JP3387583B2 - Liquid refrigerant dripping device for absorption cooling machine - Google Patents

Liquid refrigerant dripping device for absorption cooling machine

Info

Publication number
JP3387583B2
JP3387583B2 JP29182793A JP29182793A JP3387583B2 JP 3387583 B2 JP3387583 B2 JP 3387583B2 JP 29182793 A JP29182793 A JP 29182793A JP 29182793 A JP29182793 A JP 29182793A JP 3387583 B2 JP3387583 B2 JP 3387583B2
Authority
JP
Japan
Prior art keywords
liquid refrigerant
liquid
tray
evaporator
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29182793A
Other languages
Japanese (ja)
Other versions
JPH07146027A (en
Inventor
州典 橋本
正之 藤本
俊也 岡野
英樹 谷
和哉 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takagi Industrial Co Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Original Assignee
Takagi Industrial Co Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takagi Industrial Co Ltd, Osaka Gas Co Ltd, Tokyo Gas Co Ltd filed Critical Takagi Industrial Co Ltd
Priority to JP29182793A priority Critical patent/JP3387583B2/en
Publication of JPH07146027A publication Critical patent/JPH07146027A/en
Application granted granted Critical
Publication of JP3387583B2 publication Critical patent/JP3387583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、吸収式の冷房機・冷凍
機に使用される蒸発器に関し、特に、多数個の蒸発管内
に効率よく均等に冷媒を滴下するための液冷媒滴下装置
に関するものである。なお、この明細書で「冷房機」と
いう場合、特に断りのない限り「冷凍機」を含むことと
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an evaporator used in an absorption type air conditioner / refrigerator, and more particularly to a liquid refrigerant dropping device for efficiently and evenly dropping a refrigerant into a large number of evaporation pipes. It is a thing. In this specification, the term "cooler" includes "refrigerator" unless otherwise specified.

【0002】[0002]

【従来の技術】従来の吸収式冷房機は、図4に示すよう
な構成をしている。同図において、1は蒸発器で、内部
が約10torr程度の真空状態に維持される。蒸発器1に
は、上方から液冷媒供給管2が接続され、水等の液冷媒
3が粒状になって蒸発器1内の真空中に滴下ないし散布
される。蒸発器1内には、蒸発管4が配管され、その内
部を循環水が図の矢印の方向に流れている。散布され蒸
発管4に付着した液冷媒3は、蒸発管4内の循環水の熱
により蒸発し、循環水から気化熱を奪い、循環水を冷却
する。冷却された循環水は、各部屋の室内器(図示せ
ず)等の熱交換器に達し、ファンにより冷風を室内に送
って冷房を行う。
2. Description of the Related Art A conventional absorption type air conditioner has a structure as shown in FIG. In the figure, 1 is an evaporator, the inside of which is maintained in a vacuum state of about 10 torr. A liquid refrigerant supply pipe 2 is connected to the evaporator 1 from above, and a liquid refrigerant 3 such as water is granulated and dropped or dispersed in a vacuum inside the evaporator 1. An evaporator pipe 4 is piped in the evaporator 1, and circulating water flows in the inside of the evaporator 1 in a direction of an arrow in the figure. The liquid refrigerant 3 that has been sprayed and adhered to the evaporation pipe 4 evaporates due to the heat of the circulating water in the evaporation pipe 4, removes heat of vaporization from the circulating water, and cools the circulating water. The cooled circulating water reaches a heat exchanger such as an indoor unit (not shown) in each room, and cool air is sent to the room by a fan to cool the room.

【0003】蒸発器1内で蒸発した液冷媒の蒸気は、管
路5により吸収器6に送られる。吸収器6内には臭化リ
チウム濃溶液等からなる吸収液7があり、液冷媒の蒸気
は吸収器6の外部の冷却用ファン8で冷却されつつ吸収
液7に吸収される。これにより、蒸発器1内は常に所望
の真空度に保たれ、液冷媒の蒸発を継続的に行うことが
できる。
The vapor of the liquid refrigerant evaporated in the evaporator 1 is sent to the absorber 6 via the pipe line 5. Inside the absorber 6, there is an absorbing liquid 7 composed of a concentrated solution of lithium bromide, and the vapor of the liquid refrigerant is absorbed by the absorbing liquid 7 while being cooled by a cooling fan 8 outside the absorber 6. As a result, the inside of the evaporator 1 is always kept at a desired degree of vacuum, and the liquid refrigerant can be continuously evaporated.

【0004】吸収液7は、液冷媒を吸収して(臭化リチ
ウム等の)濃溶液から希溶液へと変化し、それと共に吸
収力が低下する。そこで、臭化リチウム希溶液となった
吸収液7を、管路9とポンプ10とで再生器11に運
び、ここでバーナ12で加熱して液冷媒を蒸発させ、濃
溶液に戻す。こうして吸収力が復活された濃溶液は、管
路13から吸収器6に戻される。
The absorbing liquid 7 absorbs the liquid refrigerant and changes from a concentrated solution (such as lithium bromide) to a dilute solution, and at the same time, the absorbing power decreases. Then, the absorbing solution 7 which has become a lithium bromide dilute solution is conveyed to the regenerator 11 by the pipe line 9 and the pump 10, where it is heated by the burner 12 to evaporate the liquid refrigerant and return it to the concentrated solution. The concentrated solution whose absorption power has been restored in this way is returned to the absorber 6 from the pipe line 13.

【0005】再生器11内で蒸発した液冷媒は、管路1
4を経て凝縮器15に入り、ここで、ファン16で冷却
され、液化して液冷媒供給管2に入り、蒸発器1に供給
される。以上で冷房サイクルが完結し、以後このサイク
ルが繰り返される。
The liquid refrigerant evaporated in the regenerator 11 is transferred to the conduit 1
4 enters the condenser 15, where it is cooled by the fan 16 and liquefied into the liquid refrigerant supply pipe 2 and supplied to the evaporator 1. With the above, the cooling cycle is completed, and thereafter this cycle is repeated.

【0006】図5は、上記の吸収式冷房装置において、
蒸発器1内に設けられる液冷媒滴下装置の構成を示す図
である。蒸発器1の上方から液冷媒供給管2が接続さ
れ、蒸発器1内に滴下された液冷媒3は、蒸発器1内に
設けられた四角断面のトレー20内に貯留される。トレ
ー20の一方の側壁には、複数個のJ型をした導液板2
1がほぼ等間隔に取付けられている。導液板21は、図
5及び図6(a) ,(b) に示すように、短い方の端部21
aをトレー20内に浸け、ここから液冷媒が滴下される
長い方の先端部21bにかけて溝21cが形成され、溝
21cの中間には孔21dが穿設されている。
FIG. 5 shows the above-mentioned absorption type cooling device.
It is a figure which shows the structure of the liquid refrigerant dropping device provided in the evaporator 1. A liquid refrigerant supply pipe 2 is connected from above the evaporator 1, and the liquid refrigerant 3 dropped in the evaporator 1 is stored in a tray 20 having a rectangular cross section provided in the evaporator 1. A plurality of J-shaped liquid guide plates 2 are provided on one side wall of the tray 20.
1 are attached at substantially equal intervals. The liquid guide plate 21 has a shorter end portion 21 as shown in FIGS.
A groove 21c is formed by immersing a in the tray 20 and extending to the longer end 21b from which the liquid refrigerant is dropped, and a hole 21d is formed in the middle of the groove 21c.

【0007】液冷媒供給管2からトレー20内に供給さ
れた液冷媒3は、トレー20内に溜められ、やがて導液
板21の端部21aを浸す。そして、毛細管現象により
溝21cを伝わって先端21bに達してそこから滴下
し、蒸発管4を濡らす。蒸発器1内は、前述のように真
空を保たれているので、蒸発管4内を通る水の温度で液
冷媒3は蒸発し、前述した冷房サイクルが行われること
になる。
The liquid refrigerant 3 supplied from the liquid refrigerant supply pipe 2 into the tray 20 is stored in the tray 20 and eventually immerses the end 21a of the liquid guide plate 21. Then, by capillarity, it reaches the tip 21b through the groove 21c and drops from there to wet the evaporation tube 4. Since the inside of the evaporator 1 is kept in vacuum as described above, the liquid refrigerant 3 is evaporated at the temperature of the water passing through the inside of the evaporation pipe 4, and the above-described cooling cycle is performed.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記の
従来技術においては、液冷媒3が蒸発管4に滴下される
までには、空のトレー20内に液冷媒を入れ始め、液冷
媒3がかなり溜まって導液板21の端部21aに達し、
溝21cを伝わって導液板の先端21bまで達して蒸発
管に滴下するまでの時間が必要になる。もっとも、大量
の循環水を常時冷却して各部屋で必要に応じて室内機を
駆動して冷房を行うものでは問題にならないが、家庭用
のように、スイッチを入れたり切ったりして使用する空
調機においては、この時間のために、なかなか冷房が開
始されないといった問題がある。
However, in the above-mentioned prior art, by the time the liquid refrigerant 3 drops into the evaporation pipe 4, the liquid refrigerant 3 begins to be put into the empty tray 20, and the liquid refrigerant 3 becomes considerably large. It collects and reaches the end 21a of the liquid guide plate 21,
It takes time for the liquid to reach the tip 21b of the liquid guide plate through the groove 21c and to be dropped in the evaporation tube. However, it is not a problem to cool a large amount of circulating water at all times and drive the indoor unit in each room as needed to cool the room, but use it by turning it on and off like at home. In the air conditioner, there is a problem that the cooling does not start easily due to this time.

【0009】また、上記の毛細管現象を利用する従来技
術にあっては、複数の導液板から同じように液冷媒を滴
下させるのは非常にむずかしく、滴下しない導液板が生
じて冷房能力を十分発揮できない。
Further, in the prior art utilizing the above-mentioned capillary phenomenon, it is very difficult to drop the liquid refrigerant from a plurality of liquid guiding plates in the same manner, and a liquid guiding plate that does not drip is produced to improve the cooling capacity. I can't show enough.

【0010】本発明は、上記の問題の解決を図ったもの
で、確実に液冷媒を滴下することができる液冷媒滴下装
置を提供することを目的としている。また、複数の導液
板全てから一様に液冷媒を滴下できる液冷媒滴下装置を
提供することを目的としている。さらに、短時間で冷房
を開始できる液冷媒滴下装置を提供することを目的とし
ている。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a liquid refrigerant dropping device capable of surely dropping a liquid refrigerant. Another object of the present invention is to provide a liquid refrigerant dropping device capable of uniformly dropping the liquid refrigerant from all of the plurality of liquid guide plates. Further, another object is to provide a liquid refrigerant dropping device that can start cooling in a short time.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めに本発明は、液冷媒を真空の蒸発器内に設けられた蒸
発管に滴下して蒸発させ、該蒸発の際の気化熱により空
気等を冷却し、蒸発した液冷媒を吸収液に吸収させる吸
収式冷房機に使用され、前記液冷媒をトレー内に貯留し
て前記蒸発器内に滴下する液冷媒滴下装置において、
記トレーを、底部に近づくほど単位深さ当たりの体積が
小さくなるように構成し、前記トレーの側壁に貫通孔を
穿設すると共に、該貫通孔を適度な隙間を保持して覆う
導液板を設け、該導液板から前記蒸発管に液冷媒を滴下
させるようにした構成を特徴としている。
In order to achieve the above-mentioned object, the present invention is directed to dropping a liquid refrigerant into an evaporation pipe provided in a vacuum evaporator to evaporate the liquid refrigerant, and to use the heat of vaporization during the evaporation. the air or the like is cooled, is used in absorption cooling machine to be absorbed in the absorbing solution evaporated liquid refrigerant, the liquid refrigerant dropping device for dropping by storing the liquid refrigerant in the tray into the evaporator, before
The closer the tray is to the bottom, the volume per unit depth
The tray is configured to be small , a through hole is formed in the side wall of the tray, and a liquid guiding plate is provided to cover the through hole with an appropriate gap, and a liquid refrigerant is supplied from the liquid guiding plate to the evaporation pipe. The feature is that it is made to drop.

【0012】また、前記貫通孔がほぼ等間隔に複数個穿
設され、かつ各貫通孔の径と各導液板との前記各隙間を
それぞれほぼ同一にした構成としたり、前記貫通孔がほ
ぼ等間隔に複数個穿設されている構成としたり、前記貫
通孔がトレーの底部近傍に穿設されている構成とするこ
とが望ましい。
A plurality of through holes may be formed at substantially equal intervals, and the diameters of the through holes and the gaps between the liquid guide plates may be made substantially the same, or the through holes may be formed substantially in the same manner. or a structure that is a plurality drilled at regular intervals, the through hole is configured and be Rukoto that are drilled near the bottom of the tray is desired.

【0013】[0013]

【作用】液冷媒が、蒸発器内のトレーに供給されると、
トレー内に貯留され、水位がトレーの側壁に穿設された
貫通孔に達する。貫通孔には水圧が加わるので、表面張
力等があっても、水圧がこれに打ち勝ち、液冷媒が貫通
孔から湧出して導液板に移り、導液板の下方に移動して
導液板の先端から蒸発管に滴下する。トレー内の液冷媒
の量が少なければ、滴下する液冷媒の量も少なくなり、
トレー内の液冷媒の量が増加すれば、滴下する液冷媒の
量も増える。
When the liquid refrigerant is supplied to the tray inside the evaporator,
It is stored in the tray and the water level reaches a through hole formed in the side wall of the tray. Since water pressure is applied to the through hole, even if there is surface tension, etc., the water pressure overcomes this, the liquid refrigerant spouts from the through hole and moves to the liquid guide plate, and moves below the liquid guide plate. Drop from the tip of to the evaporation tube. If the amount of liquid refrigerant in the tray is small, the amount of liquid refrigerant dropped will also be small,
As the amount of liquid refrigerant in the tray increases, the amount of liquid refrigerant to be dropped also increases.

【0014】貫通孔が複数あっても、各貫通孔の径と各
導液板との前記各隙間をそれぞれほぼ同一にすれば、ど
の貫通孔からも液冷媒を一様に滴下することができる。
また、貫通孔が側壁の下方にあれば、液冷媒の供給開始
から滴下までに要する時間を短くできる。さらに、トレ
ーが、底部に近づくほど単位深さ当たりの体積が小さく
なる構成となっていれば、さらに滴下に至る時間を短く
できる。
Even if there are a plurality of through-holes, if the diameter of each through-hole and each gap between each liquid-conducting plate are made substantially the same, the liquid refrigerant can be uniformly dropped from any through-hole. .
Further, if the through hole is located below the side wall, the time required from the start of supplying the liquid refrigerant to the dropping can be shortened. Further, if the tray has a structure in which the volume per unit depth decreases toward the bottom, the time required for dropping can be further shortened.

【0015】[0015]

【実施例】本発明の実施例を、以下に図面を用いて説明
する。図1〜3は、本発明による液冷媒滴下装置30の
構成を示す図である。これらの図において、トレー31
は蒸発器1内にあって、蒸発器1の上方から挿入された
液冷媒供給管2からの液冷媒を受けるため、該管2の下
方に配置され、左右の側壁31a,31bをV型に組合
せ、両端を逆三角形の側板31c,31dで固定し、上
方を開放した構成となっている。トレー31の一方の側
壁31aの下端近傍には、複数の同一径の貫通孔32を
ほぼ等間隔に穿設している。側壁31aの外側には、各
貫通孔32に対向して導液板33を取り付ける。導液板
33は、四角の板状で液冷媒を滴下し易いように下端部
を三角形にして尖らせている。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 are diagrams showing the configuration of a liquid refrigerant dropping device 30 according to the present invention. In these figures, tray 31
Is inside the evaporator 1 and receives the liquid refrigerant from the liquid refrigerant supply pipe 2 inserted from above the evaporator 1, so that it is arranged below the pipe 2 and the left and right side walls 31a and 31b are V-shaped. In combination, both ends are fixed by inverted triangular side plates 31c and 31d, and the upper side is opened. In the vicinity of the lower end of one side wall 31a of the tray 31, a plurality of through holes 32 having the same diameter are formed at substantially equal intervals. A liquid guide plate 33 is attached to the outside of the side wall 31a so as to face each through hole 32. The liquid guide plate 33 has a rectangular plate shape, and has a triangular lower end to be sharpened so that the liquid refrigerant can be easily dropped.

【0016】図1によく見えるが、導液板33はトレー
31の側壁31aの上端で当接し、側壁の下端では若干
の隙間Δdが保たれている。この隙間Δdは、各貫通孔
についてすべて同一とし、同径の各貫通孔32から出る
液冷媒の量が均一になるようにしている。
As can be seen clearly in FIG. 1, the liquid guide plate 33 is in contact with the upper end of the side wall 31a of the tray 31, and a slight gap Δd is maintained at the lower end of the side wall. The gap Δd is the same for all through holes, and the amount of the liquid refrigerant flowing out from each through hole 32 having the same diameter is made uniform.

【0017】符号34は蒸発管で、この実施例において
は、従来例とは異なり循環水を通していない中空管で、
上端部を蒸発器1内に入れ、大部分は蒸発器1とは別に
形成された熱交換器35内に収容されている。図示は省
略するが、蒸発管34の蒸発器1と熱交換器35との間
には、断熱材で覆っており、蒸発管34の熱交換器35
内に収容された部分には、多数のフィンが取り付けら
れ、効率的な熱交換を図っている。
Reference numeral 34 is an evaporation pipe, which in this embodiment is a hollow pipe through which circulating water does not pass, unlike the conventional example.
The upper end is put in the evaporator 1, and most of it is housed in a heat exchanger 35 formed separately from the evaporator 1. Although illustration is omitted, the heat exchanger 35 of the evaporation pipe 34 is covered with a heat insulating material between the evaporator 1 and the heat exchanger 35 of the evaporation pipe 34.
A large number of fins are attached to the portion housed in the interior for efficient heat exchange.

【0018】次に、本発明の作用を説明する。液冷媒3
が液冷媒供給管2からトレー31内に供給されると、ト
レー31の底部に溜まり始める。貫通孔32は、側壁3
1aの下端近傍にあるので、トレー31内に若干の液冷
媒が溜まると、液冷媒は、じきに各貫通孔32から出て
隙間を充満して導液板33に伝わり、各導液板33の先
端から各蒸発管34内に滴下される。蒸発管34内も蒸
発器1内と同じ真空なので、蒸発管34内で液冷媒3が
蒸発し、蒸発管34から気化熱を奪い、熱交換器35内
の蒸発管34を冷却する。熱交換器35では、図示しな
いファンで空気を蒸発管34に送り、熱交換させて空気
を冷却し、冷房等に使用する。
Next, the operation of the present invention will be described. Liquid refrigerant 3
When is supplied into the tray 31 from the liquid refrigerant supply pipe 2, it starts to accumulate at the bottom of the tray 31. The through hole 32 is the side wall 3
Since it is near the lower end of 1a, when some liquid refrigerant accumulates in the tray 31, the liquid refrigerant soon comes out from each through hole 32, fills the gap, and is transmitted to the liquid guiding plate 33. Is dripped into each evaporation pipe 34 from the tip. Since the inside of the evaporator pipe 34 has the same vacuum as the inside of the evaporator 1, the liquid refrigerant 3 evaporates in the evaporator pipe 34, deprives the evaporation pipe 34 of heat of vaporization, and cools the evaporator pipe 34 in the heat exchanger 35. In the heat exchanger 35, air is sent to the evaporation pipe 34 by a fan (not shown) to cause heat exchange to cool the air and use it for cooling or the like.

【0019】上記の実施例に示すように、トレー31の
断面形状を三角形にすれば、単位深さ当たりのトレーの
体積がトレーの底に近づくに連れて小さくなるので、空
のトレー31に液冷媒3が供給されて、貫通孔32から
液冷媒3が流出しだすまでの時間が短くなる。また、液
冷媒3が貫通孔32まで達すれば、直ちに滴下されるの
で、毛細管現象により導液板の先端に達するのを待つ必
要もなくなる。
As shown in the above embodiment, if the tray 31 has a triangular sectional shape, the volume of the tray per unit depth becomes smaller as it approaches the bottom of the tray. The time until the liquid refrigerant 3 starts to flow out from the through hole 32 after the refrigerant 3 is supplied is shortened. Further, when the liquid refrigerant 3 reaches the through hole 32, it is immediately dropped, so that it is not necessary to wait until it reaches the tip of the liquid guide plate due to the capillary phenomenon.

【0020】そして、各貫通孔32の径と、隙間Δdの
寸法とを同一し、さらに、液冷媒の水面と各貫通孔32
との距離(高さ)を一定にすることによって、各貫通孔
には均一な水圧がかかるようになり、液冷媒を均一に滴
下させることができる。
The diameter of each through hole 32 and the size of the gap Δd are the same, and the water surface of the liquid refrigerant and each through hole 32 are the same.
By making the distance (height) to and constant, a uniform water pressure is applied to each through hole, and the liquid refrigerant can be uniformly dropped.

【0021】また、トレー31内の液冷媒の水位に応じ
て貫通孔32に加わる水圧が変化するので、トレー内の
液冷媒量に応じて滴下量を調整することができる。
Further, since the water pressure applied to the through hole 32 changes depending on the water level of the liquid refrigerant in the tray 31, the dropping amount can be adjusted according to the amount of the liquid refrigerant in the tray.

【0022】すなわち、運転を開始すると、トレー内に
液冷媒が供給されてくるが、トレーの底に徐々に液冷媒
が溜まりだしてくるので、液冷媒のある部位の貫通孔か
ら液冷媒を滴下し始める。トレー内の液冷媒の量が少な
いときは、滴下量が少なくなり、トレー内の液冷媒の量
が増えると、圧力が増加するので滴下量も増加して、ト
レー31から液冷媒がオーバーフローすることを防止す
る。
That is, when the operation is started, the liquid refrigerant is supplied into the tray, but the liquid refrigerant gradually accumulates at the bottom of the tray. Begin to. When the amount of liquid refrigerant in the tray is small, the amount of dripping decreases, and when the amount of liquid refrigerant in the tray increases, the pressure also increases, so the amount of dripping also increases and the liquid refrigerant overflows from the tray 31. Prevent.

【0023】トレーに液冷媒が供給され始めの頃は、貫
通孔32と導液板33との間に働く表面張力によって滴
下しない場所があっても、トレー内の液量が増加すれ
ば、圧力が増加するので、表面張力に打ち勝って確実に
滴下を開始する。
At the beginning of the supply of the liquid refrigerant to the tray, even if there is a place where it does not drip due to the surface tension acting between the through hole 32 and the liquid guide plate 33, if the amount of liquid in the tray increases, the pressure will increase. Therefore, the surface tension is overcome and the dropping is surely started.

【0024】上記の実施例では、トレー31の断面形状
が三角形であったが、単位深さが底部に近づくに連れて
小さくなる形状であれば、半円形や台形等種々の形状に
することができる。また、蒸発管も従来例で示したよう
な循環水を通すタイプのものとすることもできることは
当業者には自明のことである。
In the above embodiment, the tray 31 has a triangular cross-section, but various shapes such as a semi-circle and a trapezoid may be used as long as the unit depth becomes smaller toward the bottom. it can. Further, it is obvious to those skilled in the art that the evaporation tube may be of a type that allows circulating water as shown in the conventional example.

【0025】次に、冷房能力を加減する方法について説
明する。第1の方法は、熱交換器35に送り込む外部の
空気の温度により加減する方法である。図1から3の実
施例では、各導液板33の先端から最大毎分約6CCの
液冷媒が(連続的ではなく)ポタポタと滴下するように
しており、蒸発器1内は、前述したように真空に維持さ
れているので、トレー31内の液冷媒3は蒸発し、液冷
媒3は冷却され、この冷却により液冷媒は蒸発しにくく
なっていく。
Next, a method of adjusting the cooling capacity will be described. The first method is a method in which the temperature is adjusted according to the temperature of the external air sent to the heat exchanger 35. In the embodiments of FIGS. 1 to 3, the liquid refrigerant of about 6 CC per minute at maximum is dripped (not continuously) from the tip of each liquid guide plate 33, and the inside of the evaporator 1 is as described above. Since the liquid refrigerant 3 in the tray 31 is evaporated and the liquid refrigerant 3 is cooled because the vacuum is maintained, the liquid refrigerant 3 is less likely to evaporate due to this cooling.

【0026】一方、熱交換器35内の蒸発管34には、
図示しないが多数のフィンが設けられており、ここにフ
ァンで外部からの空気が送り込まれ、蒸発管34で熱交
換が行われる。すなわち、送り込まれた空気は冷却さ
れ、蒸発管34は逆に暖められる。蒸発管34が暖めら
れると、液冷媒の蒸発が促進されることになる。
On the other hand, in the evaporation pipe 34 in the heat exchanger 35,
Although not shown, a large number of fins are provided, and air is sent from the outside by a fan, and heat is exchanged in the evaporation pipe 34. That is, the sent air is cooled and the evaporation pipe 34 is warmed up. When the evaporation pipe 34 is warmed, evaporation of the liquid refrigerant is promoted.

【0027】したがって、外部の空気が暖かければ、蒸
発管34内での液冷媒の蒸発は活発になり、外部の空気
が冷たければ、蒸発管34内での蒸発は鈍化する。換言
すれば、夏は冷房能力が向上し、冬は冷房能力が低下す
ることになり、理に適っている。
Therefore, if the outside air is warm, the evaporation of the liquid refrigerant in the evaporation pipe 34 will be active, and if the outside air is cold, the evaporation in the evaporation pipe 34 will be slowed down. In other words, cooling capacity improves in summer and cooling capacity decreases in winter, which makes sense.

【0028】第2の方法としては、熱交換器35に送り
込む空気の量を変化させる方法がある。同じ温度の外気
でも、送り込まれる空気の量が多ければ、蒸発力は大き
くなり、少なければ小さくなるので、冷房能力を変化で
きる。
The second method is to change the amount of air sent to the heat exchanger 35. Even with outside air of the same temperature, if the amount of air sent in is large, the evaporation power will be large, and if it is small, it will be small, so the cooling capacity can be changed.

【0029】冷房能力を変化させる第3の方法として
は、再生器内の加熱燃焼力を加減する方法がある。バー
ナに点火して再生器内の臭化リチウム希溶液を加熱する
と、液冷媒が蒸発して凝縮器に蒸気が行き、ここで冷や
されて液冷媒に戻り、液冷媒供給管2を通り、液冷媒滴
下装置に液冷媒を供給し始める。バーナの燃焼力の変化
によって液冷媒の供給量が変わるので、これによって液
冷媒の蒸発量が変わり、冷房能力を変化させることがで
きる。本発明の液冷媒滴下装置では、吸収式冷房機の能
力をこれらの種々の方法により行うことになる。
As a third method of changing the cooling capacity, there is a method of adjusting the heating and burning power in the regenerator. When the burner is ignited and the diluted lithium bromide solution in the regenerator is heated, the liquid refrigerant evaporates and vapor goes to the condenser, where it is cooled and returned to the liquid refrigerant, passes through the liquid refrigerant supply pipe 2, Begin supplying liquid refrigerant to the refrigerant dropping device. Since the supply amount of the liquid refrigerant changes according to the change of the combustion power of the burner, the evaporation amount of the liquid refrigerant changes accordingly, and the cooling capacity can be changed. In the liquid refrigerant dropping device of the present invention, the capacity of the absorption type air conditioner is controlled by these various methods.

【0030】[0030]

【発明の効果】以上説明したように本発明によれば、
レーを、底部に近づくほど単位深さ当たりの体積が小さ
くなる構成とし、このトレーの側壁に貫通孔を穿設し、
該孔を微小な隙間を保持して覆う導液板を設け、該導液
板から前記蒸発器に液冷媒を滴下させるように構成した
ので、液冷媒の滴下が確実になり、冷房能力を十分に発
揮させることができ、また、液冷媒の滴下開始までの時
間が短くなり、早期の運転が可能になる。また、複数の
貫通孔を設けた構成とすれば、複数の導液板から液冷媒
を均一に滴下させることができる。
As described above, according to the present invention ,
The volume per unit depth becomes smaller toward the bottom of the ray
And a through hole in the side wall of this tray,
Since a liquid guide plate is provided to cover the hole with a minute gap and the liquid refrigerant is dropped from the liquid guide plate to the evaporator, the liquid refrigerant is surely dropped and the cooling capacity is sufficiently improved. It can be used for a long time until the start of liquid refrigerant dropping.
The time is shortened and early operation becomes possible. Further, if a plurality of through holes are provided, the liquid refrigerant can be uniformly dropped from the plurality of liquid guide plates .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の液冷媒滴下装置の構成を示す要部断面
図である。
FIG. 1 is a cross-sectional view of essential parts showing a configuration of a liquid refrigerant dropping device of the present invention.

【図2】本発明の液冷媒滴下装置における要部の構成を
示す斜視図である。
FIG. 2 is a perspective view showing a configuration of a main part of the liquid refrigerant dropping device of the present invention.

【図3】液冷媒滴下装置のトレーの側面図である。FIG. 3 is a side view of a tray of the liquid refrigerant dropping device.

【図4】従来の吸収式冷房機の構成図である。FIG. 4 is a configuration diagram of a conventional absorption type air conditioner.

【図5】従来の液冷媒滴下装置の構成を示す断面図であ
る。
FIG. 5 is a cross-sectional view showing a configuration of a conventional liquid refrigerant dropping device.

【図6】図5の液冷媒滴下装置に使用する導液板の図
で、(a) は正面図、(b) は(a) のB−B断面図である。
6 is a diagram of a liquid guide plate used in the liquid refrigerant dropping device of FIG. 5, (a) is a front view, and (b) is a BB cross-sectional view of (a).

【符号の説明】[Explanation of symbols]

1 蒸発器 3 液冷媒 6 吸収器 7 吸収液 30 液冷媒滴下装置 31 トレー 32 貫通孔 33 導液板 34 蒸発管 1 evaporator 3 liquid refrigerant 6 absorber 7 absorption liquid 30 Liquid refrigerant dropping device 31 trays 32 through holes 33 Liquid guide plate 34 Evaporation tube

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤本 正之 千葉県浦安市日の出6−B−702 (72)発明者 岡野 俊也 神奈川県横浜市中区千代崎町四丁目94番 (72)発明者 谷 英樹 大阪府大阪市中央区平野町四丁目1番2 号 大阪瓦斯株式会社内 (72)発明者 今井 和哉 大阪府大阪市中央区平野町四丁目1番2 号 大阪瓦斯株式会社内 (56)参考文献 特開 平3−105176(JP,A) 実開 昭49−87560(JP,U) 実開 昭58−55262(JP,U) 実開 昭59−172963(JP,U) 実公 昭42−5090(JP,Y1) (58)調査した分野(Int.Cl.7,DB名) F25B 39/02 F25B 39/00 F25B 37/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masayuki Fujimoto 6-B-702 Hinode, Urayasu City, Chiba Prefecture (72) Inventor Toshiya Okano 4-94, Chiyosaki-cho, Naka-ku, Yokohama City, Kanagawa Prefecture Hideki Tani Osaka Prefecture Co., Ltd., Chuo-ku, Hiranomachi 4-1-2, Osaka Gas Co., Ltd. (72) Inventor Kazuya Imai, Osaka, Chuo-ku, Hirano-cho, 4-1-2 Osaka Gas Co., Ltd. (56) References JP-A-3-105176 (JP, A) Actual opening Sho 49-87560 (JP, U) Actual opening Sho 58-55262 (JP, U) Actual opening Sho 59-172963 (JP, U) Actual public Sho 42-5090 (JP, Y1) (58) Fields surveyed (Int.Cl. 7 , DB name) F25B 39/02 F25B 39/00 F25B 37/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 液冷媒を真空の蒸発器内に設けられた蒸
発管に滴下して蒸発させ、該蒸発の際の気化熱により空
気等を冷却する吸収式冷房機に使用され、前記液冷媒を
トレー内に貯留して前記蒸発器内に滴下する液冷媒滴下
装置において、前記トレーを、底部に近づくほど単位深さ当たりの体積
が小さくなるように構成し、 前記トレーの側壁に貫通孔を穿設すると共に、該貫通孔
を適度な隙間を保持して覆う導液板を設け、該導液板か
ら前記蒸発管に液冷媒を滴下させるようにしたことを特
徴とする吸収式冷房機の液冷媒滴下装置。
1. A liquid cooling medium is evaporated by dropping the evaporation pipe provided in the vacuum evaporator is used in the absorption cooling machine for cooling air or the like by the heat of vaporization during the evaporation, the liquid In a liquid refrigerant dropping device for storing a refrigerant in a tray and dripping it into the evaporator, a volume per unit depth of the tray becomes closer to the bottom.
Configured to decrease, with bored through holes in the side walls of the tray, provided with liquid guiding plate covering holds an appropriate clearance a through hole, the liquid in the evaporator tubes from the conductor liquid plate A liquid refrigerant dropping device for an absorption type air conditioner, wherein a refrigerant is dropped.
【請求項2】 前記貫通孔がほぼ等間隔に複数個穿設さ
れ、かつ各貫通孔の径と各導液板との前記各隙間をそれ
ぞれほぼ同一にしたことを特徴とする請求項1記載の吸
収式冷房機の液冷媒滴下装置。
2. The plurality of through holes are formed at substantially equal intervals, and the diameter of each through hole and each gap between each liquid guide plate are made substantially the same. Liquid refrigerant dropping device of absorption type air conditioner.
【請求項3】 前記貫通孔がトレーの底部近傍に穿設さ
れていることを特徴とする請求項1又は2記載の吸収式
冷房機の液冷媒滴下装置。
Wherein the through hole absorption cooling machine of the liquid refrigerant dropping device according to claim 1 or 2, wherein the being drilled near the bottom of the tray over.
JP29182793A 1993-11-22 1993-11-22 Liquid refrigerant dripping device for absorption cooling machine Expired - Fee Related JP3387583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29182793A JP3387583B2 (en) 1993-11-22 1993-11-22 Liquid refrigerant dripping device for absorption cooling machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29182793A JP3387583B2 (en) 1993-11-22 1993-11-22 Liquid refrigerant dripping device for absorption cooling machine

Publications (2)

Publication Number Publication Date
JPH07146027A JPH07146027A (en) 1995-06-06
JP3387583B2 true JP3387583B2 (en) 2003-03-17

Family

ID=17773934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29182793A Expired - Fee Related JP3387583B2 (en) 1993-11-22 1993-11-22 Liquid refrigerant dripping device for absorption cooling machine

Country Status (1)

Country Link
JP (1) JP3387583B2 (en)

Also Published As

Publication number Publication date
JPH07146027A (en) 1995-06-06

Similar Documents

Publication Publication Date Title
KR100466773B1 (en) Absorption Chiller
KR100346049B1 (en) Absorptive refrigerator and method for manufacturing the same
JP3916114B2 (en) Absorption type refrigerator and heat transfer tube used therefor
JP3387583B2 (en) Liquid refrigerant dripping device for absorption cooling machine
US7900472B2 (en) Heat exchange and heat transfer device, in particular for a motor vehicle
WO2001057449A1 (en) Constant temperature-humidity oven
KR100532516B1 (en) Absorption refrigerator
JPH10185354A (en) Absorber
JP3091071B2 (en) Heat exchangers and absorption air conditioners
JPH09203573A (en) Ice making device
KR100200055B1 (en) Indoor machine of airconditioner
KR100518619B1 (en) evaporator
JPH06347135A (en) Absorption type freezer
AU728307B2 (en) Liquid refrigerant dropping apparatus for absorption type refrigerators
JPH0498090A (en) Cooling method and cooling device
KR200306329Y1 (en) Dripping apparatus for absoption type chilling and heating system
US1983990A (en) Evaporator for refrigerators
KR950005849B1 (en) Absorption type warm and cool water machine
JPH0979693A (en) Absorbing type heat exchanger
KR200170264Y1 (en) Multi-Tube Bubble Pump system for Diffusion Absorption Refrigerator.
JPS6018906B2 (en) absorption refrigerator
JPH0674613A (en) Structure of accumulator in refrigeration cycle
KR100321583B1 (en) Heat transfer tube liquid membrane induction device of absorption water cooler and heater
JP2756523B2 (en) Liquid distributor of absorption refrigerator
JP4139056B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021203

LAPS Cancellation because of no payment of annual fees