JP3381749B2 - Measurement device abnormality detection method and device - Google Patents
Measurement device abnormality detection method and deviceInfo
- Publication number
- JP3381749B2 JP3381749B2 JP33429094A JP33429094A JP3381749B2 JP 3381749 B2 JP3381749 B2 JP 3381749B2 JP 33429094 A JP33429094 A JP 33429094A JP 33429094 A JP33429094 A JP 33429094A JP 3381749 B2 JP3381749 B2 JP 3381749B2
- Authority
- JP
- Japan
- Prior art keywords
- quartile
- value
- hinge width
- abnormality
- measuring instrument
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Emergency Alarm Devices (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
- Testing And Monitoring For Control Systems (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、上下水道処理装置など
のプラントにおいて使用される計測器の異常を検知する
異常検出方法とその装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an abnormality detecting method and apparatus for detecting an abnormality in a measuring instrument used in a plant such as a water and sewage treatment equipment.
【0002】[0002]
【従来の技術】図4は下水処理システム及び従来の計測
器の異常検出装置(標準偏差基準)を示すブロック図であ
る。全ての図面において、同一符号は同一若しくは相当
部材を示す。下水処理システムにおける汚濁物質を含む
下水は、管路1より最初沈澱池2に導入し、汚濁物質の
中の沈降しやすいものを沈降分離し、上澄水を曝気槽3
に流出する。曝気槽では最終沈澱池4から引き抜いた返
送汚泥が管路5を介して返送されるとともに、散気管
(図示せず)より曝気槽内にブロワー(図示せず)から圧送
された空気が供給され汚濁物質は活性汚泥により吸着、
分解され最終沈澱池に導かれる。最終沈澱池において活
性汚泥を沈降分離し、清澄水は処理水として管路6から
滅菌槽(図示せず)を経て放流され、沈澱した汚泥は曝気
槽に返送され、その一部は汚泥処理プロセス(図示せず)
に送られ処理するようにしている。7は流入下水流量
計、8は流入水のpH計、9は流入水の懸濁物質濃度
計、10は流入水の有機物濃度計、11は溶存酸素濃度
計、12はMLSS(mixed li-quor suspended solid)
濃度計、13は水温計、14は酸化還元電位計、15は
処理水のpH計、16は処理水の懸濁物質濃度計、17
は処理水の有機物濃度計である。このように下水処理プ
ラントにおいては、各種の水質データを計測、収集する
ことが通常行われている。これらの計測器の異常検知
は、運転員の経験から設定した判定基準値を用いて行わ
れることが多かった。しかし、判定基準値の設定は、季
節、各計測器ごとに行わなければならず、運転員にとっ
て判定基準値の設定変更は繁雑な作業であった。そこ
で、計算機によって計測器の判定基準値の設定を行うこ
とが多くなってきた。計算機による判定基準値の設定
は、一般的には、標準偏差などを用いて決定することが
多い。標準偏差を用いた判定基準値の設定方法を第1の
従来例として以下に述べる。
[第1の従来例]図4に示す第1の従来例の下水処理シ
ステムにおける計測器の異常検出装置(標準偏差基準)の
ブロック図について述べる。18は各計測器から得られ
た計測値を蓄積する計測値蓄積装置、24は各計測器の
標準偏差を求めるための標準偏差演算装置、25は標準
偏差演算装置24から得られた標準偏差から判定基準値
を求めるための判定基準値演算装置(標準偏差基準)、2
1は判定基準値演算装置(標準偏差基準)25で得られた
結果を記憶する判定基準値記憶装置、22は計測値蓄積
装置18に新しく蓄積された計測値と判定基準値記憶装
置21で記憶している判定基準値を比較し、異常か否か
の判定を行う異常判定装置、この判定結果を表示装置2
3に出力するようにしてある。標準偏差は以下の[数
1]の式で与えられる。2. Description of the Related Art FIG. 4 is a block diagram showing a sewage treatment system and a conventional measuring device abnormality detecting device (standard deviation standard). In all the drawings, the same reference numerals indicate the same or corresponding members. The sewage containing pollutants in the sewage treatment system is first introduced into the settling tank 2 from the pipeline 1, and the pollutants that easily settle are separated by sedimentation, and the supernatant water is aerated in the aeration tank 3.
Spill to. In the aeration tank, the returned sludge extracted from the final settling tank 4 is returned via the pipe line 5 and the diffuser pipe
Air sent under pressure from a blower (not shown) is supplied to the aeration tank from (not shown), and contaminants are adsorbed by activated sludge,
It is decomposed and led to the final settling basin. The activated sludge is settled and separated in the final settling basin, the clear water is discharged as treated water from the pipe 6 through a sterilization tank (not shown), and the sludge that has settled is returned to the aeration tank, part of which is the sludge treatment process. (Not shown)
I will send it to you for processing. 7 is an inflow sewage flowmeter, 8 is an inflow water pH meter, 9 is an inflow water suspended matter concentration meter, 10 is an inflow water organic matter concentration meter, 11 is a dissolved oxygen concentration meter, 12 is an MLSS (mixed li-quor). suspended solid)
Concentration meter, 13 water temperature meter, 14 redox potentiometer, 15 pH meter for treated water, 16 concentration meter for suspended solids in treated water, 17
Is an organic matter concentration meter for treated water. As described above, in a sewage treatment plant, various kinds of water quality data are usually measured and collected. Abnormality detection of these measuring instruments is often performed using a judgment reference value set based on the experience of the operator. However, the determination reference value must be set for each measuring instrument according to the season, and changing the setting of the determination reference value has been a complicated task for the operator. Therefore, it has become common to use a computer to set the judgment reference value of the measuring instrument. In general, the setting of the judgment reference value by the computer is often decided by using the standard deviation or the like. A method of setting the judgment reference value using the standard deviation will be described below as a first conventional example. [First Conventional Example] A block diagram of an abnormality detecting device (standard deviation standard) of a measuring instrument in a sewage treatment system of the first conventional example shown in FIG. 4 will be described. 18 is a measurement value storage device that stores the measurement values obtained from each measuring device, 24 is a standard deviation calculation device for obtaining the standard deviation of each measuring device, and 25 is a standard deviation calculation device 24 Judgment reference value calculation device (standard deviation reference) for obtaining the judgment reference value, 2
Reference numeral 1 is a judgment reference value storage device for storing the result obtained by the judgment reference value calculation device (standard deviation reference) 25, and reference numeral 22 is a measurement value newly stored in the measurement value storage device 18 and is stored in the judgment reference value storage device 21. An abnormality determination device that compares the determination reference values that have been determined to determine whether or not there is an abnormality, and the determination result is displayed on the display device 2
3 is output. The standard deviation is given by the following [Formula 1].
【数1】
図6(a)にある期間の計測値の頻度分布と、図6(b)に標
準偏差による判定基準値の設定範囲を示す。しかし、下
水処理システムで収集される計測値の頻度分布は、図6
(a)に示されるように、必ずしも正規分布を示さないこ
とから、標準偏差を基準にした判定基準値の設定には難
点があった。そこで、頻度分布が正規分布をしていない
データを取り扱う手法として提案されている所謂、探索
的データ解析(exploratory data analysis) による手法
の1つである四分位数を用いて、判定基準値の設定を行
うことが考えられる。四分位数を用いた判定基準値の設
定方法を第2の従来例として以下に述べる。
[第2の従来例]図5は、下水処理システムにおける計
測器の異常検出装置(四分位数基準)を示すブロック図で
ある。19は各計測器のヒンジ幅を求めるためのヒンジ
幅演算装置、26はヒンジ幅演算装置19から得られた
ヒンジ幅から判定基準値を求めるための判定基準値演算
装置(四分位数基準)である。四分位数の考え方について
以下に説明する。四分位数とは、相対累積度数の25%
点、50%点、75%点のことであり、25%点を第1四分位
点、50%点を第2四分位点、75%点を第3四分位点と呼
び、第1四分位点から第3四分位点までの距離Hをヒン
ジ幅として、それを基準に判定基準値を設定する。それ
ぞれのヒンジ (第1四分位点、第3四分位点)からヒン
ジ幅の3倍以上離れたものをファーアウト(far out) と
呼び異常値とする。つまり四分位数を基準にした判定法
では、次式を満足する計測値を正常と判定する。
第1四分位点−3×ヒンジ幅 < 計測値 <第3四分位点+3×ヒンジ幅
……………………(4)
先の図6(c)に1例としてある期間の計測値の頻度分布
と四分位数による判定基準値の設定範囲を示しており、
これが四分位数による判定基準値の設定範囲である。H
はヒンジ幅を表している。[Equation 1] FIG. 6A shows the frequency distribution of the measured values in a certain period, and FIG. 6B shows the setting range of the judgment reference value based on the standard deviation. However, the frequency distribution of the measured values collected by the sewage treatment system is shown in Figure 6.
As shown in (a), since it does not always show a normal distribution, there is a difficulty in setting the judgment reference value based on the standard deviation. Therefore, using the quartile, which is one of the so-called exploratory data analysis methods proposed as a method for handling data whose frequency distribution is not a normal distribution, It is possible to make settings. A method of setting the judgment reference value using the quartile will be described below as a second conventional example. [Second Conventional Example] FIG. 5 is a block diagram showing an abnormality detecting device (quartile quantile standard) of a measuring instrument in a sewage treatment system. Reference numeral 19 is a hinge width calculation device for obtaining the hinge width of each measuring instrument, and 26 is a determination reference value calculation device for obtaining a determination reference value from the hinge width obtained from the hinge width calculation device 19 (quartile standard). Is. The idea of the quartile is explained below. The quartile is 25% of the relative cumulative frequency
Points, 50% points, and 75% points. The 25% points are called the first quartile, the 50% points are called the second quartile, and the 75% points are called the third quartile. The distance H from the 1st quartile to the 3rd quartile is used as the hinge width, and the judgment reference value is set based on the hinge width. The distance from each hinge (1st quartile, 3rd quartile) by 3 times or more of the hinge width is called far out and is regarded as an abnormal value. That is, in the determination method based on the quartile, a measured value that satisfies the following equation is determined to be normal. 1st quartile -3 x hinge width <measured value <3rd quartile + 3 x hinge width (4) For the period shown as an example in Fig. 6 (c) above. It shows the frequency distribution of measured values and the setting range of the judgment reference value by the quartile.
This is the setting range of the judgment reference value by the quartile. H
Indicates the hinge width.
【0003】[0003]
【発明が解決しようとする課題】これら第1の従来例及
び第2の従来例の計測器の異常検出装置は、例えば計測
値蓄積装置18に蓄積している各計測値の標準偏差ある
いは四分位数を用いて、計測値及び計測値変化量等の上
下限値を設定していた。特に第2の従来例の四分位数に
よる判定基準値演算装置26により、頻度分布が正規分
布をしていない計測値及び計測値変化量等を取り扱うこ
とができる。しかし、この方法は頻度分布の形が左右対
象であることを前提としているため、頻度分布が左右ど
ちらかに尾を引いている分布等に対する配慮がされてい
ない。ここにおいて本発明は、各計測器の計測値及び計
測値変化量等の頻度分布が正規分布をしていない分布、
及び頻度分布が左右どちらかに尾を引いている分布にも
対応できる判定基準値の設定法を提供することを目的と
する。The abnormality detecting devices for measuring instruments of the first conventional example and the second conventional example are, for example, the standard deviation or quadrant of each measured value accumulated in the measured value accumulating device 18. The upper and lower limits of the measured value and the amount of change in the measured value were set using the orders. In particular, the second standard quartile judgment reference value calculation device 26 can handle the measured values and the measured value change amount whose frequency distribution is not a normal distribution. However, since this method is based on the assumption that the shape of the frequency distribution is symmetrical, no consideration is given to the distribution in which the frequency distribution is tailed to the left or right. Here, the present invention is a distribution in which the frequency distribution of the measurement value of each measuring instrument and the variation of the measurement value is not a normal distribution,
It is an object of the present invention to provide a method for setting a criterion value that can be applied to a distribution in which the frequency distribution is tailed to the left or right.
【0004】[0004]
【課題を解決するための手段】前記目的を達成するため
に本発明は、プロセスの状態を計測して計測値を蓄積
し、その計測値から前記計測器の異常を検知する異常検
出方法において、蓄積された前記計測値の相対累積度数
の第1四分位点から第2四分位点までの距離H1をヒン
ジ幅1とし、第2四分位点から第3四分位点までの距離
H2をヒンジ幅2とし、過去の計測値から前記ヒンジ幅
1と前記ヒンジ幅2を求め、前記ヒンジ幅1、2を基準
に決定した基準範囲に基づいて新しく蓄積された計測値
の異常を検出することを特徴としている。また本発明
は、前記基準範囲が次式で表され、
第1四分位点−m×ヒンジ幅1<計測値<第3四分位点+m×ヒンジ幅2
ただし、mは正の任意数である新しく蓄積された前記計
測値が前記式を逸脱するときは前記計測器を異常と判定
することを特徴としている。さらに本発明は、プロセス
の状態を計測して計測された計測値を蓄積する計測値蓄
積装置と、蓄積された前記計測値からヒンジ幅を求める
ヒンジ幅演算装置と、前記ヒンジ幅から前記計測値の異
常を判定するための基準値を決定する判定基準値演算装
置と、前記判定基準値を記憶する判定基準値記憶装置
と、前記判定基準値と前記計測値蓄積装置に新しく蓄積
された前記計測値とを比較して前記計測器の異常を検出
する異常判定装置とを備え、蓄積された前記計測値に基
づいて前記計測器の異常を検知する異常検出装置におい
て、前記ヒンジ幅演算装置は、蓄積された前記計測値の
相対累積度数の第1四分位点から第2四分位点までの距
離H1であるヒンジ幅1と、第2四分位点から第3四分
位点までの距離H2であるヒンジ幅2とを求め、前記判
定基準値演算装置は、前記ヒンジ幅1、2を基準に決定
した値と前記第1、第3四分位点の値に基づいて、前記
計測値の異常を判定するための基準値を決定することを
特徴としている。In order to achieve the above object, the present invention provides an abnormality detection method for measuring a process state, accumulating measurement values, and detecting an abnormality of the measuring instrument from the measurement values. The distance H1 from the first quartile to the second quartile of the accumulated relative frequencies of the measured values is set to the hinge width 1, and the distance from the second quartile to the third quartile. H2 is set as the hinge width 2, and the hinge width 1 and the hinge width 2 are obtained from the past measurement values, and an abnormality of the newly accumulated measurement value is detected based on the reference range determined based on the hinge widths 1 and 2. It is characterized by doing. Further, in the present invention, the reference range is represented by the following equation, and the first quartile point −m × hinge width 1 <measured value <third quartile point + m × hinge width 2 where m is a positive arbitrary number. When the newly stored measured value deviates from the equation, the measuring device is determined to be abnormal. Furthermore, the present invention provides a measurement value storage device that stores a measurement value obtained by measuring a process state, a hinge width calculation device that obtains a hinge width from the stored measurement value, and the measurement value from the hinge width. Determination reference value calculation device for determining a reference value for determining the abnormality, a determination reference value storage device for storing the determination reference value, the determination reference value and the measurement newly stored in the measurement value storage device. An abnormality determining device for detecting an abnormality of the measuring device by comparing with a value, in an abnormality detecting device for detecting an abnormality of the measuring device based on the accumulated measurement value, the hinge width calculating device, The hinge width 1 which is the distance H1 from the first quartile to the second quartile of the relative cumulative frequency of the accumulated measurement values, and the second quartile to the third quartile Find the hinge width 2 which is the distance H2, The determination reference value calculation device sets a reference value for determining an abnormality in the measured value based on the values determined based on the hinge widths 1 and 2 and the values of the first and third quartiles. It is characterized by making a decision.
【0005】[0005]
【作用】上記手段により本発明は、頻度分布が正規分布
をしていない計測値及び計測値変化量、頻度分布が左右
どちらかに尾を引いている計測値、及び計測値変化量の
判定基準値の設定ができるようになるため、計測器の異
常検出の精度が向上する。With the above-mentioned means, the present invention provides a measurement value and a measurement value change amount in which the frequency distribution is not a normal distribution, a measurement value in which the frequency distribution is tailed to the left or right, and a criterion for determining the measurement value change amount. Since the value can be set, the accuracy of detecting abnormality of the measuring instrument is improved.
【0006】[0006]
【実施例】本発明の各実施例を図面を参照して詳細に説
明する。図1は、本発明の一実施例における下水処理シ
ステムの計測器の異常検出装置を示すブロック図であ
る。20はヒンジ幅演算装置19で得られたヒンジ幅1
( 第1四分位点から第2四分位点までの距離H1)及び
ヒンジ幅2(第2四分位点から第3四分位点までの距離
H2)と第1四分位点、第2四分位点に基づいて判定基
準値を設定する判定基準値演算装置(重みづけを行った
四分位数基準)である。重みづけを行った四分位数の考
え方について説明する。四分位数とは、相対累積度数の
25%点、50%点、75%点のことであり、25%点を第1四
分位点、50%点を第2四分位点、75%点を第3四分位点
と呼び、第1四分位点から第2四分位点までの距離H1
をヒンジ幅1、第2四分位点から第3四分位点までの距
離H2をヒンジ幅2として2つのヒンジ幅を基準に判定
基準値を設定する。Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing an abnormality detection device for a measuring instrument of a sewage treatment system according to an embodiment of the present invention. 20 is the hinge width 1 obtained by the hinge width calculation device 19
(Distance H1 from first quartile to second quartile) and hinge width 2 (distance H2 from second quartile to third quartile) and first quartile, It is a criterion value calculator (weighted quartile standard) for setting a criterion value based on the second quartile. The concept of weighted quartiles will be described. The quartile is the relative cumulative frequency
25% point, 50% point, and 75% point. The 25% point is called the first quartile, the 50% point is called the second quartile, and the 75% point is called the third quartile. , The distance H1 from the first quartile to the second quartile
Is set as the hinge width 1, and the distance H2 from the second quartile to the third quartile is set as the hinge width 2, and the determination reference value is set based on the two hinge widths.
【0007】 それぞれのヒンジ (第1四分位点、第3
四分位点)からヒンジ幅1の6倍、ヒンジ幅2の6倍離
れたものを先に述べたようにファーアウトと呼び異常値
とする。つまり,重みづけを行った四分位数基準による
判定法では、次式を満足する計測値を正常と判定する。
第1四分位点−6×ヒンジ幅1 < 計測値
< 第3四分位点+6×ヒンジ幅2
……………………(5)
式(5)に基づき重みづけを行った四分位数による判定
基準値の設定範囲と、四分位数による判定基準値の設定
範囲は等しく、重みのある方向(尾を引いている方向)に
シフトしたことになる。Each hinge (first quartile, third
The distance from the quartile point) to 6 times the hinge width 1 and 6 times the hinge width 2 is called the far-out and is an abnormal value as described above. That is, in the determination method based on the weighted quartile, the measured value that satisfies the following equation is determined to be normal. 1st quartile -6 x hinge width 1 <measured value <3rd quartile + 6 x hinge width 2 (5) Weighting based on equation (5) 4 The setting range of the determination reference value based on the quantiles and the setting range of the determination reference value based on the quartiles are the same, and it means that the weight is shifted in the weighted direction (the direction in which the tail is drawn).
【0008】 図2(a)に計測値の頻度分布と図2(d)本
発明の判定基準値の設定範囲を示す。つまり、図2(d)
が判定基準値の設定範囲(重みづけを行った四分位数基
準)である。H1がヒンジ幅1、H2がヒンジ幅2を表
しており、ヒンジ幅1とヒンジ幅2の和がヒンジ幅Hを
表している[図2(b),図2(c)は従来例1,2の図6(b),
図6(c)と同一で比較のため転写している]。本発明
は、頻度分布の尾を引いた方向(上方もしくは下方)
に、正常範囲を広くとるように重みづけを行っており、
図2(d)に示すようにヒンジ幅を第1四分位点から第2
四分位点までの区間と第2四分位点から第3四分位点ま
での区間に分け、下方側の距離は、第1四分位点から第
2四分位点までの距離H1,上方側の距離は、第2四分
位点から第3四分位点までの距離H2を、基準に判定基
準値を設定している。FIG. 2A shows the frequency distribution of measured values and FIG. 2D shows the setting range of the judgment reference value of the present invention. That is, FIG. 2 (d)
Is the setting range of the judgment reference value (weighted quartile standard). H1 represents the hinge width 1, H2 represents the hinge width 2, and the sum of the hinge width 1 and the hinge width 2 represents the hinge width H [FIGS. 2 (b) and 2 (c) are conventional examples 1, 2 of FIG. 6 (b),
It is the same as FIG. 6 (c) and is transferred for comparison]. The present invention is based on the tailed direction of the frequency distribution (upper or lower)
In addition, weighting is performed so that the normal range is wide,
As shown in Fig. 2 (d), the hinge width is changed from the first quartile to the second.
It is divided into a section to the quartile and a section from the second quartile to the third quartile, and the lower distance is the distance H1 from the first quartile to the second quartile. As for the distance on the upper side, the judgment reference value is set based on the distance H2 from the second quartile to the third quartile.
【0009】 ここで、従前の手法図2(b),図2(c)と
本発明による手法とは、上下限値間の距離は等しく、尾
を引いている方向(この場合は上方側)にシフトしたこ
とになる。そして、図2(d)の判定基準に重みづけを行
った時の検出結果は、運転員が異常と判定した点のみと
なり、実際値と判定値が完全に一致しており、実用的な
判定基準値と考えられる。Here, in the conventional method shown in FIGS. 2 (b) and 2 (c) and the method according to the present invention, the distance between the upper and lower limit values is the same, and the tail is drawn (upward in this case). Will be shifted to. Then, the detection result when weighting the judgment criteria of FIG. 2 (d) is only the points judged by the operator to be abnormal, and the actual value and the judgment value are completely coincident with each other. It is considered to be a reference value.
【0010】[0010]
【発明の効果】以上説明したように、先ず第1の従来例
の標準偏差基準の判定基準値を用いたときの計測器の異
常検出結果は、運転員が異常と判定した結果と異なり正
常値を異常値として過敏に検出している。次に、第2の
従来例の四分位数基準の判定基準値を用いた時の計測器
の異常検出結果は、標準偏差による判定基準値の異常検
出結果よりかなり改善されたが、まだ正常値を異常値と
判定している。最後に、本発明による判定基準値に四分
位数に重みづけを行った時の計測器の異常検出結果は、
誤検出が全くなくなり運転員が異常と判定した点と一致
している。このことから本発明によれば、頻度分布が正
規分布を示していない計測値、計測値変化量及び頻度分
布が左右どちらかに尾を引いている計測値、計測値変化
量においても、適切な判定基準値を自動的に設定するこ
とができ、計測器の異常検出の精度が向上するという特
段の効果を奏することができる。As described above, the abnormality detection result of the measuring instrument when the judgment standard value of the standard deviation standard of the first conventional example is used is different from the result judged by the operator to be a normal value. Is detected as an abnormal value. Next, the abnormality detection result of the measuring instrument when using the determination standard value of the quartile of the second conventional example is considerably improved from the abnormality detection result of the determination standard value by the standard deviation, but is still normal. The value is judged as an abnormal value. Finally, the abnormality detection result of the measuring instrument when the quartile is weighted to the criterion value according to the present invention is:
This is in agreement with the point that the operator determined that there was no error, and there was no false detection. From this, according to the present invention, even in the case of the measured value whose frequency distribution does not show a normal distribution, the measured value change amount and the measured value in which the frequency distribution is tailed to the left or right, and the measured value change amount, The determination reference value can be automatically set, and a special effect of improving the accuracy of the abnormality detection of the measuring instrument can be achieved.
【図1】本発明の一実施例の回路構成を示すブロック図FIG. 1 is a block diagram showing a circuit configuration of an embodiment of the present invention.
【図2】計測値の頻度分布と本発明の判定基準値の設定
範囲と従来例の判定基準値の設定範囲との比較を示す図FIG. 2 is a diagram showing a comparison between a frequency distribution of measured values, a determination reference value setting range of the present invention, and a determination reference value setting range of a conventional example.
【図3】本発明(判定基準値に重みづけを行った時)と
第1の従来例(判定基準値に標準偏差を用いた時)と第
2の従来例(判定基準値に四分位数を用いた時)におけ
る下水処理システムの計測器の各異常検出結果のそれぞ
れを比較する図FIG. 3 shows the present invention (when the judgment reference value is weighted), the first conventional example (when the standard deviation is used as the judgment reference value), and the second conventional example (the quartile for the judgment reference value). Figure comparing each abnormality detection result of the measuring instrument of the sewage treatment system (when using the number)
【図4】第1の従来例(判定基準値に標準偏差を用いた
時)における回路構成を示すブロック図FIG. 4 is a block diagram showing a circuit configuration in a first conventional example (when a standard deviation is used as a judgment reference value).
【図5】第2の従来例(判定基準値に四分位数を用いた
時) における回路構成を示すブロック図FIG. 5 is a block diagram showing a circuit configuration in a second conventional example (when a quartile is used as a criterion value).
【図6】計測値の頻度分布と第1の従来例と第2の従来
例の判定基準値の設定範囲の比較を示す図FIG. 6 is a diagram showing a comparison of frequency distributions of measured values and setting ranges of determination reference values of the first conventional example and the second conventional example.
1,5,6 管路
2 最初沈澱池
3 曝気槽
4 最終沈澱池
7 流入下水流量計
8 流入水のpH計
9 流入水の懸濁物質
10 流入水の有機物濃度計
11 溶存酸素濃度計
12 MLSS濃度計
13 水温計
14 酸化還元電位計
15 処理水のpH計
16 処理水の懸濁物質
17 処理水の有機物濃度計
18 計測値蓄積装置
19 ヒンジ幅演算装置
20 判定基準値演算装置(重みづけを行った四分位数
基準)
21 判定基準値記憶装置
22 異常値判定装置
23 表示装置
24 標準偏差演算装置
25 判定基準値演算装置(標準偏差基準)
26 判定基準値演算装置(四分位数基準)1,5,6 Pipeline 2 First settling tank 3 Aeration tank 4 Final settling tank 7 Inflowing sewage flow meter 8 Inflowing water pH meter 9 Inflowing water suspended matter 10 Inflowing water organic matter concentration meter 11 Dissolved oxygen concentration meter 12 MLSS Concentration meter 13 Water temperature meter 14 Redox potential meter 15 pH meter of treated water 16 Suspended substance of treated water 17 Organic matter concentration meter of treated water 18 Measured value storage device 19 Hinge width calculation device 20 Judgment reference value calculation device (weighting Performed quartile standard) 21 judgment reference value storage device 22 abnormal value judgment device 23 display device 24 standard deviation calculation device 25 judgment reference value calculation device (standard deviation reference) 26 judgment reference value calculation device (quartile standard) )
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−180098(JP,A) 特開 平6−122140(JP,A) 実開 平5−78101(JP,U) (58)調査した分野(Int.Cl.7,DB名) G05B 23/00 - 23/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-1-180098 (JP, A) JP-A-6-122140 (JP, A) Fukuikai 5-78101 (JP, U) (58) Field (Int.Cl. 7 , DB name) G05B 23/00-23/02
Claims (3)
し、その計測値から前記計測器の異常を検知する異常検
出方法において、 蓄積された前記計測値の相対累積度数の第1四分位点か
ら第2四分位点までの距離H1をヒンジ幅1とし、 第2四分位点から第3四分位点までの距離H2をヒンジ
幅2とし、 過去の計測値から前記ヒンジ幅1と前記ヒンジ幅2を求
め、 前記ヒンジ幅1、2を基準に決定した基準範囲に基づい
て新しく蓄積された計測値の異常を検出することを特徴
とする計測器の異常検出方法。1. A process state is measured and a measured value is accumulated.
In the abnormality detection method for detecting an abnormality of the measuring instrument from the measured value , the hinge width is set to the distance H1 from the first quartile to the second quartile of the relative cumulative frequency of the accumulated measured values. 1, and the distance H2 from the second quartile to the third quartile and hinge width 2, the past measurement values determined the hinge width 1 and the hinge width 2, the hinge width 1,2 An abnormality detection method for a measuring instrument, which is characterized by detecting an abnormality in a newly accumulated measurement value based on a reference range determined as a reference.
測値が前記式を逸脱するときは前記計測器を異常と判定
することを特徴とする請求項1記載の計測器の異常検出
方法。2. The reference range is represented by the following formula: first quartile point−m × hinge width 1 <measured value <third quartile point + m × hinge width 2 where m is a positive arbitrary number. Is the newly accumulated total
If the measured value deviates from the above formula, the measuring instrument is judged to be abnormal.
The method for detecting an abnormality of a measuring instrument according to claim 1, wherein:
値を蓄積する計測値蓄積装置と、 蓄積された前記計測値からヒンジ幅を求めるヒンジ幅演
算装置と、 前記ヒンジ幅から前記計測値の異常を判定するための基
準値を決定する判定基準値演算装置と、 前記判定基準値を記憶する判定基準値記憶装置と、 前記判定基準値と前記計測値蓄積装置に新しく蓄積され
た前記計測値とを比較して前記計測器の異常を検出する
異常判定装置と を備え、蓄積された前記計測値に基づい
て前記 計測器の異常を検知する異常検出装置において、前記ヒンジ幅演算装置は、蓄積された前記計測値の相対
累積度数の第1四分位 点から第2四分位点までの距離H
1であるヒンジ幅1と、第2四分位点から第3四分位点
までの距離H2であるヒンジ幅2とを求め、 前記判定基準値演算装置は、前記ヒンジ幅1、2を基準
に決定した値と前記第1、第3四分位点の値に基づい
て、前記計測値の異常を判定するための基準値を決定す
る ことを特徴とする計測器の異常検出装置。3. A measurement performed by measuring a state of a process
A measurement value storage device that stores a value and a hinge width function that determines the hinge width from the stored measurement values.
A computing device and a base for determining an abnormality in the measured value from the hinge width.
A judgment reference value calculation device that determines a quasi value, a judgment reference value storage device that stores the judgment reference value, and a new accumulation in the judgment reference value and the measurement value storage device.
And compares the measured value with the measured value to detect an abnormality in the measuring instrument.
An abnormality determination device is provided, and based on the accumulated measurement values.
In the abnormality detecting device for detecting abnormality of the measuring instrument, the hinge width calculating device is
Distance H from the first quartile to the second quartile of cumulative frequency
Hinge width 1 which is 1, and the second quartile to the third quartile
And the hinge width 2 which is the distance H2 to
Based on the values determined in and the values of the first and third quartiles
Determine the reference value for determining the abnormality of the measured value
Abnormality detection device of the meter, characterized in that that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33429094A JP3381749B2 (en) | 1994-12-15 | 1994-12-15 | Measurement device abnormality detection method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33429094A JP3381749B2 (en) | 1994-12-15 | 1994-12-15 | Measurement device abnormality detection method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08166820A JPH08166820A (en) | 1996-06-25 |
JP3381749B2 true JP3381749B2 (en) | 2003-03-04 |
Family
ID=18275690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33429094A Expired - Fee Related JP3381749B2 (en) | 1994-12-15 | 1994-12-15 | Measurement device abnormality detection method and device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3381749B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2178770T3 (en) * | 1996-04-29 | 2003-01-01 | Pulp Paper Res Inst | APPARATUS AND PROCEDURE FOR SUPERVISION AND AUTOMATIC DIAGNOSIS OF CONTROL LOVES. |
KR100383258B1 (en) * | 2000-11-09 | 2003-05-09 | 삼성전자주식회사 | measurement error detecting method of measurement apparatus using scanning electron microscope |
JP4706316B2 (en) * | 2005-04-18 | 2011-06-22 | 横浜ゴム株式会社 | Tire testing apparatus and tire testing method |
JP5430702B2 (en) * | 2012-03-30 | 2014-03-05 | 三菱電機インフォメーションシステムズ株式会社 | Specific data detection method, specific data detection program, and specific data detection apparatus |
JP6053167B2 (en) * | 2013-08-06 | 2016-12-27 | Kddi株式会社 | Numerical data analysis apparatus and program |
-
1994
- 1994-12-15 JP JP33429094A patent/JP3381749B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08166820A (en) | 1996-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110186505B (en) | Method for predicting standard reaching condition of rural domestic sewage treatment facility effluent based on support vector machine | |
US12043560B2 (en) | Method for predicting operation effectiveness of decentralized sewage treatment facility by using support vector machine | |
JP3381749B2 (en) | Measurement device abnormality detection method and device | |
JP2013215698A (en) | State diagnostic method and apparatus of water treatment plant | |
US11370679B2 (en) | Method for predicting discharge level of effluent from decentralized sewage treatment facilities | |
CN110146122B (en) | Method for predicting operation effectiveness of rural domestic sewage treatment facility | |
CN114355846A (en) | Fault diagnosis method for papermaking sewage treatment process based on SBR simulation model | |
Lumley | On-line instrument confirmation: how can we check that our instruments are working? | |
JP2000010627A (en) | Method and device for detecting abnormal value of measuring instrument | |
Eisnor et al. | Evaluation of particle removal at water treatment plants in Nova Scotia | |
JP2884997B2 (en) | Operation support system for sewage treatment plant | |
JP3142358B2 (en) | Operation support system for water treatment plant | |
JP2002136987A (en) | Sewage treatment system, inflow water processing arithmetic unit thereof, inflow water treatment method and memory medium | |
JPH1099887A (en) | Apparatus for controlling addition amount of flocculant | |
JPH07219623A (en) | Abnormality detection device for measuring instrument | |
JPH0933536A (en) | Method and apparatus for detecting abnormality of instrument | |
JPH0933514A (en) | Method and system for detecting abnormality in water quality measuring apparatus | |
JP4026057B2 (en) | Water quality simulation equipment | |
JPH11353019A (en) | Abnormal value detector | |
JP3866083B2 (en) | Water treatment plant control system | |
Bakos et al. | Reconsideration and upgrading of sampling and analysis methods for avoiding measurement-related design and operation failures in wastewater treatment | |
JPH0648392Y2 (en) | Floating matter concentration measuring device | |
Mendes et al. | Modelling an urban wastewater system via a space–time multivariate calibration to understand and improve water bodies quality | |
JPS6134441A (en) | Grain-size-distribution measuring apparatus | |
JPH07121398B2 (en) | Bulking controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081220 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091220 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091220 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101220 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101220 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111220 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121220 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131220 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |