JP3387415B2 - Manufacturing method of galvannealed steel sheet with excellent surface appearance - Google Patents

Manufacturing method of galvannealed steel sheet with excellent surface appearance

Info

Publication number
JP3387415B2
JP3387415B2 JP15413398A JP15413398A JP3387415B2 JP 3387415 B2 JP3387415 B2 JP 3387415B2 JP 15413398 A JP15413398 A JP 15413398A JP 15413398 A JP15413398 A JP 15413398A JP 3387415 B2 JP3387415 B2 JP 3387415B2
Authority
JP
Japan
Prior art keywords
bath
dross
steel sheet
concentration
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15413398A
Other languages
Japanese (ja)
Other versions
JPH11350097A (en
Inventor
修二 野村
理孝 櫻井
勝 鷺山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP15413398A priority Critical patent/JP3387415B2/en
Publication of JPH11350097A publication Critical patent/JPH11350097A/en
Application granted granted Critical
Publication of JP3387415B2 publication Critical patent/JP3387415B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、表面外観に優れた
合金化溶融亜鉛メッキ鋼板の製造方法に関するものであ
る。 【0002】 【従来の技術】合金化溶融亜鉛メッキ鋼板はプレス成形
性、耐食性、溶接性など種々の特性に優れているため
に、巾広く使用されている。最近では、合金化溶融亜鉛
メッキ鋼板は、冷延鋼板や電気メッキ鋼板に代わり、自
動車車体の外板用途など、美麗な表面外観を必要とされ
る用途に使用されるようになった。 【0003】しかしながら、合金化溶融亜鉛メッキ鋼板
は、冷延鋼板や電気メッキ鋼板と比較し、美麗な表面外
観を得ることが困難である。その一因として、溶融亜鉛
メッキ鋼板の製造ラインにおいて不可避的に発生するド
ロスと呼ばれる金属間化合物が付着することがある。 【0004】通常、合金化溶融亜鉛メッキ鋼板を製造す
る場合、被メッキ鋼板をメッキ槽内の溶融亜鉛浴に浸漬
し、浴中のシンクロールによって方向転換させてメッキ
槽から引き上げ、ワイピング装置によって所定のメッキ
付着量に調整した後に、合金化処理を行う。このような
製造設備において、被メッキ鋼板や浴中機器から溶出し
たFeと、溶融亜鉛浴中のZnやAlとの化学反応によってFe
−Zn系および/またはFe−Al系の金属間化合物が生成す
ることは避けられない。通常、これらの浴中に生成した
金属間化合物をドロスと称している。 【0005】生成したドロスは、溶融亜鉛浴が静かな状
態であれば、溶融亜鉛との比重差によって、メッキ槽底
部に沈降し堆積するか、もしくは浴面に浮上する。しか
しながら、溶融亜鉛浴は被メッキ鋼板の通過やシンクロ
ールなどの浴中ロールの回転により常に撹拌されてい
る。Fe−Zn系のドロスは溶融Znより比重が高いがその比
重差が比較的小さいので、浴の撹拌が強くなると浮遊し
やすく浴中で鋼板に付着する。一方、Fe−Al系のドロス
は溶融Znとの比重差が大きいので浴面に浮上しやすく、
鋼板が浴面を通過する際に付着しやすい。付着したドロ
スは、調質圧延時やプレス加工時に押しつぶされ、ドロ
ス欠陥と呼ばれる点状の欠陥の原因となる。 【0006】そこで、このようなドロス欠陥防止を目的
に、操業を停止することなく溶融亜鉛浴中からドロスを
除去する手段として、ドロスを含む溶融亜鉛浴をメッキ
槽から取り出してサブポットに送り、サブポット内で溶
融亜鉛浴を清浄化した後、メッキ槽に戻す技術は数多く
提案されている。 【0007】これらの従来技術の中で、例えば特開平5-
98405号公報では、より効率的にドロス除去を行う方法
として、溶融亜鉛浴中の球相当径50μm以上のドロスを
サブポット内で沈降分離した後にメッキ槽に戻し、除去
することが困難な球相当径50μm以下のドロスを鋼板に
付着させて除去し、合金化処理や調質圧延により消滅さ
せ無害化するする方法を提案している。 【0008】また、特開平3-211262号公報では、被メッ
キ鋼板に、該鋼板とZn、Alが反応してできた微小な直径
50μm以下のFe−Zn合金および/またはFe−Al合金のド
ロスを付着させたまま引き出し、ついで合金化処理ある
いは調質圧延によって付着したドロスを消滅させ無害化
する溶融亜鉛メッキ鋼板の製造方法、および、メッキ槽
内に被メッキ鋼板の周囲にカバーを備えた溶融亜鉛メッ
キ鋼板の製造装置を提案している。 【0009】 【発明が解決しようとする課題】しかしながら、上述し
た特開平5-98405号公報に代表される従来技術では、溶
融亜鉛浴からドロスを除去するために、溶融亜鉛浴をく
み出すポンプやサブポットの新設など設備の大規模な改
造を必要とするため、多額の設備投資を必要とする。ま
た、既存の製造ラインに設置する場合は設置スペースの
問題が生じる。あるいは、装置の保守、点検等に労力を
必要とし、必ずしも生産性の改善につながらない。 【0010】また、特開平3-211262号公報では、付着し
た直径50μm以下のドロスを、合金化処理時間中のFe、
Al、Znの拡散により消滅させるために、合金化処理条件
に制約が生じパウダリング性など表面品質以外の品質の
劣化が懸念される。調質圧延により無害化させる場合も
同様に調質圧延条件に制約が生じる。 【0011】また、付着するドロスを直径50μm以下の
大きさに制限するには、前記したメッキ槽内のカバーや
特開平5-98405号公報に提案されているようなサブポッ
トなどの亜鉛浴清浄化装置などが必要であり、設備投資
と保守作業の労力が必要である。 【0012】本発明は、生産性を低下させることなく、
かつ、既存の製造設備に対して大規模な改造を必要とせ
ずに表面外観に優れた合金化溶融亜鉛メッキ鋼板を製造
する方法を提供することを目的とするものである。 【0013】 【課題を解決するための手段】上記の課題を解決するた
め手段はメッキ槽内の溶融亜鉛浴に鋼板を連続的に通
板・浸漬して溶融メッキを行った後、前記鋼板を加熱し
てメッキ層を合金化する合金化溶融亜鉛メッキ鋼板の製
造方法において、浴中Al濃度を0.15±0.01wt%の範囲内
に1日以上保持することを特徴とする表面外観に優れた
合金化溶融亜鉛メッキ鋼板の製造方法である 【0014】 【発明の実施の形態】以下、本発明について説明する。
浴中のドロスを完全に除去した後、清浄な浴で操業を開
始し溶融メッキ鋼板の製造を続けると、次第に鋼板や浴
中機器からFeが供給され、ドロスが発生する。ドロスは
最初は微細でも次第に成長し、一定以上の直径のドロス
が鋼板に付着すると、点状の表面欠陥が発生する。例え
ば、特開平3-211262号公報では直径50μm以上のドロス
が付着した溶融メッキ鋼板は合金化処理後、表面欠陥が
発生するとしている。 【0015】ここで、ドロスの組成は浴中Al濃度と密接
な関係に有ることが知られている。例えば、465℃に保
持した亜鉛浴において、浴中Al濃度が約0.15%以上では
生成するドロスはFe−Al系のものであるのに対し、これ
より低い浴中Al濃度では、生成するドロスはFe−Zn系の
δ1相のドロスが発生する。さらに浴中Al濃度を下げる
とFe−Zn系のζ相のドロスが発生する。即ち、浴中にお
いて平衡なドロス相は、浴の保持温度と浴中Al濃度によ
って決定される。いずれのドロス相が安定な領域に温
度、浴中Al濃度を維持して操業を行っても、時間ととも
にドロスは増加、粗大化し、ドロス欠陥の原因となる。 【0016】また、既にドロスが存在する浴の浴中Al濃
度を大きく変化させた場合でも上記の変化が生じ、浴中
のドロスは浴組成や温度に応じて安定な相へと変化す
る。 【0017】本発明者らは、浴組成とドロスの関係につ
いて鋭意研究を重ねた結果、以下の知見を得た。 【0018】δ1相のドロスが存在する亜鉛浴のAl濃度
を上昇させて、Fe−Al相が安定な組成へと変化させる
と、浴中のドロスはFe−Al相へと変化する。この際に、
Fe−Al相のドロスは、δ1相のドロスの表面で核生成、
成長する。また、一つのδ1相のドロスから複数のFe−A
l相のドロスが発生する。即ち、浴条件を変更し、安定
なドロス相の変化が生じる時、一つのドロスは複数の粒
子に分割される。逆方向に浴組成を変化させても同様の
現象が再び生じる。 【0019】浴中Al濃度を0.15wt%を越えた組成で保持
し操業を行うと、Fe−Al相が安定の領域となって、時間
の経過とともにFe−Al相のドロスが成長する。一方、浴
中Al濃度を0.15wt%を下回って操業を行うと、δ1相安定
の領域となって、時間の経過とともにδ1相のドロスが
成長する。例えば、浴組成が0.15wt%以上でFe−Al相の
ドロスを含む亜鉛浴の組成を、0.15wt%以下に変化させ
ると、浴中の存在するドロスは浴組成によって決定され
る安定な相、即ちδ1相へ変化する過程において微細化
する。 【0020】しかしながら、ドロス微細化処理のために
浴組成を大きく変動させることは、合金化溶融亜鉛メッ
キ鋼板を安定して製造する点から問題が大きい。例え
ば、浴組成を急速に変更することは難しく、特にAl濃度
を低下させることは困難である。また、Al濃度を大きく
上昇させると、その間に製造する合金化溶融亜鉛メッキ
鋼板は合金化処理が困難になる。 【0021】そこでさらに検討を進めた結果、浴中Al濃
度を相変態が生ずる濃度の付近、即ち、0.15±0.01wt%
の範囲内に保持することによって、ドロスの成長を抑制
することが可能であり、また、抑制効果がより高いこと
が判明した。実操業では、浴条件を一定に保つ努力を行
っても、実際は局所的な温度や浴組成の不均一は避けら
れない。例えば、亜鉛浴の供給は、メッキ槽内でZnイン
ゴット、もしくはZn合金インゴットを溶解することで行
われるので、インゴット周囲では浴組成が異なる。ま
た、浴面付近や前記インゴット周囲では当然ながら亜鉛
浴は冷却され浴温が低下する。一方で、浴温維持のため
に設けられている加熱装置によって、部分的に浴温が高
い領域が存在する。さらに被メッキ鋼板の周囲の亜鉛浴
は、被メッキ鋼板と亜鉛浴の温度差によって加熱あるい
は冷却されている。 【0022】このように、メッキ槽中の大部分は温度、
組成が均一であるが、局所的に亜鉛浴の組成、温度が異
なる部分が不可避的に存在する。したがって、浴中Al濃
度が0.15wt%に近いドロスを含む亜鉛浴が、前述の浴組
成が異なる領域に達した時、浴組成が0.15wt%を超えて
変化することによって、安定なドロス相が変化しドロス
の相変態に伴う微細化が起こる。またこの浴がメッキ槽
の大部分と同じ組成に回復する際に、再びドロスの相変
態に伴うドロスの微細化が起こり、連続的にドロスの微
細化が行われるので、その結果としてメッキ槽全体では
ドロスの成長が抑制されるためである。 【0023】本発明者らは、メッキ槽内の浴温の不可避
な不均一部分を利用してドロスの成長を抑制するには、
メッキ槽中の大部分を占める均一な部分の浴組成を、0.
15%±0.01wt%の範囲内に管理することによってなされ
ることを知見した。すなわち、通常操業管理で測定して
いる浴組成を、同様に測定している浴温によって決定さ
れる0.15±0.01wt%の範囲内に管理することによってな
されることを知見した。 【0024】この方法ではメッキ槽中の大部分の浴組成
は変動しないので、合金化溶融亜鉛メッキ鋼板を製造す
る点で安定性が高い。また、メッキ後の鋼板にドロスが
付着しても微細なので、さらに合金化処理を施して製造
される合金化溶融亜鉛メッキ鋼板の表面外観を損なうこ
とがない。 【0025】本発明では、浴中Al濃度を0.15±0.01wt%
の範囲内に保持することによりドロスの粗大化を抑制す
ることによってなされるので、合金化溶融亜鉛メッキ鋼
板の下地鋼板になんら制限はない。また、製造時のメッ
キ槽への侵入板温、溶融亜鉛浴温度、メッキ付着量等の
メッキ条件、合金化処理温度、合金化処理時間、合金化
処理装置の種類等の合金化処理条件になんら制限はな
い。合金化処理はメッキに引き続いて行うことが有利だ
が、別の設備で行ってもよい。 【0026】なお、本発明は、ドロスの粗大化を抑制
し、浴中のドロスを微細なままに維持することによって
優れた表面外観を得るものであって、ドロスの発生量を
削減するものではない。実際に有害な浴中のドロスは、
あるサイズを越えたものであるので、例えば50μm以下
の微細なドロスが浴中に大量に存在しても無害である。 【0027】 【実施例】(実施例1)CGLにおいて、平均粒径が100μ
mのドロスを含む亜鉛浴を460℃に保持し、合金化溶融亜
鉛メッキ鋼板を継続して製造し、亜鉛浴に含まれるドロ
スの粒子径の経時変化を調査した。この間、亜鉛浴の供
給、浴温の維持のための加熱、浴面での冷却などの不可
避の要因によって、局所的な浴温、浴組成の変動が生じ
ている。調査結果を図1に示す。 【0028】Al濃度を0.15±0.01wt%から外れた範囲に
保持した浴では、時間とともにドロスが粗大化してい
た。一方、Al濃度を境界濃度0.15±0.01wt%の範囲内に
保持した浴では、メッキ中に不可避的に起こる局所的な
浴温や浴組成の変動によってドロスが微細化されてい
た。 【0029】前記微細化された亜鉛浴で鋼板にメッキす
ると、優れた表面外観の合金化溶融亜鉛メッキ鋼板が得
られる。 【0030】(実施例2)CGLにおいて、予め浴中にド
ロスのない溶融亜鉛メッキ浴を準備し、浴中Al濃度を種
々の組成に調整して、合金化溶融亜鉛メッキ鋼板を継続
して製造し、1週間後、採取した亜鉛浴に含まれるドロ
スの平均粒子径を調査した。前記の実験を保持温度を変
えて3水準行った。亜鉛浴の供給、浴温の維持のための
加熱、浴面での冷却など不可避の要因によって、局所的
な浴温、浴組成の変動は生じている。調査結果を図2に
示す。 【0031】Al濃度を0.15±0.01wt%から外れた範囲で
保持した浴と比較し、Al濃度を境界濃度0.15±0.01wt%
の範囲内に保持した浴では、メッキ中に不可避的に起こ
る局所的な浴温や浴組成の変動によってドロスが微細で
あり、粗大化が抑制されていた。 【0032】前記微細化された亜鉛浴で鋼板にメッキす
ると、優れた表面外観の合金化溶融亜鉛メッキ鋼板が得
られる。 【0033】 【発明の効果】以上述べたように、この発明によれば、
既存の製造設備を改造しないでドロスの粗大化を抑制を
できるので、ドロス処理のために生産性を落とすことな
く、優れた表面外観を有する合金化溶融亜鉛メッキ鋼板
を製造することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a galvannealed steel sheet having excellent surface appearance. [0002] Galvannealed steel sheets are widely used due to their excellent properties such as press formability, corrosion resistance and weldability. Recently, galvannealed steel sheets have come to be used for applications requiring beautiful surface appearance, such as automotive body outer panels, instead of cold-rolled steel sheets and electroplated steel sheets. [0003] However, it is more difficult for an alloyed hot-dip galvanized steel sheet to obtain a beautiful surface appearance than a cold-rolled steel sheet or an electroplated steel sheet. One reason for this is that an intermetallic compound called dross, which is inevitably generated in the production line of hot-dip galvanized steel sheets, sometimes adheres. Normally, in the case of producing an alloyed hot-dip galvanized steel sheet, the steel sheet to be plated is immersed in a hot-dip zinc bath in a plating bath, turned around by a sink roll in the bath, lifted up from the plating bath, and wiped by a wiping device. After adjusting to the plating adhesion amount, an alloying treatment is performed. In such a manufacturing facility, Fe eluted from a steel plate to be plated or equipment in the bath, and Zn or Al in the molten zinc bath by a chemical reaction,
It is inevitable that a -Zn-based and / or Fe-Al-based intermetallic compound is generated. Usually, the intermetallic compound formed in these baths is called dross. If the molten zinc bath is in a quiet state, the generated dross settles and deposits on the bottom of the plating tank or floats on the bath surface depending on the specific gravity difference from the molten zinc. However, the molten zinc bath is constantly stirred by the passage of a steel plate to be plated and the rotation of a roll in the bath such as a sink roll. Fe-Zn dross has a higher specific gravity than molten Zn, but the difference in specific gravity is relatively small. Therefore, when the stirring of the bath is increased, the dross easily floats and adheres to the steel sheet in the bath. On the other hand, Fe-Al dross has a large specific gravity difference with molten Zn, so it easily floats on the bath surface,
The steel sheet easily adheres when passing through the bath surface. The attached dross is crushed at the time of temper rolling or press working, which causes a point-like defect called a dross defect. [0006] In order to prevent such dross defects, as a means for removing dross from the molten zinc bath without stopping the operation, a molten zinc bath containing dross is taken out of the plating tank and sent to a sub-pot. Many techniques have been proposed for cleaning the molten zinc bath inside and then returning it to the plating tank. Among these prior arts, for example, Japanese Patent Application Laid-Open
Japanese Patent No. 98405 discloses that as a method for more efficiently removing dross, dross having a sphere equivalent diameter of 50 μm or more in a molten zinc bath is settled and separated in a subpot, then returned to a plating tank, and a sphere equivalent diameter that is difficult to remove. A method has been proposed in which dross having a diameter of 50 μm or less is adhered to a steel sheet and removed, and is eliminated and rendered harmless by alloying treatment or temper rolling. In Japanese Patent Application Laid-Open No. 3-211262, a small diameter formed by reacting Zn and Al with a steel plate to be plated is described.
A method for producing a hot-dip galvanized steel sheet that draws out dross of an Fe-Zn alloy and / or Fe-Al alloy of 50 μm or less while adhering the dross, and then eliminates and renders harmless dross adhered by alloying treatment or temper rolling, and Proposes an apparatus for manufacturing a hot-dip galvanized steel sheet having a cover around a steel sheet to be plated in a plating tank. [0009] However, in the prior art represented by the above-mentioned Japanese Patent Application Laid-Open No. 5-98405, in order to remove dross from the molten zinc bath, a pump for extracting the molten zinc bath, Since large-scale remodeling of facilities is required, such as the construction of a new sub-pot, a large amount of capital investment is required. In addition, when installing on an existing production line, there is a problem of installation space. Alternatively, labor is required for maintenance, inspection, and the like of the apparatus, which does not necessarily lead to improvement in productivity. In Japanese Patent Application Laid-Open No. 3-212126, Japanese Patent Laid-Open Publication No. Hei 3-211262 discloses that dross having a diameter of 50 μm or less
Since it is extinguished by the diffusion of Al and Zn, the conditions for alloying treatment are restricted, and there is a concern that quality other than surface quality such as powdering property may be degraded. In the case of detoxification by temper rolling, the conditions for temper rolling are similarly restricted. Further, in order to limit the dross to be adhered to a size of 50 μm or less in diameter, it is necessary to clean a zinc bath such as a cover in the plating tank or a sub-pot as proposed in Japanese Patent Application Laid-Open No. 5-98405. Equipment is required, which requires capital investment and labor for maintenance work. [0012] The present invention provides a method for reducing
Another object of the present invention is to provide a method for producing an alloyed hot-dip galvanized steel sheet having excellent surface appearance without requiring large-scale modification of existing production equipment. [0013] means for solving the above-mentioned object, according to an aspect of, after performing the hot dip coating a steel sheet by continuously Tsuban-immersed in the molten zinc bath in the plating bath, the steel sheet In the method for producing an alloyed hot-dip galvanized steel sheet in which the plating layer is alloyed by heating the steel, the Al concentration in the bath is maintained within a range of 0.15 ± 0.01 wt% for at least one day, and the surface appearance is excellent. This is a method for producing a galvannealed steel sheet . The present invention will be described below.
After the dross in the bath is completely removed, when the operation is started in a clean bath and the production of the hot-dip coated steel sheet is continued, Fe is gradually supplied from the steel sheet and equipment in the bath, and dross is generated. The dross grows at first even if it is fine, and if dross having a diameter greater than a certain value adheres to the steel sheet, point-like surface defects are generated. For example, Japanese Patent Application Laid-Open No. 3-2121262 states that a hot-dip coated steel sheet to which dross having a diameter of 50 μm or more has adhered will have surface defects after alloying treatment. It is known that the composition of dross has a close relationship with the Al concentration in the bath. For example, in a zinc bath maintained at 465 ° C., dross generated when the Al concentration in the bath is about 0.15% or more is of the Fe-Al type, while dross generated at a lower Al concentration in the bath is Dross of the δ1 phase of the Fe-Zn system is generated. If the Al concentration in the bath is further reduced, Fe-Zn based d phase dross is generated. That is, the dross phase equilibrated in the bath is determined by the holding temperature of the bath and the Al concentration in the bath. No matter which dross phase is stable, the dross increases and coarsens over time, even if the operation is carried out while maintaining the temperature and the Al concentration in the bath, causing dross defects. Further, even when the Al concentration in the bath in which dross already exists is greatly changed, the above change occurs, and the dross in the bath changes to a stable phase according to the bath composition and the temperature. The present inventors have conducted intensive studies on the relationship between bath composition and dross, and have obtained the following findings. When the Al concentration in the zinc bath in which dross of the δ1 phase is present is increased to change the Fe-Al phase to a stable composition, the dross in the bath changes to the Fe-Al phase. At this time,
The dross of the Fe-Al phase nucleates on the surface of the dross of the δ 1 phase,
grow up. Further, the plurality of dross one [delta] 1-phase Fe-A
l-phase dross occurs. That is, when the bath conditions are changed and a stable dross phase change occurs, one dross is divided into a plurality of particles. A similar phenomenon occurs again when the bath composition is changed in the opposite direction. When the operation is performed while maintaining the Al concentration in the bath at a composition exceeding 0.15 wt%, the Fe-Al phase becomes a stable region, and dross of the Fe-Al phase grows with time. On the other hand, the bath Al concentration performed operations below the 0.15 wt%, and a [delta] 1 phase stability region, dross δ1 phase with the lapse of time to grow. For example, when the composition of a zinc bath containing dross in the Fe-Al phase when the bath composition is 0.15 wt% or more is changed to 0.15 wt% or less, the dross present in the bath becomes a stable phase determined by the bath composition, that miniaturized in the process of changing to the [delta] 1 phase. However, greatly changing the bath composition for the dross refining treatment has a serious problem in terms of stable production of galvannealed steel sheets. For example, it is difficult to change the bath composition rapidly, and it is particularly difficult to lower the Al concentration. In addition, when the Al concentration is greatly increased, the alloying hot-dip galvanized steel sheet manufactured during that time becomes difficult to alloy. Therefore, as a result of further study, the Al concentration in the bath was adjusted to a value near the concentration at which phase transformation occurs, that is, 0.15 ± 0.01 wt%.
It has been found that by keeping the content within the range, growth of dross can be suppressed, and the effect of suppressing dross is higher. In actual operation, even if an effort is made to keep the bath conditions constant, in practice, local temperature and nonuniform bath composition cannot be avoided. For example, the supply of a zinc bath is performed by dissolving a Zn ingot or a Zn alloy ingot in a plating tank, so that the bath composition is different around the ingot. In addition, the zinc bath is naturally cooled near the bath surface and around the ingot, and the bath temperature decreases. On the other hand, there is a region where the bath temperature is partially high due to the heating device provided for maintaining the bath temperature. Further, the zinc bath around the steel plate to be plated is heated or cooled by the temperature difference between the steel plate to be plated and the zinc bath. As described above, most of the contents in the plating tank are temperature,
Although the composition is uniform, there are some parts where the composition and temperature of the zinc bath differ locally. Therefore, when the zinc bath containing dross whose Al concentration in the bath is close to 0.15 wt% reaches the above-described region where the bath composition is different, the bath composition changes by more than 0.15 wt%, whereby a stable dross phase is formed. It changes and refinement accompanying the phase transformation of dross occurs. Also, when this bath recovers to the same composition as most of the plating tank, dross refinement occurs again due to the dross phase transformation, and dross refinement is continuously performed. This is because growth of dross is suppressed. In order to suppress the growth of dross by using the inevitable nonuniform temperature of the bath temperature in the plating tank,
The bath composition of a uniform part occupying most of the plating tank
It has been found that the control is performed within a range of 15% ± 0.01 wt%. That is, it was found that the bath composition measured by the normal operation management was controlled within the range of 0.15 ± 0.01 wt% determined by the similarly measured bath temperature. According to this method, most of the bath composition in the plating tank does not fluctuate, so that it is highly stable in producing an alloyed hot-dip galvanized steel sheet. Further, even if dross adheres to the plated steel sheet, it is fine, so that the surface appearance of the alloyed hot-dip galvanized steel sheet manufactured by further performing an alloying treatment is not impaired. In the present invention, the Al concentration in the bath is 0.15 ± 0.01 wt%.
It is performed by suppressing dross coarsening by keeping within the range described above, and there is no limitation on the base steel sheet of the alloyed hot-dip galvanized steel sheet. In addition, there are no conditions for the alloying processing such as the temperature of the sheet entering the plating tank during the production, the temperature of the molten zinc bath, the amount of plating applied, the alloying processing temperature, the alloying processing time, and the type of the alloying processing apparatus. No restrictions. The alloying treatment is advantageously performed subsequent to the plating, but may be performed in another facility. The present invention suppresses the coarsening of dross and obtains an excellent surface appearance by keeping the dross in the bath fine, and does not reduce the amount of dross generated. Absent. Dross in the bath, which is actually harmful,
Since it exceeds a certain size, it is harmless even if a large amount of fine dross having a size of, for example, 50 μm or less is present in the bath. (Example 1) In CGL, the average particle size was 100 μm.
An alloyed hot-dip galvanized steel sheet was continuously manufactured while maintaining a zinc bath containing m dross at 460 ° C., and changes over time in the particle diameter of dross contained in the zinc bath were investigated. During this time, local changes in bath temperature and bath composition have occurred due to unavoidable factors such as supply of a zinc bath, heating for maintaining the bath temperature, and cooling on the bath surface. FIG. 1 shows the results of the investigation. In the bath in which the Al concentration was kept outside the range of 0.15 ± 0.01 wt%, the dross became coarse with time. On the other hand, in the bath in which the Al concentration was kept within the range of the boundary concentration of 0.15 ± 0.01 wt%, dross was refined due to local fluctuations in bath temperature and bath composition inevitably occurring during plating. When the steel sheet is plated with the finely divided zinc bath, an alloyed hot-dip galvanized steel sheet having an excellent surface appearance can be obtained. (Example 2) In the CGL, a hot-dip galvanizing bath having no dross in the bath was prepared in advance, the Al concentration in the bath was adjusted to various compositions, and an alloyed hot-dip galvanized steel sheet was continuously manufactured. One week later, the average particle size of dross contained in the collected zinc bath was examined. The above experiment was performed at three different levels while changing the holding temperature. Due to unavoidable factors such as supply of a zinc bath, heating for maintaining the bath temperature, and cooling on the bath surface, local fluctuations in bath temperature and bath composition have occurred. FIG. 2 shows the results of the investigation. Compared with a bath in which the Al concentration was kept in a range outside of 0.15 ± 0.01 wt%, the Al concentration was changed to the boundary concentration of 0.15 ± 0.01 wt%.
In the bath maintained within the range, the dross was fine due to local bath temperature and bath composition fluctuations inevitably occurring during plating, and coarsening was suppressed. When a steel sheet is plated in the finely divided zinc bath, an alloyed hot-dip galvanized steel sheet having an excellent surface appearance can be obtained. As described above, according to the present invention,
Since dross coarsening can be suppressed without modifying existing manufacturing equipment, an alloyed hot-dip galvanized steel sheet having an excellent surface appearance can be manufactured without reducing productivity due to dross treatment.

【図面の簡単な説明】 【図1】ドロス粒子径の経時変化を示す図。 【図2】浴中Al濃度、浴温度とドロス粒子径の関係を示
す図。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a change in dross particle diameter with time. FIG. 2 is a diagram showing a relationship between Al concentration in a bath, bath temperature and dross particle diameter.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−20854(JP,A) 特開 平5−186857(JP,A) 特開 平4−272163(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 2/00 - 2/40 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-8-20854 (JP, A) JP-A-5-186857 (JP, A) JP-A 4-272163 (JP, A) (58) Field (Int. Cl. 7 , DB name) C23C 2/00-2/40

Claims (1)

(57)【特許請求の範囲】 【請求項1】 メッキ槽内の溶融亜鉛浴に鋼板を連続的
に通板・浸漬して溶融メッキを行った後、前記鋼板を加
熱してメッキ層を合金化する合金化溶融亜鉛メッキ鋼板
の製造方法において、浴中Al濃度を0.15±0.01wt%の範
囲内に1日以上保持することを特徴とする表面外観に優
れた合金化溶融亜鉛メッキ鋼板の製造方法。
(57) [Claims] [Claim 1] After a steel sheet is continuously passed and immersed in a hot-dip zinc bath in a plating tank to perform hot-dip plating, the steel sheet is heated to form a plated layer by alloying. Production of alloyed hot-dip galvanized steel sheet with excellent surface appearance characterized by maintaining Al concentration in the bath within the range of 0.15 ± 0.01 wt% for 1 day or more Method.
JP15413398A 1998-06-03 1998-06-03 Manufacturing method of galvannealed steel sheet with excellent surface appearance Expired - Fee Related JP3387415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15413398A JP3387415B2 (en) 1998-06-03 1998-06-03 Manufacturing method of galvannealed steel sheet with excellent surface appearance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15413398A JP3387415B2 (en) 1998-06-03 1998-06-03 Manufacturing method of galvannealed steel sheet with excellent surface appearance

Publications (2)

Publication Number Publication Date
JPH11350097A JPH11350097A (en) 1999-12-21
JP3387415B2 true JP3387415B2 (en) 2003-03-17

Family

ID=15577625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15413398A Expired - Fee Related JP3387415B2 (en) 1998-06-03 1998-06-03 Manufacturing method of galvannealed steel sheet with excellent surface appearance

Country Status (1)

Country Link
JP (1) JP3387415B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010059605A (en) * 1999-12-30 2001-07-06 이구택 Method for manufacturing a hot dip galvanized and galvanealed steel sheet
JP5130491B2 (en) * 2008-10-02 2013-01-30 新日鐵住金株式会社 Method for producing galvannealed steel sheet
JP5201477B2 (en) * 2009-01-05 2013-06-05 新日鐵住金株式会社 Method for producing galvannealed steel sheet
JP6919723B2 (en) * 2017-12-25 2021-08-18 日本製鉄株式会社 A hot-dip galvanizing method, a method for producing an alloyed hot-dip galvanized steel sheet using the hot-dip galvanizing method, and a method for producing a hot-dip galvanized steel sheet using the hot-dip galvanizing method.
CN108611585A (en) * 2018-06-29 2018-10-02 浙江华达新型材料股份有限公司 It is a kind of to adjust continuous zinc coating aluminium production system and technique with hardness of steel using zinc-aluminium pond
JP7028324B2 (en) 2018-07-30 2022-03-02 日本製鉄株式会社 Manufacturing method of hot-dip galvanized steel sheet and manufacturing method of alloyed hot-dip galvanized steel sheet
CN112534079B (en) 2018-07-30 2023-02-17 日本制铁株式会社 Hot-dip galvanizing treatment method, alloyed hot-dip galvanized steel sheet, method for producing hot-dip galvanized steel sheet, and two kinds of steel sheets

Also Published As

Publication number Publication date
JPH11350097A (en) 1999-12-21

Similar Documents

Publication Publication Date Title
JP4256929B2 (en) Zinc plating method and system
CN101160416A (en) Process for galvanizing
CN108486415A (en) A kind of preparation method of steel plate and steel plate after dip galvanized aluminum magnesium plating solution and its hot-dip
JP2003147500A (en) HOT DIP Zn-Al ALLOY PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AFTER WORKING, AND PRODUCTION METHOD THEREFOR
CN116670317A (en) Plated steel sheet excellent in sealant adhesion and method for producing same
JPH0324255A (en) Hot-dip galvanized hot rolled steel plate and its production
JP3387415B2 (en) Manufacturing method of galvannealed steel sheet with excellent surface appearance
JP3385970B2 (en) Manufacturing method of galvannealed steel sheet with excellent surface appearance
JPH0688187A (en) Production of alloyed galvannealed steel sheet
JP2023507962A (en) Zn-Al-Mg system hot-dip alloy plated steel material excellent in corrosion resistance of processed parts and its manufacturing method
CN114846171A (en) Hot-dip alloyed steel material having excellent corrosion resistance and method for producing same
JPH0753901B2 (en) Hot dip galvanizing method
JP3463635B2 (en) Method for reducing dross in hot dip galvanizing bath and hot dip galvanizing method
JP2008013799A (en) Manufacturing method of hot dip aluminized steel sheet
JPH09209109A (en) Microspangle hot-dip zinc-aluminium base alloy plated steel sheet and its production
CA2107560C (en) Al-si-cr-plated steel sheet excellent in corrosion resistance and production thereof
JPH05271893A (en) Manufacture of galvanized steel sheet and device therefor
JP3581451B2 (en) Manufacturing method of zinc-tin alloy plated steel sheet
JPH08269662A (en) Production of zinc-tin alloy coated steel sheet
JPH06256925A (en) Zinc-iron hot dip galvannealed steel excellent in press formability
JPH0860329A (en) Production of galvannealed steel sheet
JP3654520B2 (en) Surface-treated steel sheet excellent in workability and corrosion resistance of machined part and method for producing the same
JPH09324252A (en) Production of zero spangled hot dip galvanized steel sheet
JP3189692B2 (en) Alloyed hot-dip galvanized steel sheet excellent in surface appearance and method for producing the same
JP3262061B2 (en) Hot-dip galvanizing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021210

LAPS Cancellation because of no payment of annual fees