JP3385370B2 - Welding line division instruction method and welding line division instruction system - Google Patents

Welding line division instruction method and welding line division instruction system

Info

Publication number
JP3385370B2
JP3385370B2 JP2000221645A JP2000221645A JP3385370B2 JP 3385370 B2 JP3385370 B2 JP 3385370B2 JP 2000221645 A JP2000221645 A JP 2000221645A JP 2000221645 A JP2000221645 A JP 2000221645A JP 3385370 B2 JP3385370 B2 JP 3385370B2
Authority
JP
Japan
Prior art keywords
welding line
welding
division
splitting
factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000221645A
Other languages
Japanese (ja)
Other versions
JP2002035939A (en
Inventor
陽一 長尾
博信 占部
文博 本多
純一 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2000221645A priority Critical patent/JP3385370B2/en
Publication of JP2002035939A publication Critical patent/JP2002035939A/en
Application granted granted Critical
Publication of JP3385370B2 publication Critical patent/JP3385370B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は溶接線分割指示方法
および溶接線分割指示システムに関する。さらに詳しく
は、溶接ロボットなどの自動溶接装置により各部材を溶
接する場合において、1本の溶接線で溶接を実行する際
の障害となる他部材をシミュレーションにより抽出し、
その他部材のためにビード継ぎがなし得ないときに溶接
線の分割を指示する溶接線分割指示方法および溶接線分
割指示システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welding line division instruction method and a welding line division instruction system. More specifically, when each member is welded by an automatic welding device such as a welding robot, other members that are obstacles when performing welding with one welding line are extracted by simulation,
The present invention relates to a welding line splitting instruction method and a welding line splitting instruction system for instructing splitting of a weld line when bead splicing cannot be achieved due to other members.

【0002】[0002]

【従来の技術】従来、多様な対象物に適応可能であるこ
とから溶接ロボットによる自動溶接が広く行われてい
る。
2. Description of the Related Art Conventionally, automatic welding by a welding robot has been widely performed because it can be applied to various objects.

【0003】ところが、船舶用機材などの少数生産品の
製造においては人手による教示は効率が悪いため、数値
的データで直接溶接ロボットに溶接工程を指示するシス
テムの利用が望ましい。そのような事情もあって、いわ
ゆる3次元CAD(ComputerAided Design)システムを
利用して、人手によらず自動的に教示用データを作成す
るシステムの開発が行われるようになってきている。
However, since manual teaching is inefficient in manufacturing a small number of products such as equipment for ships, it is desirable to use a system for directly instructing the welding process to the welding robot with numerical data. Under such circumstances, a so-called three-dimensional CAD (Computer Aided Design) system has been used to develop a system for automatically creating teaching data without manual labor.

【0004】しかして、溶接作業を自動化するために
は、溶接線の位置情報、すなわちどの箇所を溶接すべき
かという情報を溶接ロボットに与える必要があり、他部
材との交差箇所がほとんどない場合や、このような交差
箇所が一定のルールにより定まっている場合は、パター
ン化された動作プログラムにより溶接線の始端と終端と
を与えるだけで自動溶接を実行することが可能である。
However, in order to automate the welding operation, it is necessary to provide the welding robot with position information of the welding line, that is, information about which part should be welded, and when there is almost no intersection with other members, When such an intersection is determined by a certain rule, it is possible to execute automatic welding by only giving the start end and the end of the welding line by the patterned operation program.

【0005】ところが、製造されるワークが複雑な形状
を有し、溶接される各部材と他部材との交差態様に一定
のルールがない場合は、パターン化された動作プログラ
ムを用いることはできず、このため単純に溶接線の始端
と終端とを指定するだけでは対応することができなくな
ってくる。
However, if the workpiece to be manufactured has a complicated shape and there is no fixed rule in the manner of intersection between each member to be welded and another member, a patterned operation program cannot be used. For this reason, simply specifying the starting end and the ending end of the welding line will not be sufficient.

【0006】この点に関連して、特開平6−21462
5号公報には、3次元CADシステムにより各部材相互
の取付線が交差する点を抽出し、この点で溶接線を分割
する方法が提案されている。
In relation to this point, JP-A-6-21462
Japanese Patent Publication No. 5 discloses a method of extracting a point where the attachment lines of respective members intersect with each other by a three-dimensional CAD system and dividing the welding line at this point.

【0007】しかしながら、この方法は、各部材相互の
取付線に関する情報を予めCAD装置に入力する必要が
ある上、特に複雑な形状のワークを組立てる場合に溶接
実行の障害となる他部材を検出できないことがあり、十
分な対応ができないという問題がある。
However, according to this method, it is necessary to previously input information regarding the attachment lines of the respective members to the CAD device, and it is impossible to detect other members which obstruct the execution of welding particularly when assembling a work having a complicated shape. In some cases, there is a problem that it is not possible to respond sufficiently.

【0008】[0008]

【発明が解決しようとする課題】本発明はかかる従来技
術の課題に鑑みなされたものであって、複雑な形状のワ
ークを溶接ロボットなどの自動溶接装置を用いた溶接に
より組立てる際にも、溶接実行の障害となる他部材を的
確に抽出し、その他部材のために溶接線を分割する必要
がある場合に溶接線の分割を指示する溶接線分割指示方
法および溶接線分割指示システムを提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems of the prior art. Even when assembling a work having a complicated shape by welding using an automatic welding device such as a welding robot, welding is performed. To provide a welding line division instruction method and a welding line division instruction system for accurately extracting other members that are obstacles to execution and instructing the division of welding lines when it is necessary to divide the welding lines for other members. With the goal.

【0009】[0009]

【課題を解決するための手段】本発明の溶接線分割指示
方法は、溶接ロボットなどの自動溶接装置により各部材
を溶接する場合において、障害可能性他部材を組立シミ
ュレーション結果により抽出し、ついでその障害可能性
他部材の中から分割要因部材を抽出し、その分割要因部
材のためにビード継ぎがなし得ないときに溶接線の分割
を指示することを特徴とする。
According to the welding line division instructing method of the present invention, when each member is welded by an automatic welding apparatus such as a welding robot, another member having a possibility of failure is extracted from the assembly simulation result, and then the It is characterized in that a splitting factor member is extracted from other members having a possibility of failure, and a splitting of a welding line is instructed when a bead splice is impossible due to the splitting factor member.

【0010】本発明の溶接線分割指示方法は、具体的に
は、コンピュータ上で各部材を組み立てる組立シミュレ
ーション手順と、前記組立シミュレーション結果から障
害可能性他部材を抽出する障害可能性他部材抽出手順
と、前記障害可能性他部材の中から分割要因部材を抽出
する分割要因部材抽出手順と、前記分割要因部材により
溶接作業が分断される範囲を検出する分断範囲検出手順
と、前記分断された範囲においてビード継ぎが可能か否
かを判定するビード継ぎ可否判定手順と、前記ビード継
ぎ可否判定手順においてビード継ぎが不可能と判定され
た場合に溶接線の分割を指示する溶接線分割指示手順と
を含んでなることを特徴とする。
The welding line division instruction method of the present invention is, specifically, an assembly simulation procedure for assembling each member on a computer, and a failure possibility other member extraction procedure for extracting a failure possibility other member from the assembly simulation result. And a division factor member extraction procedure for extracting a division factor member from the failure possibility other member, a division range detection procedure for detecting a range in which welding work is divided by the division factor member, and the division range. In the bead splicing propriety determination procedure for determining whether bead splicing is possible in, and a welding line split instruction procedure for instructing splitting of the weld line when bead splicing is determined in the bead splicing propriety determination procedure. It is characterized by including.

【0011】一方、本発明の溶接線分割指示システム
は、溶接ロボットなどの自動溶接装置により各部材を溶
接する場合に用いられる溶接線分割指示システムであっ
て、障害可能性他部材を組立シミュレーションにより抽
出し、ついでその障害可能性他部材の中から分割要因部
材を抽出し、その分割要因部材のためにビード継ぎがな
し得ないときに溶接線の分割を指示するように構成され
てなることを特徴とする。
On the other hand, the welding line division instruction system of the present invention is a welding line division instruction system used when welding each member by an automatic welding device such as a welding robot. The splitting factor member is extracted from the other parts having the possibility of failure, and the splitting factor member is configured to instruct the splitting of the welding line when the bead splice cannot be performed. Characterize.

【0012】本発明の溶接線分割指示システムは、具体
的には、溶接ロボットなどの自動溶接装置により各部材
を溶接する場合に用いられる溶接線分割指示システムで
あって、コンピュータ上で各部材を組み立てる組立シミ
ュレーションを実行するシミュレーション手段と、前記
組立シミュレーション結果から障害可能性他部材を抽出
する障害可能性他部材抽出手段と、前記障害可能性他部
材の中から分割要因部材を抽出する分割要因部材抽出手
段と、前記分割要因部材により溶接作業が分断される範
囲を検出する分断範囲検出手段と、前記分断された範囲
においてビード継ぎが可能か否かを判定するビード継ぎ
可否判定手段と、前記ビード継ぎ可否判定手段によりビ
ード継ぎが不可能と判定された場合に溶接線の分割を指
示する溶接線分割指示手段とを備えてなることを特徴と
する。
The welding line division instruction system of the present invention is, specifically, a welding line division instruction system used when welding each member by an automatic welding apparatus such as a welding robot. A simulation unit that executes an assembly simulation for assembling, a failure possibility other member extraction unit that extracts a failure possibility other member from the assembly simulation result, and a division factor member that extracts a division factor member from the failure possibility other member Extraction means, cutting range detection means for detecting a range in which the welding operation is divided by the division factor member, bead splicing possibility determination means for determining whether bead splicing is possible in the divided range, and the bead Weld line division for instructing the division of the weld line when the bead splicing is determined by the splicing possibility determination means Characterized by comprising a shown means.

【0013】本発明の溶接線分割指示方法およびシステ
ムにおいては、例えば、溶接線で溶接される溶接対象部
材と被溶接対象部材の両方に接触する全ての他部材が障
害可能性他部材とされ、前記障害可能性他部材の中で、
溶接対象部材と被溶接対象部材の両方の溶接線構成面の
法線方向にあるものが分割要因部材とされ、前記分割要
因部材の各分割要因面を無限平面とした場合の溶接線と
の各交点の中で最も離れた2点間が分断範囲とされる。
In the welding line division instruction method and system of the present invention, for example, all the other members that come into contact with both the member to be welded and the member to be welded to be welded with the welding line are treated as the possibility of failure. Among the above-mentioned obstacle possibility other members,
Those that are in the normal direction of the welding line configuration surface of both the welding target member and the welded target member are division factor members, and each of the division factor members of the division factor member and the welding line when it is an infinite plane The distance between the two points that are the farthest apart from each other is the dividing range.

【0014】また、本発明の溶接線分割指示方法および
システムにおいては、例えば、分割要因部材の分割要因
面が、溶接線と接触している場合、ビード継ぎが不可能
とされ、前記分割要因部材の溶接線近傍面の中で、溶接
線と平行でない面が分割要因面とされる。
Further, in the welding line splitting instruction method and system of the present invention, for example, when the splitting factor surface of the splitting factor member is in contact with the welding line, bead splicing is not possible, and the splitting factor member is Among the surfaces near the welding line of, the surface that is not parallel to the welding line is the splitting factor surface.

【0015】さらに、本発明の溶接線分割指示方法およ
びシステムにおいては、例えば、分割要因部材の外形構
成面の中で、溶接線から所定微少距離以内にある面が溶
接線近傍面とされ、前記所定微少距離以内に溶接線近傍
面が存在しない場合、前記所定微少距離を所定量延長し
て溶接線近傍面の抽出がなされる。
Furthermore, in the method and system for instructing welding line division of the present invention, for example, among the outer shape constituting surfaces of the division factor member, the surface within a predetermined minute distance from the welding line is defined as the welding line vicinity surface, and When there is no weld line vicinity surface within the predetermined minute distance, the weld line vicinity surface is extracted by extending the predetermined minute distance by a predetermined amount.

【0016】[0016]

【作用】本発明は前記の如く構成されているので、複雑
な形状のワークを自動溶接により組立てる際に、溶接実
行の障害となる障害可能性他部材を的確に抽出し、障害
可能性他部材の中から分割要因部材を抽出し、分割要因
部材により溶接作業が分断される範囲を検出し、その分
断される範囲においてビード継ぎがなし得ない場合に溶
接線の分割を自動的に指示するようにしているので、予
め溶接線の分割位置を指示する必要がなく、それにより
作業性の向上が図られる。
Since the present invention is configured as described above, when assembling a work having a complicated shape by automatic welding, the obstacle possibility other member that interferes with the execution of welding is accurately extracted and the obstacle possibility other member is extracted. The division factor member is extracted from the above, the range in which the welding work is divided by the division factor member is detected, and the division of the welding line is automatically instructed when the bead splicing is not possible in the divided range. Therefore, it is not necessary to instruct the division position of the welding line in advance, thereby improving workability.

【0017】[0017]

【発明の実施形態】以下、添付図面を参照しながら本発
明を実施形態に基づいて説明するが、本発明はかかる実
施形態のみに限定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below with reference to the accompanying drawings, but the present invention is not limited to such embodiments.

【0018】図1に本発明の一実施形態に係る溶接線分
割方法に適用されるコンピュータ制御製造システムの概
略構成を示し、このコンピュータ制御製造システム(以
下、単に製造システムという)Tは、コンピュータによ
り作成される各部材の3次元形状データおよび位置情報
を用いて前記各部材の組立シミュレーションを実行する
シミュレーション手段1と、このシミュレーション結果
により前記溶接線で溶接される溶接対象部材と被溶接対
象部材の両方に接触するために溶接作業の障害となる可
能性のある部材、つまり障害可能性他部材を抽出する障
害可能性他部材抽出手段2と、障害可能性他部材から溶
接線を分割する要因となる分割要因部材を抽出する分割
要因部材抽出手段3と、分割要因部材により溶接作業が
分断される範囲を検出する分断範囲検出手段4と、分断
された範囲の溶接線についてビード継ぎが可能か否かを
判定するビード継ぎ可否判定手段5と、ビード継ぎ可否
判定手段5における判定結果に基づいて溶接線の分割を
指示する溶接線分割指示手段6とを備え、各部材W1
2(図5参照)を溶接するための溶接線Lを数値制御
データを用いて直接的に溶接ロボット16に指示すると
ともに、溶接線L(図6参照)における溶接実行の際に
障害の可能性のある他部材(障害可能性他部材)W3
4,W7(図5参照)を自動的に抽出し、それらの障害
可能性他部材W3,W4,W7の中から溶接線Lを分割す
る要因となる他部材(分割要因部材)W3,W4(図5参
照)を自動的に抽出し、それらの分割要因部材により溶
接作業が分断される範囲を自動的に検出し、さらにその
溶接作業が分断される範囲においてビード継ぎの可否を
判定し、その判定においてビード継ぎが不可能な場合に
溶接線Lの分割を指示するものとされる。
FIG. 1 shows a schematic configuration of a computer-controlled manufacturing system applied to a welding line dividing method according to an embodiment of the present invention. This computer-controlled manufacturing system (hereinafter, simply referred to as manufacturing system) T is a computer-based manufacturing system. Simulation means 1 for executing an assembly simulation of each member using the three-dimensional shape data and position information of each member created, and a welding target member and a welding target member to be welded at the welding line according to the simulation result. A member that may interfere with the welding work because it contacts both, that is, a failure possibility other member extraction means 2 that extracts a failure possibility other member, and a factor that divides the welding line from the failure possibility other member. The division factor member extraction means 3 for extracting the division factor members and the range in which the welding work is divided by the division factor members. Based on the judgment result in the bead splicing possibility determining means 5 and the bead splicing possibility determining means 5 which determines whether the bead splicing is possible or not with respect to the welding range detection means 4 which is output A welding line division instructing means 6 for instructing division, and each member W 1 ,
The welding line L for welding W 2 (see FIG. 5) is directly instructed to the welding robot 16 by using the numerical control data, and an obstacle may occur when performing welding at the welding line L (see FIG. 6). Other members (possibly other members with a failure) W 3 ,
W 4 and W 7 (see FIG. 5) are automatically extracted, and there is a possibility of obstacles to those other members W 3 , W 4 , and W 7 that become a factor for dividing the welding line L (division factor member). ) W 3 and W 4 (see FIG. 5) are automatically extracted, the range where the welding operation is divided by the dividing factor members is automatically detected, and the bead splicing is performed in the range where the welding operation is divided. Whether or not is determined, and if the bead splicing is impossible in the determination, it is instructed to divide the welding line L.

【0019】図2に製造システムTのハードウェアの構
成を示す。
FIG. 2 shows the hardware configuration of the manufacturing system T.

【0020】図2に示すように、製造システムTは、溶
接対象物である各部材Wの3次元形状データおよび位置
情報を用いて各部材Wの組立シミュレーションを実行す
る3次元CADシステム11と、3次元CADシステム
11による組立シミュレーション結果を利用して溶接実
行の際に障害の可能性のある他部材(障害可能性他部
材)Wを自動的に抽出し、それらの障害可能性他部材W
3,W4,W7の中から溶接線Lを分割する要因となる他
部材(分割要因部材)W3,W4を自動的に抽出し、それ
らの分割要因部材により溶接作業が分断される範囲を自
動的に検出し、さらにその溶接作業が分断される範囲に
おいてビード継ぎの可否を判定し、その判定に応じた溶
接線指示を行うための数値制御データを作成するCAM
システム12と、CAMシステム12からの指示によ
り、製造現場で溶接ロボット16に具体的な動作の指示
を行う製造現場制御システム14と、製造現場制御シス
テム14からの指示により溶接ロボット16の動作を制
御するロボットコントローラ15とからなる。
As shown in FIG. 2, the manufacturing system T uses a three-dimensional CAD system 11 for executing an assembly simulation of each member W using the three-dimensional shape data and position information of each member W which is a welding object, Using the assembly simulation result by the three-dimensional CAD system 11, other members W having a possibility of failure (other members having a possibility of failure) W are automatically extracted at the time of execution of welding, and the other members W having the possibility of failure W
3, W 4, W other members (dividing factor member) which is a factor of dividing the welding line L from the 7 W 3, W 4 automatically extracts the welding operation is interrupted by their division factor member A CAM that automatically detects the range, determines whether bead splicing is possible within the range in which the welding work is divided, and creates numerical control data for instructing the welding line according to the determination.
The system 12 and the CAM system 12 control the operation of the welding robot 16 according to the instructions from the manufacturing site control system 14 and the manufacturing site control system 14 that gives specific instructions to the welding robot 16 at the manufacturing site. And a robot controller 15 that operates.

【0021】3次元CADシステム11は、溶接対象物
となる各部材Wの3次元形状データおよび位置情報なら
びに各部材Wを溶接する際の溶接線Lの位置に関する溶
接線情報を格納する部材・溶接線情報データベース11
Aを備えており、3次元形状データおよび位置情報を用
いて各部材Wの組立シミュレーションを実行するシミュ
レーション手段1としての機能を有している。
The three-dimensional CAD system 11 is a member / welding that stores three-dimensional shape data and position information of each member W to be welded and welding line information regarding the position of the welding line L when welding each member W. Line information database 11
A has a function as a simulation unit 1 that executes an assembly simulation of each member W using three-dimensional shape data and position information.

【0022】CAMシステム12は、数値制御データ、
溶接条件データ、運棒方法データおよびセンシング方法
データなどの溶接作業に関わるデータを格納する溶接作
業データベース12Aを備えるとともに、3次元CAD
システム11における組立シミュレーション結果により
溶接線Lでの溶接実行の障害となる他部材(障害可能性
他部材)Wを抽出し、この障害可能性他部材Wから分割
要因部材Wを抽出し、この部材Wにより溶接線Lが分断
される範囲を検出し、この分断された範囲においてビー
ド継ぎが可能か否かを判定し、この判定結果に基づいて
溶接線の分割を指示する、障害可能性他部材抽出手段
2、分割要因部材抽出手段3、分断範囲検出手段4、ビ
ード継ぎ可否判定手段5、および溶接線分割指示手段6
としての機能を有する。
The CAM system 12 uses numerical control data,
A welding work database 12A for storing data relating to welding work such as welding condition data, rod operating method data, and sensing method data is provided, and three-dimensional CAD is also provided.
Based on the assembly simulation result in the system 11, another member (fault-probable other member) W that obstructs welding at the welding line L is extracted, and the division factor member W is extracted from this fault-probable other member W, and this member is extracted. Detecting a range in which the welding line L is divided by W, determining whether or not bead splicing is possible in this divided range, and instructing division of the welding line based on the result of this determination Extraction unit 2, division factor member extraction unit 3, division range detection unit 4, bead splicing possibility determination unit 5, and welding line division instruction unit 6
Has the function of.

【0023】製造現場制御システム14は、CAMシス
テム12により作成された数値制御データを数値制御デ
ータベース14Aに保管するとともに、この数値制御デ
ータに基づいてロボットコントローラ15に溶接線を指
示する。
The manufacturing site control system 14 stores the numerical control data created by the CAM system 12 in the numerical control database 14A and instructs the robot controller 15 on the welding line based on the numerical control data.

【0024】ロボットコントローラ15は、製造現場制
御システム14から指示された溶接線により溶接を実行
するように溶接ロボット16の動作を制御する。
The robot controller 15 controls the operation of the welding robot 16 so as to execute welding with the welding line instructed by the manufacturing site control system 14.

【0025】以下、図3、図4、図5および図6を参照
して、CAMシステム12により実行される溶接線分割
処理について説明する。
The welding line division processing executed by the CAM system 12 will be described below with reference to FIGS. 3, 4, 5, and 6.

【0026】図3および図4は溶接線分割処理の手順を
示す流れ図であり、図5は溶接線分割処理を説明する際
に参照する各部材の配置例を示す図である。図6は3次
元形状データを用いて他部材による溶接線分断範囲を検
出する処理を説明するための溶接線と他部材との位置関
係を示す模式図である。なお、図3および図4中の符号
S1〜S15はステップ番号を示す。
FIGS. 3 and 4 are flow charts showing the procedure of the welding line dividing process, and FIG. 5 is a diagram showing an arrangement example of each member referred to when explaining the welding line dividing process. FIG. 6 is a schematic diagram showing a positional relationship between a welding line and another member for explaining a process of detecting a welding line division range by another member using three-dimensional shape data. In addition, reference symbols S1 to S15 in FIGS. 3 and 4 indicate step numbers.

【0027】ステップS1では、3次元CADシステム
11上で各部材Wの3次元形状データおよび位置情報を
用いて各部材Wの組立シミュレーションが実行され、そ
の結果が保存される。
In step S1, an assembly simulation of each member W is executed on the three-dimensional CAD system 11 using the three-dimensional shape data and position information of each member W, and the result is stored.

【0028】ステップS2では、溶接対象部材W1およ
び被溶接対象部材W2を溶接するための溶接線Lの位置
に関する情報が3次元CADシステム11に入力され
る。この入力方法は、例えば3次元CADシステム11
のモニタ(図示省略)上に表示される溶接対象部材W1
および被溶接対象部材W2の表示画像に溶接線を描き込
むなどして溶接線Lを入力するシステムや、溶接対象部
材W1および被溶接対象部材W2の組立シミュレーション
結果により自動的に溶接線Lを選定するシステムを利用
するなどの公知従来の方法によるものとされる。
In step S2, the information about the position of the welding line L for welding the member W 1 to be welded and the member W 2 to be welded is input to the three-dimensional CAD system 11. This input method is, for example, a three-dimensional CAD system 11
Welding target member W 1 displayed on the monitor (not shown)
And systems and that in such inscribing the weld line in the display image of the welded members W 2 inputs the welding line L, automatically weld line by assembling the simulation results of the welded members W 1 and the welded members W 2 According to a known conventional method such as using a system for selecting L.

【0029】ステップS3では、溶接線Lで相互に溶接
される溶接対象部材W1および被溶接対象部材W2が特定
される。このような溶接対象部材W1および被溶接対象
部材W2を特定するための情報は、予め3次元CADシ
ステム11に登録しておくか、あるいは当該溶接線Lが
表面上に存在する部材Wを抽出することにより特定され
る。
In step S3, the welding target member W 1 and the welding target member W 2 to be welded to each other at the welding line L are specified. The information for identifying the member W 1 to be welded and the member W 2 to be welded is registered in the three-dimensional CAD system 11 in advance, or the member W having the welding line L on the surface is registered. It is specified by extracting.

【0030】ステップS4では、前記ステップS3で特
定された溶接対象部材W1および被溶接対象部材W2の両
方に接触する他部材(障害可能性他部材)W(例えば、
部材W3,W4,W7)が全て抽出される。この抽出は、
コンピュータによる具体的な処理においては、例えば溶
接線Lで相互に溶接される両部材(W1,W2)以外の全
ての部材(W3,W4,W5,W6,W7)について順次前
記両部材(W1,W2)の両方の表面と共有する表面があ
るか否かを判定することによりなされる。
At step S4, another member (other member having a possibility of failure) W (for example, another member having a possibility of failure) that comes into contact with both the welding target member W 1 and the welding target member W 2 specified in step S3.
All the members W 3 , W 4 , W 7 ) are extracted. This extraction is
In the concrete processing by the computer, for example, for all members (W 3 , W 4 , W 5 , W 6 , W 7 ) other than both members (W 1 , W 2 ) welded to each other at the welding line L, This is done by sequentially determining whether or not there is a surface shared with both surfaces of both the members (W 1 , W 2 ).

【0031】ステップS5では、前記ステップS4で抽
出される他部材(障害可能性他部材)Wがあるか否かが
判定される。ここで、そのような他部材Wが存在しない
場合は本処理を終了する一方、存在する場合はステップ
S6に進む。
In step S5, it is determined whether or not there is another member (other member with a possibility of failure) W extracted in step S4. Here, if there is no such other member W, the present process is terminated, while if it is present, the process proceeds to step S6.

【0032】ステップS6では、抽出された他部材(障
害可能性他部材)W3,W4,W7に最も近い溶接線L上
の点(以下、最近傍点という)PW3,PW4,PW7
求められ、各他部材W3,W4,W7毎に最近傍点PW3
PW4,PW7を含む各部材W 1,W2の外形構成面(以
下、溶接線構成面という)が特定される。
In step S6, the extracted other members (obstacles)
Possibility of other materials) W3, WFour, W7On weld line L closest to
Point (hereinafter referred to as the nearest point) PW3, PWFour, PW7But
Required, each other member W3, WFour, W7Nearest point PW for each3
PWFour, PW7Each member including W 1, W2External configuration surface of
Below, it is referred to as a weld line constituting surface) is specified.

【0033】すなわち、3次元CADシステム11にお
いては、図5(b)に示すように、両部材W1,W2の外
形はそれぞれ複数の多角形IA1,IA2,…、IB1
IB2,…により表される。これは、コンピュータグラ
フィクス技術では物体外形を多数の多角形により近似
し、この多数の多角形の頂点の座標を当該物体の外形を
表す形状データとして用いる方法が一般的であることに
よる。
That is, in the three-dimensional CAD system 11, as shown in FIG. 5B, the outer shapes of both members W 1 , W 2 are a plurality of polygons IA 1 , IA 2 , ..., IB 1 , respectively.
It is represented by IB 2 , ... This is because, in computer graphics technology, a general method is to approximate the outer shape of an object by a large number of polygons and use the coordinates of the vertices of the large number of polygons as shape data representing the outer shape of the object.

【0034】しかして、図5において、例えば他部材W
3,に最も近い溶接線L上の点をPW3,とすると、点P
3を含む各部材W1,W2の外形構成面IA1,IB2
溶接線構成面として抽出される。
Thus, in FIG. 5, for example, another member W
If the point on the weld line L closest to 3 is PW 3 ,
The outer shape constituting surfaces IA 1 and IB 2 of the respective members W 1 and W 2 including W 3 are extracted as the welding line constituting surfaces.

【0035】ステップS7では、他部材(障害可能性他
部材)Wが前記ステップS6で抽出された各溶接線構成
面の法線方向(図5(b)に矢印で示す方向、すなわち
溶接線構成面に垂直でかつ両部材W外側に向かう方向)
にあるか否かが判定される。ここで、そのような他部材
Wが存在しない場合は本処理を終了する一方、存在する
場合はステップS8に進む。
In step S7, the other member (other member having a possibility of failure) W is in the normal direction of each welding line forming surface extracted in step S6 (direction indicated by an arrow in FIG. 5B, that is, welding line forming). (A direction perpendicular to the surface and toward the outside of both members W)
Or not. Here, when there is no such other member W, the present process is terminated, and when such another member W is present, the process proceeds to step S8.

【0036】図5の例では、他部材W3は溶接線構成面
IA1,IB2両方の法線方向にあるので、ステップS7
において溶接線構成面の法線方向にあるものと判定さ
れ、分割要因部材として抽出される。一方、他部材W7
は溶接線構成面IB2の法線方向にはあるが、溶接線構
成面IA1の法線方向にはないので、分割要因部材とし
て抽出されない。すなわち、障害可能性他部材ではある
が、分割要因部材ではないものと判定される。また、同
様にして、他部材W4は分割要因部材として抽出され
る。
In the example of FIG. 5, since the other member W 3 is in the normal direction of both the welding line constituting surfaces IA 1 and IB 2 , step S7 is performed.
Is determined to be in the normal direction of the weld line constituting surface, and is extracted as a division factor member. On the other hand, other member W 7
Is in the normal direction of the welding line forming surface IB 2 , but is not in the normal direction of the welding line forming surface IA 1 , and thus is not extracted as a division factor member. That is, it is determined that the member is a failure possibility other member but not a division factor member. Similarly, the other member W 4 is extracted as the division factor member.

【0037】ステップS8では、分割要因部材Wの外形
構成面の中で溶接線Lから所定の微少距離d以内にある
頂点を有する外形構成面(以下、溶接線近傍面という)
が抽出される。ここで、微少距離dは、例えば3mmと
される。
In step S8, the outer shape forming surface having the apex within a predetermined minute distance d from the welding line L in the outer shape forming surface of the division factor member W (hereinafter referred to as the welding line vicinity surface).
Is extracted. Here, the minute distance d is, for example, 3 mm.

【0038】例えば、図6(a)に示すように、分割要
因部材Wkの外形構成面が各多角形(P1,P2,P4)、
(P1,P2,P6)、(P1,P4,P8)、(P1,P5
6)、(P1,P5,P8)、(P2,P3,P4)、
(P2,P3,P6)、(P3,P4,P7)、(P3,P6
7)、(P4,P7,P8)および(P5,P6,P7
8)であるものとすると、同図(b)に示すように、
溶接線Lから所定微少距離d以内にある点P1および点
2を含む各外形構成面(P1,P2,P4)、(P1
2,P6)、(P1,P4,P8)、(P1,P5,P6)、
(P1,P5,P8)、(P2,P3,P4)および(P2
3,P6)が分割要因部材Wkの溶接線近傍面として抽
出される。
For example, as shown in FIG.
Factor WkThe external configuration surface of each polygon (P1, P2, PFour),
(P1, P2, P6), (P1, PFour, P8), (P1, PFive
P6), (P1, PFive, P8), (P2, P3, PFour),
(P2, P3, P6), (P3, PFour, P7), (P3, P6
P7), (PFour, P7, P8) And (PFive, P6, P7
P8), As shown in FIG.
Point P that is within a predetermined minute distance d from the welding line L1And points
P2Each external configuration surface including (P1, P2, PFour), (P1
P 2, P6), (P1, PFour, P8), (P1, PFive, P6),
(P1, PFive, P8), (P2, P3, PFour) And (P2
P3, P6) Is the division factor member WkAs a surface near the welding line of
Will be issued.

【0039】ステップS9では、前記ステップS8で溶
接線近傍面があるか否かが判定される。溶接線近傍面が
ない場合は、ステップS10に進み、所定微少距離dを
一定長さ、例えば5mm延長して、前記ステップS8に
戻る。図6(c)に示すように、溶接線Lと平行ではな
い溶接線近傍面を分割要因面(P1,P4,P8)、
(P1,P5,P8)および(P2,P3,P6)として抽出
し、ステップS11に進む。
In step S9, it is determined whether or not there is a weld line vicinity surface in step S8. When there is no surface near the welding line, the process proceeds to step S10, the predetermined minute distance d is extended by a fixed length, for example, 5 mm, and the process returns to step S8. As shown in FIG. 6C, the surfaces near the welding line which are not parallel to the welding line L are divided factor surfaces (P 1 , P 4 , P 8 ),
Extract as (P 1 , P 5 , P 8 ) and (P 2 , P 3 , P 6 ), and proceed to step S 11.

【0040】ステップS11では、図6(d)に示すよ
うに、分割要因面(P1,P4,P8)、(P1,P5
8)および(P2,P3,P6)を無限平面とした場合の
溶接線Lとの交点PL148,PL158,PL236(同図で
は交点PL148とPL158とは同一の点である)が求めら
れる。このようにして求められた各交点の中で最も離れ
た2つの交点が分割点として定義される(ステップS1
2)。すなわち、この2つの交点により挟まれた部分が
他部材(分割要因部材)Wにより分断される範囲とされ
る。
In step S11, as shown in FIG. 6D, the division factor surfaces (P 1 , P 4 , P 8 ), (P 1 , P 5 ,
Intersection points PL 148 , PL 158 , PL 236 with the welding line L when P 8 ) and (P 2 , P 3 , P 6 ) are infinite planes (in the figure, the intersection points PL 148 and PL 158 are the same point). Is required). Of the intersections thus obtained, the two farthest intersections are defined as division points (step S1).
2). That is, the portion sandwiched by these two intersections is set as a range divided by the other member (division factor member) W.

【0041】ステップS13では、分割要因部材Wが溶
接線Lと接触しているか否かが判定される。ここで接触
している場合は、ステップS14に進み、ビード継ぎが
不可能な溶接線Lの分断箇所であるもの、つまり溶接線
Lは分割されるとして処理を終了する。
In step S13, it is determined whether or not the division factor member W is in contact with the welding line L. If they are in contact with each other, the process proceeds to step S14, and the process is terminated assuming that the welding line L is a part where the bead splicing is impossible, that is, the welding line L is divided.

【0042】前記ステップS13で接触していない場合
は、ステップS15に進み、ビード継ぎ可能な箇所であ
るもの、つまり溶接線Lは分割されないとして処理を終
了する。
If they are not in contact with each other in step S13, the process proceeds to step S15 and the processing is terminated assuming that the bead splicing point, that is, the welding line L is not divided.

【0043】このように、本実施形態の製造システムT
は、3次元CADシステム11により各部材Wの組立シ
ミュレーションが実行され、この組立シミュレーション
結果を利用して、CAMシステム12により溶接線Lで
溶接を実行する際の障害の可能性のある他部材W、すな
わち障害可能性他部材Wが抽出されるとともに、この障
害可能性他部材Wにより溶接線Lが分断される範囲、お
よびその分断された範囲においてビード継ぎ実行の可否
が判定されて溶接線Lの分割の要否が判定されるので、
複雑な形状のワークを溶接ロボット16により溶接処理
する場合にも、各部材Wの位置関係を予め考慮して1本
の溶接線を分割するなどの指示を行う必要がなく、効率
良く溶接作業を実行することができる。
In this way, the manufacturing system T of this embodiment is
Assembling simulation of each member W is performed by the three-dimensional CAD system 11, and using this assembly simulation result, another member W having a possibility of obstacle when performing welding at the welding line L by the CAM system 12 That is, the obstacle possibility other member W is extracted, and the welding line L is determined by determining the range in which the welding line L is divided by the obstacle possibility other member W and whether or not bead splicing can be performed in the divided range. Since it is determined whether or not the
Even when a welding robot 16 welds a workpiece having a complicated shape, it is not necessary to give an instruction such as dividing one welding line in consideration of the positional relationship of each member W in advance, and the welding work can be performed efficiently. Can be executed.

【0044】以上、本発明を実施形態に基づいて説明し
てきたが、本発明はかかる実施形態のみに限定されるも
のではなく、種々改変が可能である。例えば、本実施形
態では溶接ロボットを例にとり説明されているが、本発
明の適用は溶接ロボットに限定されるものではなく、各
種の自動溶接装置に適用できる。
Although the present invention has been described above based on the embodiments, the present invention is not limited to such embodiments and various modifications can be made. For example, although the present embodiment has been described by taking the welding robot as an example, the application of the present invention is not limited to the welding robot and can be applied to various automatic welding devices.

【0045】[0045]

【発明の効果】以上詳述したように、本発明によれば、
複雑な形状のワークを自動溶接により組立てる際に、溶
接実行の障害となる障害可能性他部材を抽出し、障害可
能性他部材の中から分割要因部材を抽出し、分割要因部
材により溶接作業が分断される範囲を検出し、その分断
される範囲においてビード継ぎがなし得ない場合に溶接
線の分割を自動的に指示するようにしているので、予め
溶接線の分割位置を指示する必要がなく、それにより作
業性の向上が図られるという優れた効果が得られる。
As described in detail above, according to the present invention,
When assembling a workpiece with a complicated shape by automatic welding, other parts that may be obstacles to welding execution are extracted, the division factor members are extracted from the other possibility elements, and the welding work is performed by the division factor members. It is not necessary to specify the welding line division position in advance because the area to be divided is detected and the division of the welding line is automatically instructed when the bead splicing is not possible in the divided range. Therefore, an excellent effect that workability is improved can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態に係る溶接線分割指示シス
テムの概略構成を示すブロック図である。
FIG. 1 is a block diagram showing a schematic configuration of a welding line division instruction system according to an embodiment of the present invention.

【図2】同システムのハードウェアの構成を示すブロッ
ク図である。
FIG. 2 is a block diagram showing a hardware configuration of the system.

【図3】溶接線分割処理の手順の前半を示す流れ図であ
る。
FIG. 3 is a flowchart showing the first half of the procedure of the welding line division processing.

【図4】溶接線分割処理の手順の後半を示す流れ図であ
る。
FIG. 4 is a flowchart showing the latter half of the procedure of the welding line division processing.

【図5】各部材の配置の一例を示す模式図である。FIG. 5 is a schematic view showing an example of arrangement of respective members.

【図6】溶接線と各部材との位置関係を3次元形状デー
タおよび位置情報で表した模式図である。
FIG. 6 is a schematic view showing a positional relationship between a welding line and each member by using three-dimensional shape data and positional information.

【符号の説明】[Explanation of symbols]

1 シミュレーション手段 2 障害可能性他部材抽出手段 3 分割要因部材抽出手段 4 分断範囲検出手段 5 ビード継ぎ可否判定手段 6 溶接線分割指示手段 11 3次元CADシステム 12 CAMシステム W 部材 L 溶接線 T 製造システム 1 Simulation means 2 Failure possibility other member extraction means 3 Division factor member extraction means 4-division range detection means 5 Bead connection possibility judgment means 6 Weld line division instruction means 11 3D CAD system 12 CAM system W member L welding line T manufacturing system

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川端 純一 明石市川崎町1番1号 川崎重工業株式 会社 明石工場内 (56)参考文献 特開 平9−164483(JP,A) 特開 平11−291039(JP,A) 特開 平10−277741(JP,A) (58)調査した分野(Int.Cl.7,DB名) B23K 9/12 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Junichi Kawabata 1-1 Kawasaki-cho, Akashi City Kawasaki Heavy Industries Ltd. Akashi Factory (56) References JP 9-164483 (JP, A) JP 11- 291039 (JP, A) JP-A-10-277741 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B23K 9/12

Claims (18)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 溶接ロボットなどの自動溶接装置により
各部材を溶接する場合において、障害可能性他部材を組
立シミュレーション結果により抽出し、ついでその障害
可能性他部材の中から分割要因部材を抽出し、その分割
要因部材のためにビード継ぎがなし得ないときに溶接線
の分割を指示することを特徴とする溶接線分割指示方
法。
1. When welding each member by an automatic welding device such as a welding robot, another obstacle possibility member is extracted from an assembly simulation result, and then a division factor member is extracted from the obstacle possibility other member. A method for instructing division of a welding line, characterized by instructing division of a welding line when a bead splice cannot be performed due to the division factor member.
【請求項2】 コンピュータ上で各部材を組み立てる組
立シミュレーション手順と、前記組立シミュレーション
結果から障害可能性他部材を抽出する障害可能性他部材
抽出手順と、前記障害可能性他部材の中から分割要因部
材を抽出する分割要因部材抽出手順と、前記分割要因部
材により溶接作業が分断される範囲を検出する分断範囲
検出手順と、前記分断された範囲においてビード継ぎが
可能か否かを判定するビード継ぎ可否判定手順と、前記
ビード継ぎ可否判定手順においてビード継ぎが不可能と
判定された場合に溶接線の分割を指示する溶接線分割指
示手順とを含んでなることを特徴とする溶接線分割指示
方法。
2. An assembly simulation procedure for assembling each member on a computer, a failure possibility other member extraction procedure for extracting a failure possibility other member from the assembly simulation result, and a division factor from the failure possibility other member. A division factor member extraction procedure for extracting a member, a division range detection procedure for detecting a range where welding work is divided by the division factor member, and a bead splicing for determining whether bead splicing is possible in the segmented range A welding line splitting instruction method comprising a feasibility determination procedure and a welding line splitting instruction procedure for instructing splitting of a welding line when bead splicing is determined to be impossible in the bead splicing propriety determination procedure. .
【請求項3】 溶接線で溶接される溶接対象部材と被溶
接対象部材の両方に接触する全ての他部材を障害可能性
他部材とすることを特徴とする請求項1または2記載の
溶接線分割指示方法。
3. The welding line according to claim 1, wherein all other members that come into contact with both the welding target member and the welding target member to be welded with the welding line are obstacle-probable other members. Split instruction method.
【請求項4】 障害可能性他部材の中で、溶接対象部材
と被溶接対象部材の両方の溶接線構成面の法線方向にあ
るものが分割要因部材とされることを特徴とする請求項
1または2記載の溶接線分割指示方法。
4. A member which is in the normal direction of the welding line constituting surfaces of both the welding target member and the welding target member, among the other possible obstacle members, is the division factor member. The welding line division instruction method according to 1 or 2.
【請求項5】 分割要因部材の各分割要因面を無限平面
とした場合の溶接線との各交点の中で最も離れた2点間
が分断範囲とされることを特徴とする請求項2記載の溶
接線分割指示方法。
5. The dividing range is defined by a distance between two points most distant from each other at each intersection with the welding line when each of the division factor surfaces of the division factor member is an infinite plane. How to instruct welding line division.
【請求項6】 分割要因部材の分割要因面が、溶接線と
接触している場合、ビード継ぎが不可能とされることを
特徴とする請求項2記載の溶接線分割指示方法。
6. The welding line splitting instruction method according to claim 2, wherein bead splicing is disabled when the splitting factor surface of the splitting factor member is in contact with the welding line.
【請求項7】 分割要因部材の溶接線近傍面の中で、溶
接線と平行でない面が分割要因面とされることを特徴と
する請求項5または6記載の溶接線分割指示方法。
7. The welding line splitting instruction method according to claim 5 or 6, wherein among the faces near the welding line of the splitting factor member, a face which is not parallel to the welding line is a splitting factor face.
【請求項8】 分割要因部材の外形構成面の中で、溶接
線から所定微少距離以内にある面が溶接線近傍面とされ
ることを特徴とする請求項7記載の溶接線分割指示方
法。
8. The welding line splitting instruction method according to claim 7, wherein a surface within a predetermined minute distance from the welding line is defined as a surface near the welding line among the outer shape constituting surfaces of the splitting factor member.
【請求項9】 所定微少距離以内に溶接線近傍面が存在
しない場合、前記所定微少距離を所定量延長して溶接線
近傍面の抽出がなされることを特徴とする請求項8記載
の溶接線分割指示方法。
9. The welding line according to claim 8, wherein when the welding line vicinity surface does not exist within the predetermined minute distance, the welding line vicinity surface is extracted by extending the predetermined minute distance by a predetermined amount. Split instruction method.
【請求項10】 溶接ロボットなどの自動溶接装置によ
り各部材を溶接する場合に用いられる溶接線分割指示シ
ステムであって、 障害可能性他部材を組立シミュレーションにより抽出
し、ついでその障害可能性他部材の中から分割要因部材
を抽出し、その分割要因部材のためにビード継ぎがなし
得ないときに溶接線の分割を指示するように構成されて
なることを特徴とする溶接線分割指示システム。
10. A welding line division instructing system used when welding each member by an automatic welding device such as a welding robot, wherein a possibility of failure other member is extracted by an assembly simulation, and then the possibility of failure other member. A welding line splitting instruction system, wherein a splitting factor member is extracted from among the splitting factor members, and a splitting of the welding line is instructed when a bead splice is impossible due to the splitting factor member.
【請求項11】 溶接ロボットなどの自動溶接装置によ
り各部材を溶接する場合に用いられる溶接線分割指示シ
ステムであって、 コンピュータ上で各部材を組み立てる組立シミュレーシ
ョンを実行するシミュレーション手段と、前記組立シミ
ュレーション結果から障害可能性他部材を抽出する障害
可能性他部材抽出手段と、前記障害可能性他部材の中か
ら分割要因部材を抽出する分割要因部材抽出手段と、前
記分割要因部材により溶接作業が分断される範囲を検出
する分断範囲検出手段と、前記分断された範囲において
ビード継ぎが可能か否かを判定するビード継ぎ可否判定
手段と、前記ビード継ぎ可否判定手段によりビード継ぎ
が不可能と判定された場合に溶接線の分割を指示する溶
接線分割指示手段とを備えてなることを特徴とする溶接
線分割指示システム。
11. A welding line division instruction system used when welding each member by an automatic welding apparatus such as a welding robot, and simulation means for executing an assembly simulation for assembling each member on a computer, and the assembly simulation. A failure possibility other member extracting means for extracting a failure possibility other member from the result, a division factor member extracting means for extracting a division factor member from the failure possibility other member, and a welding operation are divided by the division factor member. The range is detected by the dividing range, the bead splicing possibility determining unit that determines whether bead splicing is possible in the segmented range, and the bead splicing propriety determination unit determines that bead splicing is impossible. Welding line division instructing means for instructing division of the welding line when the welding is performed. Division instruction system.
【請求項12】 溶接線で溶接される溶接対象部材と被
溶接対象部材の両方に接触する全ての他部材を障害可能
性他部材とすることを特徴とする請求項10または11
記載の溶接線分割指示システム。
12. The other member, which is in contact with both the member to be welded and the member to be welded to be welded by the welding line, is defined as another member having a possibility of failure.
The welding line division instruction system described.
【請求項13】 障害可能性他部材の中で、溶接対象部
材と被溶接対象部材の両方の溶接線構成面の法線方向に
あるものを分割要因部材とすることを特徴とする請求項
10または11記載の溶接線分割指示システム。
13. A member which is in the normal direction of the welding line constituting surfaces of both the welding target member and the welding target member among the other possible obstacle members is a division factor member. Or the welding line division instruction system according to item 11.
【請求項14】 分割要因部材の各分割要因面を無限平
面とした場合の溶接線との各交点の中で最も離れた2点
間を分断範囲とすることを特徴とする請求項11記載の
溶接線分割指示システム。
14. The splitting range is defined by the two points farthest apart from each other at each intersection with the welding line when each splitting factor surface of the splitting factor member is an infinite plane. Welding line division instruction system.
【請求項15】 分割要因部材の分割要因面が、溶接線
と接触している場合、ビード継ぎを不可能とすることを
特徴とする請求項11記載の溶接線分割指示システム。
15. The welding line splitting instruction system according to claim 11, wherein when the splitting factor surface of the splitting factor member is in contact with the welding line, bead splicing is disabled.
【請求項16】 分割要因部材の溶接線近傍面の中で、
溶接線と平行でない面を分割要因面とすることを特徴と
する請求項14または15記載の溶接線分割指示システ
ム。
16. In the surface near the welding line of the division factor member,
The welding line division instruction system according to claim 14 or 15, wherein a surface that is not parallel to the welding line is used as a division factor surface.
【請求項17】 分割要因部材の外形構成面の中で、溶
接線から所定微少距離以内にある面が溶接線近傍面とさ
れることを特徴とする請求項16記載の溶接線分割指示
システム。
17. The welding line splitting instruction system according to claim 16, wherein a surface within a predetermined minute distance from the welding line is defined as a surface near the welding line in the outer shape constituting surface of the splitting factor member.
【請求項18】 所定微少距離以内に溶接線近傍面が存
在しない場合、前記所定微少距離を所定量延長して溶接
線近傍面の抽出がなされることを特徴とする請求項17
記載の溶接線分割指示システム。
18. The welding line vicinity surface is extracted by extending the predetermined minute distance by a predetermined amount when the welding line vicinity surface does not exist within the predetermined minute distance.
The welding line division instruction system described.
JP2000221645A 2000-07-24 2000-07-24 Welding line division instruction method and welding line division instruction system Expired - Lifetime JP3385370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000221645A JP3385370B2 (en) 2000-07-24 2000-07-24 Welding line division instruction method and welding line division instruction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000221645A JP3385370B2 (en) 2000-07-24 2000-07-24 Welding line division instruction method and welding line division instruction system

Publications (2)

Publication Number Publication Date
JP2002035939A JP2002035939A (en) 2002-02-05
JP3385370B2 true JP3385370B2 (en) 2003-03-10

Family

ID=18716012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000221645A Expired - Lifetime JP3385370B2 (en) 2000-07-24 2000-07-24 Welding line division instruction method and welding line division instruction system

Country Status (1)

Country Link
JP (1) JP3385370B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6817122B2 (en) * 2017-03-21 2021-01-20 株式会社神戸製鋼所 Welding path identification method, program, teaching program and welding robot system
JP6809948B2 (en) * 2017-03-21 2021-01-06 株式会社神戸製鋼所 Welding path information acquisition method and welding robot system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3259617B2 (en) * 1995-12-13 2002-02-25 日本鋼管株式会社 Automatic welding path determination system
JPH10277741A (en) * 1997-04-08 1998-10-20 Nippon Kokan Light Steel Kk Manufacturing control method for automatic welding apparatus having metal-made box state structural body and manufacturing control device
JPH11291039A (en) * 1998-04-15 1999-10-26 Hitachi Ltd Cad system having function setting welding line and simulation system

Also Published As

Publication number Publication date
JP2002035939A (en) 2002-02-05

Similar Documents

Publication Publication Date Title
EP1769891B1 (en) Offline teaching apparatus for robot
US8779324B2 (en) Welding-line selecting method
CN107835729B (en) Method and apparatus for planning welding operations
US8723862B2 (en) Information processor and information processing method
CN107949450B (en) Method and device for identifying weld seam of welding object
JP5543534B2 (en) Numerical control device with program restart function
US10824312B2 (en) Method and system for assisting installation of elements in a construction work
KR102537026B1 (en) Welding line data generating device, welding system, welding line data generating method and recording medium
JPH11291039A (en) Cad system having function setting welding line and simulation system
JP3198076B2 (en) Path creation method for mobile robots
JP3385370B2 (en) Welding line division instruction method and welding line division instruction system
JPH07107647B2 (en) Interference check method for multiple system control
JP4046370B2 (en) 3D shape drawing method
JP5610883B2 (en) Processing simulation apparatus and method
JP3066646B2 (en) Motion simulation system
JP3259617B2 (en) Automatic welding path determination system
JPH1131009A (en) Method and device for sequence programming of welding by robot
JP2006072673A (en) Positioner setting method for welding robot
JP3554832B2 (en) Automatic welding line creation method and automatic welding line creation system
JP3421725B2 (en) Method and system for automatically determining welding process near the end of welding line
JP4812477B2 (en) Image measurement device part program generation device, image measurement device part program generation method, and image measurement device part program generation program
JP2006085485A (en) Nc working simulation device
JPH10240790A (en) Method for instructing formation of fillet surface
JP2599206B2 (en) Numerical control information creation device
JPH0325291B2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020924

R150 Certificate of patent or registration of utility model

Ref document number: 3385370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140110

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140110

Year of fee payment: 11

EXPY Cancellation because of completion of term