JP3381945B2 - Method of forming fine uneven pattern on substrate - Google Patents

Method of forming fine uneven pattern on substrate

Info

Publication number
JP3381945B2
JP3381945B2 JP26575092A JP26575092A JP3381945B2 JP 3381945 B2 JP3381945 B2 JP 3381945B2 JP 26575092 A JP26575092 A JP 26575092A JP 26575092 A JP26575092 A JP 26575092A JP 3381945 B2 JP3381945 B2 JP 3381945B2
Authority
JP
Japan
Prior art keywords
substrate
mold
film
metal
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26575092A
Other languages
Japanese (ja)
Other versions
JPH06114334A (en
Inventor
厚範 松田
好洋 松野
敏博 小暮
慶喜 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP26575092A priority Critical patent/JP3381945B2/en
Publication of JPH06114334A publication Critical patent/JPH06114334A/en
Application granted granted Critical
Publication of JP3381945B2 publication Critical patent/JP3381945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、凹凸パターンを形成す
る方法に関し、とりわけ光ディスク用基板、セルギャッ
プ制御用突起を付与した液晶表示セル用ガラス基板、回
折格子、結像素子、光学部品などに必要な微細な凹凸パ
ターンを形成する方法に関する。 【0002】 【従来の技術】従来、微細な凹凸パターンを基板上に形
成する方法としては、金属有機化合物として金属の原子
価数と同じ数の官能基がその金属に直接結合しているた
とえばオルソシリケートを含み、増粘剤としてポリエチ
レングリコールを含む溶液をガラス基板上に塗布して可
塑性塗布膜を形成し、その塗布膜に微細な凹凸パターン
を有する型を押しあて、型の峰形状に対応する溝形状を
転写し、その後凹凸パターンが転写された塗布膜を加熱
焼成して固化させたる方法が、特開昭62−10244
5号公報、特開昭62−225273号公報、特開昭6
3−158168号公報に開示されている。 【0003】 【発明が解決しようとする課題】しかしながら、上記従
来技術の方法では、金属有機化合物として、金属の結合
手のすべてに官能基が直接結合したものを用いているの
で、300℃程度の加熱焼成により、凹凸パターンを有
する膜体が無機非晶質になるという利点が有るものの、
溶液に増粘剤を含めているため塗布膜の加熱焼成により
膜が収縮し、形成される凹凸パターンの形状は型のそれ
より凹凸深さが小さくなり、所定の寸法の凹凸パターン
が得にくいという問題点があった。また、増粘剤を用い
ているので、得られる膜は多孔質になり、したがって水
分が吸着しやすく、凹凸を有する膜体の屈折率が変化
し、また膜厚が変化するという問題点があった。さらに
上記従来技術の方法では、凹凸を有する膜の厚みを0.
5μm以上にすると膜体にクラックが発生し、基板から
剥離するという問題が発生し、深さが0.5μmを越え
る凹凸パターンを基板上に形成することは困難であると
いう問題点があった。本発明は、上記の問題点を解決す
るためになされたもので、寸法精度良く凹凸パターンを
形成する、とりわけ凸頂点と凹底部の距離が大きい微細
な凹凸パターンを形成する方法を提供することを目的と
している。 【0004】本発明は、基板上及び/または微細な凹凸
パターンを有する型上に、加水分解・縮重合し得る下記
化学式1の金属有機化合物を含む溶液を用いて塗布膜を
形成し、前記基板及び前記型を接合押圧して前記塗布膜
前記型の凹凸パターンを有する膜体とし、その後前記
型を前記膜体から離型し、前記基板上の膜体を加熱する
ことにより前記有機金属化合物の縮重合体とする、基板
上に微細な凹凸パターンを形成する方法である。 【0005】 化学式1:XkAmA:原子価数4の金属 X:重合可能な官能基 R:アルキル基またはアリール基 (kは自然数、mは1または2の整数で、k+m=4を
満たす) 上記金属有機化合物としては、例えば、(CH3O)3
iCH3,(C25O)3SiCH3,(CH3O)3Si
25,(C25O)3SiC25,(CH3O)3Si
65,(C25O)3SiC65,Cl3SiCH3
Cl3SiC25,Cl3SiC65,(CH3O)2Si
(CH32,Cl2Si(CH32,(CH3O)2Si
(CH2CF32,Cl2Si(CH2CF32,(CH3
O)Si(CH33,ClSi(CH33,(CH
3O)Si(CH2CF33,ClSi(CH2
33,(CH3O)2Si(CH2CF32,Cl2Si
(CH2CF32,(CH3O)3Si(CH2CF3),
Cl3Si(CH2CF3),(CH3O)3TiCH3
(C25O)3TiCH3,(CH3O)2Ti(C
32,(C25O)2Ti(CH32,Cl3TiCH
3,Cl2Ti(CH32,(CH3O)3Ti(CH2
3),Cl3Ti(CH2CF3)等が例示できる。なか
でも(CH3O)3SiCH3,(C25O)3SiC
3,(CH3O)3SiC25,(C25O)3SiC2
5,(CH3O)3SiC65,(C25O)3SiC6
5,Cl3SiCH3,Cl3SiC25,Cl3SiC6
5などの,RSiX3の一般式で表される有機シリコン
化合物が均質な膜体を形成し易いので好ましい。 【0006】本発明に用いる溶液には、上記化学式1で
表される金属有機化合物に加えて、凹凸パターンを有す
る膜体の屈折率等の光学的性質、硬度等の機械的性質を
調整するための第2の有機金属化合物として、下記化学
式2で表せる金属アルコラートを含ませることができ
る。 【0007】 化学式2:MB(OR)nB:価数nを有する金属(nは1〜4の整数)、 OR:アルコキシル基、(Rは炭素数が1〜3のアルキ
ル基) ここで、金属MBとして、Si,Ti,Zr,Ca,A
l,Na,Pb,B,Sn,Ge等の金属、アルコキシ
ル基のRとしてはメチル,エチル、プロピル等のアルキ
ル基が用いることができる。また、金属キレート錯体及
び−Cl,−COOH,−COOR,−NH2などの官能基を有するものを第2の金属有機化合物とし
て含ませてもよい。なかでも上記化学式2の金属アルコ
ラートが好ましく、そのなかでもSi(OCH34、S
i(OC254、Ti(OC374、Ti(OC
494, Zr(OC374,Zr(OC494,A
l(OC373,Al(OC493が、得られる膜体
の屈折率等の光学的性質を制御し、かつ耐候性を向上さ
せる点から好ましい。また、溶液中の全金属有機化合物
のうち、化学式1の金属有機化合物の割合を60モル%
以上100モル%未満とすることにより、得られる膜の
硬さを大きく低下させないで、凸頂部と凹底部の距離が
大きい微細な凹凸パターンを、加熱により膜体の収縮率
を小さくして縮重合を進行させることができる。また、
得られる膜体の硬さを硬くすることができる。とくに
0.5μm以上の凹凸段差を有する膜体を形成するに
は、上記溶液中に化学式1の金属有機化合物と第2の金
属有機化合物を含ませ、化学式1で表せるものの割合を
全金属有機化合物の60〜80モル%、さらに好ましく
は70〜80モル%とする。 【0008】本発明に用いる金属有機化合物は、水およ
びアルコール等の有機溶媒、必要に応じて酸またはアル
カリの加水分解触媒と混合された溶液とされる。そし
て、金属有機化合物の溶液全体に占める割合は、溶液の
粘性、形成しようとする膜体の厚み等により定められ、
20〜70モル%とするのが好ましい。 【0009】本発明に用いることのできる基板として
は、ガラス、セラミックス、金属、プラスチック等の任
意の基板を用いることができる。 【0010】本発明に用いられる型は、塗布溶液の溶媒
に対して耐性があればとくに限定されない。ガラス、セ
ラミックス、金属、プラスチック等の材料を用いること
ができる。膜体と型との離型性を向上させるため、型表
面に離型層を設けてもよい。また、塗布した膜を加熱す
るときの熱膨張による凹凸パターンの寸法精度の劣化を
防ぐために、微細凹凸パターンを表面に形成する基板と
近い熱膨張率を有する型材料を選択することが好まし
い。 【0011】本発明に用いられる型の微細な凹凸パター
ンの形状としては、例えば読みだし専用光ディスク(C
D−ROM)のピットパターンとして使用可能な0.7
μm程度の幅を持ち高さが約150nmの凹凸パターン
や、光ディスク用の案内溝として使用可能な1μm程度
の幅を持ち、その深さが50〜200nmの微細凹凸パ
ターンや、回折格子、グレーティングレンズとして使用
可能な数100nm〜数μm深さの矩形あるいは鋸歯状
パターンや、液晶表示素子用基板のスペーサーとして使
用可能な深さ10μm程度のものが例示できる。 【0012】 【作用】本発明に用いられる溶液中に含まれる金属有機
化合物は加水分解縮重合性を有し、それにより溶液を基
板上に厚く塗布することができる。さらに本発明に用い
られる有機金属化合物の金属に直接結合しているアルキ
ル基およびアリール基は、塗布膜を柔軟にし型押合によ
る成形およびスクリーン印刷による凹凸パターンを有す
る膜体の可能にするとともに、塗布後の加熱に際しては
膜体の収縮を生じさせない。したがって、ポリエチレン
グリコールなどの粘度調整剤を塗布溶液に含ませること
が不要となり、基板上に形成する凹凸を有する膜体の形
状の寸法精度を向上させることができる。この有機金属
化合物が有する柔軟性付与と収縮量低下の作用により、
凸頂部と凹底部の距離が大きい微細な凹凸パターンを寸
法精度良く基板上に形成することができる。 【0013】 【実施例】以下に本発明を実施例に基づいて説明する。
図1は本発明により得られる微細凹凸パターンが表面に
形成された基板の一部断面図で、図1はそれぞれ実施例
1で得られた微細凹凸パターン付き基板の一部断面図で
ある。 【0014】実施例1 メチルトリエトキシシラン(CH3Si(OC253
0.05モルを秤量し、これに0.05モルのエタノー
ルと0.2モルの水(0.1wt%の塩酸(HCl)を
含む)を加え、室温で30分間攪拌したものを塗布溶液
1とした。ここで、HClのメチルトリエトキシシラン
に対するモル比は、0.002である。塗布溶液1を、
ソーダ石灰ガラス基板(100mm×100mm×2m
m)上に4ml滴下し、1000rpmでガラス基板を
回転させることにより被膜をガラス基板上に形成した。
次いで、直径10μm、高さ5μmの半球凸パターン多
数を有する樹脂製型(100mm×100mm×1m
m)とこのガラス基板とを空気の入らないように大気中
で押合した。その後このままの状態で120℃で10分
間加熱し、その後型とガラス基板との離型を行い、凹凸
を有する膜体が表面に形成されたガラス基板を350℃
で15分間加熱した。この加熱焼成操作により、被膜は
エタノール及び水分等が飛散して膜厚約10μmのメチ
ル基含有SiO2ガラス類似膜体となっていた。 【0015】上記により作製した半球状凹パターンが多
数表面に設けられたレンズ作用を有するガラス基板をS
EM(走査型電子顕微鏡)で観察したところ、直径10
μm、深さ約4.5μmの凹パターンが多数形成されて
いた。ソーダ石灰ガラス基板の代わりに、無アルカリガ
ラス及び石英ガラスを用いた場合も同様の結果が得られ
た。 【0016】実施例 メチルトリエトキシシラン(CH3Si(OC253
0.05モルを秤量し、これに0.2モルのエタノール
と0.2モルの水(0.1wt%のHClを含む)を加
え、室温で30分間攪拌し、その後エタノールをさらに
0.2モル加えて5分間攪拌したものを塗布溶液2とし
た。HClのメチルトリエトキシシランに対するモル比
は、0.002である。塗布溶液2を、化学強化ガラス
ディスク基板(外径130mm、内径15mm、厚さ
1.2mm)に4ml滴下し、エタノール雰囲気の槽内
で800rpmで25秒間回転させ、基板上に塗布膜を
形成した。次いで、ピッチ1.6μm、深さ100n
m、溝幅0.5μmの光ディスク用溝パターンを半径2
5mmから60mmの範囲に有する外径130mm、厚
さ1.2mmのポリカーボネート製型と、このガラス基
板とを、5×10-6Torrの減圧下で50kgf/c
2の圧力で押合した。その後押圧した状態でガラスデ
イスク基板を大気圧中に取り出し、クリーンオーブン中
で120℃10分間の加熱を行い、その後型とガラスデ
ィスク基板の離型を行い、さらに凹凸を有する膜体が形
成されたガラスディスク基板を350℃15分間の加熱
を行った。この加熱操作により、塗布膜はエタノール及
び水分等が飛散して膜厚約0.3μmのメチル基含有S
iO2ガラス類似膜体となっていた。 【0017】上記操作により作製された光ディスク用ガ
ラスディスク基板をSTMで観察したところ、ピッチ
1.6μm、深さ90nm、峰幅0.5μmの均一な微
細溝パターンが基板に形成されていた。 【0018】得られた基板は、溝形状均一性、物理的特
性、機械的特性、信号特性とも光ディスク用基板として
の規格を十分に満足するものであった。ポリカーボネー
ト製型の代わりに、光反応硬化性樹脂をエポキシ基板と
ニッケル製スタンパーの間に展開し露光する2P製法で
作製した2P/エポキシ型を用いて微細な凹凸パターン
を転写により行った場合も、射出成形ポリオレフィン型
を用いた場合も、上記と同様の光デイスク基板として良
好な特性を有する基板が得られた。 【0019】また、光ディスク用溝パターンの代わり
に、ピッチ1.6μm,高さ110nm、幅0.7μm
の微細なピットパターンを多数、半径25mmから60
mmの範囲の表面に有する外径130mm、厚さ1.2
mmのポリカーボネート製型を用いて、ガラス基板上に
凹凸を有する膜体を形成した。上記操作により作製され
た基板を用いた読みだし専用光ディスクは、ピッチ1.
6μm,深さ100nm、ピット幅0.7μmの均一な
微細ピットパターンが基板に形成されており、低いエラ
ーレートを示し、溝形状均一性、物理的特性、機械的特
性、信号特性とも光ディスク用基板としての規格を十分
に満足するものであった。 【0020】実施例 メチルトリエトキシシラン(CH3Si(OC253
0.04モルとテトラエトキシシラン(Si(OC
254)0.01モルを秤量し、これに0.05モル
のエタノールと0.2モルの水(0.1wt%のHCl
を含む)を加え、室温で30分間攪拌したものを塗布溶
液3とした。ここで、HClのメチルトリエトキシシラ
とテトラエトキシシランの合計に対するモル比は、
0.002である。塗布溶液3を、用いて実施例1と
様の微細凹凸パターンを基板上に形成した。 【0021】直径10μm、高さ5μmの半球凸パター
ン多数を有する樹脂製型を用いた場合は、直径10μ
m、深さ約4.5μmの凹パターンがガラス基板上に形
成されていた。 【0022】実施例 メチルトリエトキシシラン(CH3Si(OC253
0.04モルとテトラエトキシシラン(Si(OC
254)0.01モルを秤量し、これに0.2モルの
エタノールと0.2モルの水(0.1wt%のHClを
含む)を加え、室温で30分間攪拌し、その後エタノー
ルをさらに0.2モル加えて5分間攪拌したものを塗布
溶液4とした。ここで、HClのメチルトリエトキシシ
ランとテトラエトキシシランの合計に対するモル比は、
0.002である。塗布溶液4を用いて実施例と同様
の微細凹凸パターンを基板上に形成した。ピッチ1.6
μm、深さ100nm、溝幅0.5μmの光ディスク用
溝パターンを半径25mmから60mmの範囲に有する
外径130mm、厚さ1.2mmのポリカーボネート製
型を用いた場合、ピッチ1.6μm,深さ90nm、峰
幅0.5μmの均一な微細溝パターンがガラスディスク
基板上に形成されていた。 【0023】ピッチ1.6μm,高さ110nm、幅
0.7μmの微細ピットパターン多数を半径25mmか
ら60mmの範囲に有する外径130mm、厚さ1.2
mmのポリカーボネート製型を用いて成形を行った場合
は、ピッチ1.6μm,深さ100nm、ピット幅0.
7μmの均一な微細ピットパターンが基板上に形成され
ていた。メチルトリエトキシシランにテトラエトキシシ
ランを加えることで、最終的に得られる凹凸パターンを
有する膜体の屈折率が向上した。 【0024】上記塗布溶液の調製条件において、テトラ
エトキシシランの代わりにチタニウムテトラエトキシド
0.01モルあるいはジルコニウムテトラエトキシド
0.01モルを加えた場合も、良好な微細凹凸パターン
付き基体が得られた。チタニウムテトラエトキシドを加
えた場合もジルコニウムテトラエトキシドを加えた場合
も最終的に得られる凹凸パターンを有する膜体の屈折率
が大きくなったが、加熱前後の収縮量はわずかであっ
た。 【0025】実施例およびにおいて、テトラエトキ
シシラン、チタニウムテトラメトキシド、ジルコニウム
テトラメトキシド、チタニウムテトラエトキシド、ジル
コニウムテトラエトキシドの化学式2で表せる金属有機
化合物を化学式1で表せる有機金属化合物であるメチル
トリエトキシシランに対するモル比をそれぞれ1より多
くすると、凹凸を有する膜体の厚みを10μm以上にす
ることが困難であった。 【0026】比較例1 テトラエトキシシラン(Si(OC254)0.05
モルを秤量し、これに0.05モルのエタノールと0.
2モルの水(0.1wt%のHClを含む)を加え、室
温で30分間攪拌したものを塗布溶液5とした。ここ
で、HClのテトラエトキシシランに対するモル比は、
0.002である。塗布溶液5を、ソーダ石灰ガラス基
板(100mm×100mm×2mm)上に4ml滴下
し、1000rpmで基板を回転させることにより塗布
膜をガラス基板上に形成した。次いで、樹脂製型を塗布
膜に押合させようとしたところ、塗布膜にクラックが発
生し、良好なパターン成形は行えなかった。 【0027】比較例2 テトラエトキシシラン(Si(OC254)0.05
モルを秤量し、これに0.2モルのエタノールと0.2
モルの水(0.1wt%のHClを含む)を加え、室温
で30分間攪拌し、その後エタノールをさらに0.2モ
ル加えて5分間攪拌したものを塗布溶液6とした。HC
lのテトラエトキシシランに対するモル比は、0.00
2である。塗布溶液6を、化学強化ガラスディスク基板
(外径130mm、内径15mm、厚さ1.2mm)上
に4ml滴下し、エタノール雰囲気の槽内で800rp
mで25秒間回転させ、基板上に塗布膜を形成した。次
いで、ピッチ1.6μm,深さ100nm、溝幅0.5
μmの光ディスク用溝パターンを半径25mmから60
mmの範囲に有する外径130mm、厚さ1.2mmの
ポリカーボネート製型と、上記塗布膜を表面に形成した
ガラス基板を5×10-6Torrの減圧下で50kgf
/cm2の圧力で押合した。その後押合体を大気圧中に
取り出して観察したところ塗布膜が硬いために、型と塗
布膜の押合が十分になされず、微細な凹凸パターンを有
する膜体を形成することができなかった。型と塗布膜の
押合圧力を50kgf/cm2から200kgf/cm
2に増大させても、型と塗布膜の押合が十分になされ
ず、凹凸パターンを塗布膜に転写することはできなかっ
た。 【0028】比較例3 塗布溶液6にポリエチレングリコールを3g添加したも
のを塗布溶液7とした。塗布溶液7を用いて、比較例2
と同様の凹凸パターンをガラス基板上に形成した。上記
操作により作製された光ディスク用ガラスディスク基板
をSTM(走査型透過電子顕微鏡)で観察したところ、
ピッチ1.6μm,深さ50nm、峰幅0.5μmの均
一な溝パターンが基板に形成されていた。上記光ディス
ク用ガラス基板は、溝形状均一性、物理的特性、機械的
特性、信号特性とも光ディスク用基板としての規格を満
足するものであったが、溝深さが型の溝深さの約50%
程度になっており、また溝形状にも鈍りが観察された。
さらに膜の気孔率が高く、吸着水の量が多くなってい
た。 【0029】 【発明の効果】本発明によれば、微細形状でかつ表面凹
凸の深さが大きい膜体を基板上に形成することができ
る。これにより基板自体を溝加工することなく、表面に
微細な凹凸パターンを有する光デイスク用基板、液晶表
示セル用のスペーサー付き基板、回折格子や結像素子等
の光学部品を製造することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a concavo-convex pattern, and more particularly to a substrate for an optical disk, a glass substrate for a liquid crystal display cell provided with projections for controlling a cell gap, and diffraction. The present invention relates to a method for forming a fine concavo-convex pattern required for a grating, an imaging element, an optical component, and the like. 2. Description of the Related Art Conventionally, as a method of forming a fine uneven pattern on a substrate, for example, an ortho-organic compound in which a functional group having the same number of valences as a metal organic compound is directly bonded to the metal is used. A solution containing polyethylene glycol as a thickener containing silicate is applied on a glass substrate to form a plastic coating film, and a mold having a fine uneven pattern is pressed on the coating film to correspond to the peak shape of the mold. Japanese Patent Application Laid-Open No. Sho 62-10244 discloses a method in which a groove shape is transferred, and thereafter, a coating film on which a concavo-convex pattern is transferred is heated and baked to be solidified.
No. 5, JP-A-62-225273, and JP-A-6-225273.
It is disclosed in JP-A-3-158168. [0003] However, in the above-mentioned prior art method, since a metal organic compound in which functional groups are directly bonded to all metal bonds is used, the temperature of about 300 ° C. By heating and baking, although there is an advantage that the film body having the uneven pattern becomes inorganic amorphous,
Because the solution contains a thickener, the film shrinks due to the heating and baking of the coating film, and the shape of the formed concavo-convex pattern has a smaller concavo-convex depth than that of the mold, and it is difficult to obtain a concavo-convex pattern of a predetermined size. There was a problem. In addition, since the thickener is used, the resulting film is porous, and therefore, has a problem that moisture is easily adsorbed, the refractive index of the film body having irregularities changes, and the film thickness changes. Was. Further, in the method of the prior art described above, the thickness of the film having irregularities is set to 0.
When the thickness is 5 μm or more, cracks occur in the film body, and there is a problem that the film is separated from the substrate, and it is difficult to form an uneven pattern having a depth exceeding 0.5 μm on the substrate. The present invention has been made in order to solve the above problems, and provides a method for forming a concavo-convex pattern with high dimensional accuracy, particularly for forming a fine concavo-convex pattern in which a distance between a convex vertex and a concave bottom is large. The purpose is. [0004] The present invention, on the mold with a substrate and / or fine concavo-solution to form a coating film with a containing a metal organic compound of the following Formula 1 that can hydrolyze, polycondensation, the substrate and a membrane having the form of a concavo-convex pattern the coating film by joining pressing the mold, by thereafter the <br/> type was released from the membrane body, heating the film body on the substrate a polycondensate of the organometallic compound, a method for forming a fine concave-convex pattern on the substrate. Chemical formula 1: X k M A R m M A : Metal having a valence of 4 X: Polymerizable functional group R: Alkyl or aryl group (k is a natural number, m is an integer of 1 or 2, and k + m = 4) Examples of the metal organic compound include (CH 3 O) 3 S
iCH 3 , (C 2 H 5 O) 3 SiCH 3 , (CH 3 O) 3 Si
C 2 H 5, (C 2 H 5 O) 3 SiC 2 H 5, (CH 3 O) 3 Si
C 6 H 5 , (C 2 H 5 O) 3 SiC 6 H 5 , Cl 3 SiCH 3 ,
Cl 3 SiC 2 H 5 , Cl 3 SiC 6 H 5 , (CH 3 O) 2 Si
(CH 3 ) 2 , Cl 2 Si (CH 3 ) 2 , (CH 3 O) 2 Si
(CH 2 CF 3 ) 2 , Cl 2 Si (CH 2 CF 3 ) 2 , (CH 3
O) Si (CH 3 ) 3 , ClSi (CH 3 ) 3 , (CH
3 O) Si (CH 2 CF 3 ) 3 , ClSi (CH 2 C
F 3 ) 3 , (CH 3 O) 2 Si (CH 2 CF 3 ) 2 , Cl 2 Si
(CH 2 CF 3 ) 2 , (CH 3 O) 3 Si (CH 2 CF 3 ),
Cl 3 Si (CH 2 CF 3 ), (CH 3 O) 3 TiCH 3 ,
(C 2 H 5 O) 3 TiCH 3 , (CH 3 O) 2 Ti (C
H 3) 2, (C 2 H 5 O) 2 Ti (CH 3) 2, Cl 3 TiCH
3 , Cl 2 Ti (CH 3 ) 2 , (CH 3 O) 3 Ti (CH 2 C
F 3 ) and Cl 3 Ti (CH 2 CF 3 ). Among them, (CH 3 O) 3 SiCH 3 , (C 2 H 5 O) 3 SiC
H 3, (CH 3 O) 3 SiC 2 H 5, (C 2 H 5 O) 3 SiC 2
H 5, (CH 3 O) 3 SiC 6 H 5, (C 2 H 5 O) 3 SiC 6
H 5, Cl 3 SiCH 3, Cl 3 SiC 2 H 5, Cl 3 SiC 6
Such as H 5, because it is easy organosilicon compound to form a homogeneous film structure represented by the general formula RSiX 3 preferred. In the solution used in the present invention, in addition to the metal organic compound represented by the above-mentioned chemical formula 1, in order to adjust the optical properties such as the refractive index and the mechanical properties such as the hardness of the film having a concavo-convex pattern. As the second organometallic compound, a metal alcoholate represented by the following chemical formula 2 can be included. [0007] Chemical Formula 2: M B (OR) n M B: metal having a valence of n (n is an integer of 1 to 4), OR: alkoxy group, (R is an alkyl group having 1 to 3 carbon atoms) wherein in, the metal M B, Si, Ti, Zr , Ca, A
Metals such as 1, Na, Pb, B, Sn, and Ge can be used, and R of the alkoxyl group can be an alkyl group such as methyl, ethyl, and propyl. Further, a metal chelate complex and —Cl, —COOH, —COOR, —NH 2 , Such a compound having a functional group may be included as the second metal organic compound. Among them, metal alcoholates of the above formula 2 are preferable, and among them, Si (OCH 3 ) 4 , S
i (OC 2 H 5 ) 4 , Ti (OC 3 H 7 ) 4 , Ti (OC
4 H 9) 4, Zr ( OC 3 H 7) 4, Zr (OC 4 H 9) 4, A
1 (OC 3 H 7 ) 3 and Al (OC 4 H 9 ) 3 are preferred from the viewpoint of controlling the optical properties such as the refractive index of the obtained film and improving the weather resistance. Further, the ratio of the metal organic compound of Chemical Formula 1 to the total metal organic compound in the solution was 60 mol%.
By setting the content to be less than 100 mol%, a fine uneven pattern having a large distance between the convex top and the concave bottom can be formed by heating to reduce the contraction rate of the film body without greatly reducing the hardness of the obtained film. Can be advanced. Also,
The hardness of the obtained film body can be increased. In particular, in order to form a film having an unevenness of 0.5 μm or more, the metal organic compound represented by the chemical formula 1 and the second metal organic compound are contained in the above solution, and the ratio of the compound represented by the chemical formula 1 is determined by the total metal organic compound. 60 to 80 mol%, more preferably 70 to 80 mol%. The metal organic compound used in the present invention is a solution mixed with an organic solvent such as water and alcohol, and, if necessary, an acid or alkali hydrolysis catalyst. The proportion of the metal organic compound in the entire solution is determined by the viscosity of the solution, the thickness of the film to be formed, and the like.
The content is preferably 20 to 70 mol%. As the substrate that can be used in the present invention, any substrate such as glass, ceramics, metal, plastic, etc. can be used. [0010] The mold used in the present invention is not particularly limited as long as it has resistance to the solvent of the coating solution. Materials such as glass, ceramics, metal, and plastic can be used. In order to improve the releasability between the film body and the mold, a release layer may be provided on the surface of the mold. It is preferable to select a mold material having a coefficient of thermal expansion close to that of a substrate on which a fine uneven pattern is formed on the surface, in order to prevent deterioration in dimensional accuracy of the uneven pattern due to thermal expansion when heating the applied film. The shape of the fine concavo-convex pattern of the mold used in the present invention is, for example, a read-only optical disk (C
0.7 usable as a pit pattern of D-ROM)
An uneven pattern having a width of about μm and a height of about 150 nm, a fine uneven pattern having a width of about 1 μm usable as a guide groove for an optical disk and a depth of 50 to 200 nm, a diffraction grating, and a grating lens Examples thereof include a rectangular or saw-tooth pattern having a depth of several 100 nm to several μm that can be used as a substrate, and a depth of about 10 μm that can be used as a spacer for a liquid crystal display element substrate. The metal organic compound contained in the solution used in the present invention has hydrolytic polycondensation, so that the solution can be applied thickly on the substrate. Further, the alkyl group and the aryl group directly bonded to the metal of the organometallic compound used in the present invention make the coating film flexible and enable the formation of a film having a concavo-convex pattern by molding and screen printing, and the coating. Upon subsequent heating, the film body does not shrink. Therefore, it is not necessary to include a viscosity modifier such as polyethylene glycol in the coating solution, and the dimensional accuracy of the shape of the film having irregularities formed on the substrate can be improved. By the action of imparting flexibility and reducing the amount of shrinkage of this organometallic compound,
A fine concavo-convex pattern having a large distance between the convex top and the concave bottom can be formed on the substrate with high dimensional accuracy. Embodiments of the present invention will be described below with reference to embodiments.
Figure 1 is a partial sectional view of a substrate having a fine concavo-convex pattern obtained by the present invention is formed on the surface, respectively Figure 1 embodiment
FIG. 2 is a partial cross-sectional view of the substrate with a fine concavo-convex pattern obtained in 1 . Example 1 Methyltriethoxysilane (CH 3 Si (OC 2 H 5 ) 3 )
After weighing 0.05 mol, 0.05 mol of ethanol and 0.2 mol of water (including 0.1 wt% hydrochloric acid (HCl)) were added thereto, and the mixture was stirred at room temperature for 30 minutes to obtain a coating solution 1. And Here, the molar ratio of HCl to methyltriethoxysilane is 0.002. Coating solution 1
Soda-lime glass substrate (100mm x 100mm x 2m
m) was dropped onto the glass substrate, and the coating was formed on the glass substrate by rotating the glass substrate at 1000 rpm.
Next, a resin mold (100 mm × 100 mm × 1 m) having a large number of hemispherical convex patterns having a diameter of 10 μm and a height of 5 μm.
m) and this glass substrate were pressed together in the air to prevent air from entering. Thereafter, heating is performed at 120 ° C. for 10 minutes in this state, and then, the mold and the glass substrate are separated from each other.
For 15 minutes. By this heating and baking operation, the coating film became a methyl group-containing SiO 2 glass-like film having a film thickness of about 10 μm due to scattering of ethanol, moisture, and the like. A glass substrate having a lens function and having a large number of hemispherical concave patterns formed on the surface is prepared by using S
When observed by EM (scanning electron microscope), the diameter was 10
Many concave patterns having a depth of about 4.5 μm were formed. Similar results were obtained when non-alkali glass and quartz glass were used instead of the soda-lime glass substrate. Example 2 Methyltriethoxysilane (CH 3 Si (OC 2 H 5 ) 3 )
0.05 mol was weighed, and 0.2 mol of ethanol and 0.2 mol of water (containing 0.1 wt% HCl) were added thereto, and the mixture was stirred at room temperature for 30 minutes. What was added and stirred for 5 minutes was designated as coating solution 2. The molar ratio of HCl to methyltriethoxysilane is 0.002. 4 ml of the coating solution 2 was dropped on a chemically strengthened glass disk substrate (130 mm in outer diameter, 15 mm in inner diameter, 1.2 mm in thickness), and rotated at 800 rpm for 25 seconds in an ethanol atmosphere bath to form a coating film on the substrate. . Next, a pitch of 1.6 μm and a depth of 100 n
m, an optical disk groove pattern having a groove width of 0.5 μm having a radius of 2
A polycarbonate mold having an outer diameter of 130 mm and a thickness of 1.2 mm having a range of 5 mm to 60 mm, and this glass substrate were subjected to 50 kgf / c under reduced pressure of 5 × 10 −6 Torr.
Pressing was performed with a pressure of m 2 . Thereafter, the glass disk substrate was taken out under atmospheric pressure while being pressed, and heated at 120 ° C. for 10 minutes in a clean oven. Thereafter, the mold and the glass disk substrate were released, and a film body having irregularities was formed. The glass disk substrate was heated at 350 ° C. for 15 minutes. By this heating operation, ethanol and moisture etc. are scattered in the coating film, and a methyl group-containing S
It was an iO 2 glass-like film. Observation of the glass disk substrate for an optical disk produced by the above operation by STM revealed that a uniform fine groove pattern having a pitch of 1.6 μm, a depth of 90 nm and a peak width of 0.5 μm was formed on the substrate. The obtained substrate sufficiently satisfies the specifications as an optical disk substrate in all of the groove shape uniformity, physical characteristics, mechanical characteristics, and signal characteristics. Instead of using a polycarbonate mold, a fine concave / convex pattern is transferred by using a 2P / epoxy mold prepared by a 2P manufacturing method in which a photoreactive curable resin is developed and exposed between an epoxy substrate and a nickel stamper. Even when the injection-molded polyolefin mold was used, a substrate having good characteristics as an optical disk substrate similar to the above was obtained. Instead of the groove pattern for the optical disk, the pitch is 1.6 μm, the height is 110 nm, and the width is 0.7 μm.
Many fine pit patterns with a radius of 25 mm to 60
outer diameter 130 mm, thickness 1.2 on the surface in the range of mm
A film having irregularities was formed on a glass substrate by using a polycarbonate mold having a thickness of 2 mm. The read-only optical disk using the substrate manufactured by the above operation has a pitch of 1.
A uniform fine pit pattern having a thickness of 6 μm, a depth of 100 nm, and a pit width of 0.7 μm is formed on the substrate, exhibits a low error rate, and has a uniform groove shape, physical characteristics, mechanical characteristics, and signal characteristics. Was sufficiently satisfied. Example 3 Methyltriethoxysilane (CH 3 Si (OC 2 H 5 ) 3 )
0.04 mol and tetraethoxysilane (Si (OC
2 H 5 ) 4 ) Weigh 0.01 mol of this into 0.05 mol of ethanol and 0.2 mol of water (0.1 wt% HCl).
) And stirred at room temperature for 30 minutes to obtain a coating solution 3. Here, the molar ratio of HCl to the sum of methyltriethoxysilane and tetraethoxysilane is
0.002. Using the coating solution 3, a fine concavo-convex pattern similar to that of Example 1 was formed on the substrate. When a resin mold having a large number of hemispherical convex patterns having a diameter of 10 μm and a height of 5 μm is used, a diameter of 10 μm is used.
m, a concave pattern having a depth of about 4.5 μm was formed on the glass substrate. Example 4 Methyltriethoxysilane (CH 3 Si (OC 2 H 5 ) 3 )
0.04 mol and tetraethoxysilane (Si (OC
2 H 5 ) 4 ) Weigh 0.01 mol, add 0.2 mol of ethanol and 0.2 mol of water (containing 0.1 wt% HCl), stir at room temperature for 30 minutes, and then What further added 0.2 mol of ethanol and stirred for 5 minutes was set as coating solution 4. Here, the molar ratio of HCl to the sum of methyltriethoxysilane and tetraethoxysilane is
0.002. Using the coating solution 4, the same fine concavo-convex pattern as in Example 2 was formed on the substrate. Pitch 1.6
When a polycarbonate mold having an outer diameter of 130 mm and a thickness of 1.2 mm having a groove pattern for an optical disk having a diameter of 100 μm, a depth of 100 nm, and a groove width of 0.5 μm in a radius of 25 mm to 60 mm is used, the pitch is 1.6 μm and the depth is A uniform fine groove pattern having a thickness of 90 nm and a peak width of 0.5 μm was formed on the glass disk substrate. An outer diameter of 130 mm and a thickness of 1.2 having a number of fine pit patterns having a pitch of 1.6 μm, a height of 110 nm and a width of 0.7 μm in a range of a radius of 25 mm to 60 mm.
When molding was performed using a polycarbonate mold having a pitch of 1.6 μm, a depth of 100 nm, and a pit width of 0.1 mm.
A uniform fine pit pattern of 7 μm was formed on the substrate. By adding tetraethoxysilane to methyltriethoxysilane, the refractive index of the finally obtained film having a concavo-convex pattern was improved. In the above conditions for preparing the coating solution, when 0.01 mol of titanium tetraethoxide or 0.01 mol of zirconium tetraethoxide is added instead of tetraethoxysilane, a substrate having a good fine uneven pattern can be obtained. Was. In both cases where titanium tetraethoxide was added and where zirconium tetraethoxide was added, the refractive index of the film having a concavo-convex pattern finally obtained increased, but the amount of shrinkage before and after heating was small. In Examples 3 and 4 , the metal-organic compound represented by Chemical Formula 2 of tetraethoxysilane, titanium tetramethoxide, zirconium tetramethoxide, titanium tetraethoxide, and zirconium tetraethoxide was replaced by the organic metal compound represented by Chemical Formula 1. When the molar ratio with respect to a certain methyltriethoxysilane is more than 1, it is difficult to make the thickness of the film body having irregularities 10 μm or more. Comparative Example 1 Tetraethoxysilane (Si (OC 2 H 5 ) 4 ) 0.05
A mole was weighed, and 0.05 mole of ethanol and 0.1 mole were added thereto.
2 mol of water (containing 0.1 wt% HCl) was added, and the mixture was stirred at room temperature for 30 minutes to obtain a coating solution 5. Here, the molar ratio of HCl to tetraethoxysilane is
0.002. 4 ml of the coating solution 5 was dropped on a soda-lime glass substrate (100 mm × 100 mm × 2 mm), and the substrate was rotated at 1000 rpm to form a coating film on the glass substrate. Next, when the resin mold was pressed against the coating film, cracks occurred in the coating film, and good pattern molding could not be performed. Comparative Example 2 Tetraethoxysilane (Si (OC 2 H 5 ) 4 ) 0.05
Weigh 0.2 mol of ethanol and 0.2 mol of
Molar water (containing 0.1 wt% HCl) was added, and the mixture was stirred at room temperature for 30 minutes. Thereafter, 0.2 mol of ethanol was further added, and the mixture was stirred for 5 minutes to obtain a coating solution 6. HC
The molar ratio of 1 to tetraethoxysilane is 0.00
2. 4 ml of the coating solution 6 was dropped on a chemically strengthened glass disk substrate (outer diameter 130 mm, inner diameter 15 mm, thickness 1.2 mm), and 800 rpm in a tank in an ethanol atmosphere.
m for 25 seconds to form a coating film on the substrate. Next, the pitch is 1.6 μm, the depth is 100 nm, and the groove width is 0.5.
μm groove pattern for optical discs with a radius of 25 mm to 60 mm
A mold made of polycarbonate having an outer diameter of 130 mm and a thickness of 1.2 mm in a range of 0.1 mm and a glass substrate having the above-mentioned coating film formed on the surface thereof are reduced to 50 kgf under reduced pressure of 5 × 10 −6 Torr.
/ Cm 2 . Thereafter, the pressed body was taken out under atmospheric pressure and observed. When the coating film was hard, the pressing between the mold and the coating film was not sufficiently performed, and a film body having a fine uneven pattern could not be formed. Pressing pressure between the mold and the coating film is 50kgf / cm 2 to 200kgf / cm
Even when the number was increased to 2 , the pressing of the mold and the coating film was not sufficient, and the concavo-convex pattern could not be transferred to the coating film. Comparative Example 3 A coating solution 7 was prepared by adding 3 g of polyethylene glycol to the coating solution 6. Comparative Example 2 Using Coating Solution 7
The same concavo-convex pattern as described above was formed on a glass substrate. When the glass disk substrate for an optical disk manufactured by the above operation was observed with an STM (scanning transmission electron microscope),
A uniform groove pattern having a pitch of 1.6 μm, a depth of 50 nm, and a peak width of 0.5 μm was formed on the substrate. The glass substrate for an optical disc described above satisfies the specifications as a substrate for an optical disc in all of the groove shape uniformity, physical characteristics, mechanical characteristics, and signal characteristics, but the groove depth is about 50 times that of the mold. %
And the shape of the groove was also dull.
Further, the porosity of the film was high, and the amount of adsorbed water was large. According to the present invention, a film having a fine shape and a large surface unevenness can be formed on a substrate. This makes it possible to manufacture an optical disk substrate having a fine concavo-convex pattern on its surface, a substrate with spacers for a liquid crystal display cell, and optical components such as a diffraction grating and an imaging element without forming grooves on the substrate itself.

【図面の簡単な説明】 【図1】図1は、実施例1で得られた基板の一部断面図
である。 【符号の説明】 1・・・微細な凹凸パターンを有する膜体、2・・・ガ
ラス基板、3・・・微細な凹凸パターン付き基板
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial sectional view of the substrate obtained in real Example 1. [Description of Signs] 1 ... Film body having fine concavo-convex pattern, 2 ... Glass substrate, 3 ... Substrate with fine concavo-convex pattern

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三橋 慶喜 大阪府大阪市中央区道修町3丁目5番11 号 日本板硝子株式会社内 (56)参考文献 特開 昭62−102445(JP,A) 特開 昭63−143978(JP,A) 特開 平1−194980(JP,A) (58)調査した分野(Int.Cl.7,DB名) B05D 5/06 104 B05D 3/02 B05D 7/24 302 B29C 59/02 G02F 1/1333 500 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Keiki Mitsuhashi 3-5-11 Doshomachi, Chuo-ku, Osaka-shi, Osaka Inside Nippon Sheet Glass Co., Ltd. (56) References JP-A-62-102445 (JP, A) JP-A-63-143978 (JP, A) JP-A-1-194980 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B05D 5/06 104 B05D 3/02 B05D 7/24 302 B29C 59/02 G02F 1/1333 500

Claims (1)

(57)【特許請求の範囲】 【請求項1】基板上及び/または微細な凹凸パターンを
有する型上に、加水分解・縮重合し得る化学式1の金属
有機化合物を含む溶液を用いて塗布膜を形成し、前記
板及び前記型を接合押圧して前記塗布膜を前記型の凹凸
パターンを有する膜体とし、その後前記型を前記膜体か
ら離型し、前記基板上の膜体を加熱することにより前記
有機金属化合物の縮重合体とする、基板上に微細な凹凸
パターンを形成する方法であって、 化学式1:XkAmA:原子価数4の金属 X:重合可能な官能基 R:アルキル基またはアリール基 (kは自然数、mは1または2の整数で、k+m=4を
満たす)前記溶液には、化学式2の金属有機化合物をさらに含ま
せ、全金属有機化合物のうち化学式1で表せるものの割
合を60モル%以上とし、 化学式2:M B (OR) n B :原子価数nの金属(nは1〜4の整数)、 OR:アルコキシル基、(Rは炭素数が1〜3のアルキ
ル基) 前記化学式2の金属M B がSiであることを特徴とする
基板上に微細な凹凸パターンを形成する方法。
(57) [Claim 1] A coating film formed on a substrate and / or a mold having a fine concavo-convex pattern by using a solution containing a metal organic compound of the formula 1 capable of hydrolysis and condensation polymerization. forming a, the coating film by joining pressing the group <br/> plate and the mold and film body having the form of the uneven pattern, and then releasing the mold from the membrane body, on the substrate a polycondensate of the <br/> organometallic compound by heating the film body, a method for forming a fine concave-convex pattern on a substrate, the chemical formula 1: X k M a R m M a: atoms metal X of valence of 4: polymerizable functional group R: alkyl group or an aryl group (k is a natural number, m is 1 or 2 as an integer, satisfying a k + m = 4) to the solution, the metal organic compound of formula 2 Further included
Of all metal organic compounds that can be represented by Chemical Formula 1
The case of 60 mol% or more, the chemical formula 2: M B (OR) n M B: valency n of the metal (n is an integer of 1 to 4), OR: alkoxy group, (R is a carbon number 1 to 3 Archi
Le group) wherein said chemical formula 2 of the metal M B forms a fine concavo-convex pattern <br/> substrate, characterized in that is Si.
JP26575092A 1992-10-05 1992-10-05 Method of forming fine uneven pattern on substrate Expired - Fee Related JP3381945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26575092A JP3381945B2 (en) 1992-10-05 1992-10-05 Method of forming fine uneven pattern on substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26575092A JP3381945B2 (en) 1992-10-05 1992-10-05 Method of forming fine uneven pattern on substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002281332A Division JP2003227915A (en) 2002-09-26 2002-09-26 Method for forming fine rugged pattern on substrate

Publications (2)

Publication Number Publication Date
JPH06114334A JPH06114334A (en) 1994-04-26
JP3381945B2 true JP3381945B2 (en) 2003-03-04

Family

ID=17421489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26575092A Expired - Fee Related JP3381945B2 (en) 1992-10-05 1992-10-05 Method of forming fine uneven pattern on substrate

Country Status (1)

Country Link
JP (1) JP3381945B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19917366A1 (en) * 1999-04-16 2000-10-19 Inst Neue Mat Gemein Gmbh Substrate surface, useful for the production of easy clean systems, comprises a hydrolyzable compound condensate having a microstructure such that the contact angle with water or oil is increased.
JP2001240800A (en) 2000-02-25 2001-09-04 Nippon Sheet Glass Co Ltd Preparation process of article having predetermined surface form
US6849350B2 (en) 2001-02-28 2005-02-01 Nippon Sheet Glass Co., Ltd. Article having a predetermined surface shape and method for preparation thereof
JP2006168147A (en) * 2004-12-15 2006-06-29 Aitesu:Kk Manufacturing method of fine structure using organic/inorganic hybrid material and nano-imprinting technique and fine structure
JP2007287486A (en) * 2006-04-17 2007-11-01 Aitesu:Kk Organic electroluminescence element having fine structure between transparent substrate and electrode
JP2009233855A (en) * 2006-07-21 2009-10-15 Nippon Sheet Glass Co Ltd Transfer mold, method for manufacturing transfer mold, and method for manufacturing transferred product using the transfer mold
JP5189772B2 (en) 2007-02-09 2013-04-24 昭和電工株式会社 Fine pattern transfer material
JP4998058B2 (en) * 2007-04-09 2012-08-15 凸版印刷株式会社 Solar cell and method for manufacturing solar cell module
JP5261817B2 (en) * 2008-08-30 2013-08-14 国立大学法人長岡技術科学大学 Ceramic fired body having fine uneven pattern on its surface and manufacturing method thereof
JP2012099731A (en) * 2010-11-04 2012-05-24 Ulvac Japan Ltd Method of manufacturing substrate
JP6008628B2 (en) * 2011-07-19 2016-10-19 株式会社トクヤマ Pattern production method using photocurable nanoimprinting composition
CN105408030A (en) * 2013-07-26 2016-03-16 吉坤日矿日石能源株式会社 Method for manufacturing substrate having textured structure

Also Published As

Publication number Publication date
JPH06114334A (en) 1994-04-26

Similar Documents

Publication Publication Date Title
JP3381945B2 (en) Method of forming fine uneven pattern on substrate
US6855371B2 (en) Method for producing a microstructured surface relief by embossing thixotropic layers
EP2049949B1 (en) Composite composition for micropatterned layers
TW411395B (en) High efficiency monolithic glass light shaping diffuser and method of making
US5437896A (en) Method of preparing a composite material of silica network and chains of a polyhydroxy compound and a liquid crystal display device incorporating such composite material
Krug et al. Fine patterning of thin sol-gel films
US6849350B2 (en) Article having a predetermined surface shape and method for preparation thereof
CN1362910A (en) Article having predetermined surface shape and method for production thereof
WO2001003901A1 (en) Article having uneven surface and method for producing the same
US6723487B2 (en) Method for producing article coated with patterned film and photosensitive composition
JP4531936B2 (en) Method for producing article having uneven surface
CA2407853A1 (en) Process for producing an optical element
JP4297296B2 (en) Method for producing optical functional film
JP2003227915A (en) Method for forming fine rugged pattern on substrate
JP2720435B2 (en) Grooved substrate
JP3049820B2 (en) Method and apparatus for manufacturing substrate with fine pattern
JPH09311234A (en) Organic/inorganic high-polymer composite optical waveguide
JP3166203B2 (en) Method for forming a fine uneven pattern on a substrate
JPH02283638A (en) Production of substrate with very fine pattern
JPH0643301A (en) Optical parts
Mennig et al. Preparation of micropatterns with profile heights up to 30 microns from silica sols
JP2003266451A (en) Manufacturing method for article having predetermined surface shape
JP2763357B2 (en) Manufacturing method of substrate with fine pattern
JP3424018B2 (en) Substrate fine processing method
JP2002240057A (en) Method for manufacturing composite optical element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees