薄膜 23 第2の絶縁膜 24 開口部 25 第2の導電性薄膜 26 第3の絶縁膜 52 凹部 53 導電性薄膜 54 第4の絶縁膜 63 上層側膜厚追加部 64 下層側膜厚追加部 76,88 第3の直線 77,89 第4の直線 110,120 通常配線 1,5,7,8,9 wiring 2 joints 3,83 bend 10, 40, 60 Standard thickness part 11, 41, 61, 81, 91 First straight line portion 12, 42, 62, 82, 92 Second straight part 13,43 additional film thickness 16,86 First straight line 17,87 Second straight line 20,50 substrate 21,51 First insulating film 22 First conductive thin film 23 Second insulating film 24 opening 25 Second conductive thin film 26 Third insulating film 52 recess 53 Conductive thin film 54 Fourth insulating film 63 Upper layer side film thickness addition section 64 Lower layer side film thickness addition section 76,88 Third straight line 77, 89 Fourth straight line 110, 120 Normal wiring

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/3205 H01L 21/321 H01L 21/3213 H01L 21/768 Front page continuation (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 21/3205 H01L 21/321 H01L 21/3213 H01L 21/768

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 同一層内の連続した配線を有する半導体
装置であって、前記配線が、第1の導電性薄膜で形成さ
れた所定の膜厚の基準膜厚部と、少なくとも前記第1の
導電性薄膜を含んで形成され且つ膜厚が前記基準膜厚部
の膜厚よりも厚い,他の配線層との接続のための接続開
口部とは異なる補強膜厚部と、を備えると共に、前記配
線は同一層内で配線方向が変化する屈曲部を備え、この
屈曲部が前記補強膜厚部となっていることを特徴とする
半導体装置。
1. A semiconductor device having continuous wiring in the same layer, wherein the wiring has a reference film thickness portion of a predetermined film thickness formed of a first conductive thin film, and at least the first film. and film thickness is formed to include a conductive thin film is thicker than the thickness of the reference film thickness portion, and a different reinforcing film thickness portion and the connection opening for connection to other wiring layers Rutotomoni , The distribution
The wire is provided with a bent portion where the wiring direction changes in the same layer.
The semiconductor device bent portion characterized that you have made to the reinforcing film thickness portion.
【請求項2】 配線が、第1の方向で幅がW1の第1直
線部と,この第1直線部と連続し且つ前記第1の方向と
異なる第2の方向に屈曲した幅がW2の第2直線部と,
前記配線の幅を画定する縁端部が第1の方向から第2の
方向に屈曲する屈曲点であって内角側に前記第1直線部
及び前記第2直線部を含む外角側屈曲点と含まない内角
側屈曲点を含む平面形状を備え、前記配線の屈曲部が、
前記内角側屈曲点を通り前記第1直線部及び前記第2直
線部をそれぞれ直角に横断する直線で囲まれ且つ前記内
角側屈曲点と前記外角側屈曲点とを結ぶ接合部が存在す
る領域を少なくとも含むことを特徴とする請求項記載
の半導体装置。
2. The wiring has a first straight line portion having a width W1 in the first direction and a width W2 which is continuous with the first straight line portion and is bent in a second direction different from the first direction. The second straight part,
An edge portion that defines the width of the wiring is a bending point that bends from the first direction to the second direction, and includes an outer corner side bending point that includes the first straight line portion and the second straight line portion on the inner angle side. It has a planar shape including an inner angle side bending point, and the bending portion of the wiring is
A region surrounded by straight lines that pass through the inside-angle-side bending point and cross each of the first straight line portion and the second straight-line portion at a right angle, and that has a joint portion that connects the inside-angle-side bending point and the outside-angle-side bending point. the semiconductor device according to claim 1, wherein at least include.
【請求項3】 屈曲部が、第1直線部及び第2直線部の
内角側屈曲点をなす各縁端部上の前記内角側屈曲点から
の距離がそれぞれW1及びW2の位置を通り前記第1直
線部及び前記第2直線部それぞれを直角に横断する直線
で囲まれた接合部を含む領域である請求項記載の半導
体装置。
3. The bent portion passes through the positions of W1 and W2, respectively, from the inner-angle-side bent point on each edge portion that forms the inner-angle-side bent point of the first straight portion and the second straight portion. The semiconductor device according to claim 1 , wherein the semiconductor device is a region including a junction portion surrounded by a straight line that crosses each of the first straight line portion and the second straight line portion at a right angle.
【請求項4】 屈曲部が、第1直線部及び第2直線部の
内角側屈曲点をなす縁端部上の前記内角側屈曲点からの
距離がそれぞれW1及びW2の位置を通り接合部に平行
な直線で囲まれた前記接合部を含む領域である請求項
記載の半導体装置。
4. The bent portion passes through the positions of W1 and W2 from the inner-angle-side bent point on the edge portion that forms the inner-angle-side bent point of the first straight portion and the second straight portion, respectively, and joins the joint portion. a region including the bonding portion surrounded by a straight line parallel claim 1
The semiconductor device described.
【請求項5】 屈曲部が、内角側屈曲点を通り第1直線
部,第2直線部それぞれを直角に横断する直線と前記第
1直線部及び前記第2直線部の外角側屈曲点をなす縁端
部との交点と、前記外角側屈曲点との間の距離をそれぞ
れh1,h2とするとき、前記第1直線部及び前記第2
直線部の前記内角側屈曲点をなす縁端部上の前記内角側
屈曲点からの距離がそれぞれh1,h2の位置を通り接
合部に平行な直線で囲まれた前記接合部を含む領域であ
る請求項記載の半導体装置。
5. The bending portion forms a straight line that passes through the bending point on the inner angle side and crosses each of the first straight line portion and the second straight line portion at a right angle, and the bending point on the outer angle side of the first straight line portion and the second straight line portion. When the distance between the intersection with the edge portion and the outside corner side bending point is h1 and h2, respectively, the first straight portion and the second straight portion
It is a region including the joint portion surrounded by straight lines parallel to the joint portion, the distances from the inner corner side bending point on the edge portion forming the inner angle side bending point of the straight line portion passing through the positions h1 and h2, respectively. The semiconductor device according to claim 1 .
【請求項6】 屈曲部が、内角側屈曲点を通り第1直線
部,第2直線部それぞれを直角に横断する直線と前記第
1直線部及び前記第2直線部の外角側屈曲点をなす縁端
部との交点と前記外角側屈曲点との間の距離をそれぞれ
h1,h2とするとき、前記第1直線部及び前記第2直
線部の前記内角側屈曲点をなす縁端部上の前記内角側屈
曲点からの距離がそれぞれh1,h2の位置を通り前記
第1直線部及び前記第2直線部それぞれを直角に横断す
る直線で囲まれた接合部を含む領域である請求項記載
の半導体装置。
6. The bending portion forms a straight line that passes through the bending point on the inner angle side and crosses each of the first straight portion and the second straight portion at a right angle, and the bending point on the outer angle side of the first straight portion and the second straight portion. When the distances between the intersection point with the edge portion and the outside corner side bending point are h1 and h2, respectively, on the edge portion forming the inside angle side bending point of the first straight line portion and the second straight line portion. claim 1, wherein a distance from the inner angle side inflection point is a region including a bonding portion which is rectilinear transverse h1, h2 positions respectively through the first linear portion and the second linear portion at right angles to each Semiconductor device.
【請求項7】 補強膜厚部が基準膜厚部よりも上層側に
突出している請求項1乃至いずれか1項に記載の半導
体装置。
7. A semiconductor device according to claim 1 to 6 any one protrudes on the upper side of the reinforcing film thickness portion is a reference thickness portion.
【請求項8】 補強膜厚部が基準膜厚部よりも下層側に
突出している請求項1乃至いずれか1項に記載の半導
体装置。
8. The semiconductor device according to claim 1 to 6 any one projects the lower layer side than the reinforcing film thickness portion is a reference thickness portion.
【請求項9】 上層の配線との接続が、屈曲部でない位
置で行われている請求項1乃至7いずれか1項に記載の
半導体装置。
9. The semiconductor device according to claim 1, wherein the connection with the upper wiring is made at a position which is not a bent portion.
【請求項10】 基準膜厚部と補強膜厚部とが、いずれ
も第1の導電性薄膜で形成されている請求項1乃至
ずれか1項に記載の半導体装置。
10. the reference thickness portion and the reinforcing film thickness portion are both semiconductor device according to any one of claims 1 to 9 are formed in the first conductive thin film.
【請求項11】 補強膜厚部が第1の導電性薄膜と異な
る第2の導電性薄膜を含む請求項1乃至いずれか1項
に記載の半導体装置。
11. The semiconductor device according to any one of claims 1 to 9 reinforcement film thickness portion includes a second conductive thin film that is different from the first conductive thin film.
【請求項12】 配線が信号配線である請求項1乃至1
いずれか1項に記載の半導体装置。
12. The wiring according to claim 1, wherein the wiring is a signal wiring.
1. The semiconductor device according to any one of items 1.
JP33809399A 1999-11-29 1999-11-29 Semiconductor device Expired - Fee Related JP3390388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33809399A JP3390388B2 (en) 1999-11-29 1999-11-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33809399A JP3390388B2 (en) 1999-11-29 1999-11-29 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2001156069A JP2001156069A (en) 2001-06-08
JP3390388B2 true JP3390388B2 (en) 2003-03-24

Family

ID=18314851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33809399A Expired - Fee Related JP3390388B2 (en) 1999-11-29 1999-11-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3390388B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006061871A1 (en) * 2004-12-06 2006-06-15 Fujitsu Limited Semiconductor device
EP1978549B1 (en) * 2005-12-28 2019-12-11 Takashi Suzuki Wiring structure and electronic device designed according to electronic pulsation and particle durability
JP5206083B2 (en) * 2008-04-09 2013-06-12 日産自動車株式会社 Infrared detector
JP5326386B2 (en) * 2008-07-10 2013-10-30 富士通株式会社 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2001156069A (en) 2001-06-08

Similar Documents

Publication Publication Date Title
US7381646B2 (en) Method for using a Cu BEOL process to fabricate an integrated circuit (IC) originally having an al design
US7442637B2 (en) Method for processing IC designs for different metal BEOL processes
US7134111B2 (en) Layout method and apparatus for arrangement of a via offset from a center axis of a conductor and semiconductor device thereof
CN100397613C (en) Multiple thickness semiconductor interconnect and method therefor
JP3798908B2 (en) Semiconductor device and manufacturing method thereof
US8095905B2 (en) Power supply wiring structure
JPH11168102A (en) Semiconductor device
US6429521B1 (en) Semiconductor integrated circuit device and its manufacturing method
JP3390388B2 (en) Semiconductor device
KR100267108B1 (en) Semiconductor device having multi-layer metal interconnection and method fabricating the same
US20030109084A1 (en) Semiconductor device and method of manufacturing the same
US8552550B2 (en) Semiconductor device
US20060141774A1 (en) Pattern transfer mask related to formation of dual damascene structure and method of forming dual damascene structure
US7154183B2 (en) Semiconductor device having multilevel interconnection
US20050023568A1 (en) Semiconductor integrated circuit device
US6745378B2 (en) Wiring designing method
US20080197494A1 (en) Semiconductor device including copper wiring and via wiring having length longer than width thereof and method of manufacturing the same
JPH01100947A (en) Through hole construction
US5888900A (en) Method for manufacturing semiconductor device and reticle for wiring
JPH09293723A (en) Semiconductor device
JPS61140149A (en) Semiconductor ic device
JP4919475B2 (en) Manufacturing method of semiconductor integrated circuit
JP2006339343A (en) Semiconductor device and its manufacturing method
US20010033209A1 (en) Coplanar transmission line
EP0905791A2 (en) Miniaturization of a semiconductor chip

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021224

LAPS Cancellation because of no payment of annual fees