WO2023166687A1 - Capacitor voltage-dividing type transformer and voltage transformation apparatus - Google Patents

Capacitor voltage-dividing type transformer and voltage transformation apparatus Download PDF

Info

Publication number
WO2023166687A1
WO2023166687A1 PCT/JP2022/009296 JP2022009296W WO2023166687A1 WO 2023166687 A1 WO2023166687 A1 WO 2023166687A1 JP 2022009296 W JP2022009296 W JP 2022009296W WO 2023166687 A1 WO2023166687 A1 WO 2023166687A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
main circuit
intermediate electrode
transformer
capacitor
Prior art date
Application number
PCT/JP2022/009296
Other languages
French (fr)
Japanese (ja)
Inventor
達也 影山
大輝 大脇
大輔 澁谷
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Priority to PCT/JP2022/009296 priority Critical patent/WO2023166687A1/en
Publication of WO2023166687A1 publication Critical patent/WO2023166687A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/24Voltage transformers

Definitions

  • the present invention relates to a capacitor voltage dividing transformer and a voltage transformation device including the capacitor voltage dividing transformer.
  • Patent Document 1 discloses a capacitor voltage dividing transformer that divides and outputs the main circuit voltage according to a predetermined transformation ratio.
  • a capacitor voltage dividing transformer that divides and outputs the main circuit voltage according to a predetermined transformation ratio.
  • a high voltage side capacitor including the main circuit conductor and the voltage dividing electrode and a low voltage side capacitor including the voltage dividing electrode and the ground are formed between the main circuit conductor and the ground. .
  • the voltage of the main circuit conductor is divided by each capacitor and output.
  • An object of one aspect of the present invention is to realize a capacitor voltage dividing transformer or the like in which the low-voltage side capacitance can be easily adjusted during manufacturing.
  • a capacitor voltage dividing transformer includes a main circuit conductor to which a high voltage is applied and which extends in the axial direction; At least one of an insulator cylinder having a cylindrical shape arranged coaxially with a circuit conductor, an intermediate electrode covering at least a part of an outer side of the insulator cylinder, an insulating film covering the intermediate electrode, and the insulating film. and a ground electrode covering the portion.
  • FIG. 4 is a circuit diagram showing an example of voltage transformation by the voltage transformation device according to Embodiment 1;
  • FIG. 1 is a cross-sectional view showing the configuration of a voltage transformer according to Embodiment 1;
  • FIG. 1 is a diagram showing the configuration of a main part of a capacitor voltage dividing transformer according to Embodiment 1;
  • FIG. 10 is a diagram showing the configuration of a main part of a voltage transformer according to Embodiment 2;
  • FIG. 10 is a diagram showing the configuration of the main part of the voltage transformer according to Embodiment 3;
  • FIG. 1 is a circuit diagram showing an example of voltage transformation by a voltage transformation device 1.
  • the voltage transformer 1 comprises capacitors 111 and 112 connected in series with each other.
  • the capacitance of the capacitor 111 on the high voltage side is C1.
  • the capacitance of capacitor 112 on the low voltage side is C2.
  • the opposite side of the capacitor 111 to the capacitor 112 is connected to the AC power supply 120 .
  • the opposite side of the capacitor 112 to the capacitor 111 is grounded.
  • a resistor 130 is connected in parallel with the capacitor 112 .
  • the resistance value of resistor 130 is R.
  • a voltage V1 is applied to the voltage transformer 1 by the AC power supply 120 .
  • Voltage V1 is divided by capacitor 111, capacitor 112 and resistor 130 according to capacitances C1 and C2 and resistance value R, respectively.
  • the voltage V2 applied to resistor 130 is equal to the divided voltage applied to capacitor 112 .
  • the voltage V1 is transformed into the voltage V2.
  • FIG. 2 is a cross-sectional view showing the configuration of the voltage transformer 1.
  • the voltage transformer 1 includes a capacitor voltage dividing transformer 10 and a container 20 that accommodates the capacitor voltage dividing transformer 10 .
  • the voltage transformer 1 comprises one capacitor voltage dividing transformer 10 .
  • the number of capacitor voltage dividing transformers 10 included in the voltage transformer 1 is not limited to this.
  • the interior of container 20 is filled with a liquid or gas insulator.
  • the container 20 has, for example, a structure that can be divided into two.
  • the two divided containers 20 may be combined so as to cover the capacitor voltage dividing transformer 10 .
  • FIG. 3 is a diagram showing the configuration of the main part of the capacitor voltage dividing transformer 10. As shown in FIG. FIG. 3 also shows the container 20 .
  • reference numeral 301 is a cross-sectional view of the voltage transformer 1 taken along a plane perpendicular to the axial direction of the main circuit conductor 11 .
  • Reference numeral 302 is a sectional view taken along the line AA in the sectional view indicated by reference numeral 301.
  • the capacitor voltage dividing transformer 10 comprises a main circuit conductor 11, an insulator cylinder 12, an intermediate electrode 13, an insulating film 14, and a ground electrode 15.
  • Capacitor voltage divider transformer 10 also includes wiring (not shown) electrically connected to each of main circuit conductor 11 , intermediate electrode 13 , and ground electrode 15 .
  • the main circuit conductor 11 is a conductor connected to an AC power supply 120 (see FIG. 1) and to which a high voltage is applied.
  • the main circuit conductor 11 has a shape extending in the axial direction.
  • the main circuit conductor 11 has, for example, a cylindrical shape or a columnar shape.
  • the axial direction of the main circuit conductor 11 is defined as the X-axis direction, and two directions perpendicular to the X-axis direction and perpendicular to each other are defined as the Y-axis direction and the Z-axis direction.
  • any known conductor can be used without particular limitation.
  • the main circuit conductor 11 is fixed relative to the container 20 .
  • the insulator cylinder 12 is a structure having a cylindrical shape.
  • the insulator cylinder 12 is arranged coaxially with the main circuit conductor 11 .
  • the insulator forming the insulator cylinder 12 is, for example, epoxy resin.
  • the intermediate electrode 13 covers at least part of the outside of the insulator cylinder 12 .
  • the intermediate electrode 13 is a metal foil wrapped around the insulator cylinder 12 .
  • An example of the material of the metal foil that forms the intermediate electrode 13 is copper.
  • Main circuit conductor 11, insulator cylinder 12 and intermediate electrode 13 constitute capacitor 111 shown in FIG.
  • the insulating film 14 covers the intermediate electrode 13 .
  • the insulating film 14 is an insulating film wrapped around the intermediate electrode 13 so as to cover the outside thereof. Examples of insulators include polyester.
  • the insulating film 14 electrically insulates the intermediate electrode 13 and the ground electrode 15 .
  • the ground electrode 15 covers at least part of the insulating film 14 .
  • the ground electrode 15 is a metal foil wrapped around the outside of the insulating film 14 .
  • An example of the material of the metal foil forming the ground electrode 15 is copper, like the material of the metal foil forming the intermediate electrode 13 .
  • Intermediate electrode 13, insulating film 14 and ground electrode 15 constitute capacitor 112 shown in FIG.
  • the voltage transformer 1 further includes a mounting plate 21 .
  • the mounting plate 21 is a structure for fixing the insulator cylinder 12 to the container 20 .
  • the mounting plates 21 are positioned at both ends of the insulator cylinder 12 in the axial direction of the main circuit conductor 11 when the insulator cylinder 12 is coaxially attached to the main circuit conductor 11 .
  • the material of the mounting plate 21 is not particularly limited as long as it has rigidity, and may be aluminum or epoxy resin, for example.
  • the mounting plate 21 may be formed integrally with the insulator cylinder 12 .
  • the insulator cylinder 12 is fixed to the container 20 by attaching the mounting plate 21 to the container 20 . Thereby, the capacitor voltage dividing transformer 10 can be fixed to the container 20 without being brought into direct contact with the container 20 .
  • the mounting plate 21 has a flat plate shape extending in the radial direction.
  • the container 20 has two axial contact portions 20a that contact the mounting plate 21 from the outer side of the main circuit conductor 11 in the axial direction.
  • the outer side in the axial direction refers to the opposite side of each mounting plate 21 from the other mounting plate 21 in the axial direction.
  • the mounting plate 21 can be attached to the container 20 in a state where the position of the mounting plate 21 in the axial direction is fixed by sandwiching the mounting plate 21 between the two axial contact portions 20a.
  • the container 20 further has radial contact portions 20b that contact the mounting plate 21 from the outside in the radial direction at two locations in the axial direction.
  • the radial contact portion 20b is provided, for example, over the entire circumferential direction at a position corresponding to the position of the mounting plate 21 in the axial direction.
  • the radial contact portion 20b contacts the mounting plate 21 from the outside in the radial direction, so that the mounting plate 21 can be attached to the container 20 while the position of the mounting plate 21 in the radial direction is fixed.
  • the radial contact portion 20b does not necessarily have to be provided over the entire circumferential direction.
  • the position, number and size of the radial contact portions 20b may be appropriately determined so that the position of the mounting plate 21 in the radial direction can be fixed.
  • the structure for attaching the mounting plate 21 to the container 20 is not limited to the above example.
  • the container 20 may have portions that contact the two mounting plates 21 from the inner side or the outer side in the axial direction.
  • the voltage transformer 1 further includes a shield 22 .
  • the shield 22 reduces the electric field between the insulator cylinder 12 and the region of the main circuit conductor 11 not facing the insulator cylinder 12 .
  • any known material capable of alleviating an electric field can be used without particular limitation.
  • the shield 22 is arranged outside the two mounting plates 21 in the axial direction of the main circuit conductor 11 .
  • the electric field between the region of the main circuit conductor 11 not facing the insulator cylinder 12 and the insulator cylinder 12 increases the capacitance of the capacitor 111 . Therefore, an error occurs in the capacitance of the capacitor 111 due to the electric field. As a result, an error occurs in the capacitance ratio of the capacitors 111 and 112 and also in the voltage division of the capacitor 112 . By alleviating the electric field with the shield 22, the voltage division error of the capacitor 112 can be reduced.
  • the shield 22 is not essential in the voltage transformer 1 and may be omitted.
  • a method of manufacturing the voltage transformer 1 is as follows. First, the insulator cylinder 12 is formed.
  • the intermediate electrode 13 is formed by cutting a metal foil, which is the material of the intermediate electrode 13 , into a width equal to the length of the intermediate electrode 13 in the axial direction and winding it around the insulator cylinder 12 .
  • the insulating film 14 is formed on the intermediate electrode 13 by cutting an insulating film, which is the material of the insulating film 14, into a width equal to the length of the insulating film 14 in the axial direction and winding it.
  • the ground electrode 15 is formed by cutting a metal foil, which is the material of the ground electrode 15, into a width equal to the length of the ground electrode 15 in the axial direction and winding it on the insulating film 14.
  • a mounting plate 21 and a shield 22 are attached to the insulator cylinder 12 .
  • a main circuit conductor is inserted into the insulator cylinder 12 .
  • the mounting plate 21 attached to the insulator cylinder 12 and the main circuit conductor 11 are each fixed to the container 20 .
  • the container 20 is filled with a liquid or gas insulator.
  • the voltage transformer 1 is manufactured by the above steps.
  • the intermediate electrode 13, the insulating film 14, and the ground electrode 15 are formed on the insulator cylinder 12 without using casting or the like. Therefore, the design specifications of the intermediate electrode 13, the insulating film 14, and the ground electrode 15 can be easily changed. For example, in the capacitor voltage dividing transformer 10, the material (dielectric constant) and thickness of the insulator forming the insulating film 14, and/or the number of films can be arbitrarily changed according to the required performance. Therefore, the capacitance of the capacitor 112 can be easily adjusted when the capacitor voltage dividing transformer 10 is manufactured.
  • the metal foil forming the intermediate electrode 13 and the ground electrode 15 is preferably manufactured by an electrolytic method or a rolling method.
  • metal foils produced by electrolysis or rolling have less residual stress than metal foils produced by other methods. Therefore, even if the residual stress changes due to the passage of time after manufacturing the metal foil or environmental changes such as temperature changes, the change in the shape of the metal foil is small. Therefore, the change in shape of the intermediate electrode 13 and the ground electrode 15 formed of the metal foil is small. That is, fluctuations in the capacitance of the capacitors 111 and 112 due to passage of time or environmental changes such as temperature changes are reduced. Therefore, errors in voltage transformation by the voltage transformer 1 caused by variations in the capacitance ratio of the capacitors 111 and 112 are reduced.
  • the intermediate electrode 13 and the ground electrode 15 from metal foil, the weight can be reduced as compared with the case of forming by deforming and welding a metal plate, for example.
  • the metal foil which is the material of the intermediate electrode 13 and the ground electrode 15, may be heat-treated before manufacturing the voltage transformer 1, the metal foil, which is the material of the intermediate electrode 13 and the ground electrode 15, may be heat-treated. By performing the heat treatment, the residual stress of the metal foil is further reduced. Forming the intermediate electrode 13 and the ground electrode 15 from such a metal foil further reduces changes in the shape of the intermediate electrode 13 and the ground electrode 15 due to the passage of time or environmental changes such as temperature changes. That is, the fluctuations in the capacitance of the capacitors 111 and 112 due to passage of time or environmental changes such as temperature changes are further reduced. Therefore, errors in the voltage transformation by the voltage transformer 1 caused by variations in the capacitance ratio of the capacitors 111 and 112 are further reduced.
  • the length of the ground electrode 15 in the axial direction of the main circuit conductor 11 is preferably longer than the length of the intermediate electrode 13 in the axial direction.
  • Such a ground electrode 15 functions as a shield electrode that mitigates the electric field on the intermediate electrode 13 and contributes to the equalization of the electric field between the main circuit conductor 11 and the intermediate electrode 13 .
  • the ground electrode 15 suppresses an electric field to the end of the intermediate electrode 13 and an electric field to the surface of the intermediate electrode 13 on the insulating film 14 side. This can reduce the amount of change in the capacitance C1 of the capacitor 111 when the temperature of a part or the whole of the capacitor voltage dividing transformer 10 changes and the intermediate electrode 13 deforms due to the temperature change.
  • the temperature of a part or the whole of the capacitor voltage dividing transformer 10 may change due to changes in the ambient temperature after the voltage transformer 1 is manufactured or during use, or due to current flowing through the main circuit conductor 11 . Heat generation of the conductor 11 or heat generation of peripheral devices can be mentioned. At the same time, the calculation accuracy of the capacitance C1 when designing the capacitor voltage dividing transformer 10 is also improved.
  • the metal forming the intermediate electrode 13 Since the metal forming the intermediate electrode 13 has a positive coefficient of thermal expansion, it expands as the temperature rises. As a result, the surface area of the intermediate electrode 13 increases with increasing temperature.
  • the dielectric constant of the insulator forming the insulator cylinder 12 may decrease or increase as the temperature rises, depending on the type of insulator. When the temperature drops, the surface area of the intermediate electrode 13 and the dielectric constant of the insulator forming the insulator cylinder 12 change opposite to when the temperature rises.
  • the intermediate electrode 13 and the insulator cylinder 12 will not be affected by the temperature fluctuations of the capacitor 111. They act to change the capacitance in opposite directions. Therefore, the variation of the capacitance with respect to the temperature variation of the capacitor 111 is determined by the balance between the influence of the variation of the surface area of the intermediate electrode 13 and the variation of the dielectric constant of the insulator forming the insulator cylinder 12. .
  • the material of the insulator cylinder 12 is selected so that the influence of variations in the surface area of the intermediate electrode 13 and the influence of variations in the dielectric constant of the insulator forming the insulator cylinder 12 cancel each other out with respect to temperature changes. It is preferable to select according to the material of the electrode 13 . By selecting the material of the insulator cylinder 12 in this way, the capacitance of the capacitor 111 can be made substantially constant with respect to the temperature fluctuation of the capacitor 111 .
  • the capacitor voltage dividing transformer 10 by changing the size of the insulator cylinder 12 in the radial direction, the insulation distance from the main circuit conductor 11 can be secured. Therefore, the applicable voltage class of the capacitor voltage dividing transformer 10 can be easily expanded.
  • the size of the insulator cylinder 12 in the axial direction of the main circuit conductor 11 is enlarged, and the intermediate electrode 13, the insulating film 14, and the ground electrode 15 are added. can easily be increased in number of capacitor voltage divider transformers 10 that share . If the voltage transformer device 1 comprises a plurality of capacitive divider transformers 10 axially adjacent to the main circuit conductors 11, the capacitive divider transformers 10 share a single main circuit conductor 11. . Further, in the voltage transformer 1, by changing the length of the intermediate electrode 13 in the axial direction of the main circuit conductor 11, the voltage division ratio can be easily adjusted.
  • FIG. 4 is a diagram showing the configuration of the main part of the voltage transformer 2 according to Embodiment 2. As shown in FIG. FIG. 4 shows a capacitor voltage dividing transformer 10A and a container 20 included in the voltage transformer 2. As shown in FIG. 4 , reference numeral 401 is a cross-sectional view of the voltage transformer 2 taken along a plane perpendicular to the axial direction of the main circuit conductor 11 . Reference numeral 402 is a cross-sectional view taken along the line BB in the cross-sectional view indicated by reference numeral 401. FIG.
  • the voltage transforming device 2 differs from the voltage transforming device 1 in that it includes a capacitor voltage dividing transformer 10A instead of the capacitor voltage dividing transformer 10.
  • the capacitor voltage dividing transformer 10A differs from the capacitor voltage dividing transformer 10 in that an intermediate electrode 23 is provided instead of the intermediate electrode 13 .
  • the capacitor voltage dividing transformer 10A includes a main circuit conductor 11, an insulator cylinder 12, an insulating film 14, and a ground electrode 15, similar to the capacitor voltage dividing transformer 10.
  • the insulator cylinder 12, the insulator film 14 and the ground electrode 15 are omitted in order to make the shape of the intermediate electrode 23 easier to see.
  • the voltage transformer 2 also includes a mounting plate 21 and a shield 22, similar to the voltage transformer 1. As shown in FIG. The mounting plate 21 and the shield 22 are also omitted in FIG.
  • the length of the intermediate electrode 23 in the circumferential direction of the main circuit conductor 11 is shorter than the length of the insulator cylinder 12 in the circumferential direction of the main circuit conductor 11 . Therefore, as shown in FIG. 4, a gap 23a is formed between one end and the other end of the intermediate electrode 23 in the circumferential direction of the main circuit conductor 11 . Since the gap 23 a is formed in the intermediate electrode 23 , a current that circulates around the main circuit conductor 11 in the circumferential direction does not flow in the intermediate electrode 23 . Therefore, in the voltage transformer 2, the induced current and the induced electromotive force generated in the intermediate electrode 23 when a voltage is applied to the main circuit conductor 11 are reduced.
  • the width of the gap 23a may be appropriately determined so that the induced current and the induced electromotive force are sufficiently small, and may be, for example, 1 mm or more and 3 mm or less.
  • the voltage in the capacitor 112 fluctuates. Due to this variation, the voltage V2 transformed by the voltage transformer 2 also varies. That is, it causes an error in voltage transformation by the voltage transformation device 2 . By reducing the induced electromotive force, the voltage transformation error in the voltage transformer 2 is reduced.
  • the method of manufacturing the voltage transformer 2 differs from the method of manufacturing the voltage transformer 1 only in the process of forming the intermediate electrode 23 .
  • the metal foil, which is the material of the intermediate electrode 23 is cut shorter than the length of the insulator cylinder 12 in the circumferential direction of the main circuit conductor 11 by the width of the gap 23a. It wraps around the insulator cylinder 12 on top.
  • the capacitor voltage dividing transformer 10A includes the insulator cylinder 12, the insulator film 14, and the ground electrode 15.
  • the shape of the insulator cylinder 12, the insulating film 14, and the ground electrode 15 may be as described in the first embodiment. That is, these components need not have shapes corresponding to the intermediate electrode 23 .
  • the shape of the intermediate electrode 23 is not necessarily limited to one in which the gap 23a is formed.
  • the intermediate electrode 23 need not include a closed loop that circulates in the circumferential direction of the main circuit conductor 11 .
  • the intermediate electrode 23 may have a structure in which one end side and the other end side in the circumferential direction of the axis of the main circuit conductor 11 are separated from each other in the radial direction of the main circuit conductor 11 . Even if the intermediate electrode 23 has such a shape, the induced current and induced electromotive force generated in the intermediate electrode 23 when a high voltage is applied to the main circuit conductor 11 are reduced. Therefore, the voltage transformation error in the voltage transformer 2 is reduced.
  • FIG. 5 is a diagram showing the configuration of the main part of the voltage transformer 3 according to Embodiment 3. As shown in FIG. FIG. 5 shows a capacitor voltage dividing transformer 10 and a container 20 included in the voltage transformer 3. As shown in FIG. 5 , reference numeral 501 is a cross-sectional view of the voltage transformer 3 in a plane perpendicular to the axial direction of the main circuit conductor 11 . Reference numeral 502 is a sectional view taken along line CC of the sectional view indicated by reference numeral 501. FIG.
  • the voltage transformer 3 is a voltage transformer that can handle three-phase AC power.
  • the voltage transformer 3 differs from the voltage transformer 1 in that it comprises three capacitive divider transformers 10 whose main circuit conductors 11 are separate from each other.
  • a container 20 houses three capacitor voltage divider transformers 10 .
  • the voltage transformer device 3 may comprise a common mounting plate 21 corresponding to the three insulator cylinders 12 of the three capacitive voltage divider transformers 10 .
  • the three capacitor voltage dividing transformers 10 respectively correspond to three-phase AC power.
  • Such a voltage transformer 3 also has the same effects as the voltage transformer 1 .
  • a capacitor voltage dividing transformer comprises an axially extending main circuit conductor to which a high voltage is applied; an insulator cylinder having a cylindrical shape; an intermediate electrode covering at least a portion of the outside of the insulator cylinder; an insulating film covering the intermediate electrode; and a ground electrode covering at least a portion of the insulating film.
  • the low-voltage side capacitance can be easily adjusted when manufacturing the capacitor voltage dividing transformer.
  • the intermediate electrode does not include a closed loop that circulates in the circumferential direction of the main circuit conductor.
  • the length of the intermediate electrode in the circumferential direction is shorter than the length of the insulator cylinder in the circumferential direction.
  • a gap is formed in a part of the intermediate electrode in the circumferential direction of the main circuit conductor. Therefore, the current that circulates around the main circuit conductor in the circumferential direction does not flow.
  • the length of the ground electrode in the axial direction is longer than the length of the intermediate electrode in the axial direction.
  • the ground electrode suppresses the electric field to the end of the intermediate electrode and the electric field to the insulating film side surface of the intermediate electrode. Therefore, it is possible to reduce the amount of change in capacitance of the high-voltage side capacitor when the intermediate electrode is deformed due to temperature change. Furthermore, the calculation accuracy of the capacitance of the high-voltage side capacitor is improved when designing the capacitor voltage dividing transformer.
  • a voltage transformer according to aspect 5 of the present invention includes the capacitor voltage dividing transformer according to any one of the above aspects, and a container housing the capacitor voltage dividing transformer.
  • a voltage transformation device comprises three capacitor voltage dividing transformers in which the main circuit conductors are separate from each other, and the container houses the three capacitor voltage dividing transformers. good too.
  • the voltage transformer according to aspect 7 of the present invention further includes mounting plates fixed to both ends of the insulator cylinder in the axial direction, and the insulator cylinder is attached to the container by attaching the mounting plates to the container. is preferably fixed to
  • the capacitor voltage dividing transformer can be fixed to the container without direct contact with the container.
  • the present invention is not limited to the above-described embodiments, but can be modified in various ways within the scope of the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. is also included in the technical scope of the present invention. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment.
  • Reference Signs List 1 2, 3 voltage transformer 10, 10A capacitor voltage dividing transformer 11 main circuit conductor 12 insulator cylinder 13, 23 intermediate electrode 14 insulating film 15 ground electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformers For Measuring Instruments (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

Provided is a capacitor voltage-dividing type transformer which can easily adjust low-voltage side capacitance. A capacitor voltage dividing type transformer (10) comprises: a main circuit conductor (11) to which a high voltage is applied and which extends in the axial direction; an insulator cylinder (12) which has a cylindrical shape and is disposed coaxially with the main circuit conductor at the outside of the main circuit conductor; an intermediate electrode (13) that covers at least a part of the outside of the insulator cylinder; an insulating film (14) that covers the intermediate electrode; and a grounding electrode (15) that covers at least a part of the insulating film.

Description

コンデンサ分圧形変成器および電圧変成装置Capacitor voltage divider transformer and voltage transformer
 本発明は、コンデンサ分圧形変成器、および当該コンデンサ分圧形変成器を備える電圧変成装置に関する。 The present invention relates to a capacitor voltage dividing transformer and a voltage transformation device including the capacitor voltage dividing transformer.
 特許文献1には、主回路電圧を所定の変圧比に応じ分圧して出力するコンデンサ分圧形変成器が開示されている。当該コンデンサ分圧形変成器においては、主回路導体と大地との間に、主回路導体及び分圧電極を含む高圧側コンデンサと、分圧電極及び大地を含む低圧側コンデンサとが形成されている。主回路導体の電圧が、各コンデンサにより分圧されて出力される。 Patent Document 1 discloses a capacitor voltage dividing transformer that divides and outputs the main circuit voltage according to a predetermined transformation ratio. In the capacitor voltage dividing transformer, a high voltage side capacitor including the main circuit conductor and the voltage dividing electrode and a low voltage side capacitor including the voltage dividing electrode and the ground are formed between the main circuit conductor and the ground. . The voltage of the main circuit conductor is divided by each capacitor and output.
日本国特開2004-128304号Japanese Patent Application Laid-Open No. 2004-128304
 コンデンサ分圧形変成器の製造時には、要求される性能に応じて、低圧側静電容量を調整する必要がある。本発明の一態様は、製造時に低圧側静電容量を容易に調整できるコンデンサ分圧形変成器などを実現することを目的とする。  When manufacturing a capacitor voltage dividing transformer, it is necessary to adjust the low-voltage side capacitance according to the required performance. An object of one aspect of the present invention is to realize a capacitor voltage dividing transformer or the like in which the low-voltage side capacitance can be easily adjusted during manufacturing.
 上記の課題を解決するため、本発明の一態様に係るコンデンサ分圧形変成器は、高電圧が印加される、軸方向に延伸する主回路導体と、前記主回路導体の外側に、前記主回路導体と同軸に配される、円筒形状を有する絶縁体円筒と、前記絶縁体円筒の外側の少なくとも一部を被覆する中間電極と、前記中間電極を覆う絶縁膜と、前記絶縁膜の少なくとも一部を覆う接地電極と、を備える。 In order to solve the above problems, a capacitor voltage dividing transformer according to an aspect of the present invention includes a main circuit conductor to which a high voltage is applied and which extends in the axial direction; At least one of an insulator cylinder having a cylindrical shape arranged coaxially with a circuit conductor, an intermediate electrode covering at least a part of an outer side of the insulator cylinder, an insulating film covering the intermediate electrode, and the insulating film. and a ground electrode covering the portion.
 本発明の一態様によれば、製造時に低圧側静電容量を容易に調整できるコンデンサ分圧形変成器などを実現できる。 According to one aspect of the present invention, it is possible to realize a capacitor voltage dividing transformer or the like that can easily adjust the low-voltage side capacitance during manufacturing.
実施形態1に係る電圧変成装置による電圧変成の例を示す回路図である。4 is a circuit diagram showing an example of voltage transformation by the voltage transformation device according to Embodiment 1; FIG. 実施形態1に係る電圧変成装置の構成を示す断面図である。1 is a cross-sectional view showing the configuration of a voltage transformer according to Embodiment 1; FIG. 実施形態1に係るコンデンサ分圧形変成器の主要部の構成を示す図である。1 is a diagram showing the configuration of a main part of a capacitor voltage dividing transformer according to Embodiment 1; FIG. 実施形態2に係る電圧変成装置の、要部の構成を示す図である。FIG. 10 is a diagram showing the configuration of a main part of a voltage transformer according to Embodiment 2; 実施形態3に係る電圧変成装置の、要部の構成を示す図である。FIG. 10 is a diagram showing the configuration of the main part of the voltage transformer according to Embodiment 3;
 〔実施形態1〕
 以下、本発明の一実施形態について、詳細に説明する。
[Embodiment 1]
An embodiment of the present invention will be described in detail below.
 (電圧変成)
 図1は、電圧変成装置1による電圧変成の例を示す回路図である。図1に示す例では、電圧変成装置1は、互いに直列に接続されたコンデンサ111,112を備える。高圧側のコンデンサ111の静電容量はC1である。低圧側のコンデンサ112の静電容量はC2である。コンデンサ111の、コンデンサ112とは逆側は、交流電源120に接続されている。コンデンサ112の、コンデンサ111とは逆側は、接地されている。コンデンサ112と並列に、抵抗130が接続されている。抵抗130の抵抗値はRである。
(voltage transformation)
FIG. 1 is a circuit diagram showing an example of voltage transformation by a voltage transformation device 1. As shown in FIG. In the example shown in FIG. 1, the voltage transformer 1 comprises capacitors 111 and 112 connected in series with each other. The capacitance of the capacitor 111 on the high voltage side is C1. The capacitance of capacitor 112 on the low voltage side is C2. The opposite side of the capacitor 111 to the capacitor 112 is connected to the AC power supply 120 . The opposite side of the capacitor 112 to the capacitor 111 is grounded. A resistor 130 is connected in parallel with the capacitor 112 . The resistance value of resistor 130 is R.
 交流電源120により、電圧変成装置1に電圧V1が印加される。電圧V1は、コンデンサ111と、コンデンサ112および抵抗130とのそれぞれに、静電容量C1,C2および抵抗値Rに応じて分圧される。抵抗130に印加される電圧V2は、コンデンサ112に印加される分圧に等しくなる。これにより、電圧V1が電圧V2に変成される。 A voltage V1 is applied to the voltage transformer 1 by the AC power supply 120 . Voltage V1 is divided by capacitor 111, capacitor 112 and resistor 130 according to capacitances C1 and C2 and resistance value R, respectively. The voltage V2 applied to resistor 130 is equal to the divided voltage applied to capacitor 112 . As a result, the voltage V1 is transformed into the voltage V2.
 (電圧変成装置1の構成)
 図2は、電圧変成装置1の構成を示す断面図である。図2に示すように、電圧変成装置1は、コンデンサ分圧形変成器10と、コンデンサ分圧形変成器10を収容する容器20とを備える。図2においては、電圧変成装置1は、コンデンサ分圧形変成器10を1つ備える。ただし、電圧変成装置1が備えるコンデンサ分圧形変成器10の数はこれに限らない。容器20の内部には液体または気体の絶縁体が充填されている。
(Configuration of voltage transformer 1)
FIG. 2 is a cross-sectional view showing the configuration of the voltage transformer 1. As shown in FIG. As shown in FIG. 2, the voltage transformer 1 includes a capacitor voltage dividing transformer 10 and a container 20 that accommodates the capacitor voltage dividing transformer 10 . In FIG. 2, the voltage transformer 1 comprises one capacitor voltage dividing transformer 10 . However, the number of capacitor voltage dividing transformers 10 included in the voltage transformer 1 is not limited to this. The interior of container 20 is filled with a liquid or gas insulator.
 容器20は、例えば2つに分割可能な構造を有している。このような構造を有する容器20にコンデンサ分圧形変成器10を収容するときには、2つに分割した容器20を、コンデンサ分圧形変成器10を覆うように結合させればよい。 The container 20 has, for example, a structure that can be divided into two. When the capacitor voltage dividing transformer 10 is housed in the container 20 having such a structure, the two divided containers 20 may be combined so as to cover the capacitor voltage dividing transformer 10 .
 図3は、コンデンサ分圧形変成器10の主要部の構成を示す図である。図3には、容器20についても合わせて示している。図3において、符号301は、主回路導体11の軸方向に垂直な面における電圧変成装置1の断面図である。符号302は、符号301に示した断面図におけるA-A線断面図である。図3に示すように、コンデンサ分圧形変成器10は、主回路導体11、絶縁体円筒12、中間電極13、絶縁膜14、および接地電極15を備える。また、コンデンサ分圧形変成器10は、主回路導体11、中間電極13、および接地電極15のそれぞれに電気的に接続された配線(不図示)を備える。 FIG. 3 is a diagram showing the configuration of the main part of the capacitor voltage dividing transformer 10. As shown in FIG. FIG. 3 also shows the container 20 . In FIG. 3 , reference numeral 301 is a cross-sectional view of the voltage transformer 1 taken along a plane perpendicular to the axial direction of the main circuit conductor 11 . Reference numeral 302 is a sectional view taken along the line AA in the sectional view indicated by reference numeral 301. FIG. As shown in FIG. 3, the capacitor voltage dividing transformer 10 comprises a main circuit conductor 11, an insulator cylinder 12, an intermediate electrode 13, an insulating film 14, and a ground electrode 15. Capacitor voltage divider transformer 10 also includes wiring (not shown) electrically connected to each of main circuit conductor 11 , intermediate electrode 13 , and ground electrode 15 .
 主回路導体11は、交流電源120(図1参照)に接続され、高電圧が印加される導体である。主回路導体11は、軸方向に延伸する形状を有する。主回路導体11は、例えば円筒形状、または円柱形状を有する。座標軸を示している図面では、主回路導体11の軸方向をX軸方向とし、X軸方向に垂直かつ互いに直交する2方向をY軸方向およびZ軸方向としている。主回路導体11の材料としては、公知の導体を特に制限されず用いることができる。主回路導体11は容器20に対して固定されている。 The main circuit conductor 11 is a conductor connected to an AC power supply 120 (see FIG. 1) and to which a high voltage is applied. The main circuit conductor 11 has a shape extending in the axial direction. The main circuit conductor 11 has, for example, a cylindrical shape or a columnar shape. In the drawings showing coordinate axes, the axial direction of the main circuit conductor 11 is defined as the X-axis direction, and two directions perpendicular to the X-axis direction and perpendicular to each other are defined as the Y-axis direction and the Z-axis direction. As the material of the main circuit conductor 11, any known conductor can be used without particular limitation. The main circuit conductor 11 is fixed relative to the container 20 .
 絶縁体円筒12は、円筒形状を有する構造物である。絶縁体円筒12は、主回路導体11と同軸に配される。絶縁体円筒12を形成する絶縁体は、例えばエポキシ樹脂である。 The insulator cylinder 12 is a structure having a cylindrical shape. The insulator cylinder 12 is arranged coaxially with the main circuit conductor 11 . The insulator forming the insulator cylinder 12 is, for example, epoxy resin.
 中間電極13は、絶縁体円筒12の外側の少なくとも一部を被覆する。中間電極13は、絶縁体円筒12に巻き付けられる金属箔である。中間電極13を形成する金属箔の材料の例としては銅が挙げられる。主回路導体11、絶縁体円筒12および中間電極13が、図1に示したコンデンサ111を構成する。 The intermediate electrode 13 covers at least part of the outside of the insulator cylinder 12 . The intermediate electrode 13 is a metal foil wrapped around the insulator cylinder 12 . An example of the material of the metal foil that forms the intermediate electrode 13 is copper. Main circuit conductor 11, insulator cylinder 12 and intermediate electrode 13 constitute capacitor 111 shown in FIG.
 絶縁膜14は、中間電極13を覆う。絶縁膜14は、中間電極13の外側を覆うように巻き付けられる絶縁体のフィルムである。絶縁体の例としてはポリエステルが挙げられる。絶縁膜14は、中間電極13と接地電極15とを電気的に絶縁する。 The insulating film 14 covers the intermediate electrode 13 . The insulating film 14 is an insulating film wrapped around the intermediate electrode 13 so as to cover the outside thereof. Examples of insulators include polyester. The insulating film 14 electrically insulates the intermediate electrode 13 and the ground electrode 15 .
 接地電極15は、絶縁膜14の少なくとも一部を覆う。接地電極15は、絶縁膜14の外側に巻き付けられる金属箔である。接地電極15を形成する金属箔の材料の例としては、中間電極13を形成する金属箔の材料と同様に、銅が挙げられる。中間電極13、絶縁膜14および接地電極15が、図1に示したコンデンサ112を構成する。 The ground electrode 15 covers at least part of the insulating film 14 . The ground electrode 15 is a metal foil wrapped around the outside of the insulating film 14 . An example of the material of the metal foil forming the ground electrode 15 is copper, like the material of the metal foil forming the intermediate electrode 13 . Intermediate electrode 13, insulating film 14 and ground electrode 15 constitute capacitor 112 shown in FIG.
 図2に戻って、電圧変成装置1は、取付板21をさらに備える。取付板21は、絶縁体円筒12を容器20に固定するための構造物である。取付板21は、絶縁体円筒12が主回路導体11と同軸に取り付けられた状態において、主回路導体11の軸方向における絶縁体円筒12の両端に位置する。取付板21の材料は、剛性を有する材料であれば特に制限されず、例えばアルミニウムまたはエポキシ樹脂であってよい。取付板21は、絶縁体円筒12と一体に形成されてもよい。取付板21が容器20に取り付けられることで、絶縁体円筒12が容器20に固定される。これにより、コンデンサ分圧形変成器10を、容器20に直接接触させることなく容器20に固定できる。 Returning to FIG. 2 , the voltage transformer 1 further includes a mounting plate 21 . The mounting plate 21 is a structure for fixing the insulator cylinder 12 to the container 20 . The mounting plates 21 are positioned at both ends of the insulator cylinder 12 in the axial direction of the main circuit conductor 11 when the insulator cylinder 12 is coaxially attached to the main circuit conductor 11 . The material of the mounting plate 21 is not particularly limited as long as it has rigidity, and may be aluminum or epoxy resin, for example. The mounting plate 21 may be formed integrally with the insulator cylinder 12 . The insulator cylinder 12 is fixed to the container 20 by attaching the mounting plate 21 to the container 20 . Thereby, the capacitor voltage dividing transformer 10 can be fixed to the container 20 without being brought into direct contact with the container 20 .
 例えば、取付板21は、径方向に延伸する平板状の形状を有する。一方、容器20は、取付板21に対して主回路導体11の軸方向における外側から当接する軸方向当接部20aを、軸方向における2箇所に有する。ここでいう軸方向における外側とは、それぞれの取付板21の、軸方向における他方の取付板21とは逆側を指す。2箇所の軸方向当接部20aの間に取付板21を挟持する形で、軸方向における取付板21の位置を固定した状態で、容器20に取付板21を取り付けることができる。 For example, the mounting plate 21 has a flat plate shape extending in the radial direction. On the other hand, the container 20 has two axial contact portions 20a that contact the mounting plate 21 from the outer side of the main circuit conductor 11 in the axial direction. Here, the outer side in the axial direction refers to the opposite side of each mounting plate 21 from the other mounting plate 21 in the axial direction. The mounting plate 21 can be attached to the container 20 in a state where the position of the mounting plate 21 in the axial direction is fixed by sandwiching the mounting plate 21 between the two axial contact portions 20a.
 また、容器20はさらに、取付板21に対して径方向における外側から当接する径方向当接部20bを、軸方向における2箇所に有する。径方向当接部20bは、軸方向における取付板21の位置に対応する位置において、例えば周方向における全体にわたって設けられる。径方向当接部20bが取付板21に対して径方向における外側から当接することで、径方向における取付板21の位置を固定した状態で、容器20に取付板21を取り付けることができる。ただし、径方向当接部20bは、必ずしも周方向における全体にわたって設けられる必要はない。径方向当接部20bの位置、数およびサイズは、径方向における取付板21の位置を固定できるように、適宜決定されてよい。 In addition, the container 20 further has radial contact portions 20b that contact the mounting plate 21 from the outside in the radial direction at two locations in the axial direction. The radial contact portion 20b is provided, for example, over the entire circumferential direction at a position corresponding to the position of the mounting plate 21 in the axial direction. The radial contact portion 20b contacts the mounting plate 21 from the outside in the radial direction, so that the mounting plate 21 can be attached to the container 20 while the position of the mounting plate 21 in the radial direction is fixed. However, the radial contact portion 20b does not necessarily have to be provided over the entire circumferential direction. The position, number and size of the radial contact portions 20b may be appropriately determined so that the position of the mounting plate 21 in the radial direction can be fixed.
 ただし、容器20に取付板21を取り付ける構造は、上記の例に限定されない。例えば容器20は、軸方向当接部20aの代わりに、2枚の取付板21のそれぞれに軸方向における内側または外側から当接する部位を有していてもよい。 However, the structure for attaching the mounting plate 21 to the container 20 is not limited to the above example. For example, instead of the axial contact portion 20a, the container 20 may have portions that contact the two mounting plates 21 from the inner side or the outer side in the axial direction.
 電圧変成装置1は、シールド22をさらに備える。シールド22は、絶縁体円筒12に対向していない主回路導体11の領域と、絶縁体円筒12との間の電界を緩和する。シールド22の材料としては、電界を緩和することが可能な公知の材料を、特に制限されず用いることができる。シールド22は、主回路導体11の軸方向における2枚の取付板21の外側に配置される。 The voltage transformer 1 further includes a shield 22 . The shield 22 reduces the electric field between the insulator cylinder 12 and the region of the main circuit conductor 11 not facing the insulator cylinder 12 . As the material of the shield 22, any known material capable of alleviating an electric field can be used without particular limitation. The shield 22 is arranged outside the two mounting plates 21 in the axial direction of the main circuit conductor 11 .
 絶縁体円筒12に対向していない主回路導体11の領域と、絶縁体円筒12との間の電界は、コンデンサ111の静電容量を増加させる。このため、当該電界に起因して、コンデンサ111の静電容量に誤差が生じる。その結果、コンデンサ111,112の静電容量の比率、さらにはコンデンサ112の分圧に誤差が生じる。シールド22により電界を緩和することで、コンデンサ112の分圧の誤差を小さくすることができる。ただし、電圧変成装置1においてシールド22は必須ではなく、省略されてもよい。 The electric field between the region of the main circuit conductor 11 not facing the insulator cylinder 12 and the insulator cylinder 12 increases the capacitance of the capacitor 111 . Therefore, an error occurs in the capacitance of the capacitor 111 due to the electric field. As a result, an error occurs in the capacitance ratio of the capacitors 111 and 112 and also in the voltage division of the capacitor 112 . By alleviating the electric field with the shield 22, the voltage division error of the capacitor 112 can be reduced. However, the shield 22 is not essential in the voltage transformer 1 and may be omitted.
 (電圧変成装置1の製造方法)
 電圧変成装置1の製造方法は以下のとおりである。まず、絶縁体円筒12を形成する。絶縁体円筒12に、中間電極13の材料である金属箔を、軸方向における中間電極13の長さに等しい幅に切断した上で巻き付けることで、中間電極13を形成する。中間電極13の上に、絶縁膜14の材料である絶縁体のフィルムを、軸方向における絶縁膜14の長さに等しい幅に切断した上で巻き付けることで、絶縁膜14を形成する。さらに、絶縁膜14の上に、接地電極15の材料である金属箔を、軸方向における接地電極15の長さに等しい幅に切断した上で巻き付けることで、接地電極15を形成する。
(Manufacturing method of voltage transformer 1)
A method of manufacturing the voltage transformer 1 is as follows. First, the insulator cylinder 12 is formed. The intermediate electrode 13 is formed by cutting a metal foil, which is the material of the intermediate electrode 13 , into a width equal to the length of the intermediate electrode 13 in the axial direction and winding it around the insulator cylinder 12 . The insulating film 14 is formed on the intermediate electrode 13 by cutting an insulating film, which is the material of the insulating film 14, into a width equal to the length of the insulating film 14 in the axial direction and winding it. Further, the ground electrode 15 is formed by cutting a metal foil, which is the material of the ground electrode 15, into a width equal to the length of the ground electrode 15 in the axial direction and winding it on the insulating film 14. FIG.
 絶縁体円筒12に、取付板21およびシールド22を取り付ける。絶縁体円筒12に主回路導体を挿入する。さらに、絶縁体円筒12に取り付けられた状態の取付板21、および主回路導体11を、それぞれ容器20に固定する。その後、容器20内に液体または気体の絶縁体を充填する。以上の工程により、電圧変成装置1が製造される。 A mounting plate 21 and a shield 22 are attached to the insulator cylinder 12 . A main circuit conductor is inserted into the insulator cylinder 12 . Furthermore, the mounting plate 21 attached to the insulator cylinder 12 and the main circuit conductor 11 are each fixed to the container 20 . After that, the container 20 is filled with a liquid or gas insulator. The voltage transformer 1 is manufactured by the above steps.
 (コンデンサ分圧形変成器10の効果)
 上述したとおり、コンデンサ分圧形変成器10においては、絶縁体円筒12に、中間電極13、絶縁膜14、および接地電極15を、注型等を用いることなく形成する。このため、中間電極13、絶縁膜14、および接地電極15の設計諸元を容易に変更できる。例えばコンデンサ分圧形変成器10においては、要求性能に応じて、絶縁膜14を形成する絶縁体の材質(誘電率)、厚さ、および/または当該フィルムの枚数を任意に変更できる。したがって、コンデンサ分圧形変成器10の製造時に、コンデンサ112の静電容量を容易に調整できる。
(Effect of Capacitor Voltage Division Transformer 10)
As described above, in the capacitor voltage dividing transformer 10, the intermediate electrode 13, the insulating film 14, and the ground electrode 15 are formed on the insulator cylinder 12 without using casting or the like. Therefore, the design specifications of the intermediate electrode 13, the insulating film 14, and the ground electrode 15 can be easily changed. For example, in the capacitor voltage dividing transformer 10, the material (dielectric constant) and thickness of the insulator forming the insulating film 14, and/or the number of films can be arbitrarily changed according to the required performance. Therefore, the capacitance of the capacitor 112 can be easily adjusted when the capacitor voltage dividing transformer 10 is manufactured.
 中間電極13および接地電極15を形成する金属箔は、電解法または圧延法により製造されたものであることが好ましい。一般的に、電解法または圧延法により製造された金属箔は、他の方法で製造された金属箔と比較して残留応力が小さい。このため、金属箔を製造してからの時間経過、または、温度変化などの環境変化に伴い残留応力に変化が生じても、当該変化に伴う金属箔の形状の変化が小さい。したがって、当該金属箔により形成された中間電極13および接地電極15の、形状の変化が小さい。すなわち、コンデンサ111,112の静電容量の、時間経過、または、温度変化などの環境変化による変動が小さくなる。したがって、コンデンサ111,112の静電容量が変動して当該静電容量の比率が変動することに起因する、電圧変成装置1による電圧の変成の誤差が低減される。また、中間電極13および接地電極15を金属箔により形成することで、例えば金属板を変形させ、溶接することで形成する場合と比較して軽量化できる。 The metal foil forming the intermediate electrode 13 and the ground electrode 15 is preferably manufactured by an electrolytic method or a rolling method. In general, metal foils produced by electrolysis or rolling have less residual stress than metal foils produced by other methods. Therefore, even if the residual stress changes due to the passage of time after manufacturing the metal foil or environmental changes such as temperature changes, the change in the shape of the metal foil is small. Therefore, the change in shape of the intermediate electrode 13 and the ground electrode 15 formed of the metal foil is small. That is, fluctuations in the capacitance of the capacitors 111 and 112 due to passage of time or environmental changes such as temperature changes are reduced. Therefore, errors in voltage transformation by the voltage transformer 1 caused by variations in the capacitance ratio of the capacitors 111 and 112 are reduced. In addition, by forming the intermediate electrode 13 and the ground electrode 15 from metal foil, the weight can be reduced as compared with the case of forming by deforming and welding a metal plate, for example.
 また、電圧変成装置1の製造前に、中間電極13および接地電極15の材料である金属箔に熱処理を実施してもよい。熱処理を実施することで、金属箔の残留応力がさらに小さくなる。このような金属箔により中間電極13および接地電極15を形成することで、時間経過、または、温度変化などの環境変化による中間電極13および接地電極15の形状の変化がさらに小さくなる。すなわち、コンデンサ111,112の静電容量の、時間経過、または、温度変化などの環境変化による変動がさらに小さくなる。したがって、コンデンサ111,112の静電容量が変動して当該静電容量の比率が変動することに起因する、電圧変成装置1による電圧の変成の誤差が、より低減される。 Also, before manufacturing the voltage transformer 1, the metal foil, which is the material of the intermediate electrode 13 and the ground electrode 15, may be heat-treated. By performing the heat treatment, the residual stress of the metal foil is further reduced. Forming the intermediate electrode 13 and the ground electrode 15 from such a metal foil further reduces changes in the shape of the intermediate electrode 13 and the ground electrode 15 due to the passage of time or environmental changes such as temperature changes. That is, the fluctuations in the capacitance of the capacitors 111 and 112 due to passage of time or environmental changes such as temperature changes are further reduced. Therefore, errors in the voltage transformation by the voltage transformer 1 caused by variations in the capacitance ratio of the capacitors 111 and 112 are further reduced.
 主回路導体11の軸方向における接地電極15の長さは、当該軸方向における中間電極13の長さよりも長いことが好ましい。このような接地電極15は、中間電極13に対する電界を緩和するシールド電極として機能し、主回路導体11と中間電極13との間の電界の平等化に寄与する。具体的には、接地電極15は、中間電極13の端部への電界、および中間電極13の絶縁膜14側の面への電界を抑制する。これにより、コンデンサ分圧形変成器10の一部または全体の温度が変化し、中間電極13が温度変化により変形した場合における、コンデンサ111の静電容量C1の変化量を低減できる。コンデンサ分圧形変成器10の一部または全体の温度が変化する原因としては、電圧変成装置1の製造後または使用中における周囲温度の変化、主回路導体11へ通電電流が流れることによる主回路導体11の発熱、または周辺の機器の発熱が挙げられる。同時に、コンデンサ分圧形変成器10の設計時における、静電容量C1の計算精度も向上する。 The length of the ground electrode 15 in the axial direction of the main circuit conductor 11 is preferably longer than the length of the intermediate electrode 13 in the axial direction. Such a ground electrode 15 functions as a shield electrode that mitigates the electric field on the intermediate electrode 13 and contributes to the equalization of the electric field between the main circuit conductor 11 and the intermediate electrode 13 . Specifically, the ground electrode 15 suppresses an electric field to the end of the intermediate electrode 13 and an electric field to the surface of the intermediate electrode 13 on the insulating film 14 side. This can reduce the amount of change in the capacitance C1 of the capacitor 111 when the temperature of a part or the whole of the capacitor voltage dividing transformer 10 changes and the intermediate electrode 13 deforms due to the temperature change. The temperature of a part or the whole of the capacitor voltage dividing transformer 10 may change due to changes in the ambient temperature after the voltage transformer 1 is manufactured or during use, or due to current flowing through the main circuit conductor 11 . Heat generation of the conductor 11 or heat generation of peripheral devices can be mentioned. At the same time, the calculation accuracy of the capacitance C1 when designing the capacitor voltage dividing transformer 10 is also improved.
 (絶縁体円筒12について)
 中間電極13を形成する金属は、正の熱膨張係数を有するため、温度の上昇により膨張する。その結果、中間電極13の表面積は、温度の上昇により増大する。一方、絶縁体円筒12を形成する絶縁体の誘電率は、絶縁体の種類に応じて温度の上昇により低下する場合も増大する場合もある。温度が下降した場合、中間電極13の表面積および絶縁体円筒12を形成する絶縁体の誘電率は、温度が上昇した場合とは逆に変化する。絶縁体円筒12を形成する絶縁体として温度の上昇により誘電率が低下する材料を選定すれば、中間電極13および絶縁体円筒12は、コンデンサ111の温度の変動に対して、コンデンサ111の静電容量を互いに逆方向に変化させるように作用する。したがって、コンデンサ111の温度の変動に対する静電容量の変動は、中間電極13の表面積の変動による影響と、絶縁体円筒12を形成する絶縁体の誘電率の変動による影響とのバランスにより決定される。
(Regarding insulator cylinder 12)
Since the metal forming the intermediate electrode 13 has a positive coefficient of thermal expansion, it expands as the temperature rises. As a result, the surface area of the intermediate electrode 13 increases with increasing temperature. On the other hand, the dielectric constant of the insulator forming the insulator cylinder 12 may decrease or increase as the temperature rises, depending on the type of insulator. When the temperature drops, the surface area of the intermediate electrode 13 and the dielectric constant of the insulator forming the insulator cylinder 12 change opposite to when the temperature rises. If a material whose dielectric constant decreases with an increase in temperature is selected as the insulator forming the insulator cylinder 12, the intermediate electrode 13 and the insulator cylinder 12 will not be affected by the temperature fluctuations of the capacitor 111. They act to change the capacitance in opposite directions. Therefore, the variation of the capacitance with respect to the temperature variation of the capacitor 111 is determined by the balance between the influence of the variation of the surface area of the intermediate electrode 13 and the variation of the dielectric constant of the insulator forming the insulator cylinder 12. .
 絶縁体円筒12の材料は、温度変化に対して、中間電極13の表面積の変動による影響と、絶縁体円筒12を形成する絶縁体の誘電率の変動による影響とが互いに打ち消し合うように、中間電極13の材料に応じて選択されることが好ましい。このように絶縁体円筒12の材料を選択することで、コンデンサ111の静電容量を、コンデンサ111の温度の変動に対して略一定にすることができる。 The material of the insulator cylinder 12 is selected so that the influence of variations in the surface area of the intermediate electrode 13 and the influence of variations in the dielectric constant of the insulator forming the insulator cylinder 12 cancel each other out with respect to temperature changes. It is preferable to select according to the material of the electrode 13 . By selecting the material of the insulator cylinder 12 in this way, the capacitance of the capacitor 111 can be made substantially constant with respect to the temperature fluctuation of the capacitor 111 .
 また、コンデンサ分圧形変成器10においては、径方向における絶縁体円筒12の大きさを変更することで、主回路導体11との絶縁距離を確保できる。したがって、コンデンサ分圧形変成器10の適用電圧クラスを容易に拡大できる。 Also, in the capacitor voltage dividing transformer 10, by changing the size of the insulator cylinder 12 in the radial direction, the insulation distance from the main circuit conductor 11 can be secured. Therefore, the applicable voltage class of the capacitor voltage dividing transformer 10 can be easily expanded.
 また、電圧変成装置1においては、主回路導体11の軸方向における絶縁体円筒12の大きさを拡大し、中間電極13、絶縁膜14、および接地電極15を追加することで、主回路導体11を共有するコンデンサ分圧形変成器10の数量を容易に増加させることができる。電圧変成装置1が、主回路導体11の軸方向に隣接する複数のコンデンサ分圧形変成器10を備える場合、それらのコンデンサ分圧形変成器10は、単一の主回路導体11を共有する。また、電圧変成装置1においては、主回路導体11の軸方向における中間電極13の長さを変更することで、分圧比の調整を容易に行うことができる。 Further, in the voltage transformer 1, the size of the insulator cylinder 12 in the axial direction of the main circuit conductor 11 is enlarged, and the intermediate electrode 13, the insulating film 14, and the ground electrode 15 are added. can easily be increased in number of capacitor voltage divider transformers 10 that share . If the voltage transformer device 1 comprises a plurality of capacitive divider transformers 10 axially adjacent to the main circuit conductors 11, the capacitive divider transformers 10 share a single main circuit conductor 11. . Further, in the voltage transformer 1, by changing the length of the intermediate electrode 13 in the axial direction of the main circuit conductor 11, the voltage division ratio can be easily adjusted.
 〔実施形態2〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 2]
Other embodiments of the invention are described below. For convenience of description, members having the same functions as those of the members described in the above embodiments are denoted by the same reference numerals, and description thereof will not be repeated.
 図4は、実施形態2に係る電圧変成装置2の、要部の構成を示す図である。図4には、電圧変成装置2が備えるコンデンサ分圧形変成器10Aおよび容器20が示されている。図4において、符号401は、主回路導体11の軸方向に垂直な面における電圧変成装置2の断面図である。符号402は、符号401に示した断面図におけるB-B線断面図である。 FIG. 4 is a diagram showing the configuration of the main part of the voltage transformer 2 according to Embodiment 2. As shown in FIG. FIG. 4 shows a capacitor voltage dividing transformer 10A and a container 20 included in the voltage transformer 2. As shown in FIG. In FIG. 4 , reference numeral 401 is a cross-sectional view of the voltage transformer 2 taken along a plane perpendicular to the axial direction of the main circuit conductor 11 . Reference numeral 402 is a cross-sectional view taken along the line BB in the cross-sectional view indicated by reference numeral 401. FIG.
 電圧変成装置2は、コンデンサ分圧形変成器10の代わりにコンデンサ分圧形変成器10Aを備える点で電圧変成装置1と相違する。コンデンサ分圧形変成器10Aは、中間電極13の代わりに中間電極23を備える点でコンデンサ分圧形変成器10と相違する。 The voltage transforming device 2 differs from the voltage transforming device 1 in that it includes a capacitor voltage dividing transformer 10A instead of the capacitor voltage dividing transformer 10. The capacitor voltage dividing transformer 10A differs from the capacitor voltage dividing transformer 10 in that an intermediate electrode 23 is provided instead of the intermediate electrode 13 .
 また、コンデンサ分圧形変成器10Aは、コンデンサ分圧形変成器10と同様に、主回路導体11絶縁体円筒12、絶縁膜14、および接地電極15を備える。ただし、中間電極23の形状を視認しやすくするため、図4においては、絶縁体円筒12、絶縁膜14および接地電極15を省略している。また、電圧変成装置2は、電圧変成装置1と同様に、取付板21およびシールド22を備える。取付板21およびシールド22についても図4では省略している。 Also, the capacitor voltage dividing transformer 10A includes a main circuit conductor 11, an insulator cylinder 12, an insulating film 14, and a ground electrode 15, similar to the capacitor voltage dividing transformer 10. However, in FIG. 4, the insulator cylinder 12, the insulator film 14 and the ground electrode 15 are omitted in order to make the shape of the intermediate electrode 23 easier to see. The voltage transformer 2 also includes a mounting plate 21 and a shield 22, similar to the voltage transformer 1. As shown in FIG. The mounting plate 21 and the shield 22 are also omitted in FIG.
 主回路導体11の周方向における中間電極23の長さは、主回路導体11の周方向における絶縁体円筒12の長さよりも短い。このため、図4に示すように、主回路導体11の周方向における中間電極23の一端と他端との間にギャップ23aが形成されている。中間電極23にギャップ23aが形成されていることで、中間電極23においては、主回路導体11を周方向に周回する電流が流れない。したがって、電圧変成装置2においては、主回路導体11に電圧を印加した場合に中間電極23に発生する誘導電流および誘導起電力が小さくなる。ギャップ23aの幅は、上記の誘導電流および誘導起電力が十分に小さくなるように適宜決定されればよく、例えば1mm以上3mm以下としてよい。 The length of the intermediate electrode 23 in the circumferential direction of the main circuit conductor 11 is shorter than the length of the insulator cylinder 12 in the circumferential direction of the main circuit conductor 11 . Therefore, as shown in FIG. 4, a gap 23a is formed between one end and the other end of the intermediate electrode 23 in the circumferential direction of the main circuit conductor 11 . Since the gap 23 a is formed in the intermediate electrode 23 , a current that circulates around the main circuit conductor 11 in the circumferential direction does not flow in the intermediate electrode 23 . Therefore, in the voltage transformer 2, the induced current and the induced electromotive force generated in the intermediate electrode 23 when a voltage is applied to the main circuit conductor 11 are reduced. The width of the gap 23a may be appropriately determined so that the induced current and the induced electromotive force are sufficiently small, and may be, for example, 1 mm or more and 3 mm or less.
 中間電極23に誘導起電力が発生すると、コンデンサ112(図1参照)における電圧に変動が生じる。当該変動により、電圧変成装置2により変成される電圧V2にも変動が生じる。すなわち、電圧変成装置2による電圧の変成に誤差が生じる原因となる。誘導起電力を小さくすることで、電圧変成装置2における電圧の変成の誤差が低減される。 When an induced electromotive force is generated in the intermediate electrode 23, the voltage in the capacitor 112 (see FIG. 1) fluctuates. Due to this variation, the voltage V2 transformed by the voltage transformer 2 also varies. That is, it causes an error in voltage transformation by the voltage transformation device 2 . By reducing the induced electromotive force, the voltage transformation error in the voltage transformer 2 is reduced.
 電圧変成装置2の製造方法は、中間電極23を形成する工程についてのみ、電圧変成装置1の製造方法と相違する。具体的には、中間電極23を形成する工程において、中間電極23の材料である金属箔を、主回路導体11の周方向における絶縁体円筒12の長さよりも、ギャップ23aの幅だけ短く切り取った上で絶縁体円筒12に巻き付ける。 The method of manufacturing the voltage transformer 2 differs from the method of manufacturing the voltage transformer 1 only in the process of forming the intermediate electrode 23 . Specifically, in the step of forming the intermediate electrode 23, the metal foil, which is the material of the intermediate electrode 23, is cut shorter than the length of the insulator cylinder 12 in the circumferential direction of the main circuit conductor 11 by the width of the gap 23a. It wraps around the insulator cylinder 12 on top.
 なお、上述したとおり、コンデンサ分圧形変成器10Aは、絶縁体円筒12、絶縁膜14、および接地電極15を備える。絶縁体円筒12、絶縁膜14、および接地電極15の形状は、実施形態1において説明したとおりであってよい。すなわち、これらの構成要素は、中間電極23に対応した形状を有する必要はない。 As described above, the capacitor voltage dividing transformer 10A includes the insulator cylinder 12, the insulator film 14, and the ground electrode 15. The shape of the insulator cylinder 12, the insulating film 14, and the ground electrode 15 may be as described in the first embodiment. That is, these components need not have shapes corresponding to the intermediate electrode 23 .
 また、中間電極23の形状は、必ずしもギャップ23aが形成されるものに限定されない。中間電極23は、主回路導体11の周方向に周回する閉ループを含まなければよい。例えば、主回路導体11の周方向における中間電極23の長さが、主回路導体11の周方向における絶縁体円筒12の長さよりも長い場合を考える。この場合において、中間電極23は、主回路導体11の軸の周方向における一端側と他端側とが主回路導体11の径方向に互いに離隔する構造を有していてもよい。中間電極23がこのような形状を有する場合であっても、主回路導体11に高電圧を印加した場合に中間電極23に発生する誘導電流および誘導起電力が小さくなる。したがって、電圧変成装置2における電圧の変成の誤差が低減される。 Also, the shape of the intermediate electrode 23 is not necessarily limited to one in which the gap 23a is formed. The intermediate electrode 23 need not include a closed loop that circulates in the circumferential direction of the main circuit conductor 11 . For example, consider a case where the length of the intermediate electrode 23 in the circumferential direction of the main circuit conductor 11 is longer than the length of the insulator cylinder 12 in the circumferential direction of the main circuit conductor 11 . In this case, the intermediate electrode 23 may have a structure in which one end side and the other end side in the circumferential direction of the axis of the main circuit conductor 11 are separated from each other in the radial direction of the main circuit conductor 11 . Even if the intermediate electrode 23 has such a shape, the induced current and induced electromotive force generated in the intermediate electrode 23 when a high voltage is applied to the main circuit conductor 11 are reduced. Therefore, the voltage transformation error in the voltage transformer 2 is reduced.
 〔実施形態3〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 3]
Other embodiments of the invention are described below. For convenience of description, members having the same functions as those of the members described in the above embodiments are denoted by the same reference numerals, and description thereof will not be repeated.
 図5は、実施形態3に係る電圧変成装置3の、要部の構成を示す図である。図5には、電圧変成装置3が備えるコンデンサ分圧形変成器10および容器20が示されている。図5において、符号501は、主回路導体11の軸方向に垂直な面における電圧変成装置3の断面図である。符号502は、符号501に示した断面図におけるC-C線断面図である。 FIG. 5 is a diagram showing the configuration of the main part of the voltage transformer 3 according to Embodiment 3. As shown in FIG. FIG. 5 shows a capacitor voltage dividing transformer 10 and a container 20 included in the voltage transformer 3. As shown in FIG. In FIG. 5 , reference numeral 501 is a cross-sectional view of the voltage transformer 3 in a plane perpendicular to the axial direction of the main circuit conductor 11 . Reference numeral 502 is a sectional view taken along line CC of the sectional view indicated by reference numeral 501. FIG.
 電圧変成装置3は、3相交流電力に対応可能な電圧変成装置である。電圧変成装置3は、主回路導体11が互いに別個である3つのコンデンサ分圧形変成器10を備える点で、電圧変成装置1と相違する。容器20は、3つのコンデンサ分圧形変成器10を収容する。電圧変成装置3は、3つのコンデンサ分圧形変成器10が備える3つの絶縁体円筒12に対応する、共通の取付板21を備えてよい。3つのコンデンサ分圧形変成器10はそれぞれ、3相の交流電力のそれぞれに対応する。このような電圧変成装置3も、電圧変成装置1と同様の効果を奏する。 The voltage transformer 3 is a voltage transformer that can handle three-phase AC power. The voltage transformer 3 differs from the voltage transformer 1 in that it comprises three capacitive divider transformers 10 whose main circuit conductors 11 are separate from each other. A container 20 houses three capacitor voltage divider transformers 10 . The voltage transformer device 3 may comprise a common mounting plate 21 corresponding to the three insulator cylinders 12 of the three capacitive voltage divider transformers 10 . The three capacitor voltage dividing transformers 10 respectively correspond to three-phase AC power. Such a voltage transformer 3 also has the same effects as the voltage transformer 1 .
 〔まとめ〕
 本発明の態様1に係るコンデンサ分圧形変成器は、高電圧が印加される、軸方向に延伸する主回路導体と、前記主回路導体の外側に、前記主回路導体と同軸に配される、円筒形状を有する絶縁体円筒と、前記絶縁体円筒の外側の少なくとも一部を被覆する中間電極と、前記中間電極を覆う絶縁膜と、前記絶縁膜の少なくとも一部を覆う接地電極と、を備える。
〔summary〕
A capacitor voltage dividing transformer according to aspect 1 of the present invention comprises an axially extending main circuit conductor to which a high voltage is applied; an insulator cylinder having a cylindrical shape; an intermediate electrode covering at least a portion of the outside of the insulator cylinder; an insulating film covering the intermediate electrode; and a ground electrode covering at least a portion of the insulating film. Prepare.
 上記の構成によれば、コンデンサ分圧形変成器が要求される仕様に応じて、中間電極、絶縁膜、および接地電極の設計諸元を容易に変更できる。したがって、コンデンサ分圧形変成器の製造時に低圧側静電容量を容易に調整できる。 According to the above configuration, it is possible to easily change the design specifications of the intermediate electrode, the insulating film, and the ground electrode according to the specifications required for the capacitor voltage dividing transformer. Therefore, the low-voltage side capacitance can be easily adjusted when manufacturing the capacitor voltage dividing transformer.
 本発明の態様2に係るコンデンサ分圧形変成器において、前記中間電極は、前記主回路導体の周方向に周回する閉ループを含まないことが好ましい。 In the capacitor voltage dividing transformer according to aspect 2 of the present invention, it is preferable that the intermediate electrode does not include a closed loop that circulates in the circumferential direction of the main circuit conductor.
 上記の構成によれば、中間電極において、主回路導体を周方向に周回する電流が流れない。このため、主回路導体に電圧を印加した場合に中間電極に発生する誘導電流および誘導起電力が小さくなる。したがって、電圧変成装置における電圧の変成の誤差が低減される。 According to the above configuration, no current flows around the main circuit conductor in the circumferential direction in the intermediate electrode. Therefore, when a voltage is applied to the main circuit conductor, the induced current and induced electromotive force generated in the intermediate electrode are reduced. Therefore, the voltage transformation error in the voltage transformer is reduced.
 本発明の態様3に係るコンデンサ分圧形変成器において、前記周方向における前記中間電極の長さは、前記周方向における前記絶縁体円筒の長さよりも短いことが好ましい。 In the capacitor voltage dividing transformer according to aspect 3 of the present invention, it is preferable that the length of the intermediate electrode in the circumferential direction is shorter than the length of the insulator cylinder in the circumferential direction.
 上記の構成によれば、主回路導体の周方向における中間電極の一部にギャップが形成される。したがって、主回路導体を周方向に周回する電流が流れなくなる。 According to the above configuration, a gap is formed in a part of the intermediate electrode in the circumferential direction of the main circuit conductor. Therefore, the current that circulates around the main circuit conductor in the circumferential direction does not flow.
 本発明の態様4に係るコンデンサ分圧形変成器において、前記軸方向における前記接地電極の長さは、前記軸方向における前記中間電極の長さよりも長いことが好ましい。 In the capacitor voltage dividing transformer according to aspect 4 of the present invention, it is preferable that the length of the ground electrode in the axial direction is longer than the length of the intermediate electrode in the axial direction.
 上記の構成によれば、中間電極の端部への電界、および中間電極の絶縁膜側の面への電界を接地電極が抑制する。したがって、中間電極が温度変化により変形した場合における、高圧側コンデンサの静電容量の変化量を低減できる。さらに、コンデンサ分圧形変成器の設計時における、高圧側コンデンサの静電容量の計算精度が向上する。 According to the above configuration, the ground electrode suppresses the electric field to the end of the intermediate electrode and the electric field to the insulating film side surface of the intermediate electrode. Therefore, it is possible to reduce the amount of change in capacitance of the high-voltage side capacitor when the intermediate electrode is deformed due to temperature change. Furthermore, the calculation accuracy of the capacitance of the high-voltage side capacitor is improved when designing the capacitor voltage dividing transformer.
 本発明の態様5に係る電圧変成装置は、上記のいずれかの態様のコンデンサ分圧形変成器と、前記コンデンサ分圧形変成器を収容する容器とを備える。 A voltage transformer according to aspect 5 of the present invention includes the capacitor voltage dividing transformer according to any one of the above aspects, and a container housing the capacitor voltage dividing transformer.
 上記の構成によれば、上記のいずれかの態様と同様の効果を奏する。 According to the above configuration, the same effect as any of the above aspects can be obtained.
 本発明の態様6に係る電圧変成装置は、前記主回路導体が互いに別個である3つの前記コンデンサ分圧形変成器を備え、前記容器は、3つの前記コンデンサ分圧形変成器を収容してもよい。 A voltage transformation device according to aspect 6 of the present invention comprises three capacitor voltage dividing transformers in which the main circuit conductors are separate from each other, and the container houses the three capacitor voltage dividing transformers. good too.
 上記の構成によれば、3つのコンデンサ分圧形変成器を3相の交流電力に対応させることで、3相交流電力に対応可能な電圧変成装置を実現できる。 According to the above configuration, by making the three capacitor voltage dividing transformers compatible with 3-phase AC power, it is possible to realize a voltage transformation device compatible with 3-phase AC power.
 本発明の態様7に係る電圧変成装置は、前記軸方向における前記絶縁体円筒の両端に固定される取付板をさらに備え、前記取付板が前記容器に取り付けられることで前記絶縁体円筒が前記容器に固定されることが好ましい。 The voltage transformer according to aspect 7 of the present invention further includes mounting plates fixed to both ends of the insulator cylinder in the axial direction, and the insulator cylinder is attached to the container by attaching the mounting plates to the container. is preferably fixed to
 上記の構成によれば、コンデンサ分圧形変成器を、容器に直接接触させることなく容器に固定できる。 According to the above configuration, the capacitor voltage dividing transformer can be fixed to the container without direct contact with the container.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, but can be modified in various ways within the scope of the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. is also included in the technical scope of the present invention. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment.
 1,2,3 電圧変成装置
 10,10A コンデンサ分圧形変成器
 11 主回路導体
 12 絶縁体円筒
 13,23 中間電極
 14 絶縁膜
 15 接地電極

 
Reference Signs List 1, 2, 3 voltage transformer 10, 10A capacitor voltage dividing transformer 11 main circuit conductor 12 insulator cylinder 13, 23 intermediate electrode 14 insulating film 15 ground electrode

Claims (7)

  1.  高電圧が印加される、軸方向に延伸する主回路導体と、
     前記主回路導体の外側に、前記主回路導体と同軸に配される、円筒形状を有する絶縁体円筒と、
     前記絶縁体円筒の外側の少なくとも一部を被覆する中間電極と、
     前記中間電極を覆う絶縁膜と、
     前記絶縁膜の少なくとも一部を覆う接地電極と、を備えるコンデンサ分圧形変成器。
    an axially extending main circuit conductor to which a high voltage is applied;
    an insulator cylinder having a cylindrical shape disposed outside the main circuit conductor and coaxial with the main circuit conductor;
    an intermediate electrode covering at least a portion of the outside of the insulator cylinder;
    an insulating film covering the intermediate electrode;
    and a ground electrode covering at least part of the insulating film.
  2.  前記中間電極は、前記主回路導体の周方向に周回する閉ループを含まない請求項1に記載のコンデンサ分圧形変成器。 The capacitor voltage dividing transformer according to claim 1, wherein the intermediate electrode does not include a closed loop that circulates in the circumferential direction of the main circuit conductor.
  3.  前記周方向における前記中間電極の長さは、前記周方向における前記絶縁体円筒の長さよりも短い請求項2に記載のコンデンサ分圧形変成器。 The capacitor voltage dividing transformer according to claim 2, wherein the length of the intermediate electrode in the circumferential direction is shorter than the length of the insulator cylinder in the circumferential direction.
  4.  前記軸方向における前記接地電極の長さは、前記軸方向における前記中間電極の長さよりも長い請求項1から3のいずれか1項に記載のコンデンサ分圧形変成器。 The capacitor voltage dividing transformer according to any one of claims 1 to 3, wherein the length of the ground electrode in the axial direction is longer than the length of the intermediate electrode in the axial direction.
  5.  請求項1から4のいずれか1項に記載のコンデンサ分圧形変成器と、
     前記コンデンサ分圧形変成器を収容する容器とを備える電圧変成装置。
    a capacitor voltage dividing transformer according to any one of claims 1 to 4;
    and a vessel containing the capacitor voltage divider transformer.
  6.  前記主回路導体が互いに別個である3つの前記コンデンサ分圧形変成器を備え、
     前記容器は、3つの前記コンデンサ分圧形変成器を収容する請求項5に記載の電圧変成装置。
    three said capacitor voltage divider transformers, wherein said main circuit conductors are separate from each other;
    6. A voltage transformer as claimed in claim 5, wherein said container houses three said capacitor voltage divider transformers.
  7.  前記軸方向における前記絶縁体円筒の両端に固定される取付板をさらに備え、
     前記取付板が前記容器に取り付けられることで前記絶縁体円筒が前記容器に固定される請求項5または6に記載の電圧変成装置。
    further comprising a mounting plate fixed to both ends of the insulator cylinder in the axial direction;
    7. A voltage transformer according to claim 5, wherein said insulator cylinder is fixed to said container by attaching said mounting plate to said container.
PCT/JP2022/009296 2022-03-04 2022-03-04 Capacitor voltage-dividing type transformer and voltage transformation apparatus WO2023166687A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/009296 WO2023166687A1 (en) 2022-03-04 2022-03-04 Capacitor voltage-dividing type transformer and voltage transformation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/009296 WO2023166687A1 (en) 2022-03-04 2022-03-04 Capacitor voltage-dividing type transformer and voltage transformation apparatus

Publications (1)

Publication Number Publication Date
WO2023166687A1 true WO2023166687A1 (en) 2023-09-07

Family

ID=87883402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009296 WO2023166687A1 (en) 2022-03-04 2022-03-04 Capacitor voltage-dividing type transformer and voltage transformation apparatus

Country Status (1)

Country Link
WO (1) WO2023166687A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282166A (en) * 1988-09-20 1990-03-22 Matsushita Electric Ind Co Ltd Voltage divider
JPH02115770A (en) * 1988-10-26 1990-04-27 Toshiba Corp Voltage detector for three-phase collective type gas insulated electric apparatus
JPH06258353A (en) * 1993-03-03 1994-09-16 Toshiba Corp Transformer for meter in application of optics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282166A (en) * 1988-09-20 1990-03-22 Matsushita Electric Ind Co Ltd Voltage divider
JPH02115770A (en) * 1988-10-26 1990-04-27 Toshiba Corp Voltage detector for three-phase collective type gas insulated electric apparatus
JPH06258353A (en) * 1993-03-03 1994-09-16 Toshiba Corp Transformer for meter in application of optics

Similar Documents

Publication Publication Date Title
US3835353A (en) Capacitive voltage-dividing arrangement for high voltage measuring apparatus
US7737814B1 (en) Electrostatic shield and voltage transformer
JP5476524B2 (en) Vacuum capacitor type instrument transformer
US3900791A (en) Voltage transformer for completely insulated, metal-clad high-voltage installations
JP2624626B2 (en) Capacitors with high thermal stability
WO2023166687A1 (en) Capacitor voltage-dividing type transformer and voltage transformation apparatus
US20130021709A1 (en) Conductor arrangement for reducing impact of very fast transients
WO2019138632A1 (en) Transformer for vacuum capacitor type instrument
US4227035A (en) Modular condenser bushing
US3377530A (en) High pontential capacitor
EP1103988B1 (en) SEmi-capacitance graded bushing insulator of the type with insulating gas filling, such as SF6
EP3151255B1 (en) Current transformer with additional voltage indication for the use in medium or high voltage equipment
EP2565884B1 (en) High voltage coil
JP4277974B2 (en) Capacitor voltage divider
JP3387756B2 (en) Transformers for gas insulated instruments
JPH09292435A (en) Protecting device for withstand voltage test
JP2017016852A (en) Capacitor bushing and manufacturing method thereof
JP6519497B2 (en) Instrument transformer
JPH0624991Y2 (en) Gas insulated transformer
JP7066076B1 (en) Current transformers, instrument transformers, and gas-insulated switchgear
JPH0365106B2 (en)
Mustafa et al. EFFECT OF ALUMINUM FOILS NUMBER AND ITS LENGTH IN IMPROVEMENT OF ELECTRIC FIELD DISTRIBUTION OF HIGH VOLTAGE CONDENSER BUSHING
JPS5934101Y2 (en) Oil-filled electrical equipment with built-in protection device
WO2024126099A1 (en) Power transformer for on-load tap changer application
JP3121904B2 (en) Capacitor type transformer with lightning arrester

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929831

Country of ref document: EP

Kind code of ref document: A1