JP3389474B2 - Optical transmission method and optical transmission system - Google Patents

Optical transmission method and optical transmission system

Info

Publication number
JP3389474B2
JP3389474B2 JP25215097A JP25215097A JP3389474B2 JP 3389474 B2 JP3389474 B2 JP 3389474B2 JP 25215097 A JP25215097 A JP 25215097A JP 25215097 A JP25215097 A JP 25215097A JP 3389474 B2 JP3389474 B2 JP 3389474B2
Authority
JP
Japan
Prior art keywords
wavelength
signal
light
optical
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25215097A
Other languages
Japanese (ja)
Other versions
JPH1198074A (en
Inventor
将人 富沢
昭一郎 桑原
由明 山林
和男 萩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP25215097A priority Critical patent/JP3389474B2/en
Publication of JPH1198074A publication Critical patent/JPH1198074A/en
Application granted granted Critical
Publication of JP3389474B2 publication Critical patent/JP3389474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、時分割多重(TD
M)技術と波長多重(WDM)技術を併用して超高速・
大容量の光通信を行う光伝送方法および光伝送システム
に関する。
TECHNICAL FIELD The present invention relates to time division multiplexing (TD).
M) technology and wavelength division multiplexing (WDM) technology are combined to achieve ultra-high speed
The present invention relates to an optical transmission method and an optical transmission system for performing large-capacity optical communication.

【0002】[0002]

【従来の技術】現在、TDM技術を用いて単一波長によ
る 400Gbit/s の伝送実験が報告されている(S.Kawanis
hi et al.,"400 Gbit/s TDM Transmission of 0.98ps P
ulsesOver 40 km Employing Dispersion Slope Compens
ation",In Proc. Optical Fiber Communication (OFC)'
96, PD-24, 1996) 。また、WDM技術を用いて 1.1Tb
it/s を越える伝送容量が報告されている(H.Onaka et
al., "1.1 Tbit/s WDMTransmission Over a 150 km 1.3
μm Zero-Dispersion Single-Mode Fiber", InProc. OF
C'96, PD-19, 1996) 。将来のさらなる大容量化を目指
すには、TDM技術とWDM技術の併用は必須であると
考えられる。
2. Description of the Related Art Currently, a transmission experiment of 400 Gbit / s with a single wavelength using TDM technology has been reported (S. Kawanis).
hi et al., "400 Gbit / s TDM Transmission of 0.98ps P
ulsesOver 40 km Employing Dispersion Slope Compens
ation ", In Proc. Optical Fiber Communication (OFC) '
96, PD-24, 1996). Also, using WDM technology, 1.1Tb
Transmission capacity exceeding it / s has been reported (H. Onaka et
al., "1.1 Tbit / s WDMTransmission Over a 150 km 1.3
μm Zero-Dispersion Single-Mode Fiber ", InProc. OF
C'96, PD-19, 1996). In order to increase the capacity in the future, it is considered necessary to use the TDM technology and the WDM technology together.

【0003】しかし、超高速化・大容量化に際して、T
DM技術とWDM技術にはそれぞれ次のような問題があ
る。TDM伝送を行う場合には、光ファイバの波長分散
の影響が問題となる。ここで、TDM伝送品質に影響を
与えるのは平均の波長分散値であり、平均波長分散値が
大きいほど伝送品質は劣化する。ビットレートの超高速
化と平均波長分散による伝送距離制限はトレードオフの
関係にあり、必要となる再生中継間隔はビートレートの
2乗に逆比例して短くなる。このため、平均波長分散を
等化する技術が求められており、例えば伝送システムの
中に測定系と補償系を組み込んで自動等化を実現する技
術が報告されている(文献1:M.Tomizawa et al.,"Aut
omaticdispersion equalization for installation of
high-speed optical transmission system", OFC'97, T
uT-2, 1997)。
However, at the time of ultra-high speed and large capacity, T
The DM technology and the WDM technology have the following problems, respectively. When performing TDM transmission, the influence of wavelength dispersion of the optical fiber becomes a problem. Here, it is the average chromatic dispersion value that affects the TDM transmission quality, and the transmission quality deteriorates as the average chromatic dispersion value increases. There is a trade-off relationship between the extremely high bit rate and the limitation of the transmission distance due to the average wavelength dispersion, and the required regenerative repeat interval becomes shorter in inverse proportion to the square of the beat rate. Therefore, a technique for equalizing the average chromatic dispersion is required, and for example, a technique for incorporating a measurement system and a compensation system into a transmission system to realize automatic equalization has been reported (Reference 1: M. Tomizawa. et al., "Aut
omaticdispersion equalization for installation of
high-speed optical transmission system ", OFC'97, T
uT-2, 1997).

【0004】一方、分散シフトファイバを用いたWDM
伝送を行う場合には、光ファイバの非線形光学効果、特
に四光波混合(FWM)の影響が問題となる。このFW
Mの発生効率は波長分散に強く依存している。ここで、
WDM伝送品質に影響を与えるのはファイバ入射端付近
の局所的な波長分散であり、局所波長分散値が小さいほ
ど伝送品質は劣化する。波長多重数と伝送距離制限は、
やはりトレードオフの関係にある。
On the other hand, WDM using dispersion-shifted fiber
When performing transmission, the non-linear optical effect of the optical fiber, particularly the influence of four-wave mixing (FWM) becomes a problem. This FW
The generation efficiency of M strongly depends on chromatic dispersion. here,
WDM transmission quality is affected by the local chromatic dispersion near the fiber entrance end, and the transmission quality deteriorates as the local chromatic dispersion value decreases. The wavelength multiplexing number and transmission distance limit are
After all, there is a trade-off relationship.

【0005】[0005]

【発明が解決しようとする課題】TDM技術とWDM技
術を併用して大容量化を目指すには、波長分散の影響を
緩和するための制御が必要であり、さらに経済的にこれ
を実現するには自動制御できることが望ましい。
In order to increase the capacity by using the TDM technology and the WDM technology together, it is necessary to perform control for mitigating the influence of chromatic dispersion, and to realize this economically. Is desirable to be automatically controlled.

【0006】本発明は、TDM伝送における波長分散制
限とWDM伝送における非線形光学効果制限を同時に緩
和し、超高速・大容量の光通信を可能にするために、複
数の信号チャネルに対する波長の割り当てを最適化する
光伝送方法および光伝送システムを提供することを目的
とする。
The present invention alleviates the wavelength dispersion limitation in TDM transmission and the nonlinear optical effect limitation in WDM transmission at the same time, and assigns wavelengths to a plurality of signal channels in order to enable optical communication of ultrahigh speed and large capacity. An object of the present invention is to provide an optimized optical transmission method and optical transmission system.

【0007】[0007]

【課題を解決するための手段】本発明の光伝送方法は、
複数の信号チャネルをそれぞれ異なる波長に割り当てる
際に、光ファイバの平均零分散波長に最も高ビットレー
トの信号チャネルを割り当て、その平均零分散波長から
順次離れる各波長に高ビットレートの信号チャネルから
順番に割り当てる(請求項1)。これにより、高ビット
レートの信号チャネルに対する波長分散の影響を軽減す
ることができ、TDM伝送による大容量化を実現するこ
とができる。
The optical transmission method of the present invention comprises:
When assigning multiple signal channels to different wavelengths, assign the signal channel with the highest bit rate to the average zero-dispersion wavelength of the optical fiber, and order each wavelength away from the average zero-dispersion wavelength sequentially from the signal channel with the highest bit rate. (Claim 1). As a result, it is possible to reduce the influence of chromatic dispersion on a high bit rate signal channel, and it is possible to realize a large capacity by TDM transmission.

【0008】また、光ファイバの入射端付近の局所零分
散波長およびその近傍の波長に対しては、信号チャネル
の割り当てを禁止する(請求項1)。これにより、WD
M伝送における非線形光学効果、特にFWMの影響を軽
減することができ、波長多重数の増加による大容量化を
実現することができる。
Further, signal channels are prohibited from being allocated to the local zero-dispersion wavelength near the incident end of the optical fiber and the wavelength in the vicinity thereof (claim 1). This allows WD
It is possible to reduce the nonlinear optical effect in M transmission, particularly the influence of FWM, and it is possible to realize a large capacity by increasing the number of wavelength division multiplexing.

【0009】また、本発明の光伝送システムは、システ
ム導入時に、光ファイバの平均零分散波長と局所零分散
波長を測定し、各波長に割り当てる信号チャネルを自動
で制御する(請求項2,3)。
Further, the optical transmission system of the present invention measures the average zero-dispersion wavelength and the local zero-dispersion wavelength of the optical fiber when the system is introduced, and automatically controls the signal channel assigned to each wavelength (claims 2, 3). ).

【0010】[0010]

【発明の実施の形態】図1は、本発明の光伝送方法によ
る波長割り当てアルゴリズムを示す。図2は、波長割り
当てアルゴリズムの動作過程を示す。
FIG. 1 shows a wavelength allocation algorithm according to the optical transmission method of the present invention. FIG. 2 shows the operation process of the wavelength allocation algorithm.

【0011】まず、M並列で入力される各信号チャネル
のビットレートを手動でデータベースに登録するか、ま
たは自動で認識して登録する。各信号チャネルのビット
レートの登録が終わると、光ファイバの入射端付近の局
所零分散波長を測定し、続いて平均零分散波長を測定す
る。ここで、局所零分散波長と平均零分散波長が等しい
か近接している場合には、受信側の可変分散補償器を駆
動して平均零分散波長をシフトし、再度平均零分散波長
を測定する。局所零分散波長と平均零分散波長が異なっ
たところで、各信号チャネルをそれぞれ異なる波長に割
り当てる。
First, the bit rate of each signal channel input in M parallel is manually registered in the database or is automatically recognized and registered. When the bit rate of each signal channel is registered, the local zero-dispersion wavelength near the incident end of the optical fiber is measured, and then the average zero-dispersion wavelength is measured. Here, when the local zero-dispersion wavelength and the average zero-dispersion wavelength are equal to or close to each other, the variable dispersion compensator on the receiving side is driven to shift the average zero-dispersion wavelength, and the average zero-dispersion wavelength is measured again. . When the local zero-dispersion wavelength and the average zero-dispersion wavelength are different, each signal channel is assigned to a different wavelength.

【0012】各信号チャネルの波長割り当ては次のよう
にして行う。まずデータベースを参照し、使用可能なN
波の波長を認識し、さらにM並列で入力される各信号チ
ャネルのビットレートを認識する(N>M)。続いて、
測定された平均零分散波長に最大ビットレート(図2で
は40Gbit/s )の信号チャネルを割り当てる。次に、平
均零分散波長から高波長側および低波長側に対称に順次
離れる各波長のうち、局所零分散波長の近傍(数nm以
内)の波長を除く各波長に、高速の信号チャネルから順
番に割り当てる。なお、多中継システムの場合には、全
ての局所零分散波長の近傍を避けるように割り当てる。
Wavelength allocation of each signal channel is performed as follows. First of all, refer to the database, N available
The wavelength of the wave is recognized, and the bit rate of each signal channel input in M parallel is recognized (N> M). continue,
A signal channel having a maximum bit rate (40 Gbit / s in FIG. 2) is assigned to the measured mean zero dispersion wavelength. Next, from the wavelengths that symmetrically deviate from the mean zero-dispersion wavelength to the high-wavelength side and low-wavelength side in order, except for the wavelengths near the local zero-dispersion wavelength (within several nm), from the high-speed signal channel in order. Assign to. In the case of a multi-relay system, allocation is performed so as to avoid the vicinity of all local zero-dispersion wavelengths.

【0013】なお、光ファイバの平均零分散波長の測定
は、公知の位相差法や、測定光のPM−AM変換効果に
より波長分散を測定する公知の方法(文献1)でもよ
い。局所零分散波長の測定は、光パルス試験器(OTD
R)を用いて光ファイバの零分散波長の長手方向のばら
つきを測定する公知の方法(文献2:M.Ohashi and M.T
ateda,"Novel technique for measuring chromatic dis
persion distribution in singlemode fibers", Electr
on. Lett., vol.29, no.5, pp.426-428, 1993)や、光フ
ァイバの入射端付近だけの平均零分散波長(局所零分散
波長)を測定する公知の方法(文献3:M.Tomizawa,"Me
asurement of local aerodispertion wavelength at th
e input side of dispertion managed optical fiber
s", J.Lightwave Technol., vol.15, no.8, Special is
sue on applications of photosensitivity and quadra
tic nonlinearity of glass,1997) でもよい。
The average zero-dispersion wavelength of the optical fiber may be measured by a known phase difference method or a known method of measuring chromatic dispersion by the PM-AM conversion effect of the measuring light (Reference 1). The local zero dispersion wavelength is measured by an optical pulse tester (OTD).
R) for measuring the dispersion of the zero dispersion wavelength of the optical fiber in the longitudinal direction (Reference 2: M. Ohashi and MT).
ateda, "Novel technique for measuring chromatic dis
persion distribution in singlemode fibers ", Electr
on. Lett., vol.29, no.5, pp.426-428, 1993), or a known method for measuring the average zero-dispersion wavelength (local zero-dispersion wavelength) only near the incident end of the optical fiber (Reference 3). : M.Tomizawa, "Me
asurement of local aerodispertion wavelength at th
e input side of dispertion managed optical fiber
s ", J. Lightwave Technol., vol.15, no.8, Special is
sue on applications of photosensitivity and quadra
tic nonlinearity of glass, 1997).

【0014】ここで、文献3による局所零分散波長の測
定法について、図3のフローチャートを参照して説明す
る。まず、入射光の強度変調を0にしたCW光に位相変
調を施して入射する。この状態で、ファイバ出力強度変
調が最小となる波長を測定する。ただし、入射光のパワ
ーは+10dBm以下とする。次に、入射光に強度変調を加
え、この状態でファイバ出力強度変調が最小となる波長
を各パワーで測定する。この最小強度変調波長の光パワ
ーによる変動量Δλ(P0) を式(1) にフィッティングす
ることにより、局所零分散波長が求められる。
Here, the method of measuring the local zero-dispersion wavelength according to Document 3 will be described with reference to the flowchart of FIG. First, the CW light whose intensity modulation of the incident light is set to 0 is subjected to phase modulation and is incident. In this state, the wavelength at which the fiber output intensity modulation is minimized is measured. However, the power of the incident light shall be +10 dBm or less. Next, intensity modulation is applied to the incident light, and the wavelength at which the fiber output intensity modulation is minimized in this state is measured at each power. The local zero-dispersion wavelength is obtained by fitting the variation amount Δλ (P 0 ) due to the optical power of the minimum intensity modulation wavelength to the equation (1).

【0015】[0015]

【数1】 [Equation 1]

【0016】また、光アンプを用いた多中継システムの
場合は、各光中継器の入射パワーを1つずつ変化させて
いくことにより、それぞれの入射端付近の局所零分散波
長を測定することができる。
In the case of a multi-repeater system using an optical amplifier, the local zero-dispersion wavelength near each incident end can be measured by changing the incident power of each optical repeater one by one. it can.

【0017】図3のフローチャートにおける最小強度変
調波長を求めるには、送信器と受信器の間で通信をしな
がら波長をスイープさせて計測する。このアルゴリズム
を図4にシーケンスとして示す(文献1)。なお、実線
矢印は制御光λcontを示し、破線矢印は測定光λmea を
示す。
In order to obtain the minimum intensity modulation wavelength in the flowchart of FIG. 3, the wavelength is swept and measured while communicating between the transmitter and the receiver. This algorithm is shown as a sequence in FIG. 4 (reference 1). The solid arrow indicates the control light λcont, and the broken arrow indicates the measurement light λmea.

【0018】まず、受信器側が測定モードに入る旨を送
信器側に通知する。送信器は、ACKを応答するととも
に、位相変調を施したCW光を送信する。また、制御光
にその波長値を書き込んで受信器に送る。受信器は強度
変調成分を測定し、次の波長へのコマンドを送信する。
以下、順にスイープ可能なすべての波長について強度変
調成分を測定し、測定値が最小となる波長を計算する。
このシーケンスは、図3のフローチャートのS2,S4
では共通である。
First, the receiver side notifies the transmitter side that it enters the measurement mode. The transmitter responds with an ACK and transmits the CW light subjected to the phase modulation. Also, the wavelength value is written in the control light and sent to the receiver. The receiver measures the intensity modulated component and sends a command to the next wavelength.
In the following, the intensity modulation component is measured for all the sweepable wavelengths in sequence, and the wavelength at which the measured value becomes the minimum is calculated.
This sequence is S2, S4 of the flowchart of FIG.
Then it is common.

【0019】(光伝送システムの第1の実施形態)図5
は、本発明の光伝送システムの第1の実施形態を示す。
図において、M並列で入力される各信号チャネルは、M
×Nのスイッチ11を介して強度変調器12−1〜12
−Nに入力され、レーザ光源13−1〜13−Nから出
力される波長λ1〜λNの光を変調する。各強度変調器
で変調された光はスターカプラ14で合波され、2×1
の光スイッチ15、ポストアンプ16、光カプラ17を
介して光ファイバ1に出力される。また、測定光源18
は、光ファイバ1の波長分散を測定するために波長λme
a の光を2×1の光スイッチ15を介して光ファイバ1
に送出する。コントローラ19は、スイッチ11、光ス
イッチ15および測定光源18を制御し、さらに受信側
との通信に用いる波長λcontの制御光を光カプラ17を
介して送信し、下り線から入力される制御光を受信す
る。
(First Embodiment of Optical Transmission System) FIG. 5
1 shows a first embodiment of an optical transmission system of the present invention.
In the figure, each signal channel input in M parallel is M
Intensity modulators 12-1 to 12-12 via the xN switch 11
The light having wavelengths λ1 to λN input to −N and output from the laser light sources 13-1 to 13-N is modulated. The light modulated by each intensity modulator is combined by the star coupler 14 and 2 × 1
Is output to the optical fiber 1 via the optical switch 15, the post amplifier 16, and the optical coupler 17. In addition, the measurement light source 18
Is the wavelength λme for measuring the chromatic dispersion of the optical fiber 1.
The light of a is transmitted through the 2 × 1 optical switch 15 to the optical fiber 1
Send to. The controller 19 controls the switch 11, the optical switch 15, and the measurement light source 18, and further transmits the control light of the wavelength λcont used for communication with the receiving side via the optical coupler 17, and outputs the control light input from the down line. To receive.

【0020】光ファイバ1から入力される波長多重光
は、光カプラ21、プリアンプ22、可変分散補償器2
3、2×1の光スイッチ24、スターカプラ25を介し
て波長フィルタ26−1〜26−Nに入力され、各波長
の光が受光器27−1〜27−Nで各信号チャネルに変
換され、M×Nのスイッチ28を介して所定の出力ポー
トにM並列で出力される。測定処理回路29は、光スイ
ッチ24を介して波長λmea の光を受信し、各波長およ
び各パワーにおける強度変調成分を測定する。コントロ
ーラ30は、可変分散補償器23、光スイッチ24、ス
イッチ28および測定処理回路29を制御し、さらに送
信側との通信に用いる波長λcontの制御光を光カプラ2
1を介して受信し、下り線を介して送信側に制御光を送
信する。
The wavelength division multiplexed light input from the optical fiber 1 is an optical coupler 21, a preamplifier 22, and a variable dispersion compensator 2.
The light of each wavelength is input to the wavelength filters 26-1 to 26-N via the 3, 2 × 1 optical switch 24 and the star coupler 25, and the light of each wavelength is converted into each signal channel by the light receivers 27-1 to 27-N. , M × N switches 28 to output in parallel to a predetermined output port. The measurement processing circuit 29 receives the light of the wavelength λmea via the optical switch 24 and measures the intensity modulation component at each wavelength and each power. The controller 30 controls the variable dispersion compensator 23, the optical switch 24, the switch 28, and the measurement processing circuit 29, and further controls the control light of the wavelength λcont used for communication with the transmission side.
1 to receive the control light and transmit the control light to the transmission side via the downlink.

【0021】本発明の光伝送システムでは、コントロー
ラ19,30がスイッチ11,28を制御し、上記の波
長割り当て法に従って所定の波長に各信号チャネルを割
り当てる。そのために、測定光源18、測定処理回路2
9およびコントローラ19,30を用い、上記のアルゴ
リズムに従って光ファイバ1の平均零分散波長と局所零
分散波長を測定する。
In the optical transmission system of the present invention, the controllers 19 and 30 control the switches 11 and 28 to allocate each signal channel to a predetermined wavelength according to the above-mentioned wavelength allocation method. Therefore, the measurement light source 18 and the measurement processing circuit 2
The average zero-dispersion wavelength and the local zero-dispersion wavelength of the optical fiber 1 are measured according to the above-mentioned algorithm using the controller 9 and the controllers 19 and 30.

【0022】なお、スイッチ11,28は、ビットレー
トフレキシブルな同軸マトリックススイッチで対応する
ことができる。また、光スイッチを用いることも可能で
ある。この場合には、光スイッチの前後に電気/光変換
器および光/電気変換器を配置するか、入力側だけに電
気/光変換器を配置し、強度変調器12を光変調器とす
ればよい。
The switches 11 and 28 can be compatible with bit rate flexible coaxial matrix switches. It is also possible to use an optical switch. In this case, if the electric / optical converter and the optical / electrical converter are arranged before and after the optical switch, or if the electric / optical converter is arranged only on the input side and the intensity modulator 12 is the optical modulator. Good.

【0023】2×1の光スイッチ15,24は、測定モ
ードと通常のデータ伝送モードを切り替えるためのスイ
ッチである。この光スイッチは、データ伝送中にも波長
分散をモニタする構成であれば不要であり、測定光源1
8の出力光をスターカプラ14に接続し、スターカプラ
25の出力を測定処理回路29に接続すればよい。ただ
し、この場合には、システム導入時に行う測定で測定光
源以外の光源から出力させない制御機能が必要である。
The 2 × 1 optical switches 15 and 24 are switches for switching between the measurement mode and the normal data transmission mode. This optical switch is unnecessary if the configuration is such that chromatic dispersion is monitored during data transmission.
The output light of No. 8 may be connected to the star coupler 14 and the output of the star coupler 25 may be connected to the measurement processing circuit 29. However, in this case, it is necessary to have a control function that does not output from a light source other than the measurement light source in the measurement performed when the system is installed.

【0024】(光伝送システムの第2の実施形態)図6
は、本発明の光伝送システムの第2の実施形態を示す。
本実施形態の特徴は、送信側では第1の実施形態におけ
るレーザ光源13−1〜13−Nに代えて可変波長レー
ザ光源41−1〜41−Mを用い、M×Nの大規模なス
イッチ11を不要にする。受信側では、波長フィルタ2
6−1〜26−Nに代えて可変波長フィルタ51−1〜
51−Mを用い、M×Nの大規模なスイッチ28を不要
にする。さらに、送信側の測定光源18に代えて、可変
波長レーザ光源41−1〜41−Nの1つを測定に用い
る代表光源とし、測定時に電気スイッチ42を介して代
表光源の強度変調器のバイアス点を制御する信号を与え
る。これに対応する受信側の受光器を代表受光器とし、
その出力を電気スイッチ52を介して測定処理回路29
に入力する。その他の構成および波長割り当てのアルゴ
リズムは第1の実施形態と同様である。
(Second Embodiment of Optical Transmission System) FIG. 6
2 shows a second embodiment of the optical transmission system of the present invention.
The feature of this embodiment is that, on the transmission side, variable wavelength laser light sources 41-1 to 41-M are used in place of the laser light sources 13-1 to 13-N in the first embodiment, and a large M × N switch is used. 11 is unnecessary. On the receiving side, the wavelength filter 2
Variable wavelength filters 51-1 to 51-1 instead of 6-1 to 26-N
51-M, eliminating the need for large M × N switches 28. Further, in place of the measurement light source 18 on the transmission side, one of the variable wavelength laser light sources 41-1 to 41-N is used as a representative light source, and the bias of the intensity modulator of the representative light source is set via the electric switch 42 during measurement. Gives signals to control the points. The receiver on the receiving side corresponding to this is the representative receiver,
The output is sent to the measurement processing circuit 29 via the electric switch 52.
To enter. Other configurations and wavelength allocation algorithms are the same as those in the first embodiment.

【0025】すなわち、測定モードに入ると、送信側お
よび受信側ともに電気スイッチ42,52が作動する。
送信側では、代表光源の強度変調器のバイアス点を調整
することにより位相変調CW光を出力する(文献1)。
通常のデータ伝送モードでは、バイアス点は最大透過率
と最小透過率の中点が選ばれ、大きな振幅で振動させる
ことにより大きな消光率が得られている。一方、測定モ
ードではバイアス点を最大透過率とし、ほぼバイアス点
の周りに微小に振動させることにより疑似位相変調光が
得られる。なお、代表光源でない他のレーザは出力を止
める。
That is, when the measurement mode is entered, the electric switches 42 and 52 are activated on both the transmitting side and the receiving side.
On the transmission side, phase-modulated CW light is output by adjusting the bias point of the intensity modulator of the representative light source (Reference 1).
In the normal data transmission mode, a midpoint between the maximum transmittance and the minimum transmittance is selected as the bias point, and a large extinction ratio is obtained by vibrating with a large amplitude. On the other hand, in the measurement mode, the bias point is set to the maximum transmittance, and the quasi-phase modulated light is obtained by vibrating the bias point slightly around the bias point. The output of other lasers other than the representative light source is stopped.

【0026】受信側の測定処理回路29は、代表受光器
の出力から強度変調成分を計測し、局所零分散波長と平
均零分散波長を測定する。コントローラ19,30は、
最大のビットレートの信号チャネルが入力される強度変
調器に接続される可変波長レーザ光源の波長、および対
応する可変波長フィルタの波長を平均零分散波長(図6
ではλ2 )に設定する。残りの可変波長レーザ光源の波
長と可変波長フィルタの波長を上記の波長割り当てアル
ゴリズムに従って調整する。
The measurement processing circuit 29 on the receiving side measures the intensity modulation component from the output of the representative photodetector, and measures the local zero-dispersion wavelength and the average zero-dispersion wavelength. The controllers 19 and 30 are
The wavelength of the variable wavelength laser light source connected to the intensity modulator to which the signal channel of the maximum bit rate is input and the wavelength of the corresponding variable wavelength filter are set to the average zero dispersion wavelength (see FIG. 6).
Then set it to λ 2 ). The wavelength of the remaining variable wavelength laser light source and the wavelength of the variable wavelength filter are adjusted according to the above wavelength allocation algorithm.

【0027】[0027]

【発明の効果】以上説明したように、本発明の光伝送方
法は、光ファイバの平均零分散波長に最高速の信号チャ
ネルを割り当て、その平均零分散波長から離れるに従っ
て高速の信号チャネルから順番に割り当てることによ
り、TDM伝送の波長分散制限を緩和し、光伝送システ
ムの大容量化を実現することができる。
As described above, in the optical transmission method of the present invention, the fastest signal channel is assigned to the average zero-dispersion wavelength of the optical fiber, and as the distance from the average zero-dispersion wavelength increases, the higher-speed signal channel starts in order. By allocating, the chromatic dispersion limitation of TDM transmission can be relaxed and the capacity of the optical transmission system can be increased.

【0028】また、光ファイバの入射端付近の局所零分
散波長およびその近傍の波長への割り当てを禁止するこ
とにより、WDM伝送の非線形光学効果制限を緩和し、
光伝送システムの大容量化を実現することができる。
Further, the non-linear optical effect limitation of WDM transmission is relaxed by prohibiting the allocation to the local zero dispersion wavelength near the incident end of the optical fiber and the wavelength in the vicinity thereof,
It is possible to increase the capacity of the optical transmission system.

【0029】さらに、本発明の光伝送システムでは、シ
ステム導入時に、光ファイバの平均零分散波長および局
所零分散波長の測定と、信号チャネルへの波長割り当て
を自動的に行うことにより、稼働コストや人件費などの
一連の導入コストを削減することができる。
Further, in the optical transmission system of the present invention, when the system is introduced, the average zero-dispersion wavelength and the local zero-dispersion wavelength of the optical fiber are measured, and the wavelengths are automatically assigned to the signal channels. A series of introduction costs such as labor costs can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光伝送方法による波長割り当てアルゴ
リズムを示すフローチャート。
FIG. 1 is a flowchart showing a wavelength allocation algorithm according to the optical transmission method of the present invention.

【図2】波長割り当てアルゴリズムの動作過程を示す模
式図。
FIG. 2 is a schematic diagram showing an operation process of a wavelength allocation algorithm.

【図3】公知の局所零分散波長の測定法を説明するフロ
ーチャート。
FIG. 3 is a flowchart illustrating a known method of measuring a local zero dispersion wavelength.

【図4】最小強度変調波長を求めるアルゴリズムを説明
する図。
FIG. 4 is a diagram illustrating an algorithm for obtaining a minimum intensity modulation wavelength.

【図5】本発明の光伝送システムの第1の実施形態を示
すブロック図。
FIG. 5 is a block diagram showing a first embodiment of an optical transmission system of the present invention.

【図6】本発明の光伝送システムの第2の実施形態を示
すブロック図。
FIG. 6 is a block diagram showing a second embodiment of the optical transmission system of the present invention.

【符号の説明】[Explanation of symbols]

1 光ファイバ 11,28 M×Nのスイッチ 12 強度変調器 13 レーザ光源 14,25 スターカプラ 15,24 2×1の光スイッチ 16 ポストアンプ 17 光カプラ 18 測定光源 19,30 コントローラ 21 光カプラ 22 プリアンプ 23 可変分散補償器 26 波長フィルタ 27 受光器 29 測定処理回路 41 可変波長レーザ光源 42,52 電気スイッチ 51 可変波長フィルタ 1 optical fiber 11,28 M × N switch 12 Intensity modulator 13 Laser light source 14,25 star coupler 15,24 2 × 1 optical switch 16 post amplifier 17 Optical coupler 18 Measuring light source 19,30 controller 21 Optical coupler 22 Preamplifier 23 Variable dispersion compensator 26 wavelength filters 27 Light receiver 29 Measurement processing circuit 41 Variable wavelength laser light source 42,52 electric switch 51 Variable wavelength filter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 萩本 和男 東京都新宿区西新宿三丁目19番2号 日 本電信電話株式会社内 (56)参考文献 特開 平6−216845(JP,A) 特開 平4−219704(JP,A) 特開 昭61−206334(JP,A) (58)調査した分野(Int.Cl.7,DB名) H04B 10/00 - 10/28 H04J 14/00 - 14/08 JICSTファイル(JOIS)─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuo Hagimoto 3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo Nihon Telegraph and Telephone Corporation (56) References JP-A-6-216845 (JP, A) Kaihei 4-219704 (JP, A) JP 61-206334 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H04B 10/00-10/28 H04J 14/00- 14/08 JISST file (JOIS)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の信号チャネルをそれぞれ異なる波
長に割り当て、波長多重して光ファイバを伝送する光伝
送方法において、 前記光ファイバの平均零分散波長に、前記複数の信号チ
ャネルのうち最大のビットレートを有する信号チャネル
を割り当て、 前記光ファイバの平均零分散波長に近い波長から順番
に、前記複数の信号チャネルのうちの最大のビットレー
トを有する信号チャネル以外の信号チャネルをビットレ
ートの高い順番で割り当て、 かつ前記光ファイバの入射端付近の局所零分散波長およ
びその近傍の波長に信号チャネルの割り当てを禁止する
ことを特徴とする光伝送方法。
1. An optical transmission method for allocating a plurality of signal channels to different wavelengths and wavelength-multiplexing and transmitting an optical fiber, wherein the maximum bit among the plurality of signal channels is at the average zero dispersion wavelength of the optical fiber. A signal channel having a rate is assigned, in order from a wavelength close to the mean zero dispersion wavelength of the optical fiber, signal channels other than the signal channel having the maximum bit rate of the plurality of signal channels are arranged in order of increasing bit rate. An optical transmission method, characterized in that the allocation and the allocation of signal channels to the local zero-dispersion wavelength near the incident end of the optical fiber and the wavelength in the vicinity thereof are prohibited.
【請求項2】 それぞれ異なる波長の光を変調して出力
する複数の光送信手段と、 それぞれ所定のビットレートを有する複数の信号チャネ
ルを入力し、各信号チャネルを前記複数の光送信手段の
いずれかに変調信号として接続する波長割り当て用のス
イッチ手段と、 前記複数の光送信手段から出力される信号光を合波して
光ファイバに送信する波長多重手段と、 前記光ファイバから入力される波長多重光を各波長の信
号光に分波する波長分離手段と、 前記波長分離手段で分波された各波長の信号光を電気信
号の信号チャネルに変換する複数の光受信手段と、 前記複数の光受信手段から出力される各信号チャネルを
それぞれのビットレートに応じた出力ポートに接続する
受信側のスイッチ手段と、 前記光ファイバの平均波長分散値および入射端付近の局
所波長分散値を測定するための測定光を送信し、受信側
との間で測定光に関する制御信号を送受信する測定光送
信手段と、 前記測定光を受信し、前記制御信号を送受信し、前記光
ファイバの平均波長分散値および局所波長分散値を測定
する測定処理手段と、 前記測定光送信手段および前記測定処理手段で測定され
た前記光ファイバの平均波長分散値および局所波長分散
値に基づき、請求項1の波長割り当てアルゴリズムに従
って各信号チャネルと波長との割り当てを行うように前
記各スイッチ手段を制御する制御手段とを備えたことを
特徴とする光伝送システム。
2. A plurality of optical transmitting means for respectively modulating and outputting light of different wavelengths, and a plurality of signal channels each having a predetermined bit rate are input, and each signal channel is input to any one of the plurality of optical transmitting means. Switch means for allocating wavelengths as a modulated signal, wavelength multiplexing means for multiplexing the signal light output from the plurality of optical transmission means and transmitting to an optical fiber, wavelength input from the optical fiber Wavelength demultiplexing means for demultiplexing the multiplexed light into signal light of each wavelength, a plurality of light receiving means for converting the signal light of each wavelength demultiplexed by the wavelength demultiplexing means into a signal channel of an electric signal, and the plurality of Receiving side switching means for connecting each signal channel output from the optical receiving means to an output port corresponding to each bit rate, and an average chromatic dispersion value and incidence of the optical fiber. Measuring light transmitting means for transmitting the measuring light for measuring the local chromatic dispersion value near the edge and transmitting and receiving a control signal related to the measuring light with the receiving side, and receiving the measuring light and transmitting and receiving the control signal Then, a measurement processing means for measuring an average chromatic dispersion value and a local chromatic dispersion value of the optical fiber, and an average chromatic dispersion value and a local chromatic dispersion value of the optical fiber measured by the measurement light transmitting means and the measurement processing means. 3. An optical transmission system comprising: a control means for controlling each switch means so as to allocate each signal channel and wavelength according to the wavelength allocation algorithm of claim 1.
【請求項3】 それぞれ所定のビットレートを有する各
信号チャネルを変調信号として入力し、各信号チャネル
のビットレートに応じて設定された波長の光を変調して
出力する複数の光送信手段と、 前記複数の光送信手段から出力される信号光を合波して
光ファイバに送信する波長多重手段と、 前記光ファイバから入力される波長多重光の各波長の信
号光に分波する際に、それぞれのビットレートに対応す
る光受信手段に接続されるように分波する波長を設定す
る波長分離手段と、 前記波長分離手段で分波された各波長の信号光を電気信
号の信号チャネルに変換し、各ビットレートに対応する
出力ポートに出力する複数の光受信手段と、 前記複数の光送信手段の1つから、前記光ファイバの平
均波長分散値および入射端付近の局所波長分散値を測定
するための測定光を送信し、受信側との間で測定光に関
する制御信号を送受信する測定光送信手段と、 前記複数の光受信手段の1つで前記測定光を受信し、前
記制御信号を送受信し、前記光ファイバの平均波長分散
値および局所波長分散値を測定する測定処理手段と、 前記測定光送信手段および前記測定処理手段で測定され
た前記光ファイバの平均波長分散値および局所波長分散
値に基づき、請求項1の波長割り当てアルゴリズムに従
って各信号チャネルと波長との割り当てを行うように、
前記複数の光送信手段の波長および前記波長分離手段の
波長を制御する制御手段とを備えたことを特徴とする光
伝送システム。
3. A plurality of optical transmission means for inputting each signal channel having a predetermined bit rate as a modulation signal, modulating light of a wavelength set according to the bit rate of each signal channel, and outputting the modulated light. Wavelength multiplexing means for multiplexing the signal light output from the plurality of optical transmission means and transmitting to the optical fiber, and when demultiplexing into the signal light of each wavelength of the wavelength multiplexed light input from the optical fiber, Wavelength demultiplexing means for setting the wavelength to be demultiplexed so as to be connected to the optical receiving means corresponding to each bit rate, and the signal light of each wavelength demultiplexed by the wavelength demultiplexing means is converted into a signal channel of an electric signal. Then, an average chromatic dispersion value of the optical fiber and a local chromatic dispersion near the incident end are output from a plurality of optical receiving means for outputting to an output port corresponding to each bit rate and one of the plurality of optical transmitting means. Measuring light transmitting means for transmitting measuring light for measuring, and transmitting and receiving a control signal relating to the measuring light to and from a receiving side; and receiving the measuring light by one of the plurality of light receiving means, Measurement processing means for transmitting and receiving a signal and measuring an average chromatic dispersion value and a local chromatic dispersion value of the optical fiber, and an average chromatic dispersion value and a local area of the optical fiber measured by the measurement light transmitting means and the measurement processing means. Based on the chromatic dispersion value, each signal channel and wavelength are allocated according to the wavelength allocation algorithm of claim 1,
An optical transmission system comprising: a control means for controlling the wavelengths of the plurality of optical transmission means and the wavelength of the wavelength separation means.
【請求項4】 請求項2または請求項3に記載の光伝送
システムにおいて、 測定された光ファイバの平均波長分散値と局所波長分散
値が等しいか近接している場合に、受信側に光ファイバ
の平均波長分散値をシフトする可変分散補償器を備えた
ことを特徴とする光伝送システム。
4. The optical transmission system according to claim 2 or 3, wherein when the measured average chromatic dispersion value and the local chromatic dispersion value of the optical fiber are equal to or close to each other, the optical fiber is provided to the receiving side. An optical transmission system comprising a variable dispersion compensator for shifting the average chromatic dispersion value of.
JP25215097A 1997-09-17 1997-09-17 Optical transmission method and optical transmission system Expired - Fee Related JP3389474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25215097A JP3389474B2 (en) 1997-09-17 1997-09-17 Optical transmission method and optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25215097A JP3389474B2 (en) 1997-09-17 1997-09-17 Optical transmission method and optical transmission system

Publications (2)

Publication Number Publication Date
JPH1198074A JPH1198074A (en) 1999-04-09
JP3389474B2 true JP3389474B2 (en) 2003-03-24

Family

ID=17233183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25215097A Expired - Fee Related JP3389474B2 (en) 1997-09-17 1997-09-17 Optical transmission method and optical transmission system

Country Status (1)

Country Link
JP (1) JP3389474B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5696461B2 (en) * 2010-12-13 2015-04-08 富士通株式会社 Control circuit, communication system and control method
WO2023175899A1 (en) * 2022-03-18 2023-09-21 日本電気株式会社 Optical switch device and optical transmission system

Also Published As

Publication number Publication date
JPH1198074A (en) 1999-04-09

Similar Documents

Publication Publication Date Title
CA2170430C (en) Dispersion compensation in optical fiber communications
KR101376167B1 (en) Optical transmission between a central terminal and a plurality of client terminals via an optical network
EP1811703B1 (en) Optical switch
Hoshida et al. Ultrawideband systems and networks: Beyond C+ L-band
JP4011290B2 (en) Dispersion compensation method, dispersion compensation apparatus, and optical transmission system
US8131155B2 (en) Optical signal transmission apparatus
JP4053389B2 (en) Optical signal-to-noise ratio monitoring method and optical transmission system using the same
GB2308254A (en) Controlling phase modulation to minimise wavelength dependent dispersion
US6661973B1 (en) Optical transmission systems, apparatuses, and methods
JP2000236299A (en) Optical transmitter and optical transmission system
JPH118590A (en) Optical transmission system and supervisory and control method therefor
JP2001244900A (en) Optical transmission system and measuring method for optical channel stability
US20110142446A1 (en) Optical transmitter adaptation to network topology
US20020114034A1 (en) Split wave method and apparatus for transmitting data in long-haul optical fiber systems
US7046930B2 (en) Optical communication system
CA2316857A1 (en) A long-haul terrestrial optical fiber link having low-power optical line amplifiers with integrated dispersion compensation modules
US20120051739A1 (en) Identifying a Characteristic of a Mesh Network
Chraplyvy et al. Terabit/second transmission experiments
JP3389474B2 (en) Optical transmission method and optical transmission system
EP1241809A1 (en) Optical transmission system using dispersion compensating optical transmission line
CN102929072A (en) Full-optical-wavelength conversion simplifying device and full-optical-wavelength conversion simplifying method of polarization multiplexing system without polarization crosstalk
US10498102B2 (en) Optical phase-sensitive amplifier with signal noise removal
US8355631B2 (en) Reducing optical service channel interference in phase modulated wavelength division multiplexed (WDM) communication systems
Daikoku et al. 8/spl times/160-Gb/s WDM field transmission experiment with single-polarization RZ-DPSK signals and PMD compensator
Birk et al. Field trial of end-to-end OC-768 transmission using 9 WDM channels over 1000km of installed fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees