JP3385970B2 - Manufacturing method of galvannealed steel sheet with excellent surface appearance - Google Patents

Manufacturing method of galvannealed steel sheet with excellent surface appearance

Info

Publication number
JP3385970B2
JP3385970B2 JP15413298A JP15413298A JP3385970B2 JP 3385970 B2 JP3385970 B2 JP 3385970B2 JP 15413298 A JP15413298 A JP 15413298A JP 15413298 A JP15413298 A JP 15413298A JP 3385970 B2 JP3385970 B2 JP 3385970B2
Authority
JP
Japan
Prior art keywords
bath
dross
steel sheet
concentration
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15413298A
Other languages
Japanese (ja)
Other versions
JPH11350096A (en
Inventor
修二 野村
理孝 櫻井
勝 鷺山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP15413298A priority Critical patent/JP3385970B2/en
Publication of JPH11350096A publication Critical patent/JPH11350096A/en
Application granted granted Critical
Publication of JP3385970B2 publication Critical patent/JP3385970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、表面外観に優れた
合金化溶融亜鉛メッキ鋼板の製造方法に関するものであ
る。 【0002】 【従来の技術】合金化溶融亜鉛メッキ鋼板はプレス成形
性、耐食性、溶接性など種々の特性に優れているため
に、巾広く使用されている。最近では、合金化溶融亜鉛
メッキ鋼板は、冷延鋼板や電気メッキ鋼板に代わり、自
動車車体の外板用途など、美麗な表面外観を必要とされ
る用途に使用されるようになった。 【0003】しかしながら、合金化溶融亜鉛メッキ鋼板
は、冷延鋼板や電気メッキ鋼板と比較し、美麗な表面外
観を得ることが困難である。その一因として、溶融亜鉛
メッキ鋼板の製造ラインにおいて不可避的に発生するド
ロスと呼ばれる金属間化合物が付着することがある。 【0004】通常、合金化溶融亜鉛メッキ鋼板を製造す
る場合、被メッキ鋼板をメッキ槽内の溶融亜鉛浴に浸漬
し、浴中のシンクロールによって方向転換させてメッキ
槽から引き上げ、ワイピング装置によって所定のメッキ
付着量に調整した後に、合金化処理を行う。このような
製造設備において、被メッキ鋼板や浴中機器から溶出し
たFeと、溶融亜鉛浴中のZnやAlとの化学反応によってFe
−Zn系および/またはFe−Al系の金属間化合物が生成す
ることが避けられない。通常、これらの浴中に生成した
金属間化合物をドロスと称している。 【0005】生成したドロスは、溶融亜鉛浴が静かな状
態であれば、溶融亜鉛との比重差によってメッキ槽底部
に沈降し堆積するか、もしくは浴面に浮上する。しかし
ながら、溶融亜鉛浴は被メッキ鋼板の通過やシンクロー
ルなどの浴中ロールの回転により常に撹拌されているの
で、一部のドロスは溶融亜鉛浴中を浮遊し被メッキ鋼板
に付着する。付着したドロスは、調質圧延時やプレス加
工時に押しつぶされ、ドロス欠陥と呼ばれる点状の欠陥
の原因となる。 【0006】そこで、このようなドロス欠陥防止を目的
に、操業を停止することなく溶融亜鉛浴中からドロスを
除去する手段として、ドロスを含む溶融亜鉛浴をメッキ
槽から取り出してサブポットに送り、サブポット内で溶
融亜鉛浴を清浄化した後、メッキ槽に戻す技術が数多く
提案されている。 【0007】これらの従来技術の中で、例えば特開平5-
98405号公報では、より効率的にドロス除去を行う方法
として、溶融亜鉛浴中の球相当径50μm以上のドロスを
サブポット内で沈降分離した後にメッキ槽に戻し、除去
することが困難な球相当径50μm以下のドロスを鋼板に
付着させて除去し、合金化処理や調質圧延により消滅さ
せ無害化するする方法を提案している。 【0008】また、特開平3-211262号公報では、被メッ
キ鋼板に、該鋼板とZn、Alが反応してできた微小な直径
50μm以下のFe−Zn合金および/またはFe−Al合金のド
ロスを付着させたまま引き出し、ついで合金化処理ある
いは調質圧延によって付着したドロスを消滅させ無害化
する溶融亜鉛メッキ鋼板の製造方法、および、メッキ槽
内に被メッキ鋼板の周囲にカバーを備えた溶融亜鉛メッ
キ鋼板の製造装置を提案している。 【0009】 【発明が解決しようとする課題】しかしながら、上述し
た特開平5-98405号公報に代表される従来技術では、溶
融亜鉛浴からドロスを除去するために、溶融亜鉛浴をく
み出すポンプやサブポットの新設など設備の大規模な改
造を必要とするため、多額の設備投資を必要とする。ま
た、既存の製造ラインに設置する場合は設置スペースの
問題が生じる。あるいは、装置の保守、点検等に労力を
必要とし、必ずしも生産性の改善につながらない。 【0010】また、特開平3-211262号公報では、付着し
た直径50μm以下のドロスを、合金化処理時間中のFe、
Al、Znの拡散により消滅させるために、合金化処理条件
に制約が生じパウダリング性など表面品質以外の品質の
劣化が懸念される。調質圧延により無害化させる場合も
同様に調質圧延条件に制約が生じる。 【0011】また、付着するドロスを直径50μm以下の
大きさに制限するには、前記したメッキ槽内のカバーや
特開平5-98405号公報に提案されているようなサブポッ
トなどの亜鉛浴清浄化装置などが必要であり、設備投資
と保守作業の労力が必要である。 【0012】本発明は、生産性を低下させることなく、
かつ、既存の製造設備に対して大規模な改造を必要とせ
ずに表面外観に優れた合金化溶融亜鉛メッキ鋼板を製造
する方法を提供することを目的とするものである。 【0013】 【課題を解決するための手段】上記の課題を解決するた
めの手段はメッキ槽内の溶融亜鉛浴に鋼板を連続的に
通板・浸漬して溶融メッキを行った後、前記鋼板を加熱
してメッキ層を合金化する合金化溶融亜鉛メッキ鋼板の
製造方法において、溶融亜鉛浴温度をT(℃)、下式で
定義される境界Al濃度をCzとした場合、溶融亜鉛浴温度
T(℃)を430〜500℃の範囲内にするとともに、浴中Al
濃度をCz±0.01wt%の範囲内に1日以上保持することを
特徴とする表面外観に優れた合金化溶融亜鉛メッキ鋼板
の製造方法 但し、Cz=-0.0015*T+0.76(wt%) 【0014】 【発明の実施の形態】以下、本発明について説明する。
浴中のドロスを完全に除去した後、清浄な浴で操業を開
始し溶融亜鉛メッキ鋼板の製造を続けると、次第に鋼板
や浴中機器からFeが供給され、ドロスが発生する。ドロ
スは最初は微細でも次第に成長し、一定以上の直径のド
ロスが鋼板に付着すると、点状の表面欠陥が発生する。
例えば、特開平3-211262号公報では直径50μm以上のド
ロスが付着した溶融メッキ鋼板は合金化処理後、表面欠
陥が発生するとしている。 【0015】ここで、ドロスの組成は浴中Al濃度と密接
な関係に有ることが知られている。例えば、465℃に保
持した溶融亜鉛浴において、浴中Al濃度が約0.14%以上
では生成するドロスはFe−Al系のものであるのに対し、
これより低い浴中Al濃度では、生成するドロスはFe−Zn
系のδ1相のドロスが発生する。さらに浴中Al濃度を下
げるとFe−Zn系のζ相のドロスが発生する。即ち、浴中
において平衡なドロス相は、浴の保持温度と浴中Al濃度
によって決定される。いずれのドロス相が安定な領域に
浴温度、浴中Al濃度を維持して操業を行っても、時間と
ともにドロスは増加、粗大化し、ドロス欠陥の原因とな
る。 【0016】また、既にドロスが存在する浴の浴中Al濃
度を大きく変化させた場合でも上記の変化が生じ、浴中
のドロスは浴組成や温度に応じて安定な相へと変化す
る。 【0017】本発明者らは、浴組成とドロスの関係につ
いて鋭意研究を重ねた結果、以下の知見を得た。 【0018】δ1相のドロスが存在する亜鉛浴のAl濃度
を低下させて、ζ相が安定な組成へと変化させると浴中
のドロスはζ相へと変化する。この際に、ζ相のドロス
は、δ1相のドロスの表面で核生成し浴方向へと成長す
る。また、一つのδ1相のドロスから複数のζ相のドロ
スが発生する。即ち、浴条件を変更して安定なドロス相
を変え、ドロス相の変化が生じる時、一つのドロスは複
数のドロス粒子に分割される。逆方向に浴組成を変化さ
せても同様の現象が再び生じる。 【0019】このような変化が生じる溶融亜鉛浴温度T
(℃)と浴中Al濃度の関係は、下式で表され、今後この
浴中Al濃度Czを境界Al濃度と呼ぶ。 Cz=-0.0015*T+0.76(wt%) 【0020】なお、溶融亜鉛浴温度T(℃)が500℃を
越えると、ζ相の包晶温度を越え、ζ相とδ1相間の相
変態が起こらなくなるので、溶融亜鉛浴温度T(℃)は
500℃以下にする必要がある。また、溶融亜鉛浴温度T
(℃)が430℃を下回ると、溶融亜鉛が凝固しやすくな
り、メッキ作業が困難になるので、溶融亜鉛浴温度T
(℃)は430℃以上にする必要がある。 【0021】浴中Al濃度を、境界Al濃度Czを越えた組成
で保持し操業を行うと、δ1相安定の領域となって、時
間の経過とともにδ1相のドロスが成長する。一方、境
界Al濃度Czを下回って操業を行うと、ζ相安定の領域と
なって、時間の経過とともにζ相のドロスが成長する。
例えば、Al濃度がCz以上で、δ1相のドロスを含む亜鉛
浴のAl濃度を、境界Al濃度Czを越えてCz以下に変化させ
ると、浴中に存在するドロスは浴中Al濃度によって決定
される安定な相、即ちζ相へ変化する過程において微細
化する。 【0022】しかしながら、ドロス対策のために浴組成
を大きく変動させることは、合金化溶融亜鉛メッキ鋼板
を安定して製造する点から問題が大きい。例えば、浴組
成を急速に変更することは難しく、特にAl濃度を低下さ
せることは困難である。 【0023】そこでさらに検討を進めた結果、浴中Al濃
度を浴温に応じて決定されるCz±0.01wt%の範囲内に保
持することによって、安定した浴条件で溶融亜鉛メッキ
鋼板を連続して製造しつつ、ドロスの成長を抑制するこ
とが可能であり、また、抑制効果がより高いことが判明
した。 【0024】実操業では、浴条件を一定に保つ努力を行
っても、実際は局所的な温度や浴組成の不均一は避けら
れない。例えば、亜鉛浴の供給は、メッキ槽内でZnイン
ゴット、もしくはZn合金インゴットを溶解することで行
われるので、インゴット周囲では浴組成が異なる。ま
た、浴面付近や前記インゴット周囲では当然ながら亜鉛
浴は冷却され浴温が低下する。一方で、浴温維持のため
に設けられている加熱装置によって、部分的に浴温が高
い領域が存在する。さらに被メッキ鋼板の周囲の亜鉛浴
は、被メッキ鋼板と亜鉛浴の温度差によって加熱あるい
は冷却されている。 【0025】このように、メッキ槽中の大部分は温度、
組成が均一であるが、局所的に亜鉛浴の組成、温度が異
なる部分が不可避的に存在する。したがって、浴中Al濃
度がCzに近いドロスを含む亜鉛浴が、前述の浴組成、浴
温が異なる領域に達した時、浴組成がCzを超えたり、あ
るいは温度によってCzが変化することによって、安定な
ドロス相が変化しドロスの相変態に伴う微細化が起こ
る。またこの浴がメッキ槽の大部分と同じ温度、浴組成
に回復する際に、再びドロスの相変態に伴うドロスの微
細化が起こり、連続的にドロスの微細化が行われるの
で、その結果としてメッキ槽全体ではドロスの成長が抑
制されるためである。 【0026】本発明者らは、メッキ槽内の浴温、浴組成
の不可避な不均一部分を利用してドロスの成長を抑制す
るには、メッキ槽中の大部分を占める均一な部分の浴組
成を、Cz±0.01wt%の範囲内に管理することによってな
されることを知見した。すなわち、通常操業管理で測定
している浴組成を、同様に測定している浴温によって決
定されるCz±0.01wt%の範囲内に管理することによって
なされることを知見した。 【0027】この方法ではメッキ槽中の大部分の浴温、
浴組成は変動しないので、合金化溶融亜鉛メッキ鋼板を
製造する点で安定性が高い。また、メッキ後の鋼板にド
ロスが付着しても微細なので、さらに合金化処理を施し
て製造される合金化溶融亜鉛メッキ鋼板の表面外観を損
なうことがない。 【0028】本発明では、浴中Al濃度を境界Al濃度Cz±
0.01wt%の範囲内に保持することによってドロスの粗大
化を抑制することによってなされるので、合金化溶融亜
鉛メッキ鋼板の下地鋼板になんら制限はない。また、製
造時のメッキ槽への侵入板温、亜鉛浴温度、メッキ付着
量等のメッキ条件、合金化処理温度、合金化処理時間、
合金化処理装置の種類等の合金化処理条件になんら制限
はない。合金化処理はメッキに引き続いて行うことが有
利だが、別の設備で行ってもよい。 【0029】なお、本発明は、ドロスの粗大化を抑制
し、浴中のドロスを微細なままに維持することによって
優れた表面外観を得るという効果を発揮するものであ
り、ドロスの発生量を削減するものではない。実際に有
害な浴中のドロスは、ある一定のサイズを越えたもので
あるので、例えば50μm以下の微細なドロスが浴中に大
量に存在しても無害である。 【0030】 【実施例】(実施例1)CGLにおいて、平均粒径が100μ
mのドロスを含む亜鉛浴を460℃に保持し、合金化溶融
亜鉛メッキ鋼板を継続して製造し、亜鉛浴に含まれるド
ロス粒子径の経時変化を調査した。この間、メッキ槽で
は、亜鉛浴の供給、浴温維持のための加熱、浴面での冷
却などの不可避の要因によって、局所的な浴温、浴組成
の変動が生じている。調査結果を図1に示す。 【0031】Al濃度を境界濃度Cz、すなわち0.07wt%か
ら±0.01wt%を越える範囲で保持した浴では時間ととも
にドロスが粗大化していた。一方、Al濃度を境界濃度Cz
±0.01wt%の範囲内に保持した浴では、メッキ中に起こ
る浴温や浴組成の不可避な変動によってドロスが微細化
されていた。 【0032】前記微細化された亜鉛浴で鋼板にメッキす
ると、優れた表面外観の合金化溶融亜鉛メッキ鋼板が得
られる。 【0033】(実施例2)CGLにおいて、予め浴中にド
ロスのない溶融亜鉛めっき浴を準備し、浴中Al濃度を種
々の組成に調整して、合金化溶融亜鉛メッキ鋼板を継続
して製造し、1週間後、採取した亜鉛浴に含まれるドロ
スの平均粒子径を調査した。前記の実験を保持温度を変
えて3水準行った。メッキ槽では、亜鉛浴の供給、浴温
の維持のための加熱、浴面での冷却などの不可避の要因
によって、局所的な浴温、浴組成の変動が生じている。
調査結果を図2に示す。 【0034】Al濃度を境界濃度Cz±0.01wt%から外れた
領域で保持した浴と比較し、Al濃度を境界濃度Cz±0.01
wt%の範囲内に保持した浴では、メッキ槽で不可避に起
こる局所的な浴温や浴組成の変動によって、ドロスが微
細であり、粗大化が抑制されていた。 【0035】前記微細化された亜鉛浴で鋼板にメッキす
ると、優れた表面外観の合金化溶融亜鉛メッキ鋼板が得
られる。 【0036】 【発明の効果】以上述べたように、この発明によれば、
既存の製造設備を改造しないでドロスの粗大化を抑制を
できるので、ドロス処理のために生産性を落とすことな
く、優れた表面外観を有する合金化溶融亜鉛メッキ鋼板
を製造することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a galvannealed steel sheet having excellent surface appearance. [0002] Galvannealed steel sheets are widely used due to their excellent properties such as press formability, corrosion resistance and weldability. Recently, galvannealed steel sheets have come to be used for applications requiring beautiful surface appearance, such as automotive body outer panels, instead of cold-rolled steel sheets and electroplated steel sheets. [0003] However, it is more difficult for an alloyed hot-dip galvanized steel sheet to obtain a beautiful surface appearance than a cold-rolled steel sheet or an electroplated steel sheet. One reason for this is that an intermetallic compound called dross, which is inevitably generated in the production line of hot-dip galvanized steel sheets, sometimes adheres. Normally, in the case of producing an alloyed hot-dip galvanized steel sheet, the steel sheet to be plated is immersed in a hot-dip zinc bath in a plating bath, turned around by a sink roll in the bath, lifted up from the plating bath, and wiped by a wiping device. After adjusting to the plating adhesion amount, an alloying treatment is performed. In such a manufacturing facility, Fe eluted from a steel plate to be plated or equipment in the bath, and Zn or Al in the molten zinc bath by a chemical reaction,
It is inevitable that -Zn-based and / or Fe-Al-based intermetallic compounds are generated. Usually, the intermetallic compound formed in these baths is called dross. If the molten zinc bath is in a quiet state, the generated dross settles and deposits on the bottom of the plating tank or floats on the bath surface due to a difference in specific gravity with the molten zinc. However, since the molten zinc bath is constantly stirred by the passage of the steel plate to be plated and the rotation of a roll in the bath such as a sink roll, some dross floats in the molten zinc bath and adheres to the steel plate to be plated. The attached dross is crushed at the time of temper rolling or press working, which causes a point-like defect called a dross defect. [0006] In order to prevent such dross defects, as a means for removing dross from the molten zinc bath without stopping the operation, a molten zinc bath containing dross is taken out of the plating tank and sent to a sub-pot. There have been proposed many techniques for cleaning a molten zinc bath in a bath and returning the bath to a plating bath. Among these prior arts, for example, Japanese Patent Application Laid-Open
Japanese Patent No. 98405 discloses that as a method for more efficiently removing dross, dross having a sphere equivalent diameter of 50 μm or more in a molten zinc bath is settled and separated in a subpot, then returned to a plating tank, and a sphere equivalent diameter that is difficult to remove. A method has been proposed in which dross having a diameter of 50 μm or less is adhered to a steel sheet and removed, and is eliminated and rendered harmless by alloying treatment or temper rolling. In Japanese Patent Application Laid-Open No. 3-211262, a small diameter formed by reacting Zn and Al with a steel plate to be plated is described.
A method for producing a hot-dip galvanized steel sheet that draws out dross of an Fe-Zn alloy and / or Fe-Al alloy of 50 μm or less while adhering the dross, and then eliminates and renders harmless dross adhered by alloying treatment or temper rolling, and Proposes an apparatus for manufacturing a hot-dip galvanized steel sheet having a cover around a steel sheet to be plated in a plating tank. [0009] However, in the prior art represented by the above-mentioned Japanese Patent Application Laid-Open No. 5-98405, in order to remove dross from the molten zinc bath, a pump for extracting the molten zinc bath, Since large-scale remodeling of facilities is required, such as the construction of a new sub-pot, a large amount of capital investment is required. In addition, when installing on an existing production line, there is a problem of installation space. Alternatively, labor is required for maintenance, inspection, and the like of the apparatus, which does not necessarily lead to improvement in productivity. In Japanese Patent Application Laid-Open No. 3-212126, Japanese Patent Laid-Open Publication No. Hei 3-211262 discloses that dross having a diameter of 50 μm or less
Since it is extinguished by the diffusion of Al and Zn, the conditions for alloying treatment are restricted, and there is a concern that quality other than surface quality such as powdering property may be degraded. In the case of detoxification by temper rolling, the conditions for temper rolling are similarly restricted. Further, in order to limit the dross to be adhered to a size of 50 μm or less in diameter, it is necessary to clean a zinc bath such as a cover in the plating tank or a sub-pot as proposed in Japanese Patent Application Laid-Open No. 5-98405. Equipment is required, which requires capital investment and labor for maintenance work. [0012] The present invention provides a method for reducing
Another object of the present invention is to provide a method for producing an alloyed hot-dip galvanized steel sheet having excellent surface appearance without requiring large-scale modification of existing production equipment. [0013] Means for solving the above problems BRIEF SUMMARY OF THE INVENTION may, after hot dipping the steel sheet by continuously Tsuban-immersed in the molten zinc bath in the plating tank, wherein In a method for producing an alloyed hot-dip galvanized steel sheet in which a steel sheet is heated to alloy a plating layer, when the hot-dip zinc bath temperature is T (° C.) and the boundary Al concentration defined by the following formula is Cz, temperature
T (° C) within the range of 430 to 500 ° C and Al in the bath
A method for producing an alloyed hot-dip galvanized steel sheet having excellent surface appearance, wherein the concentration is maintained within a range of Cz ± 0.01 wt% for 1 day or more . However, Cz = -0.0015 * T + 0.76 (wt%). DETAILED DESCRIPTION OF THE INVENTION The present invention will be described below.
After the dross in the bath is completely removed, the operation is started in a clean bath and the production of the hot-dip galvanized steel sheet is continued. Fe is gradually supplied from the steel sheet and equipment in the bath, and dross is generated. The dross grows at first even if it is fine, and if dross having a diameter greater than a certain value adheres to the steel sheet, point-like surface defects are generated.
For example, Japanese Patent Application Laid-Open No. 3-2121262 states that a hot-dip coated steel sheet to which dross having a diameter of 50 μm or more has adhered will have surface defects after alloying treatment. It is known that the composition of dross has a close relationship with the Al concentration in the bath. For example, in a molten zinc bath maintained at 465 ° C, dross generated at an Al concentration of about 0.14% or more in the bath is Fe-Al based,
At a lower Al concentration in the bath, the dross formed is Fe-Zn
Dross [delta] 1-phase system is generated. If the Al concentration in the bath is further reduced, Fe-Zn based d phase dross is generated. That is, the dross phase equilibrated in the bath is determined by the holding temperature of the bath and the Al concentration in the bath. Regardless of the dross phase in which the bath temperature and the Al concentration in the bath are maintained in a stable region, the dross increases and coarsens over time, causing dross defects. Further, even when the Al concentration in the bath in which dross already exists is greatly changed, the above change occurs, and the dross in the bath changes to a stable phase according to the bath composition and the temperature. The present inventors have conducted intensive studies on the relationship between bath composition and dross, and have obtained the following findings. When the Al concentration in the zinc bath in which dross of the δ 1 phase is present is reduced to change the ζ phase to a stable composition, the dross in the bath changes to the ζ phase. At this time, dross ζ phase, grow into nucleated bath direction on the surface of the dross [delta] 1 phase. Further, dross plurality of ζ phase from the dross one [delta] 1 phase occurs. That is, the bath conditions are changed to change the stable dross phase, and when the dross phase changes, one dross is divided into a plurality of dross particles. A similar phenomenon occurs again when the bath composition is changed in the opposite direction. The molten zinc bath temperature T at which such a change occurs
The relationship between (° C.) and the Al concentration in the bath is represented by the following equation, and the Al concentration Cz in the bath will be referred to as a boundary Al concentration in the future. Cz = -0.0015 * T + 0.76 (wt%) When the molten zinc bath temperature T (° C.) exceeds 500 ° C., the temperature exceeds the peritectic temperature of the ζ phase and the phase transformation between the ζ phase and the δ 1 phase The molten zinc bath temperature T (° C.)
It must be below 500 ° C. In addition, the molten zinc bath temperature T
If the temperature (° C.) is lower than 430 ° C., the molten zinc tends to solidify and the plating operation becomes difficult.
(° C) must be 430 ° C or higher. When the operation is performed while maintaining the Al concentration in the bath at a composition exceeding the boundary Al concentration Cz, the region becomes a region where the δ 1 phase is stable, and dross of the δ 1 phase grows with time. On the other hand, if the operation is performed below the boundary Al concentration Cz, the phase becomes a phase-stable region, and the dross of the phase-II grows with time.
For example determined, at Al concentration than Cz, the Al concentration of the zinc bath containing dross [delta] 1-phase, it is varied below Cz beyond the boundaries Al concentration Cz, dross present in the bath by the bath Al concentration In the process of changing to a stable phase, ie, ζ phase. However, greatly changing the bath composition to prevent dross poses a serious problem in terms of stable production of galvannealed steel sheets. For example, it is difficult to change the bath composition rapidly, and it is particularly difficult to lower the Al concentration. Therefore, as a result of further study, by keeping the Al concentration in the bath within the range of Cz ± 0.01 wt% determined according to the bath temperature, the hot-dip galvanized steel sheet was continuously formed under stable bath conditions. It was found that it was possible to suppress the growth of dross while manufacturing, and that the suppression effect was higher. In actual operation, even if an effort is made to keep the bath conditions constant, local unevenness in temperature and bath composition is actually unavoidable. For example, the supply of a zinc bath is performed by dissolving a Zn ingot or a Zn alloy ingot in a plating tank, so that the bath composition is different around the ingot. In addition, the zinc bath is naturally cooled near the bath surface and around the ingot, and the bath temperature decreases. On the other hand, there is a region where the bath temperature is partially high due to the heating device provided for maintaining the bath temperature. Further, the zinc bath around the steel plate to be plated is heated or cooled by the temperature difference between the steel plate to be plated and the zinc bath. As described above, most of the contents in the plating tank are temperature,
Although the composition is uniform, there are some parts where the composition and temperature of the zinc bath differ locally. Therefore, when the zinc bath containing dross in which the Al concentration in the bath is close to Cz reaches the above-mentioned bath composition and the bath temperature is different, when the bath composition exceeds Cz or Cz changes depending on the temperature, The stable dross phase changes and refinement occurs with the dross phase transformation. Also, when this bath recovers to the same temperature and bath composition as most of the plating bath, dross refining accompanying the dross phase transformation occurs again, and dross refining is continuously performed, as a result This is because dross growth is suppressed in the entire plating tank. In order to suppress the growth of dross by using the unavoidable unevenness of the bath temperature and bath composition in the plating bath, the present inventors have proposed that the bath of the uniform bath occupying most of the plating bath is used. It has been found that the composition is controlled by controlling the composition within the range of Cz ± 0.01 wt%. That is, the present inventors have found that the bath composition is measured by controlling the bath composition measured in the normal operation management within the range of Cz ± 0.01 wt% determined by the bath temperature measured in the same manner. According to this method, most of the bath temperature in the plating tank,
Since the bath composition does not change, the stability is high in producing an alloyed hot-dip galvanized steel sheet. Further, even if dross adheres to the plated steel sheet, it is fine, so that the surface appearance of the alloyed hot-dip galvanized steel sheet manufactured by further performing an alloying treatment is not impaired. In the present invention, the Al concentration in the bath is changed to the boundary Al concentration Cz ±.
By controlling the dross to be coarse by keeping it within the range of 0.01 wt%, there is no limitation on the base steel sheet of the galvannealed steel sheet. In addition, the plating conditions such as the temperature of the plate entering the plating bath during the production, the temperature of the zinc bath, the amount of plating applied, the alloying treatment temperature, the alloying treatment time,
There are no restrictions on the alloying conditions such as the type of the alloying apparatus. The alloying treatment is advantageously performed subsequent to the plating, but may be performed in another facility. The present invention exerts the effect of suppressing the coarsening of dross and obtaining an excellent surface appearance by keeping the dross in the bath fine, and reduces the amount of dross generated. It does not reduce it. Since the harmful dross in the bath exceeds a certain size, it is harmless even if a large amount of fine dross of, for example, 50 μm or less is present in the bath. (Example 1) In CGL, the average particle size was 100 μm.
An alloyed hot-dip galvanized steel sheet was continuously manufactured while maintaining a zinc bath containing m dross at 460 ° C., and the time-dependent change in the dross particle diameter contained in the zinc bath was investigated. During this time, in the plating bath, local changes in bath temperature and bath composition are caused by inevitable factors such as supply of a zinc bath, heating for maintaining the bath temperature, and cooling on the bath surface. FIG. 1 shows the results of the investigation. In the bath in which the Al concentration was maintained in the range of the boundary concentration Cz, that is, 0.07 wt% to more than ± 0.01 wt%, the dross became coarse with time. On the other hand, the Al concentration is changed to the boundary concentration Cz
In the bath maintained within the range of ± 0.01 wt%, dross was refined due to inevitable fluctuations in bath temperature and bath composition occurring during plating. When a steel sheet is plated in the finely divided zinc bath, an alloyed hot-dip galvanized steel sheet having an excellent surface appearance can be obtained. (Example 2) In the CGL, a hot-dip galvanizing bath having no dross in the bath was prepared in advance, the Al concentration in the bath was adjusted to various compositions, and a continuous galvannealed steel sheet was manufactured. One week later, the average particle size of dross contained in the collected zinc bath was examined. The above experiment was performed at three different levels while changing the holding temperature. In the plating bath, local changes in bath temperature and bath composition are caused by unavoidable factors such as supply of a zinc bath, heating for maintaining the bath temperature, and cooling on the bath surface.
Fig. 2 shows the survey results. The Al concentration was compared with a bath in which the Al concentration was kept outside the boundary concentration Cz ± 0.01 wt%, and the Al concentration was changed to the boundary concentration Cz ± 0.01 wt%.
In the bath maintained within the wt% range, dross was fine and coarsening was suppressed due to local bath temperature and bath composition fluctuations inevitably occurring in the plating bath. When the steel sheet is plated with the finely divided zinc bath, an alloyed hot-dip galvanized steel sheet having an excellent surface appearance can be obtained. As described above, according to the present invention,
Since dross coarsening can be suppressed without modifying existing manufacturing equipment, an alloyed hot-dip galvanized steel sheet having an excellent surface appearance can be manufactured without reducing productivity due to dross treatment.

【図面の簡単な説明】 【図1】ドロス粒子径の経時変化を示す図。 【図2】浴中Al濃度、浴温度とドロス粒子径の関係を示
す図。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a change in dross particle diameter with time. FIG. 2 is a diagram showing the relationship among Al concentration in a bath, bath temperature and dross particle diameter.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−157821(JP,A) 特開 平8−53744(JP,A) 特開 平7−48662(JP,A) 特開 平4−272163(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 2/00 - 2/40 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-9-157821 (JP, A) JP-A-8-53744 (JP, A) JP-A-7-48662 (JP, A) JP-A-4- 272163 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C23C 2/00-2/40

Claims (1)

(57)【特許請求の範囲】 【請求項1】 メッキ槽内の溶融亜鉛浴に鋼板を連続的
に通板・浸漬して溶融メッキを行った後、前記鋼板を加
熱してメッキ層を合金化する合金化溶融亜鉛メッキ鋼板
の製造方法において、溶融亜鉛浴温度をT(℃)、下式
で定義される境界Al濃度をCzとした場合、溶融亜鉛浴温
度T(℃)を430〜500℃の範囲内にするとともに、浴中A
l濃度をCz±0.01wt%の範囲内に1日以上保持すること
を特徴とする表面外観に優れた合金化溶融亜鉛メッキ鋼
板の製造方法。 但し、Cz=-0.0015*T+0.76(wt%)
(57) [Claims] [Claim 1] After a steel sheet is continuously passed through and immersed in a hot-dip zinc bath in a plating tank to perform hot-dip plating, the steel sheet is heated to form a plating layer by alloying. In the method for producing an alloyed hot-dip galvanized steel sheet, when the hot-dip zinc bath temperature is T (° C.) and the boundary Al concentration defined by the following formula is Cz, the hot-dip zinc bath temperature T (° C.) is 430 to 500. Within the range of ℃, and in the bath A
A method for producing an alloyed hot-dip galvanized steel sheet having excellent surface appearance, wherein the concentration is maintained within a range of Cz ± 0.01 wt% for 1 day or more. However, Cz = -0.0015 * T + 0.76 (wt%)
JP15413298A 1998-06-03 1998-06-03 Manufacturing method of galvannealed steel sheet with excellent surface appearance Expired - Fee Related JP3385970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15413298A JP3385970B2 (en) 1998-06-03 1998-06-03 Manufacturing method of galvannealed steel sheet with excellent surface appearance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15413298A JP3385970B2 (en) 1998-06-03 1998-06-03 Manufacturing method of galvannealed steel sheet with excellent surface appearance

Publications (2)

Publication Number Publication Date
JPH11350096A JPH11350096A (en) 1999-12-21
JP3385970B2 true JP3385970B2 (en) 2003-03-10

Family

ID=15577604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15413298A Expired - Fee Related JP3385970B2 (en) 1998-06-03 1998-06-03 Manufacturing method of galvannealed steel sheet with excellent surface appearance

Country Status (1)

Country Link
JP (1) JP3385970B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010059586A (en) * 1999-12-30 2001-07-06 이구택 Method for minimizing the iron dissolution and dross in the molten zinc pot
JP6919723B2 (en) * 2017-12-25 2021-08-18 日本製鉄株式会社 A hot-dip galvanizing method, a method for producing an alloyed hot-dip galvanized steel sheet using the hot-dip galvanizing method, and a method for producing a hot-dip galvanized steel sheet using the hot-dip galvanizing method.
WO2019131563A1 (en) * 2017-12-25 2019-07-04 日本製鉄株式会社 Hot-dip galvanization method, method for production of alloyed hot-dipped galvanized steel sheet using said hot-dip galvanization method, and method for production of hot-dipped galvanized steel sheet using said hot-dip galvanization method
WO2020027025A1 (en) 2018-07-30 2020-02-06 日本製鉄株式会社 Hot-dip galvanizing method, galvannealed steel sheet production method using said hot-dip galvanizing method, galvanized steel sheet production method using said hot-dip galvanizing method, galvannealed steel sheet, and hot-dip galvanized steel sheet
TW202012654A (en) 2018-07-30 2020-04-01 日商日本製鐵股份有限公司 Manufacturing method for hot-dip galvanized steel sheet, and manufacturing method for alloyed hot-dip galvanized steel sheet
JP7136349B2 (en) * 2019-06-13 2022-09-13 日本製鉄株式会社 Hot-dip galvanizing method, method for producing alloyed hot-dip galvanized steel sheet using the hot-dip galvanizing method, and method for producing hot-dip galvanized steel sheet using the hot-dip galvanizing method
CN115145330B (en) * 2022-07-14 2024-02-27 浙江联鑫板材科技有限公司 Control method and temperature control equipment for zinc pot temperature

Also Published As

Publication number Publication date
JPH11350096A (en) 1999-12-21

Similar Documents

Publication Publication Date Title
JP7162091B2 (en) metal coated steel strip
JP2004339530A (en) Mg-CONTAINING METAL COATED STEEL MATERIAL WITH EXCELLENT WORKABILITY, AND ITS MANUFACTURING METHOD
JP3385970B2 (en) Manufacturing method of galvannealed steel sheet with excellent surface appearance
JP3387415B2 (en) Manufacturing method of galvannealed steel sheet with excellent surface appearance
JPH0688187A (en) Production of alloyed galvannealed steel sheet
CA1303916C (en) Zn-al hot-dip galvanized steel sheet having improved resistance against secular peeling and method for producing the same
JP5063942B2 (en) Manufacturing method of hot-dip aluminized steel sheet
JP3463635B2 (en) Method for reducing dross in hot dip galvanizing bath and hot dip galvanizing method
JPH0753901B2 (en) Hot dip galvanizing method
JP2023507962A (en) Zn-Al-Mg system hot-dip alloy plated steel material excellent in corrosion resistance of processed parts and its manufacturing method
JP2023507328A (en) Aluminum-based alloy-plated steel sheet with excellent workability and corrosion resistance, and method for producing the same
KR101629260B1 (en) Composition for hot dipping bath
JP4529380B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP2006274406A (en) Method for manufacturing galvannealed steel sheet
JPH05271893A (en) Manufacture of galvanized steel sheet and device therefor
KR100276323B1 (en) The dross adhere preventor for coating surface
JP3024967B1 (en) Hot-dip galvanizing method and galvanized material
JPH08269662A (en) Production of zinc-tin alloy coated steel sheet
JPH06256925A (en) Zinc-iron hot dip galvannealed steel excellent in press formability
WO2004033745A1 (en) HOT-DIPPED Sn-Zn PLATING PROVIDED STEEL PLATE OR SHEET EXCELLING IN CORROSION RESISTANCE AND WORKABILITY
JPH10140316A (en) Production of hot dip galvanized steel sheet excellent in workability
CN113767185B (en) Method for manufacturing hot dip galvanized steel sheet and method for operating hot dip galvanizing bath
JP3262061B2 (en) Hot-dip galvanizing method
JP3189692B2 (en) Alloyed hot-dip galvanized steel sheet excellent in surface appearance and method for producing the same
JPH09324252A (en) Production of zero spangled hot dip galvanized steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021203

LAPS Cancellation because of no payment of annual fees