WO2023175899A1 - Optical switch device and optical transmission system - Google Patents

Optical switch device and optical transmission system Download PDF

Info

Publication number
WO2023175899A1
WO2023175899A1 PCT/JP2022/012619 JP2022012619W WO2023175899A1 WO 2023175899 A1 WO2023175899 A1 WO 2023175899A1 JP 2022012619 W JP2022012619 W JP 2022012619W WO 2023175899 A1 WO2023175899 A1 WO 2023175899A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical switch
control
switch means
transmission system
Prior art date
Application number
PCT/JP2022/012619
Other languages
French (fr)
Japanese (ja)
Inventor
和宏 大滝
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2022/012619 priority Critical patent/WO2023175899A1/en
Publication of WO2023175899A1 publication Critical patent/WO2023175899A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form

Definitions

  • the present disclosure relates to an optical switch device and the like.
  • optical transmission systems Systems that transmit optical signals using optical fiber cables (hereinafter referred to as "optical transmission systems") are known. Specifically, for example, an optical transmission system is known that transmits optical signals for communication between land stations using an optical fiber cable laid on the ocean floor (so-called “submarine cable”).
  • Patent Documents 1 to 3 disclose techniques related to optical transmission systems.
  • an optical fiber cable of an optical transmission system can be connected to a plurality of types of devices that serve as input sources of control signals to the optical fiber cable.
  • a test device that performs an optical pulse test to detect a break point in an optical fiber cable is connected to the optical fiber cable, and a control device that executes command control for a distant device. is connected to the fiber optic cable.
  • An OTDR Optical Time Domain Reflectometer
  • OTDR test is a test device that performs a light pulse test.
  • the optical pulse test performed by OTDR may be referred to as "OTDR test.”
  • an optical fiber cable of an optical transmission system includes a plurality of optical fiber pairs. Bidirectional communication is achieved by using individual optical fiber pairs.
  • the test optical signal outputted by the test device as described above is selectively input to each of the plurality of optical fiber pairs connected to the test device.
  • the control optical signal output by the control device as described above is selectively input to each of the plurality of optical fiber pairs that are the targets of the optical pulse test and the transmission of command control. suitable. With a view to realizing such a selection, it is possible to realize the switching of the optical path between the individual devices connected to the optical fiber cable and the individual optical fiber pairs included in the optical fiber cable, depending on the tests or controls to be performed, etc. required to do so.
  • an object of the present disclosure is to provide an optical fiber that can realize optical path switching between individual devices connected to an optical fiber cable and individual optical fiber pairs included in the optical fiber cable, for example.
  • the purpose of this invention is to provide switching devices, etc.
  • An optical switch device includes a first optical switch unit that includes a plurality of input terminals and outputs an optical signal input to a selected input terminal of the plurality of input terminals; a second optical switch means comprising a plurality of output terminals and outputs the optical signal outputted by the first optical switch means from a selected one of the plurality of output terminals, and based on a predetermined first instruction, A control means is provided that executes control for selecting an input terminal in the first optical switch means and control for selecting an output terminal in the second optical switch means.
  • FIG. 1 is a block diagram showing a portion of the optical transmission system according to the first embodiment, including an optical communication device and a first optical branching device.
  • FIG. 2 is a block diagram showing an optical communication device in the optical transmission system according to the first embodiment.
  • FIG. 3 is a block diagram showing parts of the optical transmission system according to the first embodiment, including an optical switch device, a server device, a test device, and a control device.
  • FIG. 4 is a block diagram showing the optical switch means of the optical switch device in the optical transmission system according to the first embodiment.
  • FIG. 5 is a flowchart showing the operation of the control means of the optical switch device in the optical transmission system according to the first embodiment.
  • FIG. 6 is a block diagram showing a portion of the optical transmission system according to the second embodiment, including an optical communication device and a second optical branching device.
  • FIG. 7 is a block diagram showing parts of the optical transmission system according to the second embodiment, including an optical switch device, a server device, and a measuring device.
  • FIG. 8 is a block diagram showing the optical switch means of the optical switch device in the optical transmission system according to the second embodiment.
  • FIG. 9 is a flowchart showing the operation of the control means of the optical switch device in the optical transmission system according to the second embodiment.
  • FIG. 10 is a block diagram showing an optical switch device according to a third embodiment.
  • FIG. 11 is a block diagram showing an optical transmission system according to the third embodiment.
  • FIG. 1 is a block diagram showing a portion of the optical transmission system according to the first embodiment, including an optical communication device and a first optical branching device.
  • FIG. 2 is a block diagram showing an optical communication device in the optical transmission system according to the first embodiment.
  • FIG. 3 is a block diagram showing parts of the optical transmission system according to the first embodiment, including an optical switch device, a server device, a test device, and a control device.
  • FIG. 4 is a block diagram showing the optical switch means of the optical switch device in the optical transmission system according to the first embodiment.
  • the optical transmission system 100 includes an optical communication device 1 and a first optical branching device 2. Further, as shown in FIG. 3, the optical transmission system 100 includes an optical switch device 3, a server device 4, a test device 5, and a control device 6.
  • a plurality of optical communication devices including the optical communication device 1 are provided in the middle of an optical fiber cable (not shown) including N optical fiber pairs FP_1 to FP_N.
  • N is an arbitrary integer of 2 or more.
  • the optical fiber cable including the optical fiber pairs FP_1 to FP_N is laid, for example, on the ocean floor. That is, the optical fiber cable including the optical fiber pairs FP_1 to FP_N is, for example, a submarine cable.
  • the optical transmission system 100 uses a submarine cable to transmit optical signals for communication between a first land station (not shown) and a second land station (not shown). More specifically, bidirectional communication between the first land station and the second land station is achieved using each of the optical fiber pairs FP_1 to FP_N.
  • optical signals for communication may be referred to as "communication light.”
  • each of the plurality of optical communication devices is constituted by, for example, an optical repeater (more specifically, an optical submarine repeater).
  • the optical communication device 1 is configured by, for example, an optical repeater (more specifically, an optical submarine repeater).
  • each of the optical fiber pairs FP_1 to FP_N includes a transmission optical fiber F_TX as seen from the first land station (F_TX_1 to F_TX_N in the figure). Further, each of the optical fiber pairs FP_1 to FP_N includes a receiving optical fiber F_RX as seen from the first land station (F_RX_1 to F_RX_N in the figure).
  • the optical communication device 1 includes N optical communication means 11_1 to 11_N that respectively correspond to N optical fiber pairs FP_1 to FP_N.
  • Each of the optical communication means 11_1 to 11_N is constituted by, for example, an optical repeater.
  • each of the optical communication means 11_1 to 11_N includes a first amplifier (not shown).
  • the first amplifier is provided to amplify an optical signal transmitted through a corresponding one of the N optical fibers F_TX_1 to F_TX_N.
  • the first amplifier is an amplifier for amplifying communication light transmitted from the first land station to the second land station.
  • each of the optical communication means 11_1 to 11_N includes a second amplifier (not shown) for amplifying the optical signal transmitted through the corresponding one of the N optical fibers F_RX_1 to F_RX_N. include.
  • the second amplifier is provided to amplify an optical signal transmitted through a corresponding one of the N optical fibers F_RX_1 to F_RX_N.
  • the second amplifier is an amplifier for amplifying communication light transmitted from the second land station to the first land station.
  • each of the optical communication means 11_1 to 11_N parameters (for example, amplification factors) of the first amplifier and the second amplifier are set by command control.
  • the operation of each of the optical communication means 11_1 to 11_N is controlled by command control.
  • Command control is executed by a control device 6, which will be described later.
  • each of the optical communication means 11_1 to 11_N includes a loopback circuit (not shown) for realizing an OTDR test on a corresponding one of the N optical fiber pairs FP_1 to FP_N. It may be something.
  • the OTDR test on each of the optical fiber pairs FP_1 to FP_N is performed by a test device 5, which will be described later.
  • a first optical branching device 2 is provided in the middle of an optical fiber cable (for example, a submarine cable) including optical fiber pairs FP_1 to FP_N.
  • the first optical branching device 2 is configured by, for example, an optical submarine branching device.
  • the first optical branching device 2 branches each of the optical fiber pairs FP_1 to FP_N.
  • the branched branch is connected to each of the test device 5 and the control device 6 via the optical switch device 3.
  • each of the test device 5 and the control device 6 is connected to each of the optical fiber pairs FP_1 to FP_N via the optical switch device 3.
  • the first optical branching device 2 may include the same amplifiers as the optical communication device 1 (i.e., a first amplifier and a second amplifier). Further, the first optical branching device 2 may include a loopback circuit similar to the optical communication device 1 (ie, a loopback circuit for OTDR testing). Further, the first optical branching device 2 may be configured integrally with the optical communication device 1.
  • the optical switch device 3 includes an optical switch means 21 and a control means 22.
  • the optical switch means 21 includes a first optical switch means 31, a second optical switch means 32, and a third optical switch means 33.
  • Each of the first optical switch means 31, the second optical switch means 32, and the third optical switch means 33 is constituted by at least one optical switch SW. That is, the optical switch means 21 is constituted by a plurality of optical switches SW.
  • the first optical switch means 31 is constituted by an optical switch SW_1 with two inputs and one output (hereinafter sometimes referred to as "2x1").
  • the second optical switch means 32 is constituted by an optical switch SW_2 with 1 input and N outputs (hereinafter sometimes referred to as "1 ⁇ N").
  • the output terminal of the optical switch SW_1 is connected to the input terminal of the optical switch SW_2. That is, the optical switches SW_1 and SW_2 are provided in series with each other.
  • the third optical switch means 33 includes an optical switch SW_3 with N inputs and 1 output (hereinafter sometimes referred to as "N ⁇ 1") and a 1 input and 2 outputs (hereinafter also referred to as "1 ⁇ 2"). ) optical switch SW_4.
  • the output terminal of the optical switch SW_3 is connected to the input terminal of the optical switch SW_4. That is, the optical switches SW_3 and SW_4 are provided in series with each other.
  • the first optical switch means 31 includes a plurality of input terminals P_IN. More specifically, the first optical switch means 31 includes two input terminals P_IN_1 and P_IN_2. Input terminal P_IN_1 is connected to output optical fiber F_OUT_1 in test apparatus 5. Input terminal P_IN_2 is connected to output optical fiber F_OUT_2 in control device 6.
  • the second optical switch means 32 includes a plurality of output terminals P_OUT. More specifically, the second optical switch means 32 includes N output terminals P_OUT_1 to P_OUT_N. The N output terminals P_OUT_1 to P_OUT_N are respectively (respectively) connected to the N optical fibers F_TX_1 to F_TX_N.
  • the third optical switch means 33 includes a plurality of input terminals. More specifically, the third optical switch means 33 includes N input terminals. The N input terminals are respectively (respectively) connected to the N optical fibers F_RX_1 to F_RX_N. Further, the third optical switch means 33 includes a plurality of output terminals. More specifically, the third optical switch means 33 includes two output terminals. One of the two output terminals (hereinafter sometimes referred to as "first output terminal”) is connected to the input optical fiber F_IN_1 in the test apparatus 5. Another one of the two output terminals (hereinafter sometimes referred to as "second output terminal”) is connected to the input optical fiber F_IN_2 in the control device 6.
  • first output terminal is connected to the input optical fiber F_IN_1 in the test apparatus 5.
  • second output terminal is connected to the input optical fiber F_IN_2 in the control device 6.
  • the control means 22 is configured by, for example, a computer.
  • the control means 22 executes control to select the input terminal P_IN in the first optical switch means 31 and executes control to select the output terminal P_OUT in the second optical switch means 32.
  • first selection control controls the first optical switch means 31 and the second optical switch so that a state is realized in which the optical signal input to the selected input terminal P_IN is output from the selected output terminal P_OUT.
  • Control for switching the optical path in the switch means 32 is executed. More specifically, the control means 22 executes control to switch the optical path within the optical switch SW_1 and the optical path within the optical switch SW_2.
  • first switching control such control may be referred to as "first switching control.”
  • control means 22 executes control to select an input terminal in the third optical switch means 33 and also executes control to select an output terminal in the third optical switch means 33.
  • these controls may be collectively referred to as “second selection control.”
  • the control means 22 also controls switching of the optical path in the third optical switch means 33 so that the optical signal input to the selected input terminal is output from the selected output terminal.
  • control means 22 executes control to switch the optical path in the optical switch SW_3 and the optical path in the optical switch SW_4.
  • second switching control such control may be referred to as "second switching control.”
  • the optical switch device 3 can freely communicate with the server device 4 via the network NW.
  • the server device 4 is configured by, for example, a computer.
  • the first selection control and the second selection control are executed based on instructions given by the server device 4.
  • the server device 4 acquires information indicating the schedule of the OTDR test to be executed by the test device 5, which will be described later.
  • the information indicating the schedule of the OTDR test may be referred to as "first schedule information.”
  • the first schedule information is, for example, information input in advance by a person (such as an administrator of the optical transmission system 100).
  • the server device 4 receives the first schedule information from the test device 5 by communicating with the test device 5 via the network NW.
  • the connection line between the network NW and the test device 5 is not shown.
  • the server device 4 uses the acquired first schedule information to determine a time interval (hereinafter sometimes referred to as "test period") ⁇ T1 in which the OTDR test is performed by the test device 5. Further, the server device 4 uses the acquired first schedule information to determine the timing at which the OTDR test is performed on each optical fiber pair FP within the test period ⁇ T1 (hereinafter sometimes referred to as "test timing”). ) Determine T1. Specifically, for example, the server device 4 determines N test timings T1_1 to T1 to N that respectively (respectively) correspond to N optical fiber pairs FP_1 to FP_N in each test section ⁇ T1.
  • the server device 4 acquires information (hereinafter sometimes referred to as "second schedule information") indicating a schedule for command control to be executed by the control device 6, which will be described later.
  • the second schedule information is, for example, information input in advance by a person (such as an administrator of the optical transmission system 100).
  • the server device 4 receives the first schedule information from the control device 6 by communicating with the control device 6 via the network NW.
  • the connection line between the network NW and the control device 6 is not shown.
  • the server device 4 uses the acquired second schedule information to determine the time interval (hereinafter sometimes referred to as "control period") ⁇ T2 in which command control is executed by the control device 6. Further, the server device 4 uses the acquired second schedule information to determine the timing (hereinafter sometimes referred to as "control timing") at which command control is executed for each optical communication means 11 during the control period ⁇ T2. ) Determine T2. Specifically, for example, the server device 4 determines N control timings T2_1 to T2 to N that respectively (respectively) correspond to the N optical communication means 11_1 to 11_N in each control period ⁇ T2.
  • control period ⁇ T2 is usually set to a different time interval from the test period ⁇ T1.
  • control period ⁇ T2 is set to a time interval that avoids the test period ⁇ T1. Thereby, it is possible to avoid overlapping each control timing T2 with each test timing T1.
  • the server device 4 Based on the results of these determinations, the server device 4 generates a signal instructing selection in the first selection control.
  • a signal instructing selection in the first selection control may be referred to as a "first instruction signal.”
  • the server device 4 Furthermore, the server device 4 generates a signal instructing selection in the second selection control based on the results of these determinations.
  • a signal instructing selection in the second selection control may be referred to as a "second instruction signal.”
  • the first instruction signal is an instruction that one input terminal P_IN_1 of the two input terminals P_IN_1 and P_IN_2 provided in the first optical switch means 31 should be selected in each test period ⁇ T1. including. Further, the first instruction signal indicates that the corresponding one of the N output terminals P_OUT_1 to P_OUT_N of the second optical switch means 32 is output at each of the N test timings T1_1 to T1 to N. Contains an indication that it should be selected.
  • the first instruction signal is an instruction that one input terminal P_IN_2 of the two input terminals P_IN_1 and P_IN_2 provided in the first optical switch means 31 should be selected in each control period ⁇ T2. including. Further, the first instruction signal indicates that a corresponding one of the N output terminals P_OUT_1 to P_OUT_N of the second optical switch means 32 is activated at each of the N control timings T2_1 to T2 to N. Contains an indication that it should be selected.
  • the second instruction signal includes an instruction that the first output terminal of the two output terminals of the third optical switch means 33 should be selected in each test period ⁇ T1. Further, the second instruction signal indicates that a corresponding one of the N input terminals of the third optical switch means 33 should be selected at each of the N test timings T1_1 to T1 to N. Contains an instruction to that effect.
  • the second instruction signal includes an instruction that the second output terminal of the two output terminals of the third optical switch means 33 should be selected in each control period ⁇ T2. Further, the second instruction signal indicates that a corresponding one of the N input terminals of the third optical switch means 33 should be selected at each of the N control timings T2_1 to T2 to N. Contains an instruction to that effect.
  • the server device 4 transmits the generated first instruction signal and second instruction signal to the optical switch device 3.
  • the optical switch device 3 receives the transmitted first instruction signal and second instruction signal.
  • the control means 22 executes the first selection control based on the instruction indicated by the received first instruction signal. Further, the control means 22 executes the second selection control based on the instruction indicated by the received second instruction signal.
  • the instructions indicated by the first instruction signal may be collectively referred to as "first instructions.”
  • the instructions indicated by the second instruction signal may be collectively referred to as "second instructions.”
  • the content of the second instruction at each test timing T1 corresponds to the content of the first instruction at each test timing T1.
  • the content of the second instruction at each control timing T2 corresponds to the content of the first instruction at each control timing T2.
  • the optical path in the first optical switch means 31 and the second optical switch means 32 connects the optical fiber F_IN_1 and the corresponding one of the N optical fibers F_TX_1 to F_TX_N.
  • the optical path is set to connect the real optical fiber F_TX. This is based on the first instruction.
  • the optical path in the third optical switch means 33 connects the corresponding one optical fiber F_RX of the N optical fibers F_RX_1 to F_RX_N and the optical fiber F_IN_1. Set to the optical path to be connected. This is based on the second instruction.
  • the optical path in the first optical switch means 31 and the second optical switch means 32 is set to the optical fiber F_IN_2 and the corresponding one of the N optical fibers F_TX_1 to F_TX_N.
  • the optical path is set to connect one optical fiber F_TX. This is based on the first instruction.
  • the optical path in the third optical switch means 33 connects the corresponding one optical fiber F_RX of the N optical fibers F_RX_1 to F_RX_N and the optical fiber F_IN_2. Set to the optical path to be connected. This is based on the second instruction.
  • the optical path in the third optical switch means 33 is changed at each timing (T1, T2) when the OTDR test or command control is executed. is an optical path corresponding to the optical path in the first optical switch means 31 and the second optical switch means 32.
  • the test device 5 is configured by, for example, an optical pulse tester (i.e., OTDAR).
  • OTDAR optical pulse tester
  • the test device 5 is connected to the optical switch device 3 using an output optical fiber F_OUT_1 and an input optical fiber F_IN_1.
  • the optical fiber F_OUT_1 is connected to the input terminal P_IN_1 of the first optical switch means 31.
  • the optical fiber F_IN_1 is connected to the first output terminal of the third optical switch means 33.
  • the test device 5 performs an OTDR test on each of the optical fiber pairs FP_1 to FP_N.
  • the test device 5 outputs an optical signal for OTDR testing at a predetermined timing based on a predetermined schedule.
  • the optical signal for OTDR testing may be referred to as a "test optical signal” or "test light.”
  • the test device 5 outputs test light at each of N test timings T1_1 to T1_N.
  • the output test light passes through the optical fiber F_OUT_1 and is input to the optical switch means 21 of the optical switch device 3. More specifically, the output test light is input to the input terminal P_IN_1 of the first optical switch means 31.
  • the optical paths in the first optical switch means 31 and the second optical switch means 32 are switched by the control means 22 as described above. Therefore, at each of the N test timings T1_1 to T1_N, the input test light is transmitted to the corresponding one of the N output terminals P_OUT_1 to P_OUT_N of the second optical switch means 32. is output from. That is, at each of the N test timings T1_1 to T1_N, the input test light is output to a corresponding one of the N optical fibers F_TX_1 to F_TX_N.
  • a loopback circuit for OTDR test is installed at one or more predetermined positions in each of the optical fiber pairs FP_1 to FP_N.
  • N loopback circuits are provided that respectively (respectively) correspond to the N optical fiber pairs FP_1 to FP_N.
  • N loopback circuits are provided between each two adjacent optical communication devices among a plurality of optical communication devices including the optical communication device 1.
  • the test light transmitted through each of the N optical fibers F_TX_1 to F_TX_N is then transferred to the corresponding one of the N optical fibers F_RX_1 to F_RX_N. is transmitted and returns to the optical switch means 21 of the optical switch device 3. More specifically, at each of the N test timings T1_1 to T1_N, the transmitted test light is input to a corresponding one of the N input terminals provided in the third optical switch means 33. be done.
  • the test light that returns to the optical switch means 21 may be referred to as "return light.”
  • the optical path in the third optical switch means 33 is switched by the control means 22 as described above. Therefore, at each of the N test timings T1_1 to T1_N, the inputted return light is output from the first output terminal of the two output terminals provided in the third optical switch means 33. That is, at each of N test timings T1_1 to T1_N, the input return light is output to the optical fiber F_IN_1.
  • the outputted return light passes through the optical fiber F_IN_1 and is input to the test device 5.
  • the test device 5 uses the input returned light to perform signal processing for the OTDR test. Note that various known techniques can be used for signal processing for the OTDR test. A detailed explanation of these techniques will be omitted.
  • OTDR in each of the optical fiber pairs FP_1 to FP_N is realized.
  • the results of such an OTDR test are used, for example, to monitor the status of each of the optical fiber pairs FP_1 to FP_N. More specifically, the results of the OTDR test are used to detect whether or not a break has occurred in each of the optical fiber pairs FP_1 to FP_N, and to detect the position where the break has occurred.
  • the control device 6 is configured by, for example, a computer equipped with an optical transceiver.
  • the control device 6 is connected to the optical switch device 3 using an output optical fiber F_OUT_2 and an input optical fiber F_IN_2.
  • the optical fiber F_OUT_2 is connected to the input terminal P_IN_2 of the first optical switch means 31.
  • the optical fiber F_IN_2 is connected to the second output terminal of the third optical switch means 33.
  • the control device 6 executes command control for each of the optical communication means 11_1 to 11_N.
  • control device 6 generates a command for controlling the operation of each of the optical communication means 11_1 to 11_N. Specifically, for example, the control device 6 generates a command for setting parameters (amplification factors, etc.) of individual amplifiers in each of the optical communication means 11_1 to 11_N.
  • the control device 6 outputs an optical signal (hereinafter sometimes referred to as "control optical signal” or "control light”) indicating the generated command at a predetermined timing based on a predetermined schedule.
  • control device 6 transmits control light to a corresponding one of the N optical communication means 11_1 to 11_N at each of N control timings T2_1 to T2_N. Output.
  • the output control light passes through the optical fiber F_OUT_2 and is input to the optical switch means 21 of the optical switch device 3. More specifically, the output control light is input to the input terminal P_IN_2 of the first optical switch means 31.
  • the optical paths in the first optical switch means 31 and the second optical switch means 32 are switched by the control means 22 as described above. Therefore, at each of the N control timings T2_1 to T2_N, the input control light is transmitted to a corresponding one of the N output terminals P_OUT_1 to P_OUT_N of the second optical switch means 32. is output from. That is, at each of the N test timings T1_1 to T1_N, the input test light is output to a corresponding one of the N optical fibers F_TX_1 to F_TX_N.
  • each of the optical communication means 11_1 to 11_N controls its own operation based on the command indicated by the control light. Specifically, for example, each of the optical communication means 11_1 to 11_N sets parameters (amplification factors, etc.) of the individual amplifiers based on the command indicated by the control light. At this time, each of the optical communication means 11_1 to 11_N outputs an optical signal for response to the control light (hereinafter sometimes referred to as "response light").
  • the response light is, for example, an optical signal indicating a positive response (so-called "ACK”) or an optical signal indicating a negative response (so-called "NACK").
  • one of the N optical communication means 11_1 to 11_N corresponds to one of the N optical fibers F_RX_1 to F_RX_N.
  • a response light is output to one optical fiber F_RX.
  • the output response light is transmitted through the corresponding one optical fiber F_RX and input into the optical switch means 21. More specifically, the output response light is input to a corresponding one of the N input terminals included in the third optical switch means 33.
  • the optical path in the third optical switch means 33 is switched by the control means 22 as described above. Therefore, at each of the N control timings T2_1 to T2_N, the input response light is output from the second output terminal of the two output terminals of the third optical switch means 33. That is, at each of N control timings T2_1 to T2_N, the input response light is output to the optical fiber F_IN_2.
  • the control device 6 acquires the response light at each of the N control timings T2_1 to T2_N. This response light is output by a corresponding one of the N optical communication means 11_1 to 11_N. In other words, the control device 6 transmits the response light output by one optical communication means 11 to which the control light is transmitted (that is, the target of command control) at each of the N control timings T2_1 to T2_N. get. As a result, the control device 6 can know the result of command control.
  • command control for each of the optical communication means 11_1 to 11_N is realized.
  • contents of the command control for each of the optical communication means 11_1 to 11_N are not limited to the above specific example (ie, setting of the amplification factor).
  • Various known techniques can be used for command control. A detailed explanation of these techniques will be omitted.
  • the main parts of the optical transmission system 100 are configured.
  • the optical transmission system 100 includes a portion provided on land.
  • the part provided on land is, for example, a part including the first land station, a part including the second land station, or a part including the optical switch device 3, the test device 5, and the control device 6.
  • the optical transmission system 100 includes a portion provided on the ocean floor (for example, a portion including a submarine cable).
  • a predetermined interface is used to connect the part provided on land and the part provided on the seabed. Specifically, for example, OCI (Open Cable Interface) is used.
  • FI_1 to FI_N in FIG. 3 indicate such interfaces.
  • the optical switch device 3 receives an instruction signal transmitted by the server device 4. Thereby, the control means 22 acquires the instruction included in the received instruction signal. More specifically, the control means 22 obtains a first instruction and a second instruction (step ST1).
  • control means 22 executes first selection control and first switching control based on the first instruction acquired in step ST1 (step ST2). That is, the control means 22 executes control to select the input terminal P_IN in the first optical switch means 31 based on the obtained first instruction, and controls to select the output terminal P_OUT in the second optical switch means 32. Execute. The control means 22 also controls the first optical switch means 31 and the second optical switch so that a state is realized in which the optical signal input to the selected input terminal P_IN is output from the selected output terminal P_OUT. Control for switching the optical path in the switch means 32 is executed.
  • control means 22 executes second selection control and second switching control based on the second instruction acquired in step ST1 (step ST3). That is, the control means 22 executes control to select the input terminal in the third optical switch means 33 based on the obtained second instruction, and also executes control to select the output terminal in the third optical switch means 33. do.
  • the control means 22 also controls switching of the optical path in the third optical switch means 33 so that the optical signal input to the selected input terminal is output from the selected output terminal. Execute.
  • the optical transmission system 100 may not include the first optical branching device 2.
  • the optical switch device 3, the test device 5, and the control device 6 may be provided at the first land station or the second land station, for example.
  • the optical transmission system 100 may not include the server device 4.
  • the control means 22 may use preset first and second instructions instead of the first and second instructions given by the server device 4.
  • control means 22 may execute the first selection control and the second selection control based on the first instruction and second instruction set in advance based on these schedules.
  • the first instruction may be any predetermined instruction.
  • the second instruction may be any instruction that corresponds to the first instruction from the viewpoint of realizing an OTDR test and realizing a response to command control.
  • the devices connected to each of the optical fiber pairs FP_1 to FP_N via the optical switch device 3 are not limited to the test device 5 and the control device 6.
  • the device to be connected can be any device as long as it is a device that outputs an arbitrary optical signal to each of the optical fiber pairs FP_1 to FP_N, or a device that accepts input of an arbitrary optical signal from each of the optical fiber pairs FP_1 to FP_N. It may be a device.
  • an example will be described in which another device different from the test device 5 and the control device 6 is connected. More specifically, an example will be described in which a measuring device that performs optical spectrum measurement is connected.
  • OSA Optical Spectrum Analyzer
  • the optical spectrum measurement performed by OSA may be referred to as "OSA measurement.”
  • the optical switch means 21 may not include the third optical switch means 33.
  • the third optical switch means 33 is not provided.
  • the number of input terminals P_IN in the first optical switch means 31 is not limited to two. Further, the number of output terminals in the third optical switch means 33 is not limited to two. The number of these terminals may be two or more. For example, the number of these terminals may differ depending on the number or type of devices connected to the optical fiber cable including the optical fiber pairs FP_1 to FP_N.
  • the first optical switch means 31 includes a plurality of input terminals P_IN, and outputs an optical signal input to a selected input terminal P_IN from among the plurality of input terminals P_IN.
  • the second optical switch means 32 includes a plurality of output terminals P_OUT, and outputs the optical signal outputted by the first optical switch means 31 from a selected one of the plurality of output terminals P_OUT.
  • the control means 22 executes control to select the input terminal P_IN in the first optical switch means 31 and control to select the output terminal P_OUT in the second optical switch means 32 based on a predetermined first instruction.
  • the optical switch device 3 equipped with these means (31, 32, 22), the individual devices (5, 6) connected to the optical fiber cable and the individual optical fiber pairs (FP_1) included in the optical fiber cable can be connected. ⁇ FP_N) can be realized.
  • the first optical switch means 31 and the second optical switch means 32 are separated from each other.
  • the first optical switch means 31 is composed of a 2 ⁇ 1 optical switch SW_1
  • the second optical switch means 32 is composed of a 1 ⁇ N optical switch SW_2.
  • the functions corresponding to the first optical switch means 31 and the second optical switch means 32 are realized by a single optical switch. More specifically, this function is realized by a 2-input N-output (hereinafter referred to as "2 ⁇ N”) optical switch.
  • 2 ⁇ N 2-input N-output
  • the 2 ⁇ 1 optical switch SW_1 and the 1 ⁇ N optical switch SW_2 it is possible to more easily switch the optical path in each optical switch than when using a 2 ⁇ N optical switch.
  • the first optical switch means 31 and the second optical switch means 32 are mutually separate components (for example, the optical switch SW_1 and the optical switch SW_2), the first optical switch means 31 and the second optical switch means Compared to the case where 32 is a single component (for example, a 2 ⁇ N optical switch), switching of the optical path as described above can be easily realized.
  • each of the test device 5 and the control device 6 is provided with an N-output optical switch for output and an N-input optical switch for input.
  • each of the test device 5 and the control device 6 is connected to each of the N optical fibers F_TX_1 to F_TX_N without going through an optical switch device, and is connected to each of the N optical fibers F_RX_1 to F_RX_N. Connected.
  • optical switch device 3 is connected to the interfaces FI_1 to FI_N (that is, the optical transmission system 100) is different from the case where the test device 5 and the control device 6 are connected to the interfaces FI_1 to FI_N (that is, the optical transmission system for comparison). Therefore, such a connection is easy.
  • optical switch device 3 it is possible to simplify the connection of devices to the interfaces FI_1 to FI_N. Thereby, for example, a system configuration compatible with OCI (so-called "open cable”) can be easily supported.
  • the optical transmission system 100 includes an optical switch device 3. This provides the effects described above. That is, it is possible to realize optical path switching between the individual devices (5, 6) connected to the optical fiber cable and the individual optical fiber pairs (FP_1 to FP_N) included in the optical fiber cable. In particular, such switching of optical paths can be easily realized. Furthermore, the optical transmission system 100 can easily accommodate an open cable system configuration.
  • the optical transmission system 100 also includes a test device 5 that is connected to any one of the plurality of input terminals P_IN and outputs test light, which is an optical signal for a light pulse test, to the optical switch device 3. Be prepared.
  • the optical transmission system 100 includes a control device 6 that is connected to any other input terminal P_IN among the plurality of input terminals P_IN and outputs control light, which is an optical signal for command control, to the optical switch device 3. .
  • the optical transmission system 100 having the system configuration shown in FIGS. 1 and 3 can be realized.
  • both OTDR testing and command control can be realized.
  • the optical transmission system 100 includes an optical communication device 1 including a plurality of optical communication means 11 each connected to a plurality of output terminals P_OUT. Each of the plurality of optical communication means 11 is controlled by control light.
  • the optical transmission system 100 having the system configuration shown in FIGS. 1 and 2 can be realized.
  • command control for each of the optical communication means 11_1 to 11_N can be realized.
  • each of the plurality of optical communication means 11 is connected to the optical switch device 3 using an optical fiber pair FP, and outputs response light, which is an optical signal for responding to the control light, to the optical fiber pair FP.
  • the optical switch device 3 controls the optical path in the optical switch device 3 so that the response light outputted by each of the plurality of optical communication means 11 is transmitted to the control device 6 based on a second instruction corresponding to the first instruction.
  • a third optical switch means 33 for switching is provided. This makes it possible to respond to command control.
  • the optical transmission system 100 also includes a server device 4 that gives a first instruction to the optical switch device 3.
  • a server device 4 that gives a first instruction to the optical switch device 3.
  • different first instructions can be given to the optical switch device 3, for example, depending on the schedule of the OTDR test or command control executed by the individual devices (5, 6).
  • the optical switch device 3 can dynamically switch the optical path according to this schedule.
  • the optical transmission system 100 also includes a server device 4 that provides a first instruction and a second instruction to the optical switch device 3. Thereby, the first instruction and the second instruction that correspond to each other can be given to the optical switch device 3 together.
  • FIG. 6 is a block diagram showing a portion of the optical transmission system according to the second embodiment, including an optical communication device and a second optical branching device.
  • FIG. 7 is a block diagram showing parts of the optical transmission system according to the second embodiment, including an optical switch device, a server device, and a measuring device.
  • FIG. 8 is a block diagram showing the optical switch means of the optical switch device in the optical transmission system according to the second embodiment.
  • An optical transmission system according to a second embodiment will be described with reference to FIGS. 6 to 8. Note that in FIGS. 6 to 8, elements similar to those shown in FIGS. 1 to 4 are denoted by the same reference numerals, and explanations thereof will be omitted.
  • the optical transmission system 100a includes an optical communication device 1 and a second optical branching device 7. Further, as shown in FIG. 7, the optical transmission system 100a includes an optical switch device 3a, a server device 4, and a measuring device 8.
  • a second optical branching device 7 is provided in the middle of an optical fiber cable (for example, a submarine cable) including the optical fiber pairs FP_1 to FP_N.
  • the second optical branching device 7 is configured by, for example, an optical submarine branching device.
  • the second optical branching device 7 branches each of the optical fiber pairs FP_1 to FP_N.
  • the branched branch is connected to the measurement device 8 via the optical switch device 3a.
  • the measurement device 8 is connected to each of the optical fiber pairs FP_1 to FP_N via the optical switch device 3a.
  • the optical switch device 3a includes an optical switch means 21a and a control means 22a.
  • the optical switch means 21a includes a first optical switch means 31a and a second optical switch means 32a.
  • Each of the first optical switch means 31a and the second optical switch means 32a is constituted by at least one optical switch SW. That is, the optical switch means 21a is composed of a plurality of optical switches SW.
  • the first optical switch means 31a is composed of an N ⁇ 1 optical switch SW_2 and an N ⁇ 1 optical switch SW_3.
  • the optical switches SW_2 and SW_3 are provided in parallel with each other.
  • the second optical switch means 32a is composed of a 2 ⁇ 1 optical switch SW_1 and a 2 ⁇ 1 optical switch SW_4.
  • the optical switches SW_1 and SW_4 are provided in parallel with each other.
  • the output terminal of the optical switch SW_2 is connected to one input terminal of the two input terminals included in the optical switch SW_1.
  • one of the two input terminals included in the optical switch SW_1 may be referred to as a "first input terminal.”
  • the output terminal of the optical switch SW_4 is connected to the other one of the two input terminals included in the optical switch SW_1.
  • the other one of the two input terminals included in the optical switch SW_1 may be referred to as a "second input terminal.”
  • the optical switch SW_2 includes N input terminals P_IN_1 to P_IN_N. Further, the optical switch SW_3 includes N input terminals P_IN_N+1 to P_IN_2N. Accordingly, the first optical switch means 31a includes 2N input terminals P_IN_1 to P_IN_2N. N input terminals P_IN_1 to P_IN_N of the 2N input terminals P_IN_1 to P_IN_2N are respectively (respectively) connected to N optical fibers F_TX_1 to F_TX_N.
  • the other N input terminals P_IN_N+1 to P_IN_2N among the 2N input terminals P_IN_1 to P_IN_2N are respectively (respectively) connected to the N optical fibers F_RX_1 to F_RX_N.
  • the optical switch SW_1 includes one output terminal P_OUT_1. Further, the optical switch SW_4 includes one output terminal P_OUT_2. Thereby, the second optical switch means 32a includes two output terminals P_OUT_1 and P_OUT_2. One output terminal P_OUT_1 of the two output terminals P_OUT_1 and P_OUT_2 is connected to an input optical fiber F_IN_3 in the measuring device 8. Note that the other output terminal P_OUT_2 of the two output terminals P_OUT_1 and P_OUT_2 is so-called "vacant". That is, the output terminal P_OUT_2 is unused or unused.
  • the control means 22a is configured by, for example, a computer.
  • the control means 22a executes control to select the input terminal P_IN in the first optical switch means 31a, and executes control to select the output terminal P_OUT in the second optical switch means 32a. That is, the control means 22a executes the first selection control.
  • the control means 22a also controls the first optical switch means 31a and the second optical switch so that a state is realized in which the optical signal input to the selected input terminal P_IN is output from the selected output terminal P_OUT. Control for switching the optical path in the switch means 32a is executed. More specifically, the control means 22 controls the optical path within the optical switch SW_2, the optical path within the optical switch SW_3, the optical path within the optical switch SW_1, the optical path within the optical switch SW_4, and the optical switches SW_2, SW_3 and the optical switch SW_1, Execute control to switch the optical path between SW_4. That is, the control means 22a executes the first switching control.
  • the optical switch device 3a can freely communicate with the server device 4 via the network NW.
  • the first selection control is executed based on instructions given by the server device 4.
  • the server device 4 acquires information (hereinafter sometimes referred to as "third schedule information") indicating a schedule for OSA measurement to be executed by the measurement device 8, which will be described later.
  • the third schedule information is, for example, information input in advance by a person (such as an administrator of the optical transmission system 100a).
  • the server device 4 receives the third schedule information from the measuring device 8 by communicating with the measuring device 8 via the network NW.
  • the connection line between the network NW and the measuring device 8 is not shown.
  • the server device 4 uses the acquired third schedule information to determine the time interval (hereinafter sometimes referred to as "measurement period") ⁇ T3 in which the OSA measurement is performed by the measurement device 8. Further, the server device 4 uses the acquired third schedule information to determine the timing (hereinafter sometimes referred to as "measurement timing") at which the OSA measurement is performed on each of the optical fibers F_TX and F_RX during the measurement period ⁇ T3. .) Determine T3.
  • the server device 4 determines N measurement timings T3_1 to T3_N that respectively (respectively) correspond to N optical fibers F_TX_1 to F_TX_N in each measurement period ⁇ T3.
  • the server device 4 determines N measurement timings T3_N+1 to T3_2N that respectively (respectively) correspond to the N optical fibers F_RX_1 to F_RX_N in each measurement period ⁇ T3. That is, the server device 4 determines 2N measurement timings T3_1 to T3_2N that respectively (respectively) correspond to the 2N optical fibers F_TX_1 to F_TX_N and F_RX_1 to F_RX_N in each measurement period ⁇ T3.
  • the server device 4 Based on the results of these determinations, the server device 4 generates a signal instructing selection in the first selection control. That is, the server device 4 generates the first instruction signal.
  • the first instruction signal includes an instruction to the effect that one output terminal P_OUT_1 of the two output terminals P_OUT_1 and P_OUT_2 provided in the second optical switch means 32a should be selected in each measurement period ⁇ T3. . Further, the first instruction signal indicates that one corresponding input terminal P_IN of the 2N input terminals P_IN_1 to P_IN_2N provided in the first optical switch means 31a is selected at each of the 2N measurement timings T3_1 to T3_2N. Contains instructions as to what should be done.
  • the server device 4 transmits the generated first instruction signal to the optical switch device 3a.
  • the optical switch device 3a receives the transmitted first instruction signal.
  • the control means 22a executes the first selection control based on the instruction indicated by the received first instruction signal. That is, the control means 22a executes the first selection control based on the first instruction.
  • the measuring device 8 is constituted by, for example, an optical spectrum measuring instrument (i.e., OSA).
  • the measurement device 8 is connected to the optical switch device 3 using an input optical fiber F_IN_3.
  • the optical fiber F_IN_3 is connected to the input terminal P_IN_1 of the first optical switch means 31a.
  • the measuring device 8 performs OSA measurements on each of the optical fibers F_TX_1 to F_TX_N. Furthermore, the measurement device 8 performs OSA measurement on each of the optical fibers F_RX_1 to F_RX_N.
  • the optical transmission system 100a includes a light source device (not shown) for OSA measurement.
  • the light source device is provided, for example, at the first land station or the second land station. Or, for example, the light source device is configured integrally with the measuring device 8.
  • the light source device outputs an optical signal for OSA measurement (hereinafter sometimes referred to as "optical signal for measurement” or “measurement light”) at a predetermined timing based on a predetermined schedule.
  • the light source device outputs measurement light to a corresponding one of the N optical fibers F_TX_1 to F_TX_N at each of N measurement timings T3_1 to T3_N.
  • the output measurement light is transmitted through the corresponding one optical fiber F_TX.
  • the light source device outputs measurement light to a corresponding one of the N optical fibers F_RX_1 to F_RX_N at each of the other N measurement timings T3_N+1 to T3_2N.
  • the output measurement light is transmitted through the corresponding one optical fiber F_RX.
  • the optical paths in the first optical switch means 31a and the second optical switch means 32a are switched by the control means 22a as described above. Therefore, at each of the N measurement timings T3_1 to T3_N, the measurement light transmitted through the corresponding one optical fiber F_TX passes through the optical switches SW_2, SW_1 and the optical fiber F_IN_3, and is input to the measurement device 8. be done. In addition, at each of the other N measurement timings T3_N+1 to T3_2N, the measurement light transmitted through the corresponding one optical fiber F_RX passes through the optical switches SW_3, SW_1 and the optical fiber F_IN_3, and is sent to the measurement device 8. is input.
  • the measurement device 8 uses the input measurement light to perform signal processing for OSA measurement. Note that various known techniques can be used for signal processing for OSA measurement. A detailed explanation of these techniques will be omitted.
  • OSA measurement on each of the optical fibers F_TX_1 to F_TX_N and F_RX_1 to F_RX_N is realized.
  • the results of such OSA measurement are used, for example, to monitor the status of each of the optical fibers F_TX_1 to F_TX_N and F_RX_1 to F_RX_N. More specifically, the results of the OSA are used to detect whether or not a break has occurred in each of the optical fibers F_TX_1 to F_TX_N and F_RX_1 to F_RX_N, and to detect the position where the break has occurred.
  • the main parts of the optical transmission system 100a are configured.
  • the optical transmission system 100a includes a portion provided on land.
  • the part provided on land is, for example, a part including the first land station, a part including the second land station, or a part including the optical switch device 3a and the measuring device 8.
  • the optical transmission system 100a includes a portion provided on the ocean floor (for example, a portion including a submarine cable).
  • a predetermined interface is used to connect the part provided on land and the part provided on the seabed. Specifically, for example, OCI is used.
  • FI_1 to FI_N in FIG. 7 indicate such interfaces.
  • the optical switch device 3a receives an instruction signal transmitted by the server device 4. Thereby, the control means 22a acquires the instruction included in the received instruction signal. More specifically, the control means 22a acquires the first instruction (step ST1a).
  • control means 22a executes first selection control and first switching control based on the first instruction acquired in step ST1a (step ST2a). That is, the control means 22a executes control to select the input terminal P_IN in the first optical switch means 31a and control to select the output terminal P_OUT in the second optical switch means 32a based on the obtained first instruction. Execute. The control means 22a also controls the first optical switch means 31a and the second optical switch so that a state is realized in which the optical signal input to the selected input terminal P_IN is output from the selected output terminal P_OUT. Control for switching the optical path in the switch means 32a is executed.
  • the optical transmission system 100a may not include the second optical branching device 7.
  • the optical switch device 3a and the measuring device 8 may be provided at the first land station or the second land station, for example.
  • the optical transmission system 100a may not include the server device 4.
  • the control means 22a may use a preset first instruction instead of the first instruction given by the server device 4.
  • the control means 22a may execute the first selection control based on a first instruction set in advance based on the schedule. That is, the first instruction may be any predetermined instruction.
  • the optical transmission system 100a may include the same first optical branching device 2, optical switch device 3, testing device 5, and control device 6 as the optical transmission system 100. That is, the optical transmission system 100a may include the test device 5 and the control device 6, and may also include the measurement device 8.
  • the optical transmission system 100a also includes an optical switch device 3 provided between the optical fiber pairs FP_1 to FP_N and the test device 5 and the control device 6, and between the optical fiber pairs FP_1 to FP_N and the measuring device 8.
  • the optical switch device 3a may be included in the optical switch device 3a.
  • the second optical branching device 7 may be configured integrally with the first optical branching device 2.
  • the first optical branching device 2 and the second optical branching device 7 may be configured by a single optical submarine branching device.
  • the same effects as when using the optical switch device 3 can be obtained.
  • the same effects as those described in the first embodiment can be obtained.
  • the first optical switch means 31a includes a plurality of input terminals P_IN, and outputs an optical signal input to a selected input terminal P_IN from among the plurality of input terminals P_IN.
  • the second optical switch means 32a includes a plurality of output terminals P_OUT, and outputs the optical signal outputted by the first optical switch means 31 from a selected one of the plurality of output terminals P_OUT.
  • the control means 22a executes control to select the input terminal P_IN in the first optical switch means 31a and control to select the output terminal P_OUT in the second optical switch means 32a based on a predetermined first instruction.
  • the optical switch device 3a equipped with these means (31a, 32a, 22a), the individual devices (8) connected to the optical fiber cable and the individual optical fiber pairs (FP_1 to FP_N) included in the optical fiber cable can be connected. ) can be realized.
  • the following optical switch device will be considered as a comparative optical switch device for the optical switch device 3a. That is, in the optical switch device 3a, the first optical switch means 31a and the second optical switch means 32a are separated from each other. Specifically, for example, as described above, the first optical switch means 31a is composed of an N ⁇ 1 optical switch SW_2 and an N ⁇ 1 optical switch SW_3, and the second optical switch means 32a is composed of a 2 ⁇ optical switch SW_2 and an N ⁇ 1 optical switch SW_3. It is composed of one optical switch SW_1 and 2 ⁇ 1 optical switch SW_4.
  • the functions corresponding to the first optical switch means 31a and the second optical switch means 32a are realized by a single optical switch. More specifically, this function is realized by an optical switch with 2N inputs and 2 outputs (hereinafter sometimes referred to as "2Nx2").
  • the N ⁇ 1 optical switch SW_2 By using the N ⁇ 1 optical switch SW_2, the N ⁇ 1 optical switch SW_3, the 2 ⁇ 1 optical switch SW_1, and the 2 ⁇ 1 optical switch SW_4, compared to the case of using a 2N ⁇ 2 optical switch, Switching of optical paths in individual optical switches can be simplified.
  • the first optical switch means 31a and the second optical switch means 32a are mutually separate components (for example, optical switches SW_2, SW_3 and optical switches SW_1, SW_4), the first optical switch means 31a and the second optical switch means 32a are separated from each other.
  • the two-optical switch means 32a is a single component (for example, a 2N ⁇ 2 optical switch), switching of the optical paths as described above can be easily realized.
  • optical switch devices 3 and 3a it is possible to realize the connection of the test device 5 and the control device 6 to the optical fiber pairs FP_1 to FP_N, and also to realize the connection of the measurement device 8 to the optical fiber pairs FP_1 to FP_N. It can be realized. In particular, these connections can be facilitated. As a result, it is possible to easily adapt to an open cable system configuration.
  • the optical switches SW_1 to SW_4 included in the optical switch means 21a are the same as the optical switches SW_1 to SW_4 included in the optical switch means 21. Therefore, the optical switches SW_1 to SW_4 can be shared between the optical switch device 3 for connecting the test device 5 and the control device 6 and the optical switch device 3a for connecting the measuring device 8. . As a result, it is possible to reduce the design cost and manufacturing cost of the optical switch devices 3, 3a.
  • FIG. 10 is a block diagram showing an optical switch device according to a third embodiment.
  • an optical switch device according to a third embodiment will be described.
  • FIG. 11 is a block diagram showing an optical transmission system according to the third embodiment.
  • An optical transmission system according to a third embodiment will be described with reference to FIG. 11. Note that in FIGS. 10 and 11, elements similar to those shown in FIGS. 1 to 4 are denoted by the same reference numerals, and explanations thereof will be omitted.
  • each of the optical switch device 3 according to the first embodiment and the optical switch device 3a according to the second embodiment is an example of the optical switch device 3b according to the third embodiment.
  • each of the optical transmission system 100 according to the first embodiment and the optical transmission system 100a according to the second embodiment is an example of the optical transmission system 100b according to the third embodiment.
  • the optical switch device 3b includes a first optical switch means 31, a second optical switch means 32, and a control means 22.
  • the optical transmission system 100b includes an optical switch device 3b. Even in these cases, the same effects as those described in the first embodiment can be obtained as described below.
  • the first optical switch means 31 includes a plurality of input terminals P_IN, and outputs an optical signal input to a selected input terminal P_IN among the plurality of input terminals P_IN.
  • the second optical switch means 32 includes a plurality of output terminals P_OUT, and outputs the optical signal outputted by the first optical switch means 31 from a selected one of the plurality of output terminals P_OUT.
  • the control means 22 executes control to select the input terminal P_IN in the first optical switch means 31 and control to select the output terminal P_OUT in the second optical switch means 32 based on a predetermined first instruction.
  • optical switch device 3b equipped with these means (31, 32, 22), individual devices (5, 6, 8) connected to the optical fiber cable and individual optical fiber pairs included in the optical fiber cable can be connected. (FP_1 to FP_N) can be switched.
  • the optical transmission system 100b includes an optical switch device 3b. This provides the effects described above. That is, it is possible to realize optical path switching between the individual devices (5, 6, 8) connected to the optical fiber cable and the individual optical fiber pairs (FP_1 to FP_N) included in the optical fiber cable.
  • the optical switch device 3b may include a third optical switch means 33 in addition to the first optical switch means 31, the second optical switch means 32, and the control means 22. Further, the optical switch device 3b includes a first optical switch means 31a, a second optical switch means 32a, and a control means 22a instead of the first optical switch means 31, the second optical switch means 32, and the control means 22. It's okay.
  • the optical transmission system 100b may include a test device 5 and a control device 6 in addition to the optical switch device 3b. Furthermore, the optical transmission system 100b may include the optical communication device 1 in addition to the optical switch device 3b. Further, the optical transmission system 100b may include a measuring device 8 in addition to the optical switch device 3b. Further, the optical transmission system 100b may include the server device 4 in addition to the optical switch device 3b.
  • [Additional notes] [Additional note 1] a first optical switch unit comprising a plurality of input terminals and outputting an optical signal input to a selected one of the plurality of input terminals; a second optical switch means comprising a plurality of output terminals and outputting the optical signal outputted by the first optical switch means from a selected one of the plurality of output terminals; control means for executing control for selecting an input terminal in the first optical switch means and control for selecting an output terminal in the second optical switch means based on a predetermined first instruction;
  • An optical switch device comprising: [Additional note 2] An optical transmission system comprising the optical switch device according to appendix 1.
  • the optical transmission system according to supplementary note 2 comprising: [Additional note 4] An optical communication device including a plurality of optical communication means each connected to the plurality of output terminals, The optical transmission system according to appendix 3, wherein each of the plurality of optical communication means is controlled by the control light.
  • Each of the plurality of optical communication means is connected to the optical switch device using an optical fiber pair, and outputs a response light that is an optical signal in response to the control light to the optical fiber pair,
  • the optical switch device is configured to transmit the response light outputted by each of the plurality of optical communication means to the control device based on a second instruction corresponding to the first instruction.
  • the optical transmission system according to appendix 4 further comprising a third optical switch means for switching the optical path.
  • the optical transmission system according to appendix 2 further comprising a measurement device connected to any one of the plurality of output terminals and receiving input of measurement light that is an optical signal for measuring an optical spectrum. .
  • optical transmission system according to any one of appendices 2 to 6, further comprising a server device that gives the first instruction to the optical switch device.
  • optical transmission system according to appendix 5 further comprising a server device that provides the first instruction and the second instruction to the optical switch device.
  • Optical communication device 2 First optical branching device 3, 3a, 3b Optical switching device 4 Server device 5 Testing device 6
  • Second optical branching device 8 Measuring device 11

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

Provided is an optical switch device that can achieve switching of optical paths between each device that is connected to a optical fiber cable and each optical fiber pair that is included in the optical fiber cable. An optical switch device (3) comprises: a first optical switch means (31) that is provided with a plurality of input terminals (P_IN), and outputs an optical signal which was inputted to an input terminal (P_IN) selected from among the plurality of input terminals (P_IN); a second optical switch means (32) that is provided with a plurality of output terminals (P_OUT), and outputs, from an output terminal (P_OUT) selected from among the plurality of output terminals (P_OUT), the optical signal which was outputted by the first optical switch means (31); and a control means (22) that, on the basis of prescribed a first instruction, provides control to select an input terminal (P_IN) of the first switch means (31) and control to select an output terminal (P_OUT) of the second optical switch means (32).

Description

光スイッチ装置及び光伝送システムOptical switch equipment and optical transmission system
 本開示は、光スイッチ装置等に関する。 The present disclosure relates to an optical switch device and the like.
 光ファイバケーブルを用いて光信号を伝送するシステム(以下「光伝送システム」という。)が知られている。具体的には、例えば、海底に敷設された光ファイバケーブル(いわゆる「海底ケーブル」)を用いて、陸上局間の通信用の光信号を伝送する光伝送システムが知られている。特許文献1~3には、光伝送システムに関する技術が開示されている。 Systems that transmit optical signals using optical fiber cables (hereinafter referred to as "optical transmission systems") are known. Specifically, for example, an optical transmission system is known that transmits optical signals for communication between land stations using an optical fiber cable laid on the ocean floor (so-called "submarine cable"). Patent Documents 1 to 3 disclose techniques related to optical transmission systems.
特開2002-280978号公報Japanese Patent Application Publication No. 2002-280978 特開2005-318567号公報Japanese Patent Application Publication No. 2005-318567 特開2020-036312号公報JP2020-036312A
 一般に、光伝送システムの光ファイバケーブルには、光ファイバケーブルに対して制御信号の入力元となる複数種類の装置が接続され得る。具体的には、例えば、光ファイバケーブルの破断点の検出などのための光パルス試験を実行する試験装置が光ファイバケーブルに接続されるとともに、遠方の装置に対してコマンド制御を実行する制御装置が光ファイバケーブルに接続される。光パルス試験を行う試験装置として、OTDR(Optical Time Domain Reflectometer)がある。以下、OTDRにより実行される光パルス試験を「OTDR試験」ということがある。 In general, an optical fiber cable of an optical transmission system can be connected to a plurality of types of devices that serve as input sources of control signals to the optical fiber cable. Specifically, for example, a test device that performs an optical pulse test to detect a break point in an optical fiber cable is connected to the optical fiber cable, and a control device that executes command control for a distant device. is connected to the fiber optic cable. An OTDR (Optical Time Domain Reflectometer) is a test device that performs a light pulse test. Hereinafter, the optical pulse test performed by OTDR may be referred to as "OTDR test."
 また、一般に、光伝送システムの光ファイバケーブルは、複数対の光ファイバペアを含む。個々の光ファイバペアを用いることにより、双方向通信が実現される。 Further, generally, an optical fiber cable of an optical transmission system includes a plurality of optical fiber pairs. Bidirectional communication is achieved by using individual optical fiber pairs.
 ここで、上記のような試験装置により出力された試験用の光信号は、試験装置に接続された複数対の光ファイバペアの各々に選択的に入力されるのが好適である。また、上記のような制御装置により出力された制御用の光信号は、光パルス試験及びコマンド制御の送信のそれぞれの対象となる複数対の光ファイバペアの各々に選択的に入力されるのが好適である。かかる選択を実現する観点から、実行される試験又は制御などに応じて、光ファイバケーブルに接続される個々の装置と光ファイバケーブルに含まれる個々の光ファイバペアとの間の光路の切替えを実現することが要求される。 Here, it is preferable that the test optical signal outputted by the test device as described above is selectively input to each of the plurality of optical fiber pairs connected to the test device. Furthermore, the control optical signal output by the control device as described above is selectively input to each of the plurality of optical fiber pairs that are the targets of the optical pulse test and the transmission of command control. suitable. With a view to realizing such a selection, it is possible to realize the switching of the optical path between the individual devices connected to the optical fiber cable and the individual optical fiber pairs included in the optical fiber cable, depending on the tests or controls to be performed, etc. required to do so.
 本開示の目的は、上述した課題を鑑み、例えば、光ファイバケーブルに接続される個々の装置と光ファイバケーブルに含まれる個々の光ファイバペアとの間の光路の切替えを実現することができる光スイッチ装置等を提供することにある。 In view of the above-mentioned problems, an object of the present disclosure is to provide an optical fiber that can realize optical path switching between individual devices connected to an optical fiber cable and individual optical fiber pairs included in the optical fiber cable, for example. The purpose of this invention is to provide switching devices, etc.
 本開示の一側面に係る光スイッチ装置は、複数個の入力端子を備え、複数個の入力端子のうちの選択された入力端子に入力された光信号を出力する第1光スイッチ手段と、複数個の出力端子を備え、第1光スイッチ手段により出力された光信号を複数個の出力端子のうちの選択された出力端子から出力する第2光スイッチ手段と、所定の第1指示に基づき、第1光スイッチ手段における入力端子を選択する制御及び第2光スイッチ手段における出力端子を選択する制御を実行する制御手段と、を備える。 An optical switch device according to one aspect of the present disclosure includes a first optical switch unit that includes a plurality of input terminals and outputs an optical signal input to a selected input terminal of the plurality of input terminals; a second optical switch means comprising a plurality of output terminals and outputs the optical signal outputted by the first optical switch means from a selected one of the plurality of output terminals, and based on a predetermined first instruction, A control means is provided that executes control for selecting an input terminal in the first optical switch means and control for selecting an output terminal in the second optical switch means.
 本開示によれば、例えば、光ファイバケーブルに接続される個々の装置と光ファイバケーブルに含まれる個々の光ファイバペアとの間の光路の切替えを実現することができる。 According to the present disclosure, it is possible to realize, for example, switching of optical paths between individual devices connected to an optical fiber cable and individual optical fiber pairs included in the optical fiber cable.
図1は、第1実施形態に係る光伝送システムのうちの光通信装置及び第1光分岐装置を含む部位を示すブロック図である。FIG. 1 is a block diagram showing a portion of the optical transmission system according to the first embodiment, including an optical communication device and a first optical branching device. 図2は、第1実施形態に係る光伝送システムにおける光通信装置を示すブロック図である。FIG. 2 is a block diagram showing an optical communication device in the optical transmission system according to the first embodiment. 図3は、第1実施形態に係る光伝送システムのうちの光スイッチ装置、サーバ装置、試験装置及び制御装置を含む部位を示すブロック図である。FIG. 3 is a block diagram showing parts of the optical transmission system according to the first embodiment, including an optical switch device, a server device, a test device, and a control device. 図4は、第1実施形態に係る光伝送システムにおける光スイッチ装置の光スイッチ手段を示すブロック図である。FIG. 4 is a block diagram showing the optical switch means of the optical switch device in the optical transmission system according to the first embodiment. 図5は、第1実施形態に係る光伝送システムにおける光スイッチ装置の制御手段の動作を示すフローチャートである。FIG. 5 is a flowchart showing the operation of the control means of the optical switch device in the optical transmission system according to the first embodiment. 図6は、第2実施形態に係る光伝送システムのうちの光通信装置及び第2光分岐装置を含む部位を示すブロック図である。FIG. 6 is a block diagram showing a portion of the optical transmission system according to the second embodiment, including an optical communication device and a second optical branching device. 図7は、第2実施形態に係る光伝送システムのうちの光スイッチ装置、サーバ装置及び測定装置を含む部位を示すブロック図である。FIG. 7 is a block diagram showing parts of the optical transmission system according to the second embodiment, including an optical switch device, a server device, and a measuring device. 図8は、第2実施形態に係る光伝送システムにおける光スイッチ装置の光スイッチ手段を示すブロック図である。FIG. 8 is a block diagram showing the optical switch means of the optical switch device in the optical transmission system according to the second embodiment. 図9は、第2実施形態に係る光伝送システムにおける光スイッチ装置の制御手段の動作を示すフローチャートである。FIG. 9 is a flowchart showing the operation of the control means of the optical switch device in the optical transmission system according to the second embodiment. 図10は、第3実施形態に係る光スイッチ装置を示すブロック図である。FIG. 10 is a block diagram showing an optical switch device according to a third embodiment. 図11は、第3実施形態に係る光伝送システムを示すブロック図である。FIG. 11 is a block diagram showing an optical transmission system according to the third embodiment.
 以下、本開示の実施形態について、添付の図面を参照して詳細に説明する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings.
[第1実施形態]
 図1は、第1実施形態に係る光伝送システムのうちの光通信装置及び第1光分岐装置を含む部位を示すブロック図である。図2は、第1実施形態に係る光伝送システムにおける光通信装置を示すブロック図である。図3は、第1実施形態に係る光伝送システムのうちの光スイッチ装置、サーバ装置、試験装置及び制御装置を含む部位を示すブロック図である。図4は、第1実施形態に係る光伝送システムにおける光スイッチ装置の光スイッチ手段を示すブロック図である。図1~図4を参照して、第1実施形態に係る光伝送システムについて説明する。
[First embodiment]
FIG. 1 is a block diagram showing a portion of the optical transmission system according to the first embodiment, including an optical communication device and a first optical branching device. FIG. 2 is a block diagram showing an optical communication device in the optical transmission system according to the first embodiment. FIG. 3 is a block diagram showing parts of the optical transmission system according to the first embodiment, including an optical switch device, a server device, a test device, and a control device. FIG. 4 is a block diagram showing the optical switch means of the optical switch device in the optical transmission system according to the first embodiment. An optical transmission system according to a first embodiment will be described with reference to FIGS. 1 to 4.
 図1に示す如く、光伝送システム100は、光通信装置1及び第1光分岐装置2を含む。また、図3に示す如く、光伝送システム100は、光スイッチ装置3、サーバ装置4、試験装置5及び制御装置6を含む。 As shown in FIG. 1, the optical transmission system 100 includes an optical communication device 1 and a first optical branching device 2. Further, as shown in FIG. 3, the optical transmission system 100 includes an optical switch device 3, a server device 4, a test device 5, and a control device 6.
 N対の光ファイバペアFP_1~FP_Nを含む光ファイバケーブル(不図示)の途中に、光通信装置1を含む複数個の光通信装置が設けられている。ここで、Nは、2以上の任意の整数である。光ファイバペアFP_1~FP_Nを含む光ファイバケーブルは、例えば、海底に敷設されている。すなわち、光ファイバペアFP_1~FP_Nを含む光ファイバケーブルは、例えば、海底ケーブルである。この場合、光伝送システム100は、海底ケーブルを用いて、第1の陸上局(不図示)と第2の陸上局(不図示)との間の通信用の光信号を伝送する。より具体的には、光ファイバペアFP_1~FP_Nの各々を用いて、第1の陸上局と第2の陸上局との間の双方向通信が実現される。以下、通信用の光信号を「通信光」ということがある。 A plurality of optical communication devices including the optical communication device 1 are provided in the middle of an optical fiber cable (not shown) including N optical fiber pairs FP_1 to FP_N. Here, N is an arbitrary integer of 2 or more. The optical fiber cable including the optical fiber pairs FP_1 to FP_N is laid, for example, on the ocean floor. That is, the optical fiber cable including the optical fiber pairs FP_1 to FP_N is, for example, a submarine cable. In this case, the optical transmission system 100 uses a submarine cable to transmit optical signals for communication between a first land station (not shown) and a second land station (not shown). More specifically, bidirectional communication between the first land station and the second land station is achieved using each of the optical fiber pairs FP_1 to FP_N. Hereinafter, optical signals for communication may be referred to as "communication light."
 ここで、光通信装置1を含む複数個の光通信装置は、例えば、海底ケーブルの途中に所定の距離毎に設けられている。これにより、海底ケーブルを用いた長距離通信が実現される。すなわち、当該複数個の光通信装置の各々は、例えば、光中継装置(より具体的には光海底中継装置)により構成されている。換言すれば、光通信装置1は、例えば、光中継装置(より具体的には光海底中継装置)により構成されている。 Here, a plurality of optical communication devices including the optical communication device 1 are provided, for example, at predetermined distances along the submarine cable. This enables long-distance communication using submarine cables. That is, each of the plurality of optical communication devices is constituted by, for example, an optical repeater (more specifically, an optical submarine repeater). In other words, the optical communication device 1 is configured by, for example, an optical repeater (more specifically, an optical submarine repeater).
 図2に示す如く、光ファイバペアFP_1~FP_Nの各々は、第1の陸上局から見た送信用の光ファイバF_TXを含む(図中F_TX_1~F_TX_N)。また、光ファイバペアFP_1~FP_Nの各々は、第1の陸上局から見た受信用の光ファイバF_RXを含む(図中F_RX_1~F_RX_N)。光通信装置1は、N対の光ファイバペアFP_1~FP_Nにそれぞれ(respectively)対応するN個の光通信手段11_1~11_Nを備える。光通信手段11_1~11_Nの各々は、例えば、光中継器により構成されている。 As shown in FIG. 2, each of the optical fiber pairs FP_1 to FP_N includes a transmission optical fiber F_TX as seen from the first land station (F_TX_1 to F_TX_N in the figure). Further, each of the optical fiber pairs FP_1 to FP_N includes a receiving optical fiber F_RX as seen from the first land station (F_RX_1 to F_RX_N in the figure). The optical communication device 1 includes N optical communication means 11_1 to 11_N that respectively correspond to N optical fiber pairs FP_1 to FP_N. Each of the optical communication means 11_1 to 11_N is constituted by, for example, an optical repeater.
 すなわち、光通信手段11_1~11_Nの各々は、第1の増幅器(不図示)を含む。ここで、第1の増幅器は、N本の光ファイバF_TX_1~F_TX_Nのうちの対応する1本の光ファイバF_TXを伝送する光信号を増幅するために設けられている。換言すれば、第1の増幅器は、第1の陸上局から第2の陸上局に伝送される通信光を増幅するための増幅器である。また、光通信手段11_1~11_Nの各々は、N本の光ファイバF_RX_1~F_RX_Nのうちの対応する1本の光ファイバF_RXを伝送する光信号を増幅するための第2の増幅器(不図示)を含む。第2の増幅器は、N本の光ファイバF_RX_1~F_RX_Nのうちの対応する1本の光ファイバF_RXを伝送する光信号を増幅するために設けられている。換言すれば、第2の増幅器は、第2の陸上局から第1の陸上局に伝送される通信光を増幅するための増幅器である。 That is, each of the optical communication means 11_1 to 11_N includes a first amplifier (not shown). Here, the first amplifier is provided to amplify an optical signal transmitted through a corresponding one of the N optical fibers F_TX_1 to F_TX_N. In other words, the first amplifier is an amplifier for amplifying communication light transmitted from the first land station to the second land station. Further, each of the optical communication means 11_1 to 11_N includes a second amplifier (not shown) for amplifying the optical signal transmitted through the corresponding one of the N optical fibers F_RX_1 to F_RX_N. include. The second amplifier is provided to amplify an optical signal transmitted through a corresponding one of the N optical fibers F_RX_1 to F_RX_N. In other words, the second amplifier is an amplifier for amplifying communication light transmitted from the second land station to the first land station.
 ここで、光通信手段11_1~11_Nの各々において、第1の増幅器及び第2の増幅器の各々のパラメータ(例えば増幅率)は、コマンド制御により設定される。換言すれば、光通信手段11_1~11_Nの各々の動作は、コマンド制御により制御される。コマンド制御は、後述する制御装置6により実行される。 Here, in each of the optical communication means 11_1 to 11_N, parameters (for example, amplification factors) of the first amplifier and the second amplifier are set by command control. In other words, the operation of each of the optical communication means 11_1 to 11_N is controlled by command control. Command control is executed by a control device 6, which will be described later.
 また、光通信手段11_1~11_Nの各々は、N対の光ファイバペアFP_1~FP_Nのうちの対応する1対の光ファイバペアFPにおけるOTDR試験を実現するためのループバック回路(不図示)を含むものであっても良い。光ファイバペアFP_1~FP_Nの各々におけるOTDR試験は、後述する試験装置5により実行される。 Further, each of the optical communication means 11_1 to 11_N includes a loopback circuit (not shown) for realizing an OTDR test on a corresponding one of the N optical fiber pairs FP_1 to FP_N. It may be something. The OTDR test on each of the optical fiber pairs FP_1 to FP_N is performed by a test device 5, which will be described later.
 図1に示す如く、光ファイバペアFP_1~FP_Nを含む光ファイバケーブル(例えば海底ケーブル)の途中に、第1光分岐装置2が設けられている。第1光分岐装置2は、例えば、光海底分岐装置により構成されている。第1光分岐装置2は、光ファイバペアFP_1~FP_Nの各々を分岐する。当該分岐された枝は、光スイッチ装置3を介して試験装置5及び制御装置6の各々と接続される。換言すれば、試験装置5及び制御装置6の各々は、光スイッチ装置3を介して光ファイバペアFP_1~FP_Nの各々と接続される。 As shown in FIG. 1, a first optical branching device 2 is provided in the middle of an optical fiber cable (for example, a submarine cable) including optical fiber pairs FP_1 to FP_N. The first optical branching device 2 is configured by, for example, an optical submarine branching device. The first optical branching device 2 branches each of the optical fiber pairs FP_1 to FP_N. The branched branch is connected to each of the test device 5 and the control device 6 via the optical switch device 3. In other words, each of the test device 5 and the control device 6 is connected to each of the optical fiber pairs FP_1 to FP_N via the optical switch device 3.
 なお、第1光分岐装置2は、光通信装置1と同様の増幅器(すなわち第1の増幅器及び第2の増幅器)を含むものであっても良い。また、第1光分岐装置2は、光通信装置1と同様のループバック回路(すなわちOTDR試験用のループバック回路)を含むものであっても良い。また、第1光分岐装置2は、光通信装置1と一体に構成されているものであっても良い。 Note that the first optical branching device 2 may include the same amplifiers as the optical communication device 1 (i.e., a first amplifier and a second amplifier). Further, the first optical branching device 2 may include a loopback circuit similar to the optical communication device 1 (ie, a loopback circuit for OTDR testing). Further, the first optical branching device 2 may be configured integrally with the optical communication device 1.
 図3に示す如く、光スイッチ装置3は、光スイッチ手段21及び制御手段22を備える。図4に示す如く、光スイッチ手段21は、第1光スイッチ手段31、第2光スイッチ手段32及び第3光スイッチ手段33を備える。第1光スイッチ手段31、第2光スイッチ手段32及び第3光スイッチ手段33の各々は、少なくとも1個の光スイッチSWにより構成されている。すなわち、光スイッチ手段21は、複数個の光スイッチSWにより構成されている。 As shown in FIG. 3, the optical switch device 3 includes an optical switch means 21 and a control means 22. As shown in FIG. 4, the optical switch means 21 includes a first optical switch means 31, a second optical switch means 32, and a third optical switch means 33. Each of the first optical switch means 31, the second optical switch means 32, and the third optical switch means 33 is constituted by at least one optical switch SW. That is, the optical switch means 21 is constituted by a plurality of optical switches SW.
 具体的には、例えば、第1光スイッチ手段31は、2入力1出力(以下「2×1」と記載することがある。)の光スイッチSW_1により構成されている。第2光スイッチ手段32は、1入力N出力(以下「1×N」と記載することがある。)の光スイッチSW_2により構成されている。光スイッチSW_1の出力端子は、光スイッチSW_2の入力端子と接続される。すなわち、光スイッチSW_1,SW_2は、互いに直列に設けられている。 Specifically, for example, the first optical switch means 31 is constituted by an optical switch SW_1 with two inputs and one output (hereinafter sometimes referred to as "2x1"). The second optical switch means 32 is constituted by an optical switch SW_2 with 1 input and N outputs (hereinafter sometimes referred to as "1×N"). The output terminal of the optical switch SW_1 is connected to the input terminal of the optical switch SW_2. That is, the optical switches SW_1 and SW_2 are provided in series with each other.
 また、第3光スイッチ手段33は、N入力1出力(以下「N×1」と記載することがある。)の光スイッチSW_3及び1入力2出力(以下「1×2」と記載することがある。)の光スイッチSW_4により構成されている。光スイッチSW_3の出力端子は、光スイッチSW_4の入力端子と接続される。すなわち、光スイッチSW_3,SW_4は、互いに直列に設けられている。 Further, the third optical switch means 33 includes an optical switch SW_3 with N inputs and 1 output (hereinafter sometimes referred to as "N×1") and a 1 input and 2 outputs (hereinafter also referred to as "1×2"). ) optical switch SW_4. The output terminal of the optical switch SW_3 is connected to the input terminal of the optical switch SW_4. That is, the optical switches SW_3 and SW_4 are provided in series with each other.
 第1光スイッチ手段31は、複数個の入力端子P_INを備える。より具体的には、第1光スイッチ手段31は、2個の入力端子P_IN_1,P_IN_2を備える。入力端子P_IN_1は、試験装置5における出力用の光ファイバF_OUT_1と接続される。入力端子P_IN_2は、制御装置6における出力用の光ファイバF_OUT_2と接続される。 The first optical switch means 31 includes a plurality of input terminals P_IN. More specifically, the first optical switch means 31 includes two input terminals P_IN_1 and P_IN_2. Input terminal P_IN_1 is connected to output optical fiber F_OUT_1 in test apparatus 5. Input terminal P_IN_2 is connected to output optical fiber F_OUT_2 in control device 6.
 第2光スイッチ手段32は、複数個の出力端子P_OUTを備える。より具体的には、第2光スイッチ手段32は、N個の出力端子P_OUT_1~P_OUT_Nを備える。N個の出力端子P_OUT_1~P_OUT_Nは、N本の光ファイバF_TX_1~F_TX_Nとそれぞれ(respectively)接続される。 The second optical switch means 32 includes a plurality of output terminals P_OUT. More specifically, the second optical switch means 32 includes N output terminals P_OUT_1 to P_OUT_N. The N output terminals P_OUT_1 to P_OUT_N are respectively (respectively) connected to the N optical fibers F_TX_1 to F_TX_N.
 第3光スイッチ手段33は、複数個の入力端子を備える。より具体的には、第3光スイッチ手段33は、N個の入力端子を備える。N個の入力端子は、N本の光ファイバF_RX_1~F_RX_Nとそれぞれ(respectively)接続される。また、第3光スイッチ手段33は、複数個の出力端子を備える。より具体的には、第3光スイッチ手段33は、2個の出力端子を備える。当該2個の出力端子のうちの1個の出力端子(以下「第1の出力端子」ということがある。)は、試験装置5における入力用の光ファイバF_IN_1と接続される。当該2個の出力端子のうちの他の1個の出力端子(以下「第2の出力端子」ということがある。)は、制御装置6における入力用の光ファイバF_IN_2と接続される。 The third optical switch means 33 includes a plurality of input terminals. More specifically, the third optical switch means 33 includes N input terminals. The N input terminals are respectively (respectively) connected to the N optical fibers F_RX_1 to F_RX_N. Further, the third optical switch means 33 includes a plurality of output terminals. More specifically, the third optical switch means 33 includes two output terminals. One of the two output terminals (hereinafter sometimes referred to as "first output terminal") is connected to the input optical fiber F_IN_1 in the test apparatus 5. Another one of the two output terminals (hereinafter sometimes referred to as "second output terminal") is connected to the input optical fiber F_IN_2 in the control device 6.
 制御手段22は、例えば、コンピュータにより構成されている。制御手段22は、第1光スイッチ手段31における入力端子P_INを選択する制御を実行するとともに、第2光スイッチ手段32における出力端子P_OUTを選択する制御を実行する。以下、これらの制御を総称して「第1選択制御」ということがある。また、制御手段22は、当該選択された入力端子P_INに入力された光信号が当該選択された出力端子P_OUTから出力される状態が実現されるように、第1光スイッチ手段31及び第2光スイッチ手段32における光路を切り替える制御を実行する。より具体的には、制御手段22は、光スイッチSW_1内の光路、及び光スイッチSW_2内の光路を切り替える制御を実行する。以下、かかる制御を「第1切替え制御」ということがある。 The control means 22 is configured by, for example, a computer. The control means 22 executes control to select the input terminal P_IN in the first optical switch means 31 and executes control to select the output terminal P_OUT in the second optical switch means 32. Hereinafter, these controls may be collectively referred to as "first selection control." The control means 22 also controls the first optical switch means 31 and the second optical switch so that a state is realized in which the optical signal input to the selected input terminal P_IN is output from the selected output terminal P_OUT. Control for switching the optical path in the switch means 32 is executed. More specifically, the control means 22 executes control to switch the optical path within the optical switch SW_1 and the optical path within the optical switch SW_2. Hereinafter, such control may be referred to as "first switching control."
 また、制御手段22は、第3光スイッチ手段33における入力端子を選択する制御を実行するとともに、第3光スイッチ手段33における出力端子を選択する制御を実行する。以下、これらの制御を総称して「第2選択制御」ということがある。また、制御手段22は、当該選択された入力端子に入力された光信号が当該選択された出力端子から出力される状態が実現されるように、第3光スイッチ手段33における光路を切り替える制御を実行する。より具体的には、制御手段22は、光スイッチSW_3内の光路、及び光スイッチSW_4内の光路を切り替える制御を実行する。以下、かかる制御を「第2切替え制御」ということがある。 Further, the control means 22 executes control to select an input terminal in the third optical switch means 33 and also executes control to select an output terminal in the third optical switch means 33. Hereinafter, these controls may be collectively referred to as "second selection control." The control means 22 also controls switching of the optical path in the third optical switch means 33 so that the optical signal input to the selected input terminal is output from the selected output terminal. Execute. More specifically, the control means 22 executes control to switch the optical path in the optical switch SW_3 and the optical path in the optical switch SW_4. Hereinafter, such control may be referred to as "second switching control."
 ここで、光スイッチ装置3は、ネットワークNWを介してサーバ装置4と通信自在である。サーバ装置4は、例えば、コンピュータにより構成されている。第1選択制御及び第2選択制御は、サーバ装置4により与えられた指示に基づき実行される。 Here, the optical switch device 3 can freely communicate with the server device 4 via the network NW. The server device 4 is configured by, for example, a computer. The first selection control and the second selection control are executed based on instructions given by the server device 4.
 すなわち、サーバ装置4は、後述する試験装置5により実行されるOTDR試験のスケジュールを示す情報を取得する。以下、OTDR試験のスケジュールを示す情報を「第1スケジュール情報」ということがある。第1スケジュール情報は、例えば、人(光伝送システム100の管理者等)により予め入力されたものである。または、例えば、サーバ装置4は、ネットワークNWを介して試験装置5と通信することにより、試験装置5から第1スケジュール情報を受信する。なお、図3において、ネットワークNWと試験装置5間の接続線は図示を省略している。 That is, the server device 4 acquires information indicating the schedule of the OTDR test to be executed by the test device 5, which will be described later. Hereinafter, the information indicating the schedule of the OTDR test may be referred to as "first schedule information." The first schedule information is, for example, information input in advance by a person (such as an administrator of the optical transmission system 100). Alternatively, for example, the server device 4 receives the first schedule information from the test device 5 by communicating with the test device 5 via the network NW. In addition, in FIG. 3, the connection line between the network NW and the test device 5 is not shown.
 サーバ装置4は、当該取得された第1スケジュール情報を用いて、試験装置5によりOTDR試験が実行される時間区間(以下「試験期間」ということがある。)ΔT1を判定する。また、サーバ装置4は、当該取得された第1スケジュール情報を用いて、試験期間ΔT1のうちの個々の光ファイバペアFPにおけるOTDR試験が実行されるタイミング(以下「試験タイミング」ということがある。)T1を判定する。具体的には、例えば、サーバ装置4は、個々の試験区間ΔT1において、N対の光ファイバペアFP_1~FP_Nにそれぞれ(respectively)対応するN個の試験タイミングT1_1~T1~Nを判定する。 The server device 4 uses the acquired first schedule information to determine a time interval (hereinafter sometimes referred to as "test period") ΔT1 in which the OTDR test is performed by the test device 5. Further, the server device 4 uses the acquired first schedule information to determine the timing at which the OTDR test is performed on each optical fiber pair FP within the test period ΔT1 (hereinafter sometimes referred to as "test timing"). ) Determine T1. Specifically, for example, the server device 4 determines N test timings T1_1 to T1 to N that respectively (respectively) correspond to N optical fiber pairs FP_1 to FP_N in each test section ΔT1.
 また、サーバ装置4は、後述する制御装置6により実行されるコマンド制御のスケジュールを示す情報(以下「第2スケジュール情報」ということがある。)を取得する。第2スケジュール情報は、例えば、人(光伝送システム100の管理者等)により予め入力されたものである。または、例えば、サーバ装置4は、ネットワークNWを介して制御装置6と通信することにより、制御装置6から第1スケジュール情報を受信する。なお、図3において、ネットワークNWと制御装置6間の接続線は図示を省略している。 Additionally, the server device 4 acquires information (hereinafter sometimes referred to as "second schedule information") indicating a schedule for command control to be executed by the control device 6, which will be described later. The second schedule information is, for example, information input in advance by a person (such as an administrator of the optical transmission system 100). Alternatively, for example, the server device 4 receives the first schedule information from the control device 6 by communicating with the control device 6 via the network NW. In addition, in FIG. 3, the connection line between the network NW and the control device 6 is not shown.
 サーバ装置4は、当該取得された第2スケジュール情報を用いて、制御装置6によりコマンド制御が実行される時間区間(以下「制御期間」ということがある。)ΔT2を判定する。また、サーバ装置4は、当該取得された第2スケジュール情報を用いて、制御期間ΔT2のうちの個々の光通信手段11に対するコマンド制御が実行されるタイミング(以下「制御タイミング」ということがある。)T2を判定する。具体的には、例えば、サーバ装置4は、個々の制御期間ΔT2において、N個の光通信手段11_1~11_Nにそれぞれ(respectively)対応するN個の制御タイミングT2_1~T2~Nを判定する。 The server device 4 uses the acquired second schedule information to determine the time interval (hereinafter sometimes referred to as "control period") ΔT2 in which command control is executed by the control device 6. Further, the server device 4 uses the acquired second schedule information to determine the timing (hereinafter sometimes referred to as "control timing") at which command control is executed for each optical communication means 11 during the control period ΔT2. ) Determine T2. Specifically, for example, the server device 4 determines N control timings T2_1 to T2 to N that respectively (respectively) correspond to the N optical communication means 11_1 to 11_N in each control period ΔT2.
 なお、制御期間ΔT2は、通常、試験期間ΔT1と異なる時間区間に設定されている。換言すれば、制御期間ΔT2は、試験期間ΔT1を回避した時間区間に設定されている。これにより、個々の制御タイミングT2が個々の試験タイミングT1と重複するのを回避することができる。 Note that the control period ΔT2 is usually set to a different time interval from the test period ΔT1. In other words, the control period ΔT2 is set to a time interval that avoids the test period ΔT1. Thereby, it is possible to avoid overlapping each control timing T2 with each test timing T1.
 サーバ装置4は、これらの判定の結果に基づき、第1選択制御における選択を指示する信号を生成する。以下、第1選択制御における選択を指示する信号を「第1指示信号」ということがある。また、サーバ装置4は、これらの判定の結果に基づき、第2選択制御における選択を指示する信号を生成する。以下、第2選択制御における選択を指示する信号を「第2指示信号」ということがある。 Based on the results of these determinations, the server device 4 generates a signal instructing selection in the first selection control. Hereinafter, a signal instructing selection in the first selection control may be referred to as a "first instruction signal." Furthermore, the server device 4 generates a signal instructing selection in the second selection control based on the results of these determinations. Hereinafter, a signal instructing selection in the second selection control may be referred to as a "second instruction signal."
 すなわち、第1指示信号は、個々の試験期間ΔT1において、第1光スイッチ手段31が備える2個の入力端子P_IN_1,P_IN_2のうちの1個の入力端子P_IN_1が選択されるべきである旨の指示を含む。また、第1指示信号は、N個の試験タイミングT1_1~T1~Nの各々において、第2光スイッチ手段32が備えるN個の出力端子P_OUT_1~P_OUT_Nのうちの対応する1個の出力端子P_OUTが選択されるべきである旨の指示を含む。 That is, the first instruction signal is an instruction that one input terminal P_IN_1 of the two input terminals P_IN_1 and P_IN_2 provided in the first optical switch means 31 should be selected in each test period ΔT1. including. Further, the first instruction signal indicates that the corresponding one of the N output terminals P_OUT_1 to P_OUT_N of the second optical switch means 32 is output at each of the N test timings T1_1 to T1 to N. Contains an indication that it should be selected.
 また、第1指示信号は、個々の制御期間ΔT2において、第1光スイッチ手段31が備える2個の入力端子P_IN_1,P_IN_2のうちの1個の入力端子P_IN_2が選択されるべきである旨の指示を含む。また、第1指示信号は、N個の制御タイミングT2_1~T2~Nの各々において、第2光スイッチ手段32が備えるN個の出力端子P_OUT_1~P_OUT_Nのうちの対応する1個の出力端子P_OUTが選択されるべきである旨の指示を含む。 Further, the first instruction signal is an instruction that one input terminal P_IN_2 of the two input terminals P_IN_1 and P_IN_2 provided in the first optical switch means 31 should be selected in each control period ΔT2. including. Further, the first instruction signal indicates that a corresponding one of the N output terminals P_OUT_1 to P_OUT_N of the second optical switch means 32 is activated at each of the N control timings T2_1 to T2 to N. Contains an indication that it should be selected.
 また、第2指示信号は、個々の試験期間ΔT1において、第3光スイッチ手段33が備える2個の出力端子のうちの第1の出力端子が選択されるべきである旨の指示を含む。また、第2指示信号は、N個の試験タイミングT1_1~T1~Nの各々において、第3光スイッチ手段33が備えるN個の入力端子のうちの対応する1個の入力端子が選択されるべきである旨の指示を含む。 Furthermore, the second instruction signal includes an instruction that the first output terminal of the two output terminals of the third optical switch means 33 should be selected in each test period ΔT1. Further, the second instruction signal indicates that a corresponding one of the N input terminals of the third optical switch means 33 should be selected at each of the N test timings T1_1 to T1 to N. Contains an instruction to that effect.
 また、第2指示信号は、個々の制御期間ΔT2において、第3光スイッチ手段33が備える2個の出力端子のうちの第2の出力端子が選択されるべきである旨の指示を含む。また、第2指示信号は、N個の制御タイミングT2_1~T2~Nの各々において、第3光スイッチ手段33が備えるN個の入力端子のうちの対応する1個の入力端子が選択されるべきである旨の指示を含む。 Furthermore, the second instruction signal includes an instruction that the second output terminal of the two output terminals of the third optical switch means 33 should be selected in each control period ΔT2. Further, the second instruction signal indicates that a corresponding one of the N input terminals of the third optical switch means 33 should be selected at each of the N control timings T2_1 to T2 to N. Contains an instruction to that effect.
 サーバ装置4は、当該生成された第1指示信号及び第2指示信号を光スイッチ装置3に送信する。光スイッチ装置3は、当該送信された第1指示信号及び第2指示信号を受信する。制御手段22は、当該受信された第1指示信号が示す指示に基づき、第1選択制御を実行する。また、制御手段22は、当該受信された第2指示信号が示す指示に基づき、第2選択制御を実行する。 The server device 4 transmits the generated first instruction signal and second instruction signal to the optical switch device 3. The optical switch device 3 receives the transmitted first instruction signal and second instruction signal. The control means 22 executes the first selection control based on the instruction indicated by the received first instruction signal. Further, the control means 22 executes the second selection control based on the instruction indicated by the received second instruction signal.
 以下、第1指示信号が示す指示を総称して「第1指示」ということがある。また、第2指示信号が示す指示を総称して「第2指示」ということがある。上記のとおり、個々の試験タイミングT1における第2指示の内容は、個々の試験タイミングT1における第1指示の内容に対応している。また、個々の制御タイミングT2における第2指示の内容は、個々の制御タイミングT2における第1指示の内容に対応している。 Hereinafter, the instructions indicated by the first instruction signal may be collectively referred to as "first instructions." Further, the instructions indicated by the second instruction signal may be collectively referred to as "second instructions." As described above, the content of the second instruction at each test timing T1 corresponds to the content of the first instruction at each test timing T1. Further, the content of the second instruction at each control timing T2 corresponds to the content of the first instruction at each control timing T2.
 すなわち、N個の試験タイミングT1_1~T1_Nの各々において、第1光スイッチ手段31及び第2光スイッチ手段32における光路は、光ファイバF_IN_1と、N本の光ファイバF_TX_1~F_TX_Nのうちの対応する1本の光ファイバF_TXとを接続する光路に設定される。これは、第1指示に基づく。また、N個の試験タイミングT1_1~T1_Nの各々において、第3光スイッチ手段33における光路は、N本の光ファイバF_RX_1~F_RX_Nのうちの対応する1本の光ファイバF_RXと、光ファイバF_IN_1とを接続する光路に設定される。これは、第2指示に基づく。 That is, at each of the N test timings T1_1 to T1_N, the optical path in the first optical switch means 31 and the second optical switch means 32 connects the optical fiber F_IN_1 and the corresponding one of the N optical fibers F_TX_1 to F_TX_N. The optical path is set to connect the real optical fiber F_TX. This is based on the first instruction. Furthermore, at each of the N test timings T1_1 to T1_N, the optical path in the third optical switch means 33 connects the corresponding one optical fiber F_RX of the N optical fibers F_RX_1 to F_RX_N and the optical fiber F_IN_1. Set to the optical path to be connected. This is based on the second instruction.
 同様に、N個の制御タイミングT2_1~T2_Nの各々において、第1光スイッチ手段31及び第2光スイッチ手段32における光路は、光ファイバF_IN_2と、N本の光ファイバF_TX_1~F_TX_Nのうちの対応する1本の光ファイバF_TXとを接続する光路に設定される。これは、第1指示に基づく。また、N個の制御タイミングT2_1~T2_Nの各々において、第3光スイッチ手段33における光路は、N本の光ファイバF_RX_1~F_RX_Nのうちの対応する1本の光ファイバF_RXと、光ファイバF_IN_2とを接続する光路に設定される。これは、第2指示に基づく。 Similarly, at each of the N control timings T2_1 to T2_N, the optical path in the first optical switch means 31 and the second optical switch means 32 is set to the optical fiber F_IN_2 and the corresponding one of the N optical fibers F_TX_1 to F_TX_N. The optical path is set to connect one optical fiber F_TX. This is based on the first instruction. Furthermore, at each of the N control timings T2_1 to T2_N, the optical path in the third optical switch means 33 connects the corresponding one optical fiber F_RX of the N optical fibers F_RX_1 to F_RX_N and the optical fiber F_IN_2. Set to the optical path to be connected. This is based on the second instruction.
 このように、第2指示の内容が第1指示の内容に対応していることにより、OTDR試験又はコマンド制御が実行される個々のタイミング(T1,T2)において、第3光スイッチ手段33における光路は、第1光スイッチ手段31及び第2光スイッチ手段32における光路に対応する光路となる。これにより、後述するとおり、光ファイバペアFP_1~FP_Nの各々におけるOTDR試験が実現される。また、後述するとおり、光通信手段11_1~11_Nの各々に対するコマンド制御に対する応答が実現される。 As described above, since the content of the second instruction corresponds to the content of the first instruction, the optical path in the third optical switch means 33 is changed at each timing (T1, T2) when the OTDR test or command control is executed. is an optical path corresponding to the optical path in the first optical switch means 31 and the second optical switch means 32. As a result, as will be described later, an OTDR test on each of the optical fiber pairs FP_1 to FP_N is realized. Furthermore, as will be described later, responses to command control for each of the optical communication means 11_1 to 11_N are realized.
 試験装置5は、例えば、光パルス試験器(すなわちOTDAR)により構成されている。試験装置5は、出力用の光ファイバF_OUT_1及び入力用の光ファイバF_IN_1を用いて光スイッチ装置3と接続される。上記のとおり、光ファイバF_OUT_1は、第1光スイッチ手段31の入力端子P_IN_1と接続される。また、光ファイバF_IN_1は、第3光スイッチ手段33の第1の出力端子と接続される。試験装置5は、光ファイバペアFP_1~FP_Nの各々におけるOTDR試験を実行する。 The test device 5 is configured by, for example, an optical pulse tester (i.e., OTDAR). The test device 5 is connected to the optical switch device 3 using an output optical fiber F_OUT_1 and an input optical fiber F_IN_1. As described above, the optical fiber F_OUT_1 is connected to the input terminal P_IN_1 of the first optical switch means 31. Further, the optical fiber F_IN_1 is connected to the first output terminal of the third optical switch means 33. The test device 5 performs an OTDR test on each of the optical fiber pairs FP_1 to FP_N.
 すなわち、試験装置5は、所定のスケジュールに基づき、所定のタイミングにて、OTDR試験用の光信号を出力する。以下、OTDR試験用の光信号を「試験用の光信号」又は「試験光」ということがある。具体的には、例えば、試験装置5は、N個の試験タイミングT1_1~T1_Nの各々にて試験光を出力する。当該出力された試験光は、光ファイバF_OUT_1を通過して、光スイッチ装置3の光スイッチ手段21に入力される。より具体的には、当該出力された試験光は、第1光スイッチ手段31の入力端子P_IN_1に入力される。 That is, the test device 5 outputs an optical signal for OTDR testing at a predetermined timing based on a predetermined schedule. Hereinafter, the optical signal for OTDR testing may be referred to as a "test optical signal" or "test light." Specifically, for example, the test device 5 outputs test light at each of N test timings T1_1 to T1_N. The output test light passes through the optical fiber F_OUT_1 and is input to the optical switch means 21 of the optical switch device 3. More specifically, the output test light is input to the input terminal P_IN_1 of the first optical switch means 31.
 このとき、第1光スイッチ手段31及び第2光スイッチ手段32における光路は、上記のとおり、制御手段22により切り替えられる。このため、N個の試験タイミングT1_1~T1_Nの各々において、当該入力された試験光は、第2光スイッチ手段32が備えるN個の出力端子P_OUT_1~P_OUT_Nのうちの対応する1個の出力端子P_OUTから出力される。すなわち、N個の試験タイミングT1_1~T1_Nの各々において、当該入力された試験光は、N本の光ファイバF_TX_1~F_TX_Nのうちの対応する1本の光ファイバF_TXに出力される。 At this time, the optical paths in the first optical switch means 31 and the second optical switch means 32 are switched by the control means 22 as described above. Therefore, at each of the N test timings T1_1 to T1_N, the input test light is transmitted to the corresponding one of the N output terminals P_OUT_1 to P_OUT_N of the second optical switch means 32. is output from. That is, at each of the N test timings T1_1 to T1_N, the input test light is output to a corresponding one of the N optical fibers F_TX_1 to F_TX_N.
 ここで、光ファイバペアFP_1~FP_Nを含む光ファイバケーブル(例えば海底ケーブル)の途中において、光ファイバペアFP_1~FP_Nの各々における1個以上の所定の位置の各々に、OTDR試験用のループバック回路が設けられている。具体的には、例えば、光通信装置1を含む複数個の光通信装置の各々において、N個の光ファイバペアFP_1~FP_Nにそれぞれ(respectively)対応するN個のループバック回路が設けられている。または、例えば、光通信装置1を含む複数個の光通信装置のうちの互いに隣接する各2個の光通信装置の間において、N個の光ファイバペアFP_1~FP_Nにそれぞれ(respectively)対応するN個のループバック回路が設けられている。 Here, in the middle of the optical fiber cable (for example, a submarine cable) including the optical fiber pairs FP_1 to FP_N, a loopback circuit for OTDR test is installed at one or more predetermined positions in each of the optical fiber pairs FP_1 to FP_N. is provided. Specifically, for example, in each of the plurality of optical communication devices including the optical communication device 1, N loopback circuits are provided that respectively (respectively) correspond to the N optical fiber pairs FP_1 to FP_N. . Alternatively, for example, between each two adjacent optical communication devices among a plurality of optical communication devices including the optical communication device 1, N loopback circuits are provided.
 かかるループバック回路が設けられていることにより、N本の光ファイバF_TX_1~F_TX_Nの各々を伝送した試験光は、次いで、N本の光ファイバF_RX_1~F_RX_Nのうちの対応する1本の光ファイバF_RXを伝送して、光スイッチ装置3の光スイッチ手段21に戻る。より具体的には、N個の試験タイミングT1_1~T1_Nの各々において、当該伝送した試験光は、第3光スイッチ手段33が備えるN個の入力端子のうちの対応する1個の入力端子に入力される。以下、光スイッチ手段21に戻る試験光を「戻り光」ということがある。 By providing such a loopback circuit, the test light transmitted through each of the N optical fibers F_TX_1 to F_TX_N is then transferred to the corresponding one of the N optical fibers F_RX_1 to F_RX_N. is transmitted and returns to the optical switch means 21 of the optical switch device 3. More specifically, at each of the N test timings T1_1 to T1_N, the transmitted test light is input to a corresponding one of the N input terminals provided in the third optical switch means 33. be done. Hereinafter, the test light that returns to the optical switch means 21 may be referred to as "return light."
 このとき、第3光スイッチ手段33における光路は、上記のとおり、制御手段22により切り替えられる。このため、N個の試験タイミングT1_1~T1_Nの各々において、当該入力された戻り光は、第3光スイッチ手段33が備える2個の出力端子のうちの第1の出力端子から出力される。すなわち、N個の試験タイミングT1_1~T1_Nの各々において、当該入力された戻り光は、光ファイバF_IN_1に出力される。 At this time, the optical path in the third optical switch means 33 is switched by the control means 22 as described above. Therefore, at each of the N test timings T1_1 to T1_N, the inputted return light is output from the first output terminal of the two output terminals provided in the third optical switch means 33. That is, at each of N test timings T1_1 to T1_N, the input return light is output to the optical fiber F_IN_1.
 当該出力された戻り光は、光ファイバF_IN_1を通過して、試験装置5に入力される。試験装置5は、当該入力された戻り光を用いて、OTDR試験のための信号処理を実行する。なお、OTDR試験のための信号処理には、公知の種々の技術を用いることができる。これらの技術についての詳細な説明は省略する。 The outputted return light passes through the optical fiber F_IN_1 and is input to the test device 5. The test device 5 uses the input returned light to perform signal processing for the OTDR test. Note that various known techniques can be used for signal processing for the OTDR test. A detailed explanation of these techniques will be omitted.
 このようにして、光ファイバペアFP_1~FP_Nの各々におけるOTDRが実現される。かかるOTDR試験の結果は、例えば、光ファイバペアFP_1~FP_Nの各々の状態のモニタリングに用いられる。より具体的には、かかるOTDR試験の結果は、光ファイバペアFP_1~FP_Nの各々における断線の発生の有無の検出、及び当該断線が発生した位置の検出などに用いられる。 In this way, OTDR in each of the optical fiber pairs FP_1 to FP_N is realized. The results of such an OTDR test are used, for example, to monitor the status of each of the optical fiber pairs FP_1 to FP_N. More specifically, the results of the OTDR test are used to detect whether or not a break has occurred in each of the optical fiber pairs FP_1 to FP_N, and to detect the position where the break has occurred.
 制御装置6は、例えば、光トランシーバを備えるコンピュータにより構成されている。制御装置6は、出力用の光ファイバF_OUT_2及び入力用の光ファイバF_IN_2を用いて光スイッチ装置3と接続される。上記のとおり、光ファイバF_OUT_2は、第1光スイッチ手段31の入力端子P_IN_2と接続される。また、光ファイバF_IN_2は、第3光スイッチ手段33の第2の出力端子と接続される。制御装置6は、光通信手段11_1~11_Nの各々に対するコマンド制御を実行する。 The control device 6 is configured by, for example, a computer equipped with an optical transceiver. The control device 6 is connected to the optical switch device 3 using an output optical fiber F_OUT_2 and an input optical fiber F_IN_2. As described above, the optical fiber F_OUT_2 is connected to the input terminal P_IN_2 of the first optical switch means 31. Further, the optical fiber F_IN_2 is connected to the second output terminal of the third optical switch means 33. The control device 6 executes command control for each of the optical communication means 11_1 to 11_N.
 すなわち、制御装置6は、光通信手段11_1~11_Nの各々の動作を制御するためのコマンドを生成する。具体的には、例えば、制御装置6は、光通信手段11_1~11_Nの各々における個々の増幅器のパラメータ(増幅率等)を設定するためのコマンドを生成する。制御装置6は、所定のスケジュールに基づき、所定のタイミングにて、当該生成されたコマンドを示す光信号(以下「制御用の光信号」又は「制御光」ということがある。)を出力する。 That is, the control device 6 generates a command for controlling the operation of each of the optical communication means 11_1 to 11_N. Specifically, for example, the control device 6 generates a command for setting parameters (amplification factors, etc.) of individual amplifiers in each of the optical communication means 11_1 to 11_N. The control device 6 outputs an optical signal (hereinafter sometimes referred to as "control optical signal" or "control light") indicating the generated command at a predetermined timing based on a predetermined schedule.
 具体的には、例えば、制御装置6は、N個の制御タイミングT2_1~T2_Nの各々にて、N個の光通信手段11_1~11_Nのうちの対応する1個の光通信手段11に対する制御光を出力する。当該出力された制御光は、光ファイバF_OUT_2を通過して、光スイッチ装置3の光スイッチ手段21に入力される。より具体的には、当該出力された制御光は、第1光スイッチ手段31の入力端子P_IN_2に入力される。 Specifically, for example, the control device 6 transmits control light to a corresponding one of the N optical communication means 11_1 to 11_N at each of N control timings T2_1 to T2_N. Output. The output control light passes through the optical fiber F_OUT_2 and is input to the optical switch means 21 of the optical switch device 3. More specifically, the output control light is input to the input terminal P_IN_2 of the first optical switch means 31.
 このとき、第1光スイッチ手段31及び第2光スイッチ手段32における光路は、上記のとおり、制御手段22により切り替えられる。このため、N個の制御タイミングT2_1~T2_Nの各々において、当該入力された制御光は、第2光スイッチ手段32が備えるN個の出力端子P_OUT_1~P_OUT_Nのうちの対応する1個の出力端子P_OUTから出力される。すなわち、N個の試験タイミングT1_1~T1_Nの各々において、当該入力された試験光は、N本の光ファイバF_TX_1~F_TX_Nのうちの対応する1本の光ファイバF_TXに出力される。 At this time, the optical paths in the first optical switch means 31 and the second optical switch means 32 are switched by the control means 22 as described above. Therefore, at each of the N control timings T2_1 to T2_N, the input control light is transmitted to a corresponding one of the N output terminals P_OUT_1 to P_OUT_N of the second optical switch means 32. is output from. That is, at each of the N test timings T1_1 to T1_N, the input test light is output to a corresponding one of the N optical fibers F_TX_1 to F_TX_N.
 これにより、光通信手段11_1~11_Nの各々に対応する制御光が伝送される。光通信手段11_1~11_Nの各々は、かかる制御光が示すコマンドに基づき、自身の動作を制御する。具体的には、例えば、光通信手段11_1~11_Nの各々は、かかる制御光が示すコマンドに基づき、個々の増幅器のパラメータ(増幅率等)を設定する。このとき、光通信手段11_1~11_Nの各々は、かかる制御光に対する応答用の光信号(以下「応答光」ということがある。)を出力する。応答光は、例えば、肯定応答(いわゆる「ACK」)を示す光信号、又は否定応答(いわゆる「NACK」)を示す光信号である。 As a result, control light corresponding to each of the optical communication means 11_1 to 11_N is transmitted. Each of the optical communication means 11_1 to 11_N controls its own operation based on the command indicated by the control light. Specifically, for example, each of the optical communication means 11_1 to 11_N sets parameters (amplification factors, etc.) of the individual amplifiers based on the command indicated by the control light. At this time, each of the optical communication means 11_1 to 11_N outputs an optical signal for response to the control light (hereinafter sometimes referred to as "response light"). The response light is, for example, an optical signal indicating a positive response (so-called "ACK") or an optical signal indicating a negative response (so-called "NACK").
 すなわち、N個の制御タイミングT2_1~T2_Nの各々にて、N個の光通信手段11_1~11_Nのうちの対応する1個の光通信手段11が、N本の光ファイバF_RX_1~F_RX_Nのうちの対応する1本の光ファイバF_RXに応答光を出力する。当該出力された応答光は、当該対応する1本の光ファイバF_RXを伝送して、光スイッチ手段21に入力される。より具体的には、当該出力された応答光は、第3光スイッチ手段33が備えるN個の入力端子のうちの対応する1個の入力端子に入力される。 That is, at each of the N control timings T2_1 to T2_N, one of the N optical communication means 11_1 to 11_N corresponds to one of the N optical fibers F_RX_1 to F_RX_N. A response light is output to one optical fiber F_RX. The output response light is transmitted through the corresponding one optical fiber F_RX and input into the optical switch means 21. More specifically, the output response light is input to a corresponding one of the N input terminals included in the third optical switch means 33.
 このとき、第3光スイッチ手段33における光路は、上記のとおり、制御手段22により切り替えられる。このため、N個の制御タイミングT2_1~T2_Nの各々において、当該入力された応答光は、第3光スイッチ手段33が備える2個の出力端子のうちの第2の出力端子から出力される。すなわち、N個の制御タイミングT2_1~T2_Nの各々において、当該入力された応答光は、光ファイバF_IN_2に出力される。 At this time, the optical path in the third optical switch means 33 is switched by the control means 22 as described above. Therefore, at each of the N control timings T2_1 to T2_N, the input response light is output from the second output terminal of the two output terminals of the third optical switch means 33. That is, at each of N control timings T2_1 to T2_N, the input response light is output to the optical fiber F_IN_2.
 この結果、制御装置6は、N個の制御タイミングT2_1~T2_Nの各々にて、応答光を取得する。この応答光は、N個の光通信手段11_1~11_Nのうちの対応する1個の光通信手段11により出力される。換言すれば、制御装置6は、N個の制御タイミングT2_1~T2_Nの各々にて、制御光の送信先(すなわちコマンド制御の対象)となる1個の光通信手段11により出力された応答光を取得する。この結果、制御装置6は、コマンド制御の結果を知ることができる。 As a result, the control device 6 acquires the response light at each of the N control timings T2_1 to T2_N. This response light is output by a corresponding one of the N optical communication means 11_1 to 11_N. In other words, the control device 6 transmits the response light output by one optical communication means 11 to which the control light is transmitted (that is, the target of command control) at each of the N control timings T2_1 to T2_N. get. As a result, the control device 6 can know the result of command control.
 このようにして、光通信手段11_1~11_Nの各々に対するコマンド制御が実現される。なお、光通信手段11_1~11_Nの各々に対するコマンド制御の内容は、上記の具体例(すなわち増幅率の設定)に限定されるものではない。コマンド制御には、公知の種々の技術を用いることができる。これらの技術についての詳細な説明は省略する。 In this way, command control for each of the optical communication means 11_1 to 11_N is realized. Note that the contents of the command control for each of the optical communication means 11_1 to 11_N are not limited to the above specific example (ie, setting of the amplification factor). Various known techniques can be used for command control. A detailed explanation of these techniques will be omitted.
 このようにして、光伝送システム100の要部が構成されている。 In this way, the main parts of the optical transmission system 100 are configured.
 なお、光伝送システム100は、陸上に設けられる部位を含む。ここで、陸上に設けられる部位は、例えば、第1の陸上局を含む部位、第2の陸上局を含む部位、又は光スイッチ装置3、試験装置5及び制御装置6を含む部位である。また、光伝送システム100は、海底に設けられる部位(例えば、海底ケーブルを含む部位)を含む。当該陸上に設けられる部位と当該海底に設けられる部位との接続には、所定のインタフェースが用いられる。具体的には、例えば、OCI(Open Cable Interface)が用いられる。図3におけるFI_1~FI_Nは、かかるインタフェースを示している。 Note that the optical transmission system 100 includes a portion provided on land. Here, the part provided on land is, for example, a part including the first land station, a part including the second land station, or a part including the optical switch device 3, the test device 5, and the control device 6. Further, the optical transmission system 100 includes a portion provided on the ocean floor (for example, a portion including a submarine cable). A predetermined interface is used to connect the part provided on land and the part provided on the seabed. Specifically, for example, OCI (Open Cable Interface) is used. FI_1 to FI_N in FIG. 3 indicate such interfaces.
 次に、光伝送システム100における光スイッチ装置3の動作について説明する。より具体的には、図5に示すフローチャートを参照して、制御手段22の動作を中心に説明する。 Next, the operation of the optical switch device 3 in the optical transmission system 100 will be explained. More specifically, the operation of the control means 22 will be mainly explained with reference to the flowchart shown in FIG.
 まず、光スイッチ装置3は、サーバ装置4により送信された指示信号を受信する。これにより、制御手段22は、当該受信された指示信号に含まれる指示を取得する。より具体的には、制御手段22は、第1指示及び第2指示を取得する(ステップST1)。 First, the optical switch device 3 receives an instruction signal transmitted by the server device 4. Thereby, the control means 22 acquires the instruction included in the received instruction signal. More specifically, the control means 22 obtains a first instruction and a second instruction (step ST1).
 次いで、制御手段22は、ステップST1にて取得された第1指示に基づき、第1選択制御及び第1切替え制御を実行する(ステップST2)。すなわち、制御手段22は、当該取得された第1指示に基づき、第1光スイッチ手段31における入力端子P_INを選択する制御を実行するとともに、第2光スイッチ手段32における出力端子P_OUTを選択する制御を実行する。また、制御手段22は、当該選択された入力端子P_INに入力された光信号が当該選択された出力端子P_OUTから出力される状態が実現されるように、第1光スイッチ手段31及び第2光スイッチ手段32における光路を切り替える制御を実行する。 Next, the control means 22 executes first selection control and first switching control based on the first instruction acquired in step ST1 (step ST2). That is, the control means 22 executes control to select the input terminal P_IN in the first optical switch means 31 based on the obtained first instruction, and controls to select the output terminal P_OUT in the second optical switch means 32. Execute. The control means 22 also controls the first optical switch means 31 and the second optical switch so that a state is realized in which the optical signal input to the selected input terminal P_IN is output from the selected output terminal P_OUT. Control for switching the optical path in the switch means 32 is executed.
 また、制御手段22は、ステップST1にて取得された第2指示に基づき、第2選択制御及び第2切替え制御を実行する(ステップST3)。すなわち、制御手段22は、当該取得された第2指示に基づき、第3光スイッチ手段33における入力端子を選択する制御を実行するとともに、第3光スイッチ手段33における出力端子を選択する制御を実行する。また、制御手段22は、当該選択された入力端子に入力された光信号が当該選択された出力端子から出力される状態が実現されるように、第3光スイッチ手段33における光路を切り替える制御を実行する。 Furthermore, the control means 22 executes second selection control and second switching control based on the second instruction acquired in step ST1 (step ST3). That is, the control means 22 executes control to select the input terminal in the third optical switch means 33 based on the obtained second instruction, and also executes control to select the output terminal in the third optical switch means 33. do. The control means 22 also controls switching of the optical path in the third optical switch means 33 so that the optical signal input to the selected input terminal is output from the selected output terminal. Execute.
 次に、光伝送システム100の変形例について説明する。 Next, a modification of the optical transmission system 100 will be described.
 第一に、光伝送システム100は、第1光分岐装置2を含まないものであっても良い。この場合、光スイッチ装置3、試験装置5及び制御装置6は、例えば、第1の陸上局又は第2の陸上局に設けられるものであっても良い。 First, the optical transmission system 100 may not include the first optical branching device 2. In this case, the optical switch device 3, the test device 5, and the control device 6 may be provided at the first land station or the second land station, for example.
 第二に、光伝送システム100は、サーバ装置4を含まないものであっても良い。この場合、制御手段22は、サーバ装置4により与えられた第1指示及び第2指示に代えて、予め設定された第1指示及び第2指示を用いるものであっても良い。 Second, the optical transmission system 100 may not include the server device 4. In this case, the control means 22 may use preset first and second instructions instead of the first and second instructions given by the server device 4.
 例えば、試験装置5により周期的に実行されるOTDR試験のスケジュールが固定されており、かつ、制御装置6により周期的に実行されるコマンド制御のスケジュールが固定されている場合、第1指示及び第2指示を変更することは、不要である。この場合、制御手段22は、これらのスケジュールに基づき予め設定された第1指示及び第2指示に基づき、第1選択制御及び第2選択制御を実行するものであっても良い。 For example, if the schedule for an OTDR test that is periodically executed by the test device 5 is fixed, and the schedule for command control that is periodically executed by the control device 6 is fixed, the first instruction and the It is not necessary to change the 2 instructions. In this case, the control means 22 may execute the first selection control and the second selection control based on the first instruction and second instruction set in advance based on these schedules.
 すなわち、第1指示は、所定の指示であれば良い。また、第2指示は、OTDR試験を実現する観点、及びコマンド制御に対する応答を実現する観点から、第1指示に対応する指示であれば良い。 In other words, the first instruction may be any predetermined instruction. Further, the second instruction may be any instruction that corresponds to the first instruction from the viewpoint of realizing an OTDR test and realizing a response to command control.
 第三に、光スイッチ装置3を介して光ファイバペアFP_1~FP_Nの各々と接続される装置は、試験装置5及び制御装置6に限定されるものではない。当該接続される装置は、光ファイバペアFP_1~FP_Nの各々に任意の光信号を出力する装置、又は光ファイバペアFP_1~FP_Nの各々からの任意の光信号の入力を受け付ける装置であれば、如何なる装置であっても良い。後述する第2実施形態においては、試験装置5及び制御装置6と異なる他の装置が接続される場合の例について説明する。より具体的には、光スペクトル測定を実行する測定装置が接続される場合の例について説明する。なお、光スペクトル測定を行う測定装置として、OSA(Optical Spectrum Analyzer)がある。以下、OSAにより実行される光スペクトル測定を「OSA測定」ということがある。 Third, the devices connected to each of the optical fiber pairs FP_1 to FP_N via the optical switch device 3 are not limited to the test device 5 and the control device 6. The device to be connected can be any device as long as it is a device that outputs an arbitrary optical signal to each of the optical fiber pairs FP_1 to FP_N, or a device that accepts input of an arbitrary optical signal from each of the optical fiber pairs FP_1 to FP_N. It may be a device. In a second embodiment described later, an example will be described in which another device different from the test device 5 and the control device 6 is connected. More specifically, an example will be described in which a measuring device that performs optical spectrum measurement is connected. Note that there is an OSA (Optical Spectrum Analyzer) as a measurement device that performs optical spectrum measurement. Hereinafter, the optical spectrum measurement performed by OSA may be referred to as "OSA measurement."
 また、当該接続される装置の種類に応じて、光スイッチ手段21は、第3光スイッチ手段33を有しないものであっても良い。後述する第2実施形態においては、第3光スイッチ手段33が設けられない場合の例について説明する。 Furthermore, depending on the type of device to be connected, the optical switch means 21 may not include the third optical switch means 33. In a second embodiment described later, an example will be described in which the third optical switch means 33 is not provided.
 第四に、第1光スイッチ手段31における入力端子P_INの個数は、2個に限定されるものではない。また、第3光スイッチ手段33における出力端子の個数は、2個に限定されるものではない。これらの端子の個数は、2個以上であれば良い。例えば、これらの端子の個数は、光ファイバペアFP_1~FP_Nを含む光ファイバケーブルに接続される装置の個数又は種類などに応じて異なるものであっても良い。 Fourth, the number of input terminals P_IN in the first optical switch means 31 is not limited to two. Further, the number of output terminals in the third optical switch means 33 is not limited to two. The number of these terminals may be two or more. For example, the number of these terminals may differ depending on the number or type of devices connected to the optical fiber cable including the optical fiber pairs FP_1 to FP_N.
 次に、光スイッチ装置3の効果について説明する。 Next, the effects of the optical switch device 3 will be explained.
 上記のとおり、第1光スイッチ手段31は、複数個の入力端子P_INを備え、複数個の入力端子P_INのうちの選択された入力端子P_INに入力された光信号を出力する。第2光スイッチ手段32は、複数個の出力端子P_OUTを備え、第1光スイッチ手段31により出力された光信号を複数個の出力端子P_OUTのうちの選択された出力端子P_OUTから出力する。制御手段22は、所定の第1指示に基づき、第1光スイッチ手段31における入力端子P_INを選択する制御、及び第2光スイッチ手段32における出力端子P_OUTを選択する制御を実行する。 As described above, the first optical switch means 31 includes a plurality of input terminals P_IN, and outputs an optical signal input to a selected input terminal P_IN from among the plurality of input terminals P_IN. The second optical switch means 32 includes a plurality of output terminals P_OUT, and outputs the optical signal outputted by the first optical switch means 31 from a selected one of the plurality of output terminals P_OUT. The control means 22 executes control to select the input terminal P_IN in the first optical switch means 31 and control to select the output terminal P_OUT in the second optical switch means 32 based on a predetermined first instruction.
 これらの手段(31,32,22)を備える光スイッチ装置3を用いることにより、光ファイバケーブルに接続される個々の装置(5,6)と光ファイバケーブルに含まれる個々の光ファイバペア(FP_1~FP_N)との間の光路の切替えを実現することができる。 By using the optical switch device 3 equipped with these means (31, 32, 22), the individual devices (5, 6) connected to the optical fiber cable and the individual optical fiber pairs (FP_1) included in the optical fiber cable can be connected. ~FP_N) can be realized.
 ここで、光スイッチ装置3に対する比較用の光スイッチ装置として、以下のような光スイッチ装置を考える。すなわち、光スイッチ装置3において、第1光スイッチ手段31と第2光スイッチ手段32とは、互いに分離している。具体的には、例えば、上記のとおり、第1光スイッチ手段31が2×1の光スイッチSW_1により構成されており、かつ、第2光スイッチ手段32が1×Nの光スイッチSW_2により構成されている。これに対して、比較用の光スイッチ装置において、第1光スイッチ手段31及び第2光スイッチ手段32に相当する機能は、単一の光スイッチにより実現される。より具体的には、かかる機能は、2入力N出力(以下「2×N」と記載する。)の光スイッチにより実現される。 Here, as a comparative optical switch device for the optical switch device 3, consider the following optical switch device. That is, in the optical switch device 3, the first optical switch means 31 and the second optical switch means 32 are separated from each other. Specifically, for example, as described above, the first optical switch means 31 is composed of a 2×1 optical switch SW_1, and the second optical switch means 32 is composed of a 1×N optical switch SW_2. ing. In contrast, in the comparative optical switch device, the functions corresponding to the first optical switch means 31 and the second optical switch means 32 are realized by a single optical switch. More specifically, this function is realized by a 2-input N-output (hereinafter referred to as "2×N") optical switch.
 2×1の光スイッチSW_1及び1×Nの光スイッチSW_2を用いることにより、2×Nの光スイッチを用いる場合に比して、個々の光スイッチにおける光路の切替えを簡単にすることができる。換言すれば、第1光スイッチ手段31及び第2光スイッチ手段32が互いに分離した構成要素(例えば光スイッチSW_1と光スイッチSW_2)であることにより、第1光スイッチ手段31及び第2光スイッチ手段32が単一の構成要素(例えば2×Nの光スイッチ)である場合に比して、上記のような光路の切替えを簡単に実現することができる。 By using the 2×1 optical switch SW_1 and the 1×N optical switch SW_2, it is possible to more easily switch the optical path in each optical switch than when using a 2×N optical switch. In other words, since the first optical switch means 31 and the second optical switch means 32 are mutually separate components (for example, the optical switch SW_1 and the optical switch SW_2), the first optical switch means 31 and the second optical switch means Compared to the case where 32 is a single component (for example, a 2×N optical switch), switching of the optical path as described above can be easily realized.
 また、光スイッチ装置3を含む光伝送システム100に対する比較用の光伝送システムとして、以下のような光伝送システムを考える。すなわち、比較用の光伝送システムは、光スイッチ装置3に相当する光スイッチ装置を有しない。これに代えて、比較用の光伝送システムにおいては、試験装置5及び制御装置6の各々に、出力用のN出力の光スイッチ及び入力用のN入力の光スイッチが設けられている。これにより、試験装置5及び制御装置6の各々は、光スイッチ装置を介することなく、N本の光ファイバF_TX_1~F_TX_Nの各々と接続されて、かつ、N本の光ファイバF_RX_1~F_RX_Nの各々と接続される。 Additionally, as a comparative optical transmission system for the optical transmission system 100 including the optical switch device 3, the following optical transmission system will be considered. That is, the comparative optical transmission system does not have an optical switch device corresponding to the optical switch device 3. Instead, in the comparative optical transmission system, each of the test device 5 and the control device 6 is provided with an N-output optical switch for output and an N-input optical switch for input. As a result, each of the test device 5 and the control device 6 is connected to each of the N optical fibers F_TX_1 to F_TX_N without going through an optical switch device, and is connected to each of the N optical fibers F_RX_1 to F_RX_N. Connected.
 インタフェースFI_1~FI_Nに光スイッチ装置3を接続する場合(すなわち光伝送システム100)は、インタフェースFI_1~FI_Nに試験装置5及び制御装置6を接続する場合(すなわち比較用の光伝送システム)に比して、かかる接続が簡単である。換言すれば、光スイッチ装置3を設けることにより、インタフェースFI_1~FI_Nに対する装置の接続を簡単にすることができる。これにより、例えば、OCIに対応したシステム構成(いわゆる「オープンケーブル」)を容易に対応することができる。 The case where the optical switch device 3 is connected to the interfaces FI_1 to FI_N (that is, the optical transmission system 100) is different from the case where the test device 5 and the control device 6 are connected to the interfaces FI_1 to FI_N (that is, the optical transmission system for comparison). Therefore, such a connection is easy. In other words, by providing the optical switch device 3, it is possible to simplify the connection of devices to the interfaces FI_1 to FI_N. Thereby, for example, a system configuration compatible with OCI (so-called "open cable") can be easily supported.
 次に、光伝送システム100の効果について説明する。 Next, the effects of the optical transmission system 100 will be explained.
 光伝送システム100は、光スイッチ装置3を備える。これにより、上記のような効果が得られる。すなわち、光ファイバケーブルに接続される個々の装置(5,6)と光ファイバケーブルに含まれる個々の光ファイバペア(FP_1~FP_N)との間の光路の切替えを実現することができる。特に、かかる光路の切替えを容易に実現することができる。また、光伝送システム100は、オープンケーブルのシステム構成に容易に対応することができる。 The optical transmission system 100 includes an optical switch device 3. This provides the effects described above. That is, it is possible to realize optical path switching between the individual devices (5, 6) connected to the optical fiber cable and the individual optical fiber pairs (FP_1 to FP_N) included in the optical fiber cable. In particular, such switching of optical paths can be easily realized. Furthermore, the optical transmission system 100 can easily accommodate an open cable system configuration.
 また、光伝送システム100は、複数個の入力端子P_INのうちのいずれかの入力端子P_INと接続され、光パルス試験用の光信号である試験光を光スイッチ装置3に出力する試験装置5を備える。光伝送システム100は、複数個の入力端子P_INのうちの他のいずれかの入力端子P_INと接続され、コマンド制御用の光信号である制御光を光スイッチ装置3に出力する制御装置6を備える。これにより、例えば、図1及び図3に示すシステム構成を有する光伝送システム100を実現することができる。また、例えば、OTDR試験及びコマンド制御の両方を実現することができる。 The optical transmission system 100 also includes a test device 5 that is connected to any one of the plurality of input terminals P_IN and outputs test light, which is an optical signal for a light pulse test, to the optical switch device 3. Be prepared. The optical transmission system 100 includes a control device 6 that is connected to any other input terminal P_IN among the plurality of input terminals P_IN and outputs control light, which is an optical signal for command control, to the optical switch device 3. . Thereby, for example, the optical transmission system 100 having the system configuration shown in FIGS. 1 and 3 can be realized. Also, for example, both OTDR testing and command control can be realized.
 また、光伝送システム100は、複数個の出力端子P_OUTとそれぞれ接続される複数個の光通信手段11を含む光通信装置1を備える。複数個の光通信手段11の各々は、制御光により制御される。これにより、例えば、図1及び図2に示すシステム構成を有する光伝送システム100を実現することができる。また、例えば、光通信手段11_1~11_Nの各々に対するコマンド制御を実現することができる。 Further, the optical transmission system 100 includes an optical communication device 1 including a plurality of optical communication means 11 each connected to a plurality of output terminals P_OUT. Each of the plurality of optical communication means 11 is controlled by control light. Thereby, for example, the optical transmission system 100 having the system configuration shown in FIGS. 1 and 2 can be realized. Further, for example, command control for each of the optical communication means 11_1 to 11_N can be realized.
 また、複数個の光通信手段11の各々は、光ファイバペアFPを用いて光スイッチ装置3と接続され、制御光に対する応答用の光信号である応答光を光ファイバペアFPに出力する。光スイッチ装置3は、第1指示に対応する第2指示に基づき、複数個の光通信手段11の各々により出力された応答光が制御装置6に伝送されるように光スイッチ装置3における光路を切り替えるための第3光スイッチ手段33を備える。これにより、コマンド制御に対する応答を実現することができる。 Furthermore, each of the plurality of optical communication means 11 is connected to the optical switch device 3 using an optical fiber pair FP, and outputs response light, which is an optical signal for responding to the control light, to the optical fiber pair FP. The optical switch device 3 controls the optical path in the optical switch device 3 so that the response light outputted by each of the plurality of optical communication means 11 is transmitted to the control device 6 based on a second instruction corresponding to the first instruction. A third optical switch means 33 for switching is provided. This makes it possible to respond to command control.
 また、光伝送システム100は、光スイッチ装置3に第1指示を与えるサーバ装置4を備える。これにより、例えば、個々の装置(5,6)により実行されるOTDR試験又はコマンド制御などのスケジュールに応じて、異なる第1指示を光スイッチ装置3に与えることができる。この結果、光スイッチ装置3は、かかるスケジュールに応じて動的に光路を切り替えることができる。 The optical transmission system 100 also includes a server device 4 that gives a first instruction to the optical switch device 3. As a result, different first instructions can be given to the optical switch device 3, for example, depending on the schedule of the OTDR test or command control executed by the individual devices (5, 6). As a result, the optical switch device 3 can dynamically switch the optical path according to this schedule.
 また、光伝送システム100は、光スイッチ装置3に第1指示及び第2指示を与えるサーバ装置4を備える。これにより、互いに対応する第1指示及び第2指示を併せて光スイッチ装置3に与えることができる。 The optical transmission system 100 also includes a server device 4 that provides a first instruction and a second instruction to the optical switch device 3. Thereby, the first instruction and the second instruction that correspond to each other can be given to the optical switch device 3 together.
[第2実施形態]
 図6は、第2実施形態に係る光伝送システムのうちの光通信装置及び第2光分岐装置を含む部位を示すブロック図である。図7は、第2実施形態に係る光伝送システムのうちの光スイッチ装置、サーバ装置及び測定装置を含む部位を示すブロック図である。図8は、第2実施形態に係る光伝送システムにおける光スイッチ装置の光スイッチ手段を示すブロック図である。図6~図8を参照して、第2実施形態に係る光伝送システムについて説明する。なお、図6~図8において、図1~図4に示す要素と同様の要素には同一符号を付して説明を省略する。
[Second embodiment]
FIG. 6 is a block diagram showing a portion of the optical transmission system according to the second embodiment, including an optical communication device and a second optical branching device. FIG. 7 is a block diagram showing parts of the optical transmission system according to the second embodiment, including an optical switch device, a server device, and a measuring device. FIG. 8 is a block diagram showing the optical switch means of the optical switch device in the optical transmission system according to the second embodiment. An optical transmission system according to a second embodiment will be described with reference to FIGS. 6 to 8. Note that in FIGS. 6 to 8, elements similar to those shown in FIGS. 1 to 4 are denoted by the same reference numerals, and explanations thereof will be omitted.
 図6に示す如く、光伝送システム100aは、光通信装置1及び第2光分岐装置7を備える。また、図7に示す如く、光伝送システム100aは、光スイッチ装置3a、サーバ装置4及び測定装置8を備える。 As shown in FIG. 6, the optical transmission system 100a includes an optical communication device 1 and a second optical branching device 7. Further, as shown in FIG. 7, the optical transmission system 100a includes an optical switch device 3a, a server device 4, and a measuring device 8.
 図6に示す如く、光ファイバペアFP_1~FP_Nを含む光ファイバケーブル(例えば海底ケーブル)の途中に、第2光分岐装置7が設けられている。第2光分岐装置7は、例えば、光海底分岐装置により構成されている。第2光分岐装置7は、光ファイバペアFP_1~FP_Nの各々を分岐する。当該分岐された枝は、光スイッチ装置3aを介して測定装置8と接続される。換言すれば、測定装置8は、光スイッチ装置3aを介して光ファイバペアFP_1~FP_Nの各々と接続される。 As shown in FIG. 6, a second optical branching device 7 is provided in the middle of an optical fiber cable (for example, a submarine cable) including the optical fiber pairs FP_1 to FP_N. The second optical branching device 7 is configured by, for example, an optical submarine branching device. The second optical branching device 7 branches each of the optical fiber pairs FP_1 to FP_N. The branched branch is connected to the measurement device 8 via the optical switch device 3a. In other words, the measurement device 8 is connected to each of the optical fiber pairs FP_1 to FP_N via the optical switch device 3a.
 図7に示す如く、光スイッチ装置3aは、光スイッチ手段21a及び制御手段22aを備える。図8に示す如く、光スイッチ手段21aは、第1光スイッチ手段31a及び第2光スイッチ手段32aを備える。第1光スイッチ手段31a及び第2光スイッチ手段32aの各々は、少なくとも1個の光スイッチSWにより構成されている。すなわち、光スイッチ手段21aは、複数個の光スイッチSWにより構成されている。 As shown in FIG. 7, the optical switch device 3a includes an optical switch means 21a and a control means 22a. As shown in FIG. 8, the optical switch means 21a includes a first optical switch means 31a and a second optical switch means 32a. Each of the first optical switch means 31a and the second optical switch means 32a is constituted by at least one optical switch SW. That is, the optical switch means 21a is composed of a plurality of optical switches SW.
 具体的には、例えば、第1光スイッチ手段31aは、N×1の光スイッチSW_2及びN×1の光スイッチSW_3により構成されている。光スイッチSW_2,SW_3は、互いに並列に設けられている。また、第2光スイッチ手段32aは、2×1の光スイッチSW_1及び2×1の光スイッチSW_4により構成されている。光スイッチSW_1,SW_4は、互いに並列に設けられている。 Specifically, for example, the first optical switch means 31a is composed of an N×1 optical switch SW_2 and an N×1 optical switch SW_3. The optical switches SW_2 and SW_3 are provided in parallel with each other. Further, the second optical switch means 32a is composed of a 2×1 optical switch SW_1 and a 2×1 optical switch SW_4. The optical switches SW_1 and SW_4 are provided in parallel with each other.
 光スイッチSW_2の出力端子は、光スイッチSW_1が備える2個の入力端子のうちの1個の入力端子と接続される。以下、光スイッチSW_1が備える2個の入力端子のうちの1個の入力端子を、「第1の入力端子」ということがある。光スイッチSW_4の出力端子は、光スイッチSW_1が備える2個の入力端子のうちの他の1個の入力端子と接続される。以下、光スイッチSW_1が備える2個の入力端子のうちの他の1個の入力端子を「第2の入力端子」ということがある。 The output terminal of the optical switch SW_2 is connected to one input terminal of the two input terminals included in the optical switch SW_1. Hereinafter, one of the two input terminals included in the optical switch SW_1 may be referred to as a "first input terminal." The output terminal of the optical switch SW_4 is connected to the other one of the two input terminals included in the optical switch SW_1. Hereinafter, the other one of the two input terminals included in the optical switch SW_1 may be referred to as a "second input terminal."
 光スイッチSW_2は、N個の入力端子P_IN_1~P_IN_Nを備える。また、光スイッチSW_3は、N個の入力端子P_IN_N+1~P_IN_2Nを備える。これにより、第1光スイッチ手段31aは、2N個の入力端子P_IN_1~P_IN_2Nを備える。2N個の入力端子P_IN_1~P_IN_2NのうちのN個の入力端子P_IN_1~P_IN_Nは、N本の光ファイバF_TX_1~F_TX_Nとそれぞれ(respectively)接続される。また、2N個の入力端子P_IN_1~P_IN_2Nのうちの他のN個の入力端子P_IN_N+1~P_IN_2Nは、N本の光ファイバF_RX_1~F_RX_Nとそれぞれ(respectively)接続される。 The optical switch SW_2 includes N input terminals P_IN_1 to P_IN_N. Further, the optical switch SW_3 includes N input terminals P_IN_N+1 to P_IN_2N. Accordingly, the first optical switch means 31a includes 2N input terminals P_IN_1 to P_IN_2N. N input terminals P_IN_1 to P_IN_N of the 2N input terminals P_IN_1 to P_IN_2N are respectively (respectively) connected to N optical fibers F_TX_1 to F_TX_N. Further, the other N input terminals P_IN_N+1 to P_IN_2N among the 2N input terminals P_IN_1 to P_IN_2N are respectively (respectively) connected to the N optical fibers F_RX_1 to F_RX_N.
 光スイッチSW_1は、1個の出力端子P_OUT_1を備える。また、光スイッチSW_4は、1個の出力端子P_OUT_2を備える。これにより、第2光スイッチ手段32aは、2個の出力端子P_OUT_1,P_OUT_2を備える。2個の出力端子P_OUT_1,P_OUT_2のうちの1個の出力端子P_OUT_1は、測定装置8における入力用の光ファイバF_IN_3と接続される。なお、2個の出力端子P_OUT_1,P_OUT_2のうちの他の1個の出力端子P_OUT_2は、いわゆる「空き」である。すなわち、出力端子P_OUT_2は、不使用又は未使用である。 The optical switch SW_1 includes one output terminal P_OUT_1. Further, the optical switch SW_4 includes one output terminal P_OUT_2. Thereby, the second optical switch means 32a includes two output terminals P_OUT_1 and P_OUT_2. One output terminal P_OUT_1 of the two output terminals P_OUT_1 and P_OUT_2 is connected to an input optical fiber F_IN_3 in the measuring device 8. Note that the other output terminal P_OUT_2 of the two output terminals P_OUT_1 and P_OUT_2 is so-called "vacant". That is, the output terminal P_OUT_2 is unused or unused.
 制御手段22aは、例えば、コンピュータにより構成されている。制御手段22aは、第1光スイッチ手段31aにおける入力端子P_INを選択する制御を実行するとともに、第2光スイッチ手段32aにおける出力端子P_OUTを選択する制御を実行する。すなわち、制御手段22aは、第1選択制御を実行する。 The control means 22a is configured by, for example, a computer. The control means 22a executes control to select the input terminal P_IN in the first optical switch means 31a, and executes control to select the output terminal P_OUT in the second optical switch means 32a. That is, the control means 22a executes the first selection control.
 また、制御手段22aは、当該選択された入力端子P_INに入力された光信号が当該選択された出力端子P_OUTから出力される状態が実現されるように、第1光スイッチ手段31a及び第2光スイッチ手段32aにおける光路を切り替える制御を実行する。より具体的には、制御手段22は、光スイッチSW_2内の光路、光スイッチSW_3内の光路、光スイッチSW_1内の光路、光スイッチSW_4内の光路、及び光スイッチSW_2,SW_3と光スイッチSW_1,SW_4間の光路を切り替える制御を実行する。すなわち、制御手段22aは、第1切替え制御を実行する。 The control means 22a also controls the first optical switch means 31a and the second optical switch so that a state is realized in which the optical signal input to the selected input terminal P_IN is output from the selected output terminal P_OUT. Control for switching the optical path in the switch means 32a is executed. More specifically, the control means 22 controls the optical path within the optical switch SW_2, the optical path within the optical switch SW_3, the optical path within the optical switch SW_1, the optical path within the optical switch SW_4, and the optical switches SW_2, SW_3 and the optical switch SW_1, Execute control to switch the optical path between SW_4. That is, the control means 22a executes the first switching control.
 ここで、光スイッチ装置3aは、ネットワークNWを介してサーバ装置4と通信自在である。第1選択制御は、サーバ装置4により与えられた指示に基づき実行される。 Here, the optical switch device 3a can freely communicate with the server device 4 via the network NW. The first selection control is executed based on instructions given by the server device 4.
 すなわち、サーバ装置4は、後述する測定装置8により実行されるOSA測定のスケジュールを示す情報(以下「第3スケジュール情報」ということがある。)を取得する。第3スケジュール情報は、例えば、人(光伝送システム100aの管理者等)により予め入力されたものである。または、例えば、サーバ装置4は、ネットワークNWを介して測定装置8と通信することにより、測定装置8から第3スケジュール情報を受信する。なお、図7において、ネットワークNWと測定装置8間の接続線は図示を省略している。 That is, the server device 4 acquires information (hereinafter sometimes referred to as "third schedule information") indicating a schedule for OSA measurement to be executed by the measurement device 8, which will be described later. The third schedule information is, for example, information input in advance by a person (such as an administrator of the optical transmission system 100a). Alternatively, for example, the server device 4 receives the third schedule information from the measuring device 8 by communicating with the measuring device 8 via the network NW. In addition, in FIG. 7, the connection line between the network NW and the measuring device 8 is not shown.
 サーバ装置4は、当該取得された第3スケジュール情報を用いて、測定装置8によりOSA測定が実行される時間区間(以下「測定期間」ということがある。)ΔT3を判定する。また、サーバ装置4は、当該取得された第3スケジュール情報を用いて、測定期間ΔT3のうちの個々の光ファイバF_TX,F_RXにおけるOSA測定が実行されるタイミング(以下「測定タイミング」ということがある。)T3を判定する。 The server device 4 uses the acquired third schedule information to determine the time interval (hereinafter sometimes referred to as "measurement period") ΔT3 in which the OSA measurement is performed by the measurement device 8. Further, the server device 4 uses the acquired third schedule information to determine the timing (hereinafter sometimes referred to as "measurement timing") at which the OSA measurement is performed on each of the optical fibers F_TX and F_RX during the measurement period ΔT3. .) Determine T3.
 具体的には、例えば、サーバ装置4は、個々の測定期間ΔT3において、N本の光ファイバF_TX_1~F_TX_Nにそれぞれ(respectively)対応するN個の測定タイミングT3_1~T3_Nを判定する。また、サーバ装置4は、個々の測定期間ΔT3において、N本の光ファイバF_RX_1~F_RX_Nにそれぞれ(respectively)対応するN個の測定タイミングT3_N+1~T3_2Nを判定する。すなわち、サーバ装置4は、個々の測定期間ΔT3において、2N本の光ファイバF_TX_1~F_TX_N,F_RX_1~F_RX_Nにそれぞれ(respectively)対応する2N個の測定タイミングT3_1~T3_2Nを判定する。 Specifically, for example, the server device 4 determines N measurement timings T3_1 to T3_N that respectively (respectively) correspond to N optical fibers F_TX_1 to F_TX_N in each measurement period ΔT3. In addition, the server device 4 determines N measurement timings T3_N+1 to T3_2N that respectively (respectively) correspond to the N optical fibers F_RX_1 to F_RX_N in each measurement period ΔT3. That is, the server device 4 determines 2N measurement timings T3_1 to T3_2N that respectively (respectively) correspond to the 2N optical fibers F_TX_1 to F_TX_N and F_RX_1 to F_RX_N in each measurement period ΔT3.
 サーバ装置4は、これらの判定の結果に基づき、第1選択制御における選択を指示する信号を生成する。すなわち、サーバ装置4は、第1指示信号を生成する。 Based on the results of these determinations, the server device 4 generates a signal instructing selection in the first selection control. That is, the server device 4 generates the first instruction signal.
 第1指示信号は、個々の測定期間ΔT3において、第2光スイッチ手段32aが備える2個の出力端子P_OUT_1,P_OUT_2のうちの1個の出力端子P_OUT_1が選択されるべきである旨の指示を含む。また、第1指示信号は、2N個の測定タイミングT3_1~T3_2Nの各々において、第1光スイッチ手段31aが備える2N個の入力端子P_IN_1~P_IN_2Nのうちの対応する1個の入力端子P_INが選択されるべきである旨の指示を含む。 The first instruction signal includes an instruction to the effect that one output terminal P_OUT_1 of the two output terminals P_OUT_1 and P_OUT_2 provided in the second optical switch means 32a should be selected in each measurement period ΔT3. . Further, the first instruction signal indicates that one corresponding input terminal P_IN of the 2N input terminals P_IN_1 to P_IN_2N provided in the first optical switch means 31a is selected at each of the 2N measurement timings T3_1 to T3_2N. Contains instructions as to what should be done.
 サーバ装置4は、当該生成された第1指示信号を光スイッチ装置3aに送信する。光スイッチ装置3aは、当該送信された第1指示信号を受信する。制御手段22aは、当該受信された第1指示信号が示す指示に基づき、第1選択制御を実行する。すなわち、制御手段22aは、第1指示に基づき、第1選択制御を実行する。 The server device 4 transmits the generated first instruction signal to the optical switch device 3a. The optical switch device 3a receives the transmitted first instruction signal. The control means 22a executes the first selection control based on the instruction indicated by the received first instruction signal. That is, the control means 22a executes the first selection control based on the first instruction.
 測定装置8は、例えば、光スペクトル測定器(すなわちOSA)により構成されている。測定装置8は、入力用の光ファイバF_IN_3を用いて光スイッチ装置3と接続される。上記のとおり、光ファイバF_IN_3は、第1光スイッチ手段31aの入力端子P_IN_1と接続される。測定装置8は、光ファイバF_TX_1~F_TX_Nの各々におけるOSA測定を実行する。また、測定装置8は、光ファイバF_RX_1~F_RX_Nの各々におけるOSA測定を実行する。 The measuring device 8 is constituted by, for example, an optical spectrum measuring instrument (i.e., OSA). The measurement device 8 is connected to the optical switch device 3 using an input optical fiber F_IN_3. As described above, the optical fiber F_IN_3 is connected to the input terminal P_IN_1 of the first optical switch means 31a. The measuring device 8 performs OSA measurements on each of the optical fibers F_TX_1 to F_TX_N. Furthermore, the measurement device 8 performs OSA measurement on each of the optical fibers F_RX_1 to F_RX_N.
 すなわち、光伝送システム100aは、OSA測定用の光源装置(不図示)を含む。光源装置は、例えば、第1の陸上局又は第2の陸上局に設けられる。または、例えば、光源装置は、測定装置8と一体に構成されている。光源装置は、所定のスケジュールに基づき、所定のタイミングにて、OSA測定用の光信号(以下「測定用の光信号」又は「測定光」ということがある。)を出力する。 That is, the optical transmission system 100a includes a light source device (not shown) for OSA measurement. The light source device is provided, for example, at the first land station or the second land station. Or, for example, the light source device is configured integrally with the measuring device 8. The light source device outputs an optical signal for OSA measurement (hereinafter sometimes referred to as "optical signal for measurement" or "measurement light") at a predetermined timing based on a predetermined schedule.
 具体的には、例えば、光源装置は、N個の測定タイミングT3_1~T3_Nの各々にて、N本の光ファイバF_TX_1~F_TX_Nのうちの対応する1本の光ファイバF_TXに測定光を出力する。当該出力された測定光は、当該対応する1本の光ファイバF_TXを伝送する。また、光源装置は、他のN個の測定タイミングT3_N+1~T3_2Nの各々にて、N本の光ファイバF_RX_1~F_RX_Nのうちの対応する1本の光ファイバF_RXに測定光を出力する。当該出力された測定光は、当該対応する1本の光ファイバF_RXを伝送する。 Specifically, for example, the light source device outputs measurement light to a corresponding one of the N optical fibers F_TX_1 to F_TX_N at each of N measurement timings T3_1 to T3_N. The output measurement light is transmitted through the corresponding one optical fiber F_TX. Further, the light source device outputs measurement light to a corresponding one of the N optical fibers F_RX_1 to F_RX_N at each of the other N measurement timings T3_N+1 to T3_2N. The output measurement light is transmitted through the corresponding one optical fiber F_RX.
 このとき、第1光スイッチ手段31a及び第2光スイッチ手段32aにおける光路は、上記のとおり、制御手段22aにより切り替えられる。このため、N個の測定タイミングT3_1~T3_Nの各々において、上記対応する1本の光ファイバF_TXを伝送した測定光は、光スイッチSW_2,SW_1及び光ファイバF_IN_3を通過して、測定装置8に入力される。また、他のN個の測定タイミングT3_N+1~T3_2Nの各々において、上記対応する1本の光ファイバF_RXを伝送した測定光は、光スイッチSW_3,SW_1及び光ファイバF_IN_3を通過して、測定装置8に入力される。 At this time, the optical paths in the first optical switch means 31a and the second optical switch means 32a are switched by the control means 22a as described above. Therefore, at each of the N measurement timings T3_1 to T3_N, the measurement light transmitted through the corresponding one optical fiber F_TX passes through the optical switches SW_2, SW_1 and the optical fiber F_IN_3, and is input to the measurement device 8. be done. In addition, at each of the other N measurement timings T3_N+1 to T3_2N, the measurement light transmitted through the corresponding one optical fiber F_RX passes through the optical switches SW_3, SW_1 and the optical fiber F_IN_3, and is sent to the measurement device 8. is input.
 測定装置8は、当該入力された測定光を用いて、OSA測定のための信号処理を実行する。なお、OSA測定のための信号処理には、公知の種々の技術を用いることができる。これらの技術についての詳細な説明は省略する。 The measurement device 8 uses the input measurement light to perform signal processing for OSA measurement. Note that various known techniques can be used for signal processing for OSA measurement. A detailed explanation of these techniques will be omitted.
 このようにして、光ファイバF_TX_1~F_TX_N,F_RX_1~F_RX_Nの各々におけるOSA測定が実現される。かかるOSA測定の結果は、例えば、光ファイバF_TX_1~F_TX_N,F_RX_1~F_RX_Nの各々の状態のモニタリングに用いられる。より具体的には、かかるOSAの結果は、光ファイバF_TX_1~F_TX_N,F_RX_1~F_RX_Nの各々における断線の発生の有無の検出、及び当該断線が発生した位置の検出などに用いられる。 In this way, OSA measurement on each of the optical fibers F_TX_1 to F_TX_N and F_RX_1 to F_RX_N is realized. The results of such OSA measurement are used, for example, to monitor the status of each of the optical fibers F_TX_1 to F_TX_N and F_RX_1 to F_RX_N. More specifically, the results of the OSA are used to detect whether or not a break has occurred in each of the optical fibers F_TX_1 to F_TX_N and F_RX_1 to F_RX_N, and to detect the position where the break has occurred.
 このようにして、光伝送システム100aの要部が構成されている。 In this way, the main parts of the optical transmission system 100a are configured.
 なお、光伝送システム100aは、陸上に設けられる部位を含む。ここで、陸上に設けられる部位は、例えば、第1の陸上局を含む部位、第2の陸上局を含む部位、又は光スイッチ装置3a及び測定装置8を含む部位である。また、光伝送システム100aは、海底に設けられる部位(例えば、海底ケーブルを含む部位)を含む。当該陸上に設けられる部位と当該海底に設けられる部位との接続には、所定のインタフェースが用いられる。具体的には、例えば、OCIが用いられる。図7におけるFI_1~FI_Nは、かかるインタフェースを示している。 Note that the optical transmission system 100a includes a portion provided on land. Here, the part provided on land is, for example, a part including the first land station, a part including the second land station, or a part including the optical switch device 3a and the measuring device 8. Further, the optical transmission system 100a includes a portion provided on the ocean floor (for example, a portion including a submarine cable). A predetermined interface is used to connect the part provided on land and the part provided on the seabed. Specifically, for example, OCI is used. FI_1 to FI_N in FIG. 7 indicate such interfaces.
 次に、光伝送システム100aにおける光スイッチ装置3aの動作について説明する。より具体的には、図9に示すフローチャートを参照して、制御手段22aの動作を中心に説明する。 Next, the operation of the optical switch device 3a in the optical transmission system 100a will be explained. More specifically, the operation of the control means 22a will be mainly described with reference to the flowchart shown in FIG.
 まず、光スイッチ装置3aは、サーバ装置4により送信された指示信号を受信する。これにより、制御手段22aは、当該受信された指示信号に含まれる指示を取得する。より具体的には、制御手段22aは、第1指示を取得する(ステップST1a)。 First, the optical switch device 3a receives an instruction signal transmitted by the server device 4. Thereby, the control means 22a acquires the instruction included in the received instruction signal. More specifically, the control means 22a acquires the first instruction (step ST1a).
 次いで、制御手段22aは、ステップST1aにて取得された第1指示に基づき、第1選択制御及び第1切替え制御を実行する(ステップST2a)。すなわち、制御手段22aは、当該取得された第1指示に基づき、第1光スイッチ手段31aにおける入力端子P_INを選択する制御を実行するとともに、第2光スイッチ手段32aにおける出力端子P_OUTを選択する制御を実行する。また、制御手段22aは、当該選択された入力端子P_INに入力された光信号が当該選択された出力端子P_OUTから出力される状態が実現されるように、第1光スイッチ手段31a及び第2光スイッチ手段32aにおける光路を切り替える制御を実行する。 Next, the control means 22a executes first selection control and first switching control based on the first instruction acquired in step ST1a (step ST2a). That is, the control means 22a executes control to select the input terminal P_IN in the first optical switch means 31a and control to select the output terminal P_OUT in the second optical switch means 32a based on the obtained first instruction. Execute. The control means 22a also controls the first optical switch means 31a and the second optical switch so that a state is realized in which the optical signal input to the selected input terminal P_IN is output from the selected output terminal P_OUT. Control for switching the optical path in the switch means 32a is executed.
 次に、光伝送システム100aの変形例について説明する。 Next, a modification of the optical transmission system 100a will be described.
 第一に、光伝送システム100aは、第2光分岐装置7を含まないものであっても良い。この場合、光スイッチ装置3a及び測定装置8は、例えば、第1の陸上局又は第2の陸上局に設けられるものであっても良い。 First, the optical transmission system 100a may not include the second optical branching device 7. In this case, the optical switch device 3a and the measuring device 8 may be provided at the first land station or the second land station, for example.
 第二に、光伝送システム100aは、サーバ装置4を含まないものであっても良い。この場合、制御手段22aは、サーバ装置4により与えられた第1指示に代えて、予め設定された第1指示を用いるものであっても良い。 Second, the optical transmission system 100a may not include the server device 4. In this case, the control means 22a may use a preset first instruction instead of the first instruction given by the server device 4.
 例えば、測定装置8により周期的に実行されるOSA測定のスケジュールが固定されている場合、第1指示を変更することは、不要である。この場合、制御手段22aは、かかるスケジュールに基づき予め設定された第1指示に基づき、第1選択制御を実行するものであっても良い。すなわち、第1指示は、所定の指示であれば良い。 For example, if the schedule of OSA measurements periodically performed by the measuring device 8 is fixed, it is unnecessary to change the first instruction. In this case, the control means 22a may execute the first selection control based on a first instruction set in advance based on the schedule. That is, the first instruction may be any predetermined instruction.
 第三に、光伝送システム100aは、光伝送システム100と同様の第1光分岐装置2、光スイッチ装置3、試験装置5及び制御装置6を含むものであっても良い。すなわち、光伝送システム100aは、試験装置5及び制御装置6を含み、かつ、測定装置8を含むものであっても良い。また、光伝送システム100aは、光ファイバペアFP_1~FP_Nと試験装置5及び制御装置6との間に設けられる光スイッチ装置3を含み、かつ、光ファイバペアFP_1~FP_Nと測定装置8との間に設けられる光スイッチ装置3aを含むものであっても良い。 Third, the optical transmission system 100a may include the same first optical branching device 2, optical switch device 3, testing device 5, and control device 6 as the optical transmission system 100. That is, the optical transmission system 100a may include the test device 5 and the control device 6, and may also include the measurement device 8. The optical transmission system 100a also includes an optical switch device 3 provided between the optical fiber pairs FP_1 to FP_N and the test device 5 and the control device 6, and between the optical fiber pairs FP_1 to FP_N and the measuring device 8. The optical switch device 3a may be included in the optical switch device 3a.
 この場合、第2光分岐装置7は、第1光分岐装置2と一体に構成されているものであっても良い。例えば、第1光分岐装置2及び第2光分岐装置7は、単一の光海底分岐装置により構成されているものであっても良い。 In this case, the second optical branching device 7 may be configured integrally with the first optical branching device 2. For example, the first optical branching device 2 and the second optical branching device 7 may be configured by a single optical submarine branching device.
 次に、光スイッチ装置3aの効果について説明する。 Next, the effects of the optical switch device 3a will be explained.
 光スイッチ装置3aを用いることにより、光スイッチ装置3を用いる場合と同様の効果が得られる。換言すれば、第1実施形態にて説明したものと同様の効果が得られる。 By using the optical switch device 3a, the same effects as when using the optical switch device 3 can be obtained. In other words, the same effects as those described in the first embodiment can be obtained.
 すなわち、第1光スイッチ手段31aは、複数個の入力端子P_INを備え、複数個の入力端子P_INのうちの選択された入力端子P_INに入力された光信号を出力する。第2光スイッチ手段32aは、複数個の出力端子P_OUTを備え、第1光スイッチ手段31により出力された光信号を複数個の出力端子P_OUTのうちの選択された出力端子P_OUTから出力する。制御手段22aは、所定の第1指示に基づき、第1光スイッチ手段31aにおける入力端子P_INを選択する制御、及び第2光スイッチ手段32aにおける出力端子P_OUTを選択する制御を実行する。 That is, the first optical switch means 31a includes a plurality of input terminals P_IN, and outputs an optical signal input to a selected input terminal P_IN from among the plurality of input terminals P_IN. The second optical switch means 32a includes a plurality of output terminals P_OUT, and outputs the optical signal outputted by the first optical switch means 31 from a selected one of the plurality of output terminals P_OUT. The control means 22a executes control to select the input terminal P_IN in the first optical switch means 31a and control to select the output terminal P_OUT in the second optical switch means 32a based on a predetermined first instruction.
 これらの手段(31a,32a,22a)を備える光スイッチ装置3aを用いることにより、光ファイバケーブルに接続される個々の装置(8)と光ファイバケーブルに含まれる個々の光ファイバペア(FP_1~FP_N)との間の光路の切替えを実現することができる。 By using the optical switch device 3a equipped with these means (31a, 32a, 22a), the individual devices (8) connected to the optical fiber cable and the individual optical fiber pairs (FP_1 to FP_N) included in the optical fiber cable can be connected. ) can be realized.
 ここで、光スイッチ装置3aに対する比較用の光スイッチ装置として、以下のような光スイッチ装置を考える。すなわち、光スイッチ装置3aにおいて、第1光スイッチ手段31aと第2光スイッチ手段32aとは、互いに分離している。具体的には、例えば、上記のとおり、第1光スイッチ手段31aがN×1の光スイッチSW_2及びN×1の光スイッチSW_3により構成されており、かつ、第2光スイッチ手段32aが2×1の光スイッチSW_1及び2×1の光スイッチSW_4により構成されている。これに対して、比較用の光スイッチ装置において、第1光スイッチ手段31a及び第2光スイッチ手段32aに相当する機能は、単一の光スイッチにより実現される。より具体的には、かかる機能は、2N入力2出力(以下「2N×2」と記載することがある。)の光スイッチにより実現される。 Here, the following optical switch device will be considered as a comparative optical switch device for the optical switch device 3a. That is, in the optical switch device 3a, the first optical switch means 31a and the second optical switch means 32a are separated from each other. Specifically, for example, as described above, the first optical switch means 31a is composed of an N×1 optical switch SW_2 and an N×1 optical switch SW_3, and the second optical switch means 32a is composed of a 2× optical switch SW_2 and an N×1 optical switch SW_3. It is composed of one optical switch SW_1 and 2×1 optical switch SW_4. In contrast, in the comparative optical switch device, the functions corresponding to the first optical switch means 31a and the second optical switch means 32a are realized by a single optical switch. More specifically, this function is realized by an optical switch with 2N inputs and 2 outputs (hereinafter sometimes referred to as "2Nx2").
 N×1の光スイッチSW_2、N×1の光スイッチSW_3、2×1の光スイッチSW_1及び2×1の光スイッチSW_4を用いることにより、2N×2の光スイッチを用いる場合に比して、個々の光スイッチにおける光路の切替えを簡単にすることができる。換言すれば、第1光スイッチ手段31a及び第2光スイッチ手段32aが互いに分離した構成要素(例えば光スイッチSW_2,SW_3と光スイッチSW_1,SW_4)であることにより、第1光スイッチ手段31a及び第2光スイッチ手段32aが単一の構成要素(例えば2N×2の光スイッチ)である場合に比して、上記のような光路の切替えを簡単に実現することができる。 By using the N×1 optical switch SW_2, the N×1 optical switch SW_3, the 2×1 optical switch SW_1, and the 2×1 optical switch SW_4, compared to the case of using a 2N×2 optical switch, Switching of optical paths in individual optical switches can be simplified. In other words, since the first optical switch means 31a and the second optical switch means 32a are mutually separate components (for example, optical switches SW_2, SW_3 and optical switches SW_1, SW_4), the first optical switch means 31a and the second optical switch means 32a are separated from each other. Compared to the case where the two-optical switch means 32a is a single component (for example, a 2N×2 optical switch), switching of the optical paths as described above can be easily realized.
 また、光スイッチ装置3,3aを用いることにより、光ファイバペアFP_1~FP_Nに対する試験装置5及び制御装置6の接続を実現することができるとともに、光ファイバペアFP_1~FP_Nに対する測定装置8の接続を実現することができる。特に、これらの接続を容易にすることができる。この結果、オープンケーブルのシステム構成に容易に対応することができる。 Furthermore, by using the optical switch devices 3 and 3a, it is possible to realize the connection of the test device 5 and the control device 6 to the optical fiber pairs FP_1 to FP_N, and also to realize the connection of the measurement device 8 to the optical fiber pairs FP_1 to FP_N. It can be realized. In particular, these connections can be facilitated. As a result, it is possible to easily adapt to an open cable system configuration.
 ここで、光スイッチ手段21aが備える光スイッチSW_1~SW_4は、光スイッチ手段21が備える光スイッチSW_1~SW_4と同様である。このため、試験装置5及び制御装置6を接続するための光スイッチ装置3と測定装置8を接続するための光スイッチ装置3aとの間において、光スイッチSW_1~SW_4の共通化を図ることができる。この結果、光スイッチ装置3,3aの設計コスト及び製造コストの低減を図ることができる。 Here, the optical switches SW_1 to SW_4 included in the optical switch means 21a are the same as the optical switches SW_1 to SW_4 included in the optical switch means 21. Therefore, the optical switches SW_1 to SW_4 can be shared between the optical switch device 3 for connecting the test device 5 and the control device 6 and the optical switch device 3a for connecting the measuring device 8. . As a result, it is possible to reduce the design cost and manufacturing cost of the optical switch devices 3, 3a.
[第3実施形態]
 図10は、第3実施形態に係る光スイッチ装置を示すブロック図である。図10を参照して、第3実施形態に係る光スイッチ装置について説明する。また、図11は、第3実施形態に係る光伝送システムを示すブロック図である。図11を参照して、第3実施形態に係る光伝送システムについて説明する。なお、図10及び図11において、図1~図4に示す要素との同様の要素には同一符号を付して説明を省略する。
[Third embodiment]
FIG. 10 is a block diagram showing an optical switch device according to a third embodiment. With reference to FIG. 10, an optical switch device according to a third embodiment will be described. Further, FIG. 11 is a block diagram showing an optical transmission system according to the third embodiment. An optical transmission system according to a third embodiment will be described with reference to FIG. 11. Note that in FIGS. 10 and 11, elements similar to those shown in FIGS. 1 to 4 are denoted by the same reference numerals, and explanations thereof will be omitted.
 ここで、第1実施形態に係る光スイッチ装置3及び第2実施形態に係る光スイッチ装置3aの各々は、第3実施形態に係る光スイッチ装置3bの一例である。また、第1実施形態に係る光伝送システム100及び第2実施形態に係る光伝送システム100aの各々は、第3実施形態に係る光伝送システム100bの一例である。 Here, each of the optical switch device 3 according to the first embodiment and the optical switch device 3a according to the second embodiment is an example of the optical switch device 3b according to the third embodiment. Further, each of the optical transmission system 100 according to the first embodiment and the optical transmission system 100a according to the second embodiment is an example of the optical transmission system 100b according to the third embodiment.
 図10に示す如く、光スイッチ装置3bは、第1光スイッチ手段31、第2光スイッチ手段32及び制御手段22を備える。図11に示す如く、光伝送システム100bは、光スイッチ装置3bを備える。これらの場合であっても、以下のとおり、第1実施形態にて説明したものと同様の効果が得られる。 As shown in FIG. 10, the optical switch device 3b includes a first optical switch means 31, a second optical switch means 32, and a control means 22. As shown in FIG. 11, the optical transmission system 100b includes an optical switch device 3b. Even in these cases, the same effects as those described in the first embodiment can be obtained as described below.
 すなわち、第1光スイッチ手段31は、複数個の入力端子P_INを備え、複数個の入力端子P_INのうちの選択された入力端子P_INに入力された光信号を出力する。第2光スイッチ手段32は、複数個の出力端子P_OUTを備え、第1光スイッチ手段31により出力された光信号を複数個の出力端子P_OUTのうちの選択された出力端子P_OUTから出力する。制御手段22は、所定の第1指示に基づき、第1光スイッチ手段31における入力端子P_INを選択する制御及び第2光スイッチ手段32における出力端子P_OUTを選択する制御を実行する。 That is, the first optical switch means 31 includes a plurality of input terminals P_IN, and outputs an optical signal input to a selected input terminal P_IN among the plurality of input terminals P_IN. The second optical switch means 32 includes a plurality of output terminals P_OUT, and outputs the optical signal outputted by the first optical switch means 31 from a selected one of the plurality of output terminals P_OUT. The control means 22 executes control to select the input terminal P_IN in the first optical switch means 31 and control to select the output terminal P_OUT in the second optical switch means 32 based on a predetermined first instruction.
 これらの手段(31,32,22)を備える光スイッチ装置3bを用いることにより、光ファイバケーブルに接続される個々の装置(5,6,8)と光ファイバケーブルに含まれる個々の光ファイバペア(FP_1~FP_N)との間の光路の切替えを実現することができる。 By using the optical switch device 3b equipped with these means (31, 32, 22), individual devices (5, 6, 8) connected to the optical fiber cable and individual optical fiber pairs included in the optical fiber cable can be connected. (FP_1 to FP_N) can be switched.
 また、光伝送システム100bは、光スイッチ装置3bを備える。これにより、上記のような効果が得られる。すなわち、光ファイバケーブルに接続される個々の装置(5,6,8)と光ファイバケーブルに含まれる個々の光ファイバペア(FP_1~FP_N)との間の光路の切替えを実現することができる。 Additionally, the optical transmission system 100b includes an optical switch device 3b. This provides the effects described above. That is, it is possible to realize optical path switching between the individual devices (5, 6, 8) connected to the optical fiber cable and the individual optical fiber pairs (FP_1 to FP_N) included in the optical fiber cable.
 なお、光スイッチ装置3bは、第1光スイッチ手段31、第2光スイッチ手段32及び制御手段22に加えて、第3光スイッチ手段33を備えるものであっても良い。また、光スイッチ装置3bは、第1光スイッチ手段31、第2光スイッチ手段32及び制御手段22に代えて、第1光スイッチ手段31a、第2光スイッチ手段32a及び制御手段22aを備えるものであっても良い。 Note that the optical switch device 3b may include a third optical switch means 33 in addition to the first optical switch means 31, the second optical switch means 32, and the control means 22. Further, the optical switch device 3b includes a first optical switch means 31a, a second optical switch means 32a, and a control means 22a instead of the first optical switch means 31, the second optical switch means 32, and the control means 22. It's okay.
 また、光伝送システム100bは、光スイッチ装置3bに加えて、試験装置5及び制御装置6を含むものであっても良い。また、光伝送システム100bは、光スイッチ装置3bに加えて、光通信装置1を含むものであっても良い。また、光伝送システム100bは、光スイッチ装置3bに加えて、測定装置8を含むものであっても良い。また、光伝送システム100bは、光スイッチ装置3bに加えて、サーバ装置4を含むものであっても良い。 Furthermore, the optical transmission system 100b may include a test device 5 and a control device 6 in addition to the optical switch device 3b. Furthermore, the optical transmission system 100b may include the optical communication device 1 in addition to the optical switch device 3b. Further, the optical transmission system 100b may include a measuring device 8 in addition to the optical switch device 3b. Further, the optical transmission system 100b may include the server device 4 in addition to the optical switch device 3b.
 以上、実施形態を参照して本開示を説明したが、本開示は上記実施形態に限定されるものではない。本開示の構成や詳細には、本開示のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present disclosure has been described above with reference to the embodiments, the present disclosure is not limited to the above embodiments. Various changes can be made to the structure and details of the present disclosure that can be understood by those skilled in the art within the scope of the present disclosure.
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。 Part or all of the above embodiments may be described as in the following additional notes, but are not limited to the following.
[付記]
  [付記1]
 複数個の入力端子を備え、前記複数個の入力端子のうちの選択された入力端子に入力された光信号を出力する第1光スイッチ手段と、
 複数個の出力端子を備え、前記第1光スイッチ手段により出力された光信号を前記複数個の出力端子のうちの選択された出力端子から出力する第2光スイッチ手段と、
 所定の第1指示に基づき、前記第1光スイッチ手段における入力端子を選択する制御及び前記第2光スイッチ手段における出力端子を選択する制御を実行する制御手段と、
 を備える光スイッチ装置。
  [付記2]
 付記1に記載の光スイッチ装置を備えることを特徴とする光伝送システム。
  [付記3]
 前記複数個の入力端子のうちのいずれかの入力端子と接続され、光パルス試験用の光信号である試験光を前記光スイッチ装置に出力する試験装置と、
 前記複数個の入力端子のうちの他のいずれかの入力端子と接続され、コマンド制御用の光信号である制御光を前記光スイッチ装置に出力する制御装置と、
 を備えることを特徴とする付記2に記載の光伝送システム。
  [付記4]
 前記複数個の出力端子とそれぞれ接続される複数個の光通信手段を含む光通信装置を備え、
 前記複数個の光通信手段の各々は、前記制御光により制御される
 ことを特徴とする付記3に記載の光伝送システム。
  [付記5]
 前記複数個の光通信手段の各々は、光ファイバペアを用いて前記光スイッチ装置と接続され、前記制御光に対する応答用の光信号である応答光を前記光ファイバペアに出力し、
 前記光スイッチ装置は、前記第1指示に対応する第2指示に基づき、前記複数個の光通信手段の各々により出力された前記応答光が前記制御装置に伝送されるように前記光スイッチ装置における光路を切り替えるための第3光スイッチ手段を備える
 ことを特徴とする付記4に記載の光伝送システム。
  [付記6]
 前記複数個の出力端子のうちのいずれかの出力端子と接続され、光スペクトル測定用の光信号である測定光の入力を受け付ける測定装置を備えることを特徴とする付記2に記載の光伝送システム。
  [付記7]
 前記光スイッチ装置に前記第1指示を与えるサーバ装置を備えることを特徴とする付記2から付記6のうちのいずれか一つに記載の光伝送システム。
  [付記8]
 前記光スイッチ装置に前記第1指示及び前記第2指示を与えるサーバ装置を備えることを特徴とする付記5に記載の光伝送システム。
[Additional notes]
[Additional note 1]
a first optical switch unit comprising a plurality of input terminals and outputting an optical signal input to a selected one of the plurality of input terminals;
a second optical switch means comprising a plurality of output terminals and outputting the optical signal outputted by the first optical switch means from a selected one of the plurality of output terminals;
control means for executing control for selecting an input terminal in the first optical switch means and control for selecting an output terminal in the second optical switch means based on a predetermined first instruction;
An optical switch device comprising:
[Additional note 2]
An optical transmission system comprising the optical switch device according to appendix 1.
[Additional note 3]
a test device that is connected to any one of the plurality of input terminals and outputs test light, which is an optical signal for a light pulse test, to the optical switch device;
a control device that is connected to any other input terminal of the plurality of input terminals and outputs control light, which is an optical signal for command control, to the optical switch device;
The optical transmission system according to supplementary note 2, comprising:
[Additional note 4]
An optical communication device including a plurality of optical communication means each connected to the plurality of output terminals,
The optical transmission system according to appendix 3, wherein each of the plurality of optical communication means is controlled by the control light.
[Additional note 5]
Each of the plurality of optical communication means is connected to the optical switch device using an optical fiber pair, and outputs a response light that is an optical signal in response to the control light to the optical fiber pair,
The optical switch device is configured to transmit the response light outputted by each of the plurality of optical communication means to the control device based on a second instruction corresponding to the first instruction. The optical transmission system according to appendix 4, further comprising a third optical switch means for switching the optical path.
[Additional note 6]
The optical transmission system according to appendix 2, further comprising a measurement device connected to any one of the plurality of output terminals and receiving input of measurement light that is an optical signal for measuring an optical spectrum. .
[Additional note 7]
The optical transmission system according to any one of appendices 2 to 6, further comprising a server device that gives the first instruction to the optical switch device.
[Additional note 8]
The optical transmission system according to appendix 5, further comprising a server device that provides the first instruction and the second instruction to the optical switch device.
1 光通信装置
2 第1光分岐装置
3,3a,3b 光スイッチ装置
4 サーバ装置
5 試験装置
6 制御装置
7 第2光分岐装置
8 測定装置
11 光通信手段
21,21a 光スイッチ手段
22,22a 制御手段
31,31a 第1光スイッチ手段
32,32a 第2光スイッチ手段
33 第3光スイッチ手段
100,100a,100b 光伝送システム
1 Optical communication device 2 First optical branching device 3, 3a, 3b Optical switching device 4 Server device 5 Testing device 6 Control device 7 Second optical branching device 8 Measuring device 11 Optical communication means 21, 21a Optical switching means 22, 22a Control Means 31, 31a First optical switch means 32, 32a Second optical switch means 33 Third optical switch means 100, 100a, 100b Optical transmission system

Claims (8)

  1.  複数個の入力端子を備え、前記複数個の入力端子のうちの選択された入力端子に入力された光信号を出力する第1光スイッチ手段と、
     複数個の出力端子を備え、前記第1光スイッチ手段により出力された光信号を前記複数個の出力端子のうちの選択された出力端子から出力する第2光スイッチ手段と、
     所定の第1指示に基づき、前記第1光スイッチ手段における入力端子を選択する制御及び前記第2光スイッチ手段における出力端子を選択する制御を実行する制御手段と、
     を備える光スイッチ装置。
    a first optical switch unit comprising a plurality of input terminals and outputting an optical signal input to a selected one of the plurality of input terminals;
    a second optical switch means comprising a plurality of output terminals and outputting the optical signal outputted by the first optical switch means from a selected one of the plurality of output terminals;
    control means for executing control for selecting an input terminal in the first optical switch means and control for selecting an output terminal in the second optical switch means based on a predetermined first instruction;
    An optical switch device comprising:
  2.  請求項1に記載の光スイッチ装置を備えることを特徴とする光伝送システム。 An optical transmission system comprising the optical switch device according to claim 1.
  3.  前記複数個の入力端子のうちのいずれかの入力端子と接続され、光パルス試験用の光信号である試験光を前記光スイッチ装置に出力する試験装置と、
     前記複数個の入力端子のうちの他のいずれかの入力端子と接続され、コマンド制御用の光信号である制御光を前記光スイッチ装置に出力する制御装置と、
     を備えることを特徴とする請求項2に記載の光伝送システム。
    a test device that is connected to any one of the plurality of input terminals and outputs test light, which is an optical signal for a light pulse test, to the optical switch device;
    a control device that is connected to any other input terminal of the plurality of input terminals and outputs control light, which is an optical signal for command control, to the optical switch device;
    The optical transmission system according to claim 2, comprising:
  4.  前記複数個の出力端子とそれぞれ接続される複数個の光通信手段を含む光通信装置を備え、
     前記複数個の光通信手段の各々は、前記制御光により制御される
     ことを特徴とする請求項3に記載の光伝送システム。
    An optical communication device including a plurality of optical communication means each connected to the plurality of output terminals,
    The optical transmission system according to claim 3, wherein each of the plurality of optical communication means is controlled by the control light.
  5.  前記複数個の光通信手段の各々は、光ファイバペアを用いて前記光スイッチ装置と接続され、前記制御光に対する応答用の光信号である応答光を前記光ファイバペアに出力し、
     前記光スイッチ装置は、前記第1指示に対応する第2指示に基づき、前記複数個の光通信手段の各々により出力された前記応答光が前記制御装置に伝送されるように前記光スイッチ装置における光路を切り替えるための第3光スイッチ手段を備える
     ことを特徴とする請求項4に記載の光伝送システム。
    Each of the plurality of optical communication means is connected to the optical switch device using an optical fiber pair, and outputs a response light that is an optical signal in response to the control light to the optical fiber pair,
    The optical switch device is configured to transmit the response light outputted by each of the plurality of optical communication means to the control device based on a second instruction corresponding to the first instruction. The optical transmission system according to claim 4, further comprising a third optical switch means for switching the optical path.
  6.  前記複数個の出力端子のうちのいずれかの出力端子と接続され、光スペクトル測定用の光信号である測定光の入力を受け付ける測定装置を備えることを特徴とする請求項2に記載の光伝送システム。 The optical transmission according to claim 2, further comprising a measurement device connected to any one of the plurality of output terminals and receiving input of measurement light that is an optical signal for measuring an optical spectrum. system.
  7.  前記光スイッチ装置に前記第1指示を与えるサーバ装置を備えることを特徴とする請求項2から請求項6のうちのいずれか1項に記載の光伝送システム。 The optical transmission system according to any one of claims 2 to 6, further comprising a server device that gives the first instruction to the optical switch device.
  8.  前記光スイッチ装置に前記第1指示及び前記第2指示を与えるサーバ装置を備えることを特徴とする請求項5に記載の光伝送システム。 The optical transmission system according to claim 5, further comprising a server device that provides the first instruction and the second instruction to the optical switch device.
PCT/JP2022/012619 2022-03-18 2022-03-18 Optical switch device and optical transmission system WO2023175899A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/012619 WO2023175899A1 (en) 2022-03-18 2022-03-18 Optical switch device and optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/012619 WO2023175899A1 (en) 2022-03-18 2022-03-18 Optical switch device and optical transmission system

Publications (1)

Publication Number Publication Date
WO2023175899A1 true WO2023175899A1 (en) 2023-09-21

Family

ID=88022928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012619 WO2023175899A1 (en) 2022-03-18 2022-03-18 Optical switch device and optical transmission system

Country Status (1)

Country Link
WO (1) WO2023175899A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268601A (en) * 1993-03-10 1994-09-22 Nec Corp Optical repeating transmission system
JPH1198074A (en) * 1997-09-17 1999-04-09 Nippon Telegr & Teleph Corp <Ntt> Optical transmitting method and optical transmission system
JP2011109293A (en) * 2009-11-16 2011-06-02 Fujitsu Ltd Optical communication network and monitoring and control device
JP2012088081A (en) * 2010-10-15 2012-05-10 Nippon Telegr & Teleph Corp <Ntt> Optical path testing device and optical path testing method
WO2019239961A1 (en) * 2018-06-11 2019-12-19 日本電信電話株式会社 Optical pulse testing device and optical pulse testing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268601A (en) * 1993-03-10 1994-09-22 Nec Corp Optical repeating transmission system
JPH1198074A (en) * 1997-09-17 1999-04-09 Nippon Telegr & Teleph Corp <Ntt> Optical transmitting method and optical transmission system
JP2011109293A (en) * 2009-11-16 2011-06-02 Fujitsu Ltd Optical communication network and monitoring and control device
JP2012088081A (en) * 2010-10-15 2012-05-10 Nippon Telegr & Teleph Corp <Ntt> Optical path testing device and optical path testing method
WO2019239961A1 (en) * 2018-06-11 2019-12-19 日本電信電話株式会社 Optical pulse testing device and optical pulse testing method

Similar Documents

Publication Publication Date Title
CN101924590B (en) The detection system of fiber fault of passive optical network and method
JPH03113930A (en) Optical fiber linkage test device of data communication network
US8213790B2 (en) Method and device for the 1+1 protection of an optical transmission path
US11860058B2 (en) Fiber-optic testing source and fiber-optic testing receiver for multi-fiber cable testing
US20100150547A1 (en) Fault locator for long haul transmission system
US20160315701A1 (en) Optical transmission device, method for verifying connection, and wavelength selective switch card
US5296956A (en) Performance monitoring and fault location for optical equipment, systems and networks
JPH11511620A (en) System, method and apparatus for monitoring fiber optic cables
EP1380828B1 (en) Optoelectronic module with integrated loop-back capability
US20100241906A1 (en) Sharing single tester among plurality of active communication links
WO2023175899A1 (en) Optical switch device and optical transmission system
EP0625295B1 (en) Optical signal transmission network
GB2191356A (en) Optical communication terminal
US20190103935A1 (en) Optical multicast switch with broadcast capability
JPH1137897A (en) Optical interface device
KR100684495B1 (en) Optical signal selector
US6246497B1 (en) Active optical loop-back system
CN115314105B (en) BOB test system
JP3275960B2 (en) LAN analyzer connection method and apparatus in LAN connection apparatus
WO2023188233A1 (en) Submarine optical communication system
WO2022054229A1 (en) Optical communication monitoring device
US20240137673A1 (en) Path switching device, optical transmission system, and path switching method
US20150125142A1 (en) Data communication apparatus
JP2001050857A (en) Optical path line testing system
CN116760462A (en) Optical path detection method, quantum key distribution equipment and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932172

Country of ref document: EP

Kind code of ref document: A1