JP3387756B2 - Transformers for gas insulated instruments - Google Patents

Transformers for gas insulated instruments

Info

Publication number
JP3387756B2
JP3387756B2 JP31318296A JP31318296A JP3387756B2 JP 3387756 B2 JP3387756 B2 JP 3387756B2 JP 31318296 A JP31318296 A JP 31318296A JP 31318296 A JP31318296 A JP 31318296A JP 3387756 B2 JP3387756 B2 JP 3387756B2
Authority
JP
Japan
Prior art keywords
iron core
instrument
gas
transformer
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31318296A
Other languages
Japanese (ja)
Other versions
JPH10154624A (en
Inventor
真一 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toko Electric Corp
Original Assignee
Toko Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Electric Corp filed Critical Toko Electric Corp
Priority to JP31318296A priority Critical patent/JP3387756B2/en
Publication of JPH10154624A publication Critical patent/JPH10154624A/en
Application granted granted Critical
Publication of JP3387756B2 publication Critical patent/JP3387756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Regulation Of General Use Transformers (AREA)
  • Transformers For Measuring Instruments (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガス絶縁計器用変
器に関する。
TECHNICAL FIELD The present invention relates to a gas insulation instrument transformer.
On the voltage divider.

【0002】[0002]

【従来の技術】計器用変圧器は、その絶縁媒体に樹脂や
油やガス等を用いて構成されているが、その使用回路電
圧が高くなると、一般的にガス絶縁が採用されている。
図4は従来のガス絶縁計器用変器の全体構成を示す平
面配置図、図5は外箱に収納される計器用変圧器素子
(以下単に素子という)の形状を示す外観図、図6は図
5のB−B線の拡大断面図である。図において、ガス絶
縁計器用変圧器1は、その外箱2を強固な密閉容器とす
るとともに、高圧コイル3及び低圧コイル4をそれぞれ
電界緩和の機能と共にコイル自身を固定保持するシール
ド5,6で包み込む構成とし、鉄心7を組付けそれらを
フレーム8で挟持し素子1を形成し、外箱2に収納・固
定している。そして、素子1はブッシング(図示せず)
や低圧側端子ボックス(図示せず)を介して、高圧側母
線や低圧側計器等と接続される。
2. Description of the Related Art A transformer for an instrument is constructed by using resin, oil, gas or the like as its insulating medium, but when the used circuit voltage becomes high, gas insulation is generally adopted.
Figure 4 is a plan layout view showing an entire configuration of a variable voltage divider for a conventional gas insulated instrument, FIG. 5 is an external view showing the shape of a voltage transformer device is housed in the outer box (hereinafter simply referred element), FIG. 6 FIG. 6 is an enlarged sectional view taken along line BB of FIG. 5. In the figure, a gas-insulated instrument transformer 1 has an outer box 2 as a strong hermetic container, and shields the high-voltage coil 3 and the low-voltage coil 4 with electric field relaxation functions and shields 5 and 6 for holding the coils themselves. The structure is such that the iron core 7 is assembled, and they are sandwiched by the frame 8 to form the element 1, which is housed and fixed in the outer box 2. The element 1 is a bushing (not shown)
And a low voltage side terminal box (not shown), and is connected to a high voltage side bus bar, a low voltage side instrument, and the like.

【0003】[0003]

【発明が解決しようとする課題】ところが、ガス絶縁計
器用変圧器は、特に、外箱2が高ガス圧に耐えるよう肉
厚の円筒状の金属製容器で構成され、コスト高要因が大
きい。そして、外箱2に収納される各素子1は高圧コイ
ル3のみならず、低圧コイル4や鉄心7等接地電位側に
もシールド6が取り付けられ、全てボルト締めをして組
立てられている。このように、従来のガス絶縁計器用変
圧器は、材料や工数が嵩むためより一層のコストダウン
が要請されている。又、近年特に受変電設備の設置スペ
ースの確保難等により素子も合め、機器全体の小型縮小
化が強く求められている。そこで、本発明は、小型化を
図るとともに、外箱のコストや素子の組み付け工数を低
減し、よりコストダウンを可能とするガス絶縁計器用変
圧器を提供することを目的とする。
However, the transformer for gas-insulated instrument is particularly constituted by a thick cylindrical metal container so that the outer box 2 can withstand a high gas pressure, which causes a large cost factor. Each element 1 housed in the outer box 2 is assembled not only with the high-voltage coil 3 but also with the shield 6 attached to the ground potential side such as the low-voltage coil 4 and the iron core 7, and bolted together. As described above, the conventional gas-insulated instrument transformer is required to be further reduced in cost because the material and the number of steps are increased. Further, in recent years, especially due to difficulty in securing an installation space for power receiving and transforming equipment and the like, there is a strong demand for downsizing of the entire device by incorporating elements. Therefore, it is an object of the present invention to provide a gas-insulated instrument transformer that can be reduced in size while reducing the cost of an outer box and the number of steps for assembling an element, thereby further reducing the cost.

【0004】[0004]

【課題を解決するための手段】そこで上記課題を解決す
るために、請求項1の発明は、ガスが封入された円筒容
である外箱内に3個の計器用変器素子を放射状に平
面配置してなるガス絶縁計器用変圧器において、各素子
を放射状均等三等配置して中心部に鉄心の端で一辺鉄心
幅相当の正三角形を形成した状態から、鉄心の長手方向
の中心軸が一律同方向に角度θずれるように3個の計器
用変圧器素子を傾斜させ、外箱円筒中心点方向へ3個の
計器用変圧器素子をスライドさせて鉄心の端の一部で囲
まれる正三角形が形成されるように配置し、鉄心から外
箱円筒中心点までの距離をα’、鉄心の長手寸法lとし
て、外箱の半径r’を、 r’=l・cosθ+α’ まで縮小させたことを特徴とする。
In order to solve the So the object, according to an aspect of, the invention of claim 1, radially three instrument-varying voltage divider elements in the outer box is a cylindrical vessel which gas is sealed Each element of a gas-insulated instrument transformer arranged in a plane
Radially evenly arranged in three equal parts and one side iron core at the end of the iron core in the center
From the state of forming an equilateral triangle corresponding to the width, in the longitudinal direction of the iron core
3 instruments so that the central axes of the
Inclining the transformer element for the car
Slide the transformer element for the instrument and surround it with a part of the end of the iron core.
So that a regular triangle
Let α ′ be the distance to the center of the box cylinder and the longitudinal dimension l of the iron core.
Then, the radius r ′ of the outer box is reduced to r ′ = 1 / cos θ + α ′ .

【0005】請求項2の発明は、請求項1に記載のガス
絶縁計器用変圧器において、前記計器用変圧器素子は、
低圧コイルを内側にして互いに同軸上に支持された低圧
コイルおよび高圧コイルと、低圧コイルの中空部と高圧
コイル外側を一巡するように配設されたリング状の鉄心
と、高圧コイルの外周部に配設された電界緩和シールド
と、鉄心を両側から挟圧して保持するとともに高圧コイ
ルに対向する鉄心の内側角部を覆うように内側に湾曲し
た先端部を形成した1対のフレームと、を備えたことを
特徴とする。
The invention according to claim 2 is the gas according to claim 1.
In the transformer for insulation instrument, the transformer element for instrument is,
Low voltage supported coaxially with each other with low voltage coil inside
Coil and high voltage coil, low voltage coil hollow and high voltage
A ring-shaped iron core arranged so as to go around the outside of the coil
And an electric field relaxation shield arranged on the outer periphery of the high-voltage coil
The iron core is pinched from both sides to hold it, and
Curl inward to cover the inner corners of the iron core facing the
And a pair of frames having a front end formed
Characterize.

【0006】[0006]

【発明の実施の形態】以下、図に沿って本発明の実施形
態を説明する。図1は請求項1の発明の実施形態を示す
平面配置図であり、従来例を示す図4と比較しながら説
明する。図1および図4に示されるように、この実施形
態の素子1の平面形状は、一定幅を持つシールド5(コ
イルを包囲)と鉄心7が交差する略十字形である。各素
子1を放射状均等三等配置すると、図4のように各素子
の鉄心長手方向中心軸Cは円筒形状をした外箱2の半径
方向と一致して、中心部に鉄心7の端で一辺鉄心幅相当
の正三角形が形成される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a plan layout view showing an embodiment of the invention of claim 1, which will be described in comparison with FIG. 4 showing a conventional example. As shown in FIGS. 1 and 4, the planar shape of the element 1 of this embodiment is a substantially cross shape in which a shield 5 (which surrounds the coil) having a constant width and an iron core 7 intersect. When the respective elements 1 are arranged in a radial uniform manner, the central axis C in the longitudinal direction of the iron core of each element coincides with the radial direction of the outer casing 2 having a cylindrical shape as shown in FIG. An equilateral triangle corresponding to the width of the iron core is formed.

【0007】ここで、素子1を構成するの鉄心7の長手
寸法をl、鉄心端から外箱円筒中心点までの距離をα、
外箱の半径をrとすると、r=l+αとなる。一方、図
1に示すように、各素子1の鉄心7の長手方向の中心軸
Cを、一律同方向に、外箱12の半径方向と角度θずら
し、さらに中心方向ヘスライドさせる。その場合、鉄心
7の端の一部で囲まれる正三角形が形成され、その鉄心
7の端から外箱2の中心点までの距離をα’、外箱の半
径をr’とすると、r’=l・cosθ+α’となる。
Here, the longitudinal dimension of the iron core 7 constituting the element 1 is 1, the distance from the end of the iron core to the center point of the outer casing cylinder is α,
If the radius of the outer box is r, then r = 1 + α. On the other hand, as shown in FIG. 1, the central axis C in the longitudinal direction of the iron core 7 of each element 1 is uniformly displaced in the same direction as the radial direction of the outer box 12 by an angle θ, and is further slid toward the central direction. In that case, an equilateral triangle surrounded by a part of the end of the iron core 7 is formed, and if the distance from the end of the iron core 7 to the center point of the outer box 2 is α ′ and the radius of the outer box is r ′, r ′ is = L · cos θ + α ′.

【0008】角度θはシールド(高圧コイルを包囲)の
長手寸法及び各素子どうしの距離確保の制約により大き
な値がとれないが、鉄心長手方向を一律に外箱円筒の半
径方向からずらすことで、若干ではあるがcosθの割
合で半径は縮小する。又、距離α’を距離αと比較する
と、外箱2の中心部に鉄心端で形成される正三角形の一
辺が小さくなり、αより短い距離となる。従って、図1
による各素子1の配置での外箱12の半径は、図4の従
来の外箱2の半径より縮小し、ひいては外箱12全体が
縮小する。
The angle θ cannot take a large value due to the longitudinal dimension of the shield (enclosing the high-voltage coil) and the restriction of securing the distance between the elements, but by uniformly shifting the iron core longitudinal direction from the radial direction of the outer casing cylinder, Although slightly, the radius is reduced at the rate of cos θ. Further, when the distance α ′ is compared with the distance α, one side of an equilateral triangle formed by the end of the iron core in the central portion of the outer box 2 becomes smaller, which is shorter than α. Therefore, FIG.
The radius of the outer case 12 in the arrangement of the respective elements 1 according to 1 is smaller than the radius of the conventional outer case 2 of FIG. 4, and as a result, the entire outer case 12 is reduced.

【0009】図2は請求項2の発明の実施形態を示す図
であり、図3は図2のA−A線の拡大断面図であり、従
来例を示す図5、図6と比較しながら説明する。図5、
図6に示されるように、従来は、鉄心7の窓部3箇所に
フレーム8とは別に低圧シールド6を設けて鉄心7を覆
う構成としていた。その際、低圧シールド6の設置に伴
い一定のスペースが必要となり、鉄心7の面と高圧シー
ルド5間の距離が嵩み、素子1全体の寸法が大きくなる
きらいがあった。しかも、その取り付けボルト9等も電
界緩和を考慮して丸みをおびた特殊部品を使用せざるを
得なかった。
FIG. 2 is a view showing an embodiment of the invention of claim 2, and FIG. 3 is an enlarged sectional view taken along the line AA of FIG. 2, comparing with FIGS. 5 and 6 showing a conventional example. explain. Figure 5,
As shown in FIG. 6, conventionally, a low-voltage shield 6 is provided separately from the frame 8 at the three window portions of the iron core 7 to cover the iron core 7. At that time, a certain space is required due to the installation of the low-voltage shield 6, the distance between the surface of the iron core 7 and the high-voltage shield 5 increases, and the size of the entire element 1 tends to increase. Moreover, the mounting bolts 9 and the like had to use special rounded parts in consideration of the relaxation of the electric field.

【0010】また、電界緩和技術で公知のように、対向
電極で問題となるのは、電極端部や鋭利な突起部のみで
平坦部分は特に手当てを施す必要は無い。そこで、本発
明の実施形態では、図2、図3に示すように、鉄心7を
挟持するフレーム18の鉄心窓側先端を鉄心7の面の平
坦部分より若突出し且つ先端を断面湾曲形状にした先
端部18aを形成して、鉄心7の内側両端のエッジを覆
い、滑らかな湾曲に沿って電界集中を緩和している。フ
レーム18はプレス型で一体成型製作出来るので、鉄心
窓側に切れ目無く湾曲形状を形成しており、従来の低
シールド6のつなぎ部分端面での電界集中も無く、より
安定した絶縁耐力を有する。よって、高圧シールドと鉄
心面とで絶縁に必要な距離を確保すればよいことにな
る。
As is well known in the electric field relaxation technique, the problem with the counter electrode is only the electrode end or the sharp protrusion, and it is not necessary to treat the flat portion. Therefore, in the embodiment of the present invention, FIG. 2, as shown in FIG. 3, the core young interference protrudes and distal from the flat portion of the surface of the window side distal end of the core 7 of the frame 18 for holding the core 7 and to the cross-sectional curved shape The tip portion 18a is formed so as to cover the edges at the inner ends of the iron core 7 and to relax the electric field concentration along a smooth curve. Since the frame 18 can integrally molded manufactured by the press mold, it forms a seamless curved shape iron core window side, without the electric field concentration at the connecting portion end surface of the conventional low pressure <br/> shield 6, more stable insulation Has proof stress. Therefore, it is only necessary to secure a distance required for insulation between the high voltage shield and the iron core surface.

【0011】ここで、この実施形態を図6の従来例と比
較してみると、低圧シールド6と鉄心7の内側面との間
に必要であったT寸法が不要となり、その分、本発明の
実施形態では素子1全体の寸法が小さくなり小型化が実
現できた。これは高さ方向のみならず、鉄心窓部横方向
も同様なので、縦、横、奥行きの素子全体として縮小可
能である。また、従来に比べて低シールド6および取
り付けボルト9等の取り付け金具が不要となった分、部
品点数と組立コストが削減される。なお、第2の実施形
態の素子を、図1に示した請求項1の発明の実施形態
に、適用することも当然可能であり、その場合は、外箱
の高さを低くしてさらに小型化が可能となる。
Now, comparing this embodiment with the conventional example of FIG. 6, the T dimension required between the low-voltage shield 6 and the inner side surface of the iron core 7 is no longer necessary, and the present invention is accordingly reduced. In the embodiment described above, the size of the entire element 1 was reduced, and miniaturization could be realized. This is the same not only in the height direction but also in the horizontal direction of the iron core window portion, so that it is possible to reduce the entire length, width, and depth elements. Further, as compared with the conventional amount that mounting hardware such as a low pressure shield 6 and the mounting bolt 9 becomes unnecessary, the number of parts and assembly costs are reduced. It is of course possible to apply the element of the second embodiment to the embodiment of the invention of claim 1 shown in FIG. 1, and in that case, the height of the outer box is lowered to further reduce the size. Can be realized.

【0012】[0012]

【発明の効果】以上述べたように請求項1の発明によれ
ば、各素子を平面投影したときの素子の半径方向中心線
の内側が、円筒容器の回転方向の一方にそれぞれ均等に
ずらされて各素子が配置されたことにより、素子の半径
方向の配置寸法が短くなりその分、容器の径が小さくな
り小型化される。
As described above, according to the invention of claim 1, the inner side of the radial center line of each element when the elements are projected in a plane is shifted evenly in one of the rotation directions of the cylindrical container. By arranging the respective elements in this manner, the arrangement dimension of the elements in the radial direction is shortened, and the diameter of the container is reduced accordingly and the size is reduced.

【0013】請求項2の発明によれば、高圧コイルの外
周部に電界緩和シールドを配設するとともに、鉄心を両
側から挟圧して保持する1対のフレームに、高圧コイル
に対向する鉄心の内側角部を覆うように内側に湾曲した
先端部を形成したことにより、低圧側シールドが不要と
なり、部品点数の削減と小型化が可能になる。
According to the second aspect of the present invention, the electric field mitigation shield is provided on the outer peripheral portion of the high voltage coil, and the pair of frames for holding the iron core by sandwiching the iron core is provided inside the iron core facing the high voltage coil. By forming the inwardly curved tip portion so as to cover the corner portion, the low-voltage side shield becomes unnecessary, and the number of parts and the size can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1の発明の実施形態を示す平面配置図で
ある。
FIG. 1 is a plan layout view showing an embodiment of the invention of claim 1;

【図2】請求項2の発明の実施形態を示す図である。FIG. 2 is a diagram showing an embodiment of the invention of claim 2;

【図3】図2のA−A線の拡大断面図である。FIG. 3 is an enlarged cross-sectional view taken along the line AA of FIG.

【図4】従来例を示す平面配置図である。FIG. 4 is a plan layout view showing a conventional example.

【図5】従来例を示す外観図である。FIG. 5 is an external view showing a conventional example.

【図6】図5のB−B線の拡大断面図である。6 is an enlarged cross-sectional view taken along the line BB of FIG.

【符号の説明】[Explanation of symbols]

1 素子 3 高圧コイル 4 低圧コイル 5 シールド 7 鉄心 12 外箱 18 フレーム 18a 先端部 1 element 3 high voltage coil 4 low voltage coil 5 shield 7 iron core 12 outer box 18 frames 18a tip

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ガスが封入された円筒容器である外箱
に3個の計器用変器素子を放射状に平面配置してなる
ガス絶縁計器用変圧器において 各素子を放射状均等三等配置して中心部に鉄心の端で一
辺鉄心幅相当の正三角形を形成した状態から、鉄心の長
手方向の中心軸が一律同方向に角度θずれるように3個
の計器用変圧器素子を傾斜させ、外箱円筒中心点方向へ
3個の計器用変圧器素子をスライドさせて鉄心の端の一
部で囲まれる正三角形が形成されるように配置し、 鉄心から外箱円筒中心点までの距離をα’、鉄心の長手
寸法lとして、外箱の半径r’を、 r’=l・cosθ+α’ まで縮小させ たことを特徴とするガス絶縁計器用変
器。
1. A cylindrical container containing a gas.Is the outer boxWithin
3 instrument gaugesPressureAre arranged in a radial plane
In gas-insulated transformers, Arrange each element radially equally and equidistantly.
From the state of forming an equilateral triangle corresponding to the width of the side core,
3 pieces so that the central axis of the hand direction is uniformly offset by the angle θ
Inclining the transformer element for the instrument in the direction of the center point of the outer cylinder
Slide the three transformer elements for the instrument to remove the one end of the iron core.
Arrange so that an equilateral triangle surrounded by parts is formed, The distance from the iron core to the center of the outer cylinder is α ', the length of the iron core
Radius r'of the outer box is defined as the dimension l, r '= 1 / cos θ + α' Down to Gas insulation instrument transformer characterized byPressure
vessel.
【請求項2】請求項1に記載のガス絶縁計器用変圧器に
おいて、 前記計器用変圧器素子は、 圧コイルを内側にして互いに同軸上に支持された低圧
コイルおよび高圧コイルと、 低圧コイルの中空部と高圧コイル外側を一巡するように
配設されたリング状の鉄心と、 高圧コイルの外周部に配設された電界緩和シールドと、 鉄心を両側から挟圧して保持するとともに高圧コイルに
対向する鉄心の内側角部を覆うように内側に湾曲した先
端部を形成した1対のフレームと、 を備えたことを特徴とするガス絶縁計器用変器。
2. The transformer for gas-insulated instrument according to claim 1.
Oite, the voltage transformer device, a low pressure coil and high voltage coil supported coaxially with each other the low pressure coil inwardly disposed to cycle through the hollow portion and the high pressure coil outside of the low pressure coil A ring-shaped iron core, an electric field relaxation shield arranged on the outer periphery of the high-voltage coil, and a tip that holds the iron core by pinching it from both sides and curves inward to cover the inner corner of the iron core facing the high-voltage coil. varying pressure vessel for a gas insulated instrument characterized by comprising a pair of frame parts was formed, the.
JP31318296A 1996-11-25 1996-11-25 Transformers for gas insulated instruments Expired - Fee Related JP3387756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31318296A JP3387756B2 (en) 1996-11-25 1996-11-25 Transformers for gas insulated instruments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31318296A JP3387756B2 (en) 1996-11-25 1996-11-25 Transformers for gas insulated instruments

Publications (2)

Publication Number Publication Date
JPH10154624A JPH10154624A (en) 1998-06-09
JP3387756B2 true JP3387756B2 (en) 2003-03-17

Family

ID=18038095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31318296A Expired - Fee Related JP3387756B2 (en) 1996-11-25 1996-11-25 Transformers for gas insulated instruments

Country Status (1)

Country Link
JP (1) JP3387756B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053409A (en) * 2006-08-24 2008-03-06 Toshiba Corp Transformer for gas-insulated instrument
JP2011087400A (en) * 2009-10-15 2011-04-28 Mitsubishi Electric Corp Transformer for measuring instrument
DE102020201100A1 (en) 2020-01-30 2021-08-05 Siemens Aktiengesellschaft Voltage converter

Also Published As

Publication number Publication date
JPH10154624A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
TWI405224B (en) A three-phase current transformer and an electricity station equipped with such a current transformer
JP3387756B2 (en) Transformers for gas insulated instruments
JPH11317319A (en) Current transformer for gas insulating type switching device
JPH0518450B2 (en)
JP2001250731A (en) Current transformer
EP2565884A2 (en) High voltage coil
CN213546101U (en) Built-in current transformer
WO2023166687A1 (en) Capacitor voltage-dividing type transformer and voltage transformation apparatus
JPH03159217A (en) Transformer
JPS63169010A (en) Foil wound transformer
JPH11111539A (en) Stationary induction electrical apparatus
JPS6373511A (en) Foil-wound transformer
JPS5832255Y2 (en) Three-phase gas-insulated instrument transformer
JPH0457087B2 (en)
JP2563218Y2 (en) Transformers for gas insulated instruments
JP2660025B2 (en) Cable termination conductor connection device
JP2839656B2 (en) Stationary induction electrical equipment
JPH0724885Y2 (en) Gas insulated electrical equipment
JPS6033695Y2 (en) gas insulated electrical equipment
JPH0351935Y2 (en)
JPS59127819A (en) Stationary induction apparatus
JPH10125548A (en) Transformer for grounded type instrument
JPH05326297A (en) High voltage transformer
JP2019106468A (en) Voltage current transformer for gas insulation meter
JPS63111606A (en) Foil wound transformer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021224

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees