JP3381257B2 - Projection exposure method - Google Patents

Projection exposure method

Info

Publication number
JP3381257B2
JP3381257B2 JP2001164377A JP2001164377A JP3381257B2 JP 3381257 B2 JP3381257 B2 JP 3381257B2 JP 2001164377 A JP2001164377 A JP 2001164377A JP 2001164377 A JP2001164377 A JP 2001164377A JP 3381257 B2 JP3381257 B2 JP 3381257B2
Authority
JP
Japan
Prior art keywords
lens
projection
optical
reticle
cylindrical lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001164377A
Other languages
Japanese (ja)
Other versions
JP2002033276A (en
Inventor
俊博 笹谷
一正 遠藤
一雄 牛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2001164377A priority Critical patent/JP3381257B2/en
Publication of JP2002033276A publication Critical patent/JP2002033276A/en
Application granted granted Critical
Publication of JP3381257B2 publication Critical patent/JP3381257B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、第1物体に光を照
明し、照明された第1物体のパターンを第2物体として
の基板等に縮小投影するための投影露光方法に関するも
のであり、特に、第1物体としてのレチクル(マスク)
上に形成された回路パターンを第2物体としての基板
(ウェハ)上に投影露光するのに好適な投影露光方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure method for illuminating a first object with light and reducing and projecting the illuminated pattern of the first object onto a substrate or the like as a second object. Especially, the reticle (mask) as the first object
The present invention relates to a projection exposure method suitable for projecting and exposing a circuit pattern formed on a substrate (wafer) as a second object.

【0002】[0002]

【従来の技術】近年においては、集積回路のパターンが
微細になるに従って、ウェハの焼き付けに用いられる投
影露光装置に対して要求される性能もますます厳しくな
ってきている。この様な状況の中で投影光学系について
は高い解像力、像面の平坦性、少ないディストーション
(以下、歪曲収差と称する。)等が要求されている。そ
れらのために、露光波長λを短くする他に、投影光学系
の開口数NAを大きくしたり、像面湾曲を小さくし、歪
曲収差を軽減する事が行われてきた。この様な例として
は、特開平4−157412号、特開平5−17306
5号等のものがある。
2. Description of the Related Art In recent years, as the pattern of integrated circuits has become finer, the performance required for a projection exposure apparatus used for printing a wafer has become more and more severe. Under such circumstances, the projection optical system is required to have high resolution, flatness of the image plane, and little distortion (hereinafter referred to as distortion). For these reasons, in addition to shortening the exposure wavelength λ, it has been attempted to increase the numerical aperture NA of the projection optical system, reduce the field curvature, and reduce distortion. Examples of such a method include JP-A-4-157512 and JP-A-5-17306.
There are things such as No. 5.

【0003】また、倍率誤差だけを調整する方法とし
て、特開昭59−144127号、特開昭62−356
20号がある。前者では、非常に薄く像性能に影響を与
えない膜、例えばペリクルを湾曲させて光路中に配置す
ることが提案されており、後者では回転対称な平凸レン
ズ、あるいは回転対称な平凸レンズと平凹レンズの組
を、光軸方向に動かしてウエハ面での全体の倍率を等方
的に調整することが提案されている。
Further, as a method for adjusting only the magnification error, Japanese Patent Laid-Open Nos. 59-144127 and 62-356.
There is No. 20. In the former, it has been proposed that a film that does not affect the image performance, such as a pellicle, is very thin and is arranged in the optical path by curving it. In the latter, a rotationally symmetric plano-convex lens, or a rotationally symmetric plano-convex lens and a plano-concave lens are proposed. It is proposed to move the group of in the optical axis direction to adjust the overall magnification on the wafer surface isotropically.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、特開平
4−157412号及び特開平5−173065号の各
特許公報にて提案されている高性能な投影光学系は、レ
ンズの構成枚数が15〜24枚で、特に、開口数NAが
0.4以上の高解像の投影光学系になると、構成枚数が
20枚以上と非常に多くなっている。このように、要求
性能が厳しくなってくるにしたがって、ますます投影光
学系は構成枚数も増えて非常に複雑な構成になってきて
いる。そのため、これらの投影光学系を実際に製造し、
投影露光装置に搭載して、像面湾曲、非点収差、歪曲収
差等の収差を設計値どおりにおさえ、高性能を発揮させ
るには、個々のレンズ部品の精度や組立の精度を非常に
厳しくおさえる必要があり、そのため歩留まりが悪かっ
たり、製造する日程が非常にかかったり、あるいは、十
分な性能が発揮できない等の問題があった。
However, the high-performance projection optical system proposed in each of Japanese Patent Application Laid-Open Nos. 4-157412 and 5-173065 has a number of lenses of 15 to 24. In the case of a high-resolution projection optical system having a numerical aperture NA of 0.4 or more, the number of constituent elements is significantly increased to 20 or more. In this way, as the required performance becomes stricter, the number of projection optical systems is increasing and the structure is becoming extremely complicated. Therefore, we actually manufactured these projection optics,
In order to achieve high performance by installing it in a projection exposure apparatus and suppressing aberrations such as field curvature, astigmatism, and distortion as designed values, the accuracy of individual lens parts and the accuracy of assembly are extremely strict. Therefore, there is a problem in that the yield is bad, the manufacturing schedule is very long, or sufficient performance cannot be exhibited.

【0005】また、特開昭59−144127号にて提
案されている倍率誤差の補正方法では、光学系の結像性
能に影響を与えないような極めて薄い膜等を湾曲させて
そのプリズム作用によって倍率誤差を補正しているもの
の、投影光学系内に残存する方向性のある非対称な倍率
誤差成分の補正量や補正方向に対する微調整はできな
い。しかも、薄い膜を用いているために、ミラープロジ
ェクション方式のように露光領域が細長い場合には、金
枠等に貼って2次元的に保持可能であるが、露光領域が
長方形や正方形の場合には、そのような薄い膜を3次元
的に保持し、良い再現性を発揮させるのは非常に困難で
ある。また、形状を保持するために薄い膜の代わりにガ
ラス等を使用するとしても、結像性能に影響を与えない
ように薄くかつ均一にそれらを作成するのはやはり困難
であり、さらに、それらの膜等を実際に使用したときの
露光光の熱吸収等による破損事故を含めての膜等の耐久
性、露光光の熱吸収や環境変化に伴う光学性能の変化に
対して非常に問題がある。
Further, in the method of correcting the magnification error proposed in Japanese Patent Laid-Open No. 59-144127, an extremely thin film or the like which does not affect the image forming performance of the optical system is curved and its prism action is used. Although the magnification error is corrected, it is not possible to finely adjust the correction amount and the correction direction of the directional asymmetric magnification error component remaining in the projection optical system. Moreover, since the thin film is used, it can be two-dimensionally held by being attached to a metal frame or the like when the exposure area is elongated as in the mirror projection method, but when the exposure area is rectangular or square. It is very difficult to hold such a thin film three-dimensionally and exhibit good reproducibility. Also, even if glass or the like is used instead of a thin film to maintain the shape, it is still difficult to make them thin and uniform so as not to affect the imaging performance. Durability of the film including damage accidents due to heat absorption of exposure light when the film is actually used, heat absorption of exposure light and changes in optical performance due to environmental changes are very problematic. .

【0006】また、特開昭62−35620号では回転
対称なレンズを使用して倍率誤差を調整することが提案
されているが、回転対称なレンズを光軸方向に動すだけ
では、ウエハ面での全体の倍率だけを等方的しか調整で
きず、投影光学系内に残存する方向性のある非対称な倍
率誤差成分は調整できない。
Further, in Japanese Patent Laid-Open No. 62-35620, it is proposed to use a rotationally symmetric lens to adjust the magnification error. However, if the rotationally symmetric lens is moved in the optical axis direction, the wafer surface can be adjusted. It is possible to adjust only the entire magnification in 1) isotropically, and it is not possible to adjust the directional asymmetric magnification error component remaining in the projection optical system.

【0007】さらに、特開昭59−144127号及び
特開昭62−35620号にて提案されている倍率誤差
の補正方法では、倍率誤差のみが基本的に補正可能であ
り、軸外収差としての非点収差等に対する補正は出来
ず、さらには、投影光学系内にて回転非対称で局所的に
ランダムに残存する倍率誤差成分や歪曲収差成分に対す
る対応も困難であった。
Further, in the method of correcting the magnification error proposed in JP-A-59-144127 and JP-A-62-356620, only the magnification error can be basically corrected, and the off-axis aberration It is not possible to correct astigmatism and the like, and it is also difficult to deal with a magnification error component and a distortion aberration component that are rotationally asymmetric and locally remain randomly in the projection optical system.

【0008】本発明は、以上の問題点に鑑みてなされた
ものであり、投影光学系の回転非対称な光学特性、例え
ば回転非対称な軸外収差成分(非点収差成分、像面湾曲
等)や回転非対称な倍率誤差成分等を補正することを主
たる目的としている。
The present invention has been made in view of the above problems, and has rotationally asymmetric optical characteristics of the projection optical system, such as rotationally asymmetric off-axis aberration components (astigmatism components, field curvature, etc.), Its main purpose is to correct rotationally asymmetric magnification error components and the like.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、第1の発明の投影露光方法は、レチクルのパター
ン像を基板に投影する投影露光方法において、前記投影
光学系の回転非対称な光学特性を補正するために、前記
投影光学系中の回転非対称な光学特性を有する2つの光
学素子間の相対的な回転量を算出する工程と、前記算出
結果に基づいて、前記相対的な回転量となるように前記
2つの光学素子を設定する工程とを含むことを特徴とす
る。
To achieve the above object, the projection exposure method of the first invention is a projection exposure method for projecting a pattern image of a reticle onto a substrate, wherein the projection optical system is rotationally asymmetric. Calculating a relative amount of rotation between two optical elements having rotationally asymmetric optical characteristics in the projection optical system to correct the optical characteristics; and performing the relative rotation based on the calculation result. And setting the two optical elements so as to obtain a quantity.

【0010】また、第2の発明の投影露光方法は、前記
2つの光学素子が回転非対称なパワーを有することを特
徴とする。
The projection exposure method of the second invention is characterized in that the two optical elements have rotationally asymmetric powers.

【0011】また、第3の発明の投影露光方法は、前記
2つの光学素子が、それぞれ直交した方向でパワーが異
なることを特徴とする。
The projection exposure method of the third invention is characterized in that the two optical elements have different powers in directions orthogonal to each other.

【0012】また、第4の発明の投影露光方法は、前記
2つの光学素子が、それぞれ所定の屈折率分布を有する
ことを特徴とする。
The projection exposure method of the fourth invention is characterized in that each of the two optical elements has a predetermined refractive index distribution.

【0013】また、第5の発明の投影露光方法は、前記
投影光学系の光軸に対して回転非対称な光学特性を計測
する工程をさらに含み、前記相対的な回転量は、計測さ
れた前記回転非対称な光学特性に基づいて算出されるこ
とを特徴とする。
Further, the projection exposure method of the fifth invention further comprises a step of measuring an optical characteristic rotationally asymmetric with respect to the optical axis of the projection optical system, and the relative rotation amount is measured. It is characterized in that it is calculated based on rotationally asymmetric optical characteristics.

【0014】また、第6の発明の投影露光方法は、前記
2つの光学素子を設定した後に、前記レチクルの前記パ
ターン像を前記基板に投影することを特徴とする。
The projection exposure method of the sixth invention is characterized in that the pattern image of the reticle is projected onto the substrate after setting the two optical elements.

【0015】 〔発明の詳細な説明〕図1に示すように、直交した方向
で異なるパワーを持つトーリックレンズの1種である負
の屈折力を持つ円柱レンズ1のメリジオナル方向(y
y'平面方向)の焦点距離をf1、円柱レンズ1から第
1物体としてのレチクル面4(xy平面)までの距離を
d11、レチクル面4の中心位置(レチクル面と光軸A
xとが交わる位置)を物点とする時に円柱レンズ1によ
って物点(レチクル面4)と円柱レンズ1との間に形成
される像点(虚像)位置をd12としたとき、この円柱
レンズ1によるy軸よりθ回転したY方向(光軸Axと
Y軸とを含む平面方向)の結像倍率β1及び円柱レンズ
1から像点位置までの距離d12(以下、単に結像位置
と称する。)は以下に示す如くなる。なお、図1では不
図示であるが円柱レンズに対してレチクル面4の反対側
には、レチクルのパターンをウエハに投影するための投
影光学系が配置されており、後述する図2〜図4に関し
ても同様である。
DETAILED DESCRIPTION OF THE INVENTION As shown in FIG. 1, a cylindrical lens 1 having a negative refractive power, which is a kind of toric lens having different powers in orthogonal directions, has a meridional direction (y).
The focal length in the y ′ plane direction is f1, the distance from the cylindrical lens 1 to the reticle surface 4 (xy plane) as the first object is d11, and the center position of the reticle surface 4 (reticle surface and optical axis A
When the object point is the position where x intersects with x, and the image point (virtual image) position formed between the object point (reticle surface 4) and the cylindrical lens 1 by the cylindrical lens 1 is d12, this cylindrical lens 1 The image forming magnification β1 in the Y direction (the plane direction including the optical axis Ax and the Y axis) rotated by θ from the y axis and the distance d12 from the cylindrical lens 1 to the image point position (hereinafter, simply referred to as the image forming position). Is as shown below. Although not shown in FIG. 1, a projection optical system for projecting the pattern of the reticle onto the wafer is arranged on the side opposite to the reticle surface 4 with respect to the cylindrical lens. Is also the same.

【0016】 β1=f1/(d11・cos2 θ+f1) (1) d12=d11・f1/(d11・cos2 θ+f1) (2) 同様に、Y方向と直交するX方向(光軸AxとX軸とを
含む平面方向)の結像倍率β1'と結像倍率d12'は以
下に示す如くなる。
Β1 = f1 / (d11 · cos 2 θ + f1) (1) d12 = d11 · f1 / (d11 · cos 2 θ + f1) (2) Similarly, in the X direction (optical axis Ax and X axis) orthogonal to the Y direction. The imaging magnification β1 ′ and the imaging magnification d12 ′ (in the plane direction including and) are as shown below.

【0017】 β1'=f1/(d11・sin2 θ+f1) (3) d12'=d11・f1/(d11・sin2 θ+f1) (4) 従って、非点収差量AS1は AS1=d12−d12' (5) で与えられる。Β1 ′ = f1 / (d11 · sin 2 θ + f1) (3) d12 ′ = d11 · f1 / (d11 · sin 2 θ + f1) (4) Therefore, the astigmatism amount AS1 is AS1 = d12−d12 ′ ( 5) is given in.

【0018】よって、円柱レンズ1を移動させれば、
(1)式〜(4)式中のd11が変化するため、(5)
式より非点収差量が変化するとともに、(1)式及び
(3)式の倍率が変化することが理解できる。
Therefore, if the cylindrical lens 1 is moved,
Since d11 in the expressions (1) to (4) changes, (5)
It can be understood from the equation that the astigmatism amount changes and the magnifications of the equations (1) and (3) change.

【0019】一方、円柱レンズ1を回転させれば、
(1)式〜(4)式中のθが変化するため、(5)式よ
り非点収差量が変化するとともに、(1)式及び(3)
式の倍率が変化することが理解できる。
On the other hand, if the cylindrical lens 1 is rotated,
Since θ in the expressions (1) to (4) changes, the astigmatism amount changes from the expression (5), and the expressions (1) and (3) are changed.
It can be seen that the scale factor of the equation changes.

【0020】また、図2に示すように、トーリックレン
ズの1種である正の屈折力を持つ円柱レンズ2のメリジ
オナル方向(yy'平面方向)の焦点距離をf2,円柱
レンズ2から第1物体としてのレチクル面4(xy平
面)までの距離をd21、レチクル面4の中心位置(レ
チクル面と光軸Axとが交わる位置)を物点とする時に
円柱レンズ2によって形成される像点位置をd22とし
たとき、この円柱レンズ2によるy軸よりθ回転したY
方向(光軸AxとY軸とを含む平面方向)の結像倍率β
2及び円柱レンズ2から像点位置d22までの距離(以
下、単に結像位置と称する。)は以下に示す如くなる。
Further, as shown in FIG. 2, the focal length in the meridional direction (the yy'plane direction) of the cylindrical lens 2 having a positive refracting power, which is one type of toric lens, is f2, and the focal length is from the cylindrical lens 2 to the first object. Is the distance to the reticle surface 4 (xy plane) as d, and the image point position formed by the cylindrical lens 2 when the central position of the reticle surface 4 (the position where the reticle surface and the optical axis Ax intersect) is the object point. When d22, Y rotated by θ from the y-axis by this cylindrical lens 2
Imaging magnification β in the direction (plane direction including the optical axis Ax and the Y axis)
2 and the distance from the cylindrical lens 2 to the image point position d22 (hereinafter, simply referred to as an image forming position) are as follows.

【0021】 β2=f2/(d21・cos2 θ+f2) (6) d22=d21・f2/(d21・cos2 θ+f2) (7) 同様に、Y方向と直交するX方向(光軸AxとX軸とを
含む平面方向)の結像倍率β2'と結像倍率d22'は以
下に示す如くなる。
Β2 = f2 / (d21 · cos 2 θ + f2) (6) d22 = d21 · f2 / (d21 · cos 2 θ + f2) (7) Similarly, the X direction orthogonal to the Y direction (optical axis Ax and X axis) The imaging magnification β2 ′ and the imaging magnification d22 ′ (in the plane direction including and) are as shown below.

【0022】 β2'=f2/(d21・sin2 θ+f2) (8) d22'=d21・f2/(d21・sin2 θ+f2) (9) よって、非点収差量AS2は AS2=d22−d22' (10) で与えられる。Β2 ′ = f2 / (d21 · sin 2 θ + f2) (8) d22 ′ = d21 · f2 / (d21 · sin 2 θ + f2) (9) Therefore, the astigmatism amount AS2 is AS2 = d22−d22 ′ ( 10) is given.

【0023】よって、円柱レンズ2を移動させれば、
(6)式〜(10)式中のd21が変化するため、(1
0)式より非点収差量が変化するとともに、(6)式及
び(8)式の倍率が変化することが理解できる。
Therefore, if the cylindrical lens 2 is moved,
Since d21 in the expressions (6) to (10) changes, (1
It can be understood from the expression (0) that the astigmatism amount changes and the magnifications of the expressions (6) and (8) change.

【0024】一方、円柱レンズ2を回転させれば、
(6)式〜(9)式中のθが変化するため、(10)式
より非点収差量が変化するとともに、(6)式及び
(8)式の倍率が変化することが理解できる。
On the other hand, if the cylindrical lens 2 is rotated,
Since θ in the expressions (6) to (9) changes, it can be understood from the expression (10) that the amount of astigmatism changes and the magnifications of the expressions (6) and (8) change.

【0025】さて、上記(5)式及び(10)式にて示
したAS1、AS2は、それぞれの円柱レンズ(1,
2)によって補正できる非点収差量になる。
Now, AS1 and AS2 shown in the above equations (5) and (10) are the respective cylindrical lenses (1,
The astigmatism amount can be corrected by 2).

【0026】そのときの最良像面はそれぞれ、 (d12+d12')/2 (11) (d22+d22')/2 (12) で与えられ、その最良像面は、d11、d21、θによ
って変化するため、よって、像面湾曲の量も変化するこ
とが分かる。
The best image planes at that time are given by (d12 + d12 ') / 2 (11) (d22 + d22') / 2 (12), and the best image plane changes depending on d11, d21, and θ. Therefore, it can be seen that the amount of field curvature also changes.

【0027】以上の如く、結像倍率、非点収差、像面湾
曲に対する量並びに方向を調整するためには、円柱レン
ズ等のトーリックレンズを光軸方向に移動させるか、あ
るいは円柱レンズ等のトーリックレンズ自体を回転させ
れば良いことが理解される。なお、上記の調整手法以外
にトーリックレンズ自体の焦点距離を変ても良い。
As described above, in order to adjust the amount and direction of the imaging magnification, astigmatism, and field curvature, a toric lens such as a cylindrical lens is moved in the optical axis direction, or a toric lens such as a cylindrical lens is used. It is understood that it is sufficient to rotate the lens itself. Note that the focal length of the toric lens itself may be changed in addition to the adjustment method described above.

【0028】さて、図2に示した円柱レンズ2を用いる
場合において最大の非点収差の補正量を見積もるために
θ=0とすると、そのときの最大の非点収差は以下の如
くなる。
When θ = 0 in order to estimate the maximum correction amount of astigmatism when using the cylindrical lens 2 shown in FIG. 2, the maximum astigmatism at that time is as follows.

【0029】 AS2max =−(d21)2 /(d21+f2) (13) 今、第1物体としてのレチクルから第2物体としてのウ
エハまでの距離をLとしたとき、10ミクロン以下の線
幅を焼き付ける投影露光装置に関し、試し焼付けを行っ
て検討を重ねていった結果、補正すべき最大の非点収差
量AS2max は、10-5L以下とすることが良い事が判
明した。
AS2 max = − (d21) 2 / (d21 + f2) (13) Now, when the distance from the reticle as the first object to the wafer as the second object is L, a line width of 10 μm or less is printed. As a result of repeated trial printing on the projection exposure apparatus, it was found that the maximum astigmatism amount AS2 max to be corrected should be 10 −5 L or less.

【0030】従って、d21≦10-2Lとすると、(1
3)式より、 |f2|≧10L (14) となり、正の円柱レンズ2の焦点距離は上記(14)式
の範囲を満足することが望ましい。
Therefore, if d21 ≦ 10 −2 L, (1
From equation (3), | f2 | ≧ 10L (14), and it is desirable that the focal length of the positive cylindrical lens 2 satisfies the range of equation (14).

【0031】なお、図1及び図2に示した如き2つ以上
の円柱レンズ等のトーリックレンズを組み合わせる場合
や、他の光学素子と組み合わせる場合には、レチクル4
の物点が、第1のトーリックレンズや他の光学素子によ
ってできた、着目している方向での結像位置を新たな物
点として、この新たな物点から次のトーリックレンズや
他の光学素子までの距離を求め直して、その距離をd1
1やd21にしてやれば良い。
When combining two or more toric lenses such as the cylindrical lenses shown in FIGS. 1 and 2 or combining with other optical elements, the reticle 4 is used.
The object point of is the image formation position in the direction of interest formed by the first toric lens or other optical element as a new object point, and from this new object point to the next toric lens or another optical element. Recalculate the distance to the element and d1
It may be set to 1 or d21.

【0032】ところで、図1にて示した負の円柱レンズ
1と図2にて示した正の円柱レンズ2とを光軸方向に沿
って直列的に配置した場合について検討する。
Now, consider a case where the negative cylindrical lens 1 shown in FIG. 1 and the positive cylindrical lens 2 shown in FIG. 2 are arranged in series along the optical axis direction.

【0033】今、2つの円柱レンズ(1,2)の母線方
向が互いに一致するとともに、2つの円柱レンズの結像
倍率の積が1、即ち|β1・β2|=1である場合、各
方向での2つの円柱レンズ(1,2)の合成のパワーは
ほぼ零となり、倍率及び軸外収差(非点収差、像面湾曲
等)等の光学特性は何ら変化しない。
Now, when the generatrix directions of the two cylindrical lenses (1, 2) coincide with each other and the product of the imaging magnifications of the two cylindrical lenses is 1, that is, | β1 · β2 | = 1, each direction The combined power of the two cylindrical lenses (1, 2) is almost zero, and the optical characteristics such as magnification and off-axis aberration (astigmatism, curvature of field, etc.) do not change at all.

【0034】一方、2つの円柱レンズ(1,2)の母線
方向が互いに直交した場合には、最大の倍率並びに最大
の軸外収差を発生させることができる。
On the other hand, when the generatrix directions of the two cylindrical lenses (1, 2) are orthogonal to each other, the maximum magnification and the maximum off-axis aberration can be generated.

【0035】従って、2つの円柱レンズ(1,2)とを
相対的に回転させれば、投影光学系内に残存する方向性
のある非対称な倍率誤差成分及び軸外収差成分の補正量
や補正方向に対する調整が実現できることが分かる。
Therefore, if the two cylindrical lenses (1, 2) are rotated relative to each other, the correction amount and correction of the directional asymmetric magnification error component and off-axis aberration component remaining in the projection optical system are corrected. It can be seen that the adjustment for the direction can be realized.

【0036】なお、図1に示した負の円柱レンズ1を光
軸方向に沿って2つ直列的に配置した場合、あるいは図
2に示した正の円柱レンズ2を光軸方向に沿って2つ直
列的に配置した場合には、それぞれの円柱レンズの母線
方向が互いに一致すると、最大の倍率並びに最大の軸外
収差を発生させることができ、また、それぞれの円柱レ
ンズの母線方向が互いに直交すると、ほぼ1枚の回転対
称な球面レンズと同じレンズ作用を持たせることができ
る。
When two negative cylinder lenses 1 shown in FIG. 1 are arranged in series along the optical axis direction, or when two positive cylinder lenses 2 shown in FIG. 2 are arranged along the optical axis direction. When two cylindrical lenses are arranged in series, the maximum magnification and the maximum off-axis aberration can be generated when the generatrix directions of the cylindrical lenses coincide with each other, and the generatrix directions of the cylindrical lenses are orthogonal to each other. Then, it is possible to give the same lens action as that of the substantially one rotationally symmetric spherical lens.

【0037】このように、トーリックレンズの1種であ
る円柱レンズを少なくとも2枚用いて、少なくとも一方
の円柱レンズを回転可能にしてやる事により、倍率及び
軸外収差(非点収差、像面湾曲等)等の光学特性の量と
方向を任意に調整する事が出来る。
As described above, by using at least two cylindrical lenses, which are one type of toric lens, and making at least one of the cylindrical lenses rotatable, magnification and off-axis aberrations (astigmatism, field curvature, etc.) can be obtained. It is possible to arbitrarily adjust the amount and direction of optical characteristics such as).

【0038】以上においては、非点収差及び像面湾曲に
関する調整について主に述べてきたが、次に、図1にて
示した負の円柱レンズ1または図2に示した正の円柱レ
ンズ2を光軸Axを中心に回転させた時の倍率誤差の調
整に関して図3〜図7を参照しながら詳述する。
In the above, adjustment regarding astigmatism and field curvature has been mainly described. Next, the negative cylindrical lens 1 shown in FIG. 1 or the positive cylindrical lens 2 shown in FIG. The adjustment of the magnification error when rotated about the optical axis Ax will be described in detail with reference to FIGS.

【0039】図3は図1に示した負の円柱レンズ1に対
し光軸Axを中心とした半径Rの平行光束を入射させた
時の様子を示している。ここで、図3において、光軸A
xを中心とした半径Rの平行光束がレチクル面4(xy
平面)を通過した時の軌跡を円13として示し、光軸A
xを中心とした半径Rの平行光束が円柱レンズ1によっ
て発散作用を受けた光束が仮想平面(x'y'平面)を通
過するときの軌跡を楕円11として示している。また、
図5は、図3に示した仮想平面(x'y'平面)上での光
束径の様子を示している。
FIG. 3 shows a state in which a parallel light beam having a radius R centered on the optical axis Ax is incident on the negative cylindrical lens 1 shown in FIG. Here, in FIG. 3, the optical axis A
A parallel light beam with a radius R centered at x is formed on the reticle surface 4 (xy
The locus when passing through the plane) is shown as a circle 13, and the optical axis A
An ellipse 11 indicates a locus when a parallel light flux having a radius R centered on x and having a diverging action by the cylindrical lens 1 passes through a virtual plane (x'y 'plane). Also,
FIG. 5 shows the state of the light beam diameter on the virtual plane (x'y 'plane) shown in FIG.

【0040】一方、図4は図2に示した正の円柱レンズ
2に対し光軸Axを中心とした半径Rの平行光束を入射
させた時の様子を示している。ここで、図4において、
光軸Axを中心とした半径Rの平行光束がレチクル面4
(xy平面)を通過した時の軌跡を円13として示し、
光軸Axを中心とした半径Rの平行光束が円柱レンズ2
によって収斂作用を受けた光束が仮想平面(x'y'平
面)を通過するときの軌跡を楕円12として示してい
る。また、図6は、図4に示した仮想平面(x'y'平
面)上での光束径の様子を示している。
On the other hand, FIG. 4 shows a state in which a parallel light beam having a radius R centered on the optical axis Ax is made incident on the positive cylindrical lens 2 shown in FIG. Here, in FIG.
A collimated light beam with a radius R centered on the optical axis Ax forms a reticle surface 4
A locus when passing through the (xy plane) is shown as a circle 13,
A parallel light beam with a radius R centered on the optical axis Ax causes the cylindrical lens 2
An ellipse 12 indicates a locus when the light flux that has undergone the converging action by passes through a virtual plane (x'y 'plane). Further, FIG. 6 shows the state of the light flux diameter on the virtual plane (x'y 'plane) shown in FIG.

【0041】なお、図3中の楕円11及び図4中の楕円
12は、円柱レンズ(1,2)を光軸中心に回転させれ
ば、それに伴って回転する。
The ellipse 11 in FIG. 3 and the ellipse 12 in FIG. 4 rotate with the rotation of the cylindrical lens (1, 2) about the optical axis.

【0042】図7に示すように、負の円柱レンズ1によ
る仮想平面(x'y'平面)上のメリジオナル方向である
y'方向(光軸Axとy'軸とを含む平面方向)の光束径
の変化量をΔR1としたとき、負の円柱レンズ1より仮
想平面(x'y'平面)までの距離をe1とすると以下の
関係が成立する。
As shown in FIG. 7, the luminous flux in the y'direction (plane direction including the optical axes Ax and y'axis) which is the meridional direction on the virtual plane (x'y 'plane) by the negative cylindrical lens 1. When the change amount of the diameter is ΔR1, and the distance from the negative cylindrical lens 1 to the virtual plane (x′y ′ plane) is e1, the following relationship holds.

【0043】 ΔR1=−R・e1/f1 (15) 同様に、図8に示すように、正の円柱レンズ2による仮
想平面(x'y'平面)上のメリジオナル方向であるy'
方向(光軸Axとy'軸とを含む平面方向)の光束径の
変化量をΔR2としたとき、正の円柱レンズ2より仮想
平面(x'y'平面)までの距離をe2とすると以下の関
係が成立する。
ΔR1 = −R · e1 / f1 (15) Similarly, as shown in FIG. 8, y ′, which is the meridional direction on the virtual plane (x′y ′ plane) by the positive cylindrical lens 2.
When the change amount of the light beam diameter in the direction (plane direction including the optical axis Ax and y ′ axis) is ΔR2, the distance from the positive cylindrical lens 2 to the virtual plane (x′y ′ plane) is e2 The relationship is established.

【0044】 ΔR2=−R・e2/f2 (16) よって、図5及び図6に示される如く、仮想平面(x'
y'平面)上での実線で示すy'方向の径(図5では長径
の半分、図6では短径の半分)は、それぞれ y'=R(1−e1/f1) (17) y'=R(1−e2/f2) (18) となり、円の式、すなわち y=±〔R2 +(x')20.5 (19) を代入して、x' y'座標をxy座標に変換すると、図
5及び図6の実線で示す楕円11、楕円12は、それぞ
れ以下の如く表現できる。
ΔR2 = −R · e2 / f2 (16) Therefore, as shown in FIGS. 5 and 6, the virtual plane (x ′
The diameter in the y'direction (half the major axis in FIG. 5, half the minor axis in FIG. 6) indicated by the solid line on the y'plane) is y '= R (1-e1 / f1) (17) y' = R (1-e2 / f2) (18), the circle formula, that is, y = ± [R 2 + (x ′) 2 ] 0.5 (19) is substituted, and the x ′ y ′ coordinates are converted into xy coordinates. When converted, the ellipses 11 and 12 shown by the solid lines in FIGS. 5 and 6 can be expressed as follows, respectively.

【0045】 x2 /R2 +y2 /〔(1−e1/f1)・R〕2 =1 (20) x2 /R2 +y2 /〔(1−e2/f2)・R〕2 =1 (21) となる。X 2 / R 2 + y 2 / [(1-e1 / f1) · R] 2 = 1 (20) x 2 / R 2 + y 2 / [(1-e2 / f2) · R] 2 = 1 (21)

【0046】このように、投影光学系内部に例えば図6
に示す如き非対称な倍率誤差を有している場合には、図
5の如き光学特性を有する図3の円柱レンズ1を回転さ
せる事によって、図6に示す如き光束径は楕円から円に
わたり任意に変化させることができるため、非対称な倍
率誤差を調整することができる。逆に、投影光学系内部
に例えば図5に示す如き非対称な倍率誤差を有している
場合には、図6の如き光学特性を有する図4の円柱レン
ズ2を回転させる事によって、図5に示す如き光束径は
楕円から円にわたり任意に変化させることができるた
め、非対称な倍率誤差を調整することができる。
In this way, for example, as shown in FIG.
6 has an asymmetrical magnification error, the cylindrical lens 1 of FIG. 3 having the optical characteristics of FIG. 5 is rotated so that the luminous flux diameter as shown in FIG. Since it can be changed, an asymmetrical magnification error can be adjusted. On the contrary, when the projection optical system has an asymmetrical magnification error as shown in FIG. 5, for example, by rotating the cylindrical lens 2 of FIG. 4 having the optical characteristics as shown in FIG. Since the luminous flux diameter as shown can be arbitrarily changed from the ellipse to the circle, an asymmetric magnification error can be adjusted.

【0047】ここで、図1に示す如き負の円柱レンズ1
を用いる場合、第1物体としてのレチクルから第2物体
としてのウエハまでの距離をLとしたとき、10ミクロ
ン以下の線幅を焼き付ける投影露光装置に関し、試し焼
付けを行って検討を重ねていった結果、最大の倍率誤差
の補正量は、10-4(=100ppm) 以下とすることが良い
事が判明した。
Here, the negative cylindrical lens 1 as shown in FIG.
When the distance from the reticle as the first object to the wafer as the second object is L, a projection exposure apparatus that prints a line width of 10 μm or less was subjected to trial printing and repeated studies. As a result, it was found that the maximum correction amount for the magnification error should be 10 −4 (= 100 ppm) or less.

【0048】また、円柱レンズ1の焦点距離f1と円柱
レンズ1の倍率β1との関係を示す上記(1)式を変形
すると、次式が得られる。
Further, when the above equation (1) showing the relationship between the focal length f1 of the cylindrical lens 1 and the magnification β1 of the cylindrical lens 1 is modified, the following equation is obtained.

【0049】 f1=(−d11・β1)/(β1−1) (23) 従って、上記最大の倍率誤差の補正量10-4(=100pp
m) をβ1に換算すると、β1= 0.9999 (又は1.000
1)となり、d11≦10-2Lとすると、(23)式よ
り、 |f2|≧102 L (24) となり、正の円柱レンズ2の焦点距離は上記(24)式
の範囲を満足することが望ましい。
F1 = (− d11 · β1) / (β1-1) (23) Therefore, the maximum magnification error correction amount 10 −4 (= 100 pp
Converting m) to β1, β1 = 0.9999 (or 1.000)
1) and if d11 ≦ 10 −2 L, then from equation (23), | f2 | ≧ 10 2 L (24), and the focal length of the positive cylindrical lens 2 satisfies the above equation (24) range. Is desirable.

【0050】なお、以上では、1つのトーリックレンズ
(円柱レンズ)を光軸方向を中心として回転させて倍率
誤差を補正する例を述べたが、1つのトーリックレンズ
(円柱レンズ)を光軸方向に移動させて、倍率誤差を補
正できることは、上記(1)、(3)式、(6)及び
(8)式から明らかである。この場合には、上記(2
4)式を満足することがより好ましい。
In the above description, the example in which one toric lens (cylindrical lens) is rotated about the optical axis direction to correct the magnification error is described. However, one toric lens (cylindrical lens) is rotated in the optical axis direction. It is clear from the equations (1), (3), (6) and (8) that the magnification error can be corrected by moving. In this case, (2
It is more preferable to satisfy the expression (4).

【0051】ところで、以上においては、1つのトーリ
ックレンズ(円柱レンズ)を用いて倍率誤差を補正でき
る事について述べたが、トーリックレンズの1種である
円柱レンズを少なくとも2枚用いて、少なくとも一方の
円柱レンズを回転可能にしてやる事により、倍率誤差等
の光学特性の量と方向を任意に調整する事が出来る。
By the way, although it has been described above that the magnification error can be corrected by using one toric lens (cylindrical lens), at least one of the toric lenses is used, and at least one of them is used. By making the cylindrical lens rotatable, it is possible to arbitrarily adjust the amount and direction of optical characteristics such as magnification error.

【0052】このため、図1に示した負の円柱レンズ1
と図2に示した正の円柱レンズ2とを投影光学系の光軸
方向に沿って直列的に配置し、これらを相対的に回転さ
せても良い。この場合、負の円柱レンズ1は図5に示す
如き光学特性を有し、正の円柱レンズ1は図6に示す如
き光学特性を有していたため、これらの円柱レンズ
(1,2)によって形成される光束径は、図5及び図6
に示す光束径の合成となり、これらを相対的に回転させ
れば、光束径は楕円から円にわたり任意に変化させるこ
とができ、非対称な倍率誤差を補正できることが理解で
きる。
Therefore, the negative cylindrical lens 1 shown in FIG.
2 and the positive cylindrical lens 2 shown in FIG. 2 may be arranged in series along the optical axis direction of the projection optical system, and they may be relatively rotated. In this case, since the negative cylindrical lens 1 has the optical characteristics shown in FIG. 5 and the positive cylindrical lens 1 has the optical characteristics shown in FIG. 6, it is formed by these cylindrical lenses (1, 2). The luminous flux diameter is as shown in FIGS.
It can be understood that the light flux diameters can be arbitrarily changed from the ellipse to the circle by synthesizing the light flux diameters shown in (3) and rotating these relatively, and asymmetrical magnification error can be corrected.

【0053】さらに、投影光学系内部に例えば図5又は
図6に示す如き非対称な倍率誤差を有している場合に
は、少なくとも2つ以上の円柱レンズを光軸方向に沿っ
て直列的に配置し、それらの円柱レンズの内の少なくと
も1つを回転可能に設ければ、図5または図6に示す如
き光束径は楕円から円にわたり任意に変化させることが
できるため、非対称な倍率誤差を調整することができ
る。
Further, when the projection optical system has an asymmetrical magnification error as shown in FIG. 5 or 6, for example, at least two or more cylindrical lenses are arranged in series along the optical axis direction. However, if at least one of the cylindrical lenses is rotatably provided, the light beam diameter as shown in FIG. 5 or 6 can be arbitrarily changed from the ellipse to the circle, so that the asymmetric magnification error is adjusted. can do.

【0054】なお、2つ以上のトーリックレンズ(円柱
レンズ)を組み合わせる場合や、他の光学素子と組み合
わせる場合には、着目している光束が、第1のトーリッ
クレンズ(円柱レンズ)や他の光学素子を通過して出来
る光束を新たな光束として、次のトーリックレンズ(円
柱レンズ)等に入射してきたとして追跡を行ってやれば
良い。
When two or more toric lenses (cylindrical lenses) are combined, or when combined with other optical elements, the focused light flux is the first toric lens (cylindrical lens) or another optical element. The light beam that has passed through the element may be traced as a new light beam that has entered the next toric lens (cylindrical lens) or the like.

【0055】2つのトーリックレンズ(円柱レンズ)の
組み合わせで、図1のような負の円柱レンズ1と図2の
ような正の円柱レンズを近接して設置した場合、それぞ
れのレンズの母線方向が一致したときには、各方向のト
ータルなレンズパワーはほぼ0となり、光束形状は変わ
らないが、それぞれのレンズの母線方向が直交した場合
には、最大の形状変化となる。
When two negative toric lenses (cylindrical lenses) are combined and a negative cylindrical lens 1 as shown in FIG. 1 and a positive cylindrical lens as shown in FIG. 2 are installed close to each other, the generatrix direction of each lens is When they match, the total lens power in each direction becomes almost 0, and the light flux shape does not change. However, when the generatrix directions of the respective lenses are orthogonal, the shape change becomes the maximum.

【0056】また、図1に示した負の円柱レンズ1を光
軸方向に沿って2つ直列的に配置した場合、あるいは図
2に示した正の円柱レンズ2を光軸方向に沿って2つ直
列的に配置した場合には、それぞれの円柱レンズの母線
方向が互いに一致すると、最大の倍率並びに最大の軸外
収差を発生させることができ、また、それぞれの円柱レ
ンズの母線方向が互いに直交すると、ほぼ1枚の回転対
称な球面レンズと同じレンズ作用を持たせることができ
る。
Further, when two negative cylinder lenses 1 shown in FIG. 1 are arranged in series along the optical axis direction, or two positive cylinder lenses 2 shown in FIG. 2 are arranged along the optical axis direction. When two cylindrical lenses are arranged in series, the maximum magnification and the maximum off-axis aberration can be generated when the generatrix directions of the cylindrical lenses coincide with each other, and the generatrix directions of the cylindrical lenses are orthogonal to each other. Then, it is possible to give the same lens action as that of the substantially one rotationally symmetric spherical lens.

【0057】このように、トーリックレンズの1種であ
る円柱レンズを少なくとも2枚用いて、少なくとも一方
の円柱レンズを回転可能にしてやる事により、倍率及び
軸外収差(非点収差、像面湾曲等)等の光学特性の量と
方向を任意に調整する事が出来る。
As described above, by using at least two cylindrical lenses, which are one type of toric lens, and making at least one of the cylindrical lenses rotatable, magnification and off-axis aberrations (astigmatism, field curvature, etc.) can be obtained. It is possible to arbitrarily adjust the amount and direction of optical characteristics such as).

【0058】なお、上述した(14)式並びに(24)
式を一般的な形で表現すれば、非点収差の補正に有効に
作用させ得る円柱レンズの焦点距離をfA 、倍率誤差の
補正に有効に作用させ得る円柱レンズの焦点距離をfD
とすると、 |fA |≧10L (25) |fD |≧102 L (26) となり、非点収差の有効に補正するには上記(25)式
を満足することが望ましく、また倍率誤差の有効に補正
するには上記(26)式を満足することが望ましい。但
し、この場合の円柱レンズの焦点距離(fA ,fD )
は、単一の円柱レンズに限らず、複数の円柱レンズ等の
トーリックレンズやトーリック型の反射部材を組み合わ
せた場合にも適用できる。すなわち、この円柱レンズの
焦点距離(fA ,fD )は複数のトーリック型光学部材
を組み合わせた場合での複数の円柱レンズの合成焦点距
離となる。
The above equations (14) and (24)
Expressing the expression in a general form, the focal length of the cylindrical lens that can effectively act on the astigmatism correction is fA, and the focal length of the cylindrical lens that can effectively act on the correction of the magnification error is fD.
Then, | fA | ≧ 10L (25) | fD | ≧ 10 2 L (26), and it is desirable to satisfy the above equation (25) for effective correction of astigmatism, and effective magnification error. It is desirable to satisfy the above equation (26) in order to correct However, the focal length (fA, fD) of the cylindrical lens in this case
Can be applied not only to a single cylindrical lens, but also to a combination of a toric lens such as a plurality of cylindrical lenses or a toric reflection member. That is, the focal length (fA, fD) of this cylindrical lens is the composite focal length of the plurality of cylindrical lenses when a plurality of toric optical members are combined.

【0059】(25)式または(26)式の関係から外
れると、トーリックの成分が強すぎて、それぞれ他の収
差への影響が出て問題となる。例えば、非点収差の補正
では、像面湾曲、倍率誤差が悪くなったり、倍率誤差の
補正ではテレセン性、非点収差が悪くなったりする。こ
のため、上記範囲内であれば、有効に非対称収差の補正
が行うことが出来る。
If the equation (25) or the equation (26) is not satisfied, the toric component is too strong, which affects other aberrations, causing a problem. For example, correction of astigmatism causes deterioration of field curvature and magnification error, and correction of magnification error causes deterioration of telecentricity and astigmatism. Therefore, within the above range, asymmetrical aberration can be effectively corrected.

【0060】ところで、上記(25)式、(26)式で
はトーリック型光学部材の最適な焦点距離の範囲を示し
たが、次に別の観点よりトーリック型光学部材の最適な
焦点距離の範囲について検討する。
By the way, the above formulas (25) and (26) show the range of the optimum focal length of the toric optical member. Next, from another viewpoint, the range of the optimum focal length of the toric optical member will be described. consider.

【0061】まず、図9には、投影光学系が開口絞りS
を挟んでレチクル4側を前群GF 、ウエハ5側を後群G
R を持つ構成を示しており、ここでは、前群GF はfGF
の焦点距離を有し、後群GR はfGRの焦点距離を有して
おり、投影光学系はレチクル側並びにウエハ5側でテレ
セントリックである。
First, in FIG. 9, the projection optical system has an aperture stop S.
With the reticle 4 side being the front group G F and the wafer 5 side being the rear group G.
A configuration with R is shown, where the front group GF is f GF
And the rear group GR has a focal length of f GR , and the projection optical system is telecentric on the reticle side and the wafer 5 side.

【0062】図10は図9に示した投影光学系の前群G
F とレチクル4との間にトーリック型光学部材としての
正のパワーを持つ円柱レンズを配置した時の様子を示し
ており、この円柱レンズ2のパワーは図10の紙面方向
(メリジオナル方向)である。
FIG. 10 shows the front group G of the projection optical system shown in FIG.
The figure shows a state in which a cylindrical lens having a positive power as a toric optical member is arranged between F and the reticle 4, and the power of this cylindrical lens 2 is in the paper surface direction (meridional direction) of FIG. .

【0063】ここで、図10に示す如く、円柱レンズ2
の焦点距離をf2とし、円柱レンズ2と前群GF との間
の距離(双方の光学系の主点間隔の距離)をD1 とする
と、円柱レンズ2と前群GF との合成焦点距離F1 は、
以下の関係が成立する。
Here, as shown in FIG. 10, the cylindrical lens 2
Let f2 be the focal length of the lens, and let D 1 be the distance between the cylindrical lens 2 and the front lens group GF (the distance between the principal points of both optical systems). 1 is
The following relationship holds.

【0064】 F1 =(f2・fGF)/(f2+fGF−D1 ) (27) また、投影光学系(GF ,GR )の結像倍率B1 とし、
円柱レンズ2と投影光学系(GF ,GR )との合成系で
の結像倍率B1'とすると、以下の関係が成立する。
F 1 = (f2 · f GF ) / (f2 + f GF −D 1 ) (27) Further, the imaging magnification B 1 of the projection optical system (GF, GR) is set as
Assuming that the image forming magnification B 1 'in the combined system of the cylindrical lens 2 and the projection optical system (GF, GR), the following relationship is established.

【0065】 B1 =−fGR/fGF (28) B1'=−fGR/F1 =B1 〔1+(fGF−D1 )/f2〕 (29) 従って、投影光学系のサジタル方向とメリジオナル方向
での倍率差ΔB1 は、以下の如くなる。
B 1 = −f GR / f GF (28) B 1 ′ = −f GR / F 1 = B 1 [1+ (f GF −D 1 ) / f 2] (29) Therefore, the sagittal of the projection optical system The difference in magnification ΔB 1 between the direction and the meridional direction is as follows.

【0066】 ΔB1 =B1'−B1 =B1 (fGF−D1 )/f2 (30) 一方、円柱レンズ2と前群GF との合成系によるレチク
ル側の主点をH1 、円柱レンズ2と前群GF との合成系
によるレチクル側での焦点位置をP1 、その焦点位置P
1 とレチクル4までの距離をΔs1 、円柱レンズ2と投
影光学系(GF,GR )との合成系によるレチクル4の
結像位置Q1 からウエハ5までの距離をΔs1'とする
と、以下の関係が成立する。
ΔB 1 = B 1 ′ −B 1 = B 1 (f GF −D 1 ) / f 2 (30) On the other hand, the principal point on the reticle side by the combined system of the cylindrical lens 2 and the front group GF is H 1 , The focus position on the reticle side by the combined system of the cylindrical lens 2 and the front lens group GF is P 1 , and its focus position P
Assuming that the distance between 1 and the reticle 4 is Δs 1 , and the distance between the image formation position Q 1 of the reticle 4 by the combined system of the cylindrical lens 2 and the projection optical system (GF, GR) to the wafer 5 is Δs 1 ′, The relationship is established.

【0067】 Δs1 =(fGF−D12 /(f2+fGF−D1 ) (31) Δs1'=(B1')2 ・Δs1 (32) ここで、Δs1'は投影光学系のサジタル方向とメリジオ
ナル方向での結像位置の差、すなわち非点収差量(非点
隔差)を意味する。
Δs 1 = (f GF −D 1 ) 2 / (f 2 + f GF −D 1 ) (31) Δs 1 ′ = (B 1 ′) 2 · Δs 1 (32) where Δs 1 ′ is projection optics It means the difference between the image formation positions in the sagittal direction and the meridional direction of the system, that is, the amount of astigmatism (astigmatic difference).

【0068】また、投影光学系のレチクル側の開口数を
NAR 、露光光の波長をλとすると、投影光学系のレチ
クル側での焦点深度DOFR は以下の如くなる。
When the numerical aperture on the reticle side of the projection optical system is NA R and the wavelength of the exposure light is λ, the depth of focus DOF R on the reticle side of the projection optical system is as follows.

【0069】 DOFR =λ/(NAR2 (33) そこで、非点収差量を投影光学系のレチクル側での焦点
深度以内に抑えるためには、上式(31)式及び(3
3)式より、次式が導出される。
DOF R = λ / (NA R ) 2 (33) Therefore, in order to suppress the amount of astigmatism within the depth of focus on the reticle side of the projection optical system, the above equations (31) and (3) are used.
The following equation is derived from the equation 3).

【0070】 f2≧−(fGF−D1 )+〔(NAR )2(fGF−D12 〕/λ (34 ) 従って、(34)式を満足するように円柱レンズ2を構
成することが好ましく、これにより、非点収差量を焦点
深度以内に抑えることが可能となる。
F2 ≧ − (f GF −D 1 ) + [(NA R ) 2 (f GF −D 1 ) 2 ] / λ (34) Therefore, the cylindrical lens 2 is configured to satisfy the expression (34). The astigmatism amount can be suppressed within the depth of focus.

【0071】この(34)式を一般的に表現すれば、ト
ーリック型光学部材の直交した方向でのパワー差をΔf
とすると、以下の如くなる。 Δf≧|−(fGF−D1 )+〔(NAR )2(fGF−D12 〕/λ| (35 ) この様に、トーリック型光学部材を用いた場合、この部
材による非点収差量を投影光学系のレチクル側での焦点
深度以内に抑えるためには、上式(35)を満足するこ
とが好ましいことが理解される。なお、上式(34)及
び(35)の関係は、投影光学系が等倍、縮小または拡
大の倍率を有する場合にも成立する事は言うまでもな
い。
If this expression (34) is generally expressed, the power difference in the orthogonal direction of the toric optical member is Δf.
Then, it becomes as follows. Δf ≧ | − (f GF −D 1 ) + [(NA R ) 2 (f GF −D 1 ) 2 ] / λ | (35) As described above, when the toric optical member is used, It is understood that it is preferable to satisfy the above expression (35) in order to suppress the amount of point aberration within the depth of focus on the reticle side of the projection optical system. It goes without saying that the relationships of the above equations (34) and (35) are established even when the projection optical system has the same magnification, reduction or enlargement magnification.

【0072】一例として、投影光学系のレチクル側の開
口数NAR を0.1、露光光の波長λを436nm、f
GF=250mm、fGR=250mm、D1 =200mm
とすると、上記(34)式より、円柱レンズのメリジオ
ナル方向での焦点距離f2、一般的に言うと上記(3
5)式より、トーリック型光学部材の直交した方向での
パワー差Δfは、5.7×104 mm以上となり、この
時の可変にし得る倍率補正量(倍率差ΔB1 )は、87
0ppm(=8.7×10-4)以下となる。
As an example, the numerical aperture NA R on the reticle side of the projection optical system is 0.1, the wavelength λ of the exposure light is 436 nm, and f
GF = 250mm, f GR = 250mm , D 1 = 200mm
Then, from the above formula (34), the focal length f2 of the cylindrical lens in the meridional direction is generally the above (3
From the equation (5), the power difference Δf in the direction orthogonal to the toric optical member is 5.7 × 10 4 mm or more, and the variable magnification correction amount (magnification difference ΔB 1 ) at this time is 87.
It becomes 0 ppm (= 8.7 × 10 −4 ) or less.

【0073】なお、以上においては、トーリック型光学
部材をレチクルと投影光学系との間に配置した場合を前
提として、(35)式を導出したが、トーリック型光学
部材を投影光学系とウエハとの間に配置した場合にも同
様な関係が成立するため、この場合には、以下の関係を
満足することが望ましい。
In the above description, the equation (35) is derived on the premise that the toric optical member is arranged between the reticle and the projection optical system. Since the same relation is established even when they are arranged between the two, it is desirable to satisfy the following relation in this case.

【0074】 Δf≧|−(fGR−D1')+〔(NAW )2(fGR−D1')2 〕/λ| (3 6) 但し、NAW は投影光学系のウエハ側の開口数であり、
1'はトーリック型光学部材と後群GR との間の距離
(双方の光学系の主点間隔の距離)である。
Δf ≧ | − (f GR −D 1 ′) + [(NA W ) 2 (f GR −D 1 ′) 2 ] / λ | (36) where NA W is the wafer side of the projection optical system. Is the numerical aperture of
D 1 'is a distance between the toric optical member and the rear group GR (distance between principal points of both optical systems).

【0075】次に、図11を参照しながら、投影光学系
中の前群GF と後群GR との間、換言すれば、開口絞り
Sの近傍に正の円柱レンズ2を配置した時のその円柱レ
ンズ2の最適な焦点距離範囲について検討する。図11
は図9に示した投影光学系の前群GF と後群GR との間
にトーリック型光学部材としての正のパワーを持つ円柱
レンズ2を配置した時の様子を示しており、この円柱レ
ンズ2のパワーは図11の紙面方向(メリジオナル方
向)である。
Next, referring to FIG. 11, when the positive cylindrical lens 2 is arranged between the front lens group GF and the rear lens group GR in the projection optical system, in other words, in the vicinity of the aperture stop S. The optimum focal length range of the cylindrical lens 2 will be examined. Figure 11
Shows a state in which a cylindrical lens 2 having a positive power as a toric optical member is arranged between the front group GF and the rear group GR of the projection optical system shown in FIG. Is in the paper surface direction (meridional direction) of FIG.

【0076】ここで、図11に示す如く、円柱レンズ2
の焦点距離をf2とし、前群GF と円柱レンズ2との間
の距離(双方の光学系の主点間隔の距離)をD2 とする
と、前群GF と円柱レンズ2との合成焦点距離F2 は、
以下の関係が成立する。
Here, as shown in FIG. 11, the cylindrical lens 2
Let f2 be the focal length of F, and let D 2 be the distance between the front lens group GF and the cylindrical lens 2 (distance between the principal points of both optical systems). 2 is
The following relationship holds.

【0077】 F2 =(f2・fGF)/(f2+fGF−D2 ) (37) また、投影光学系(GF ,GR )の結像倍率B2 とし、
円柱レンズ2と投影光学系(GF ,GR )との合成系で
の結像倍率B2'とすると、以下の関係が成立する。
F 2 = (f2 · f GF ) / (f2 + f GF −D 2 ) (37) Further, the imaging magnification B 2 of the projection optical system (GF, GR)
Assuming that the image forming magnification B 2 'in the combined system of the cylindrical lens 2 and the projection optical system (GF, GR), the following relationship is established.

【0078】 B2 =−fGR/fGF (38) B2'=−fGR/F2 =B2 〔1+(fGF−D2 )/f2〕 (39) 従って、投影光学系のサジタル方向とメリジオナル方向
での倍率差ΔB2 は、以下の如くなる。
B 2 = −f GR / f GF (38) B 2 ′ = −f GR / F 2 = B 2 [1+ (f GF −D 2 ) / f 2 ] (39) Therefore, the sagittal of the projection optical system The difference in magnification ΔB 2 between the direction and the meridional direction is as follows.

【0079】 ΔB2 =B2'−B2 =B2 (fGF−D2 )/f2 (40) 一方、前群GF と円柱レンズ2との合成系によるレチク
ル側の主点をH2 、前群GF と円柱レンズ2との合成系
によるレチクル側での焦点位置をP2 、その焦点位置P
2 とレチクル4までの距離をΔs2 、投影光学系(GF
,GR )と円柱レンズ2との合成系によるレチクル4
の結像位置Q2 からウエハ5までの距離をΔs2 'とす
ると、以下の関係が成立する。
ΔB 2 = B 2 ′ −B 2 = B 2 (f GF −D 2 ) / f 2 (40) On the other hand, the principal point on the reticle side by the combined system of the front lens group GF and the cylindrical lens 2 is H 2 , The focus position on the reticle side by the combined system of the front lens group GF and the cylindrical lens 2 is P 2 , and its focus position P
2 to the reticle 4 is Δs 2 , the projection optical system (GF
, GR) and a cylindrical lens 2 combined system 4
If the distance from the image forming position Q 2 to the wafer 5 is Δs 2 ′, the following relationship holds.

【0080】 Δs2 =(fGF2 /(f2+fGF−D2 ) (41) Δs2'=(B2')2 ・Δs2 (42) ここで、Δs2'は投影光学系のサジタル方向とメリジオ
ナル方向での結像位置の差、すなわち非点収差量(非点
隔差)を意味する。
Δs 2 = (f GF ) 2 / (f 2 + f GF −D 2 ) (41) Δs 2 ′ = (B 2 ′) 2 · Δs 2 (42) where Δs 2 ′ is the sagittal of the projection optical system. Direction and the meridional direction, the difference between the imaging positions, that is, the amount of astigmatism (astigmatic difference).

【0081】そこで、非点収差量を投影光学系のレチク
ル側での焦点深度以内に抑えるためには、上式(33)
式及び(41)式より、次式が導出される。
Therefore, in order to suppress the amount of astigmatism within the depth of focus on the reticle side of the projection optical system, the above equation (33) is used.
The following equation is derived from the equation and the equation (41).

【0082】 f2≧−(fGF−D2 )+〔(NAR )2(fGF2 〕/λ (43) 従って、(43)式を満足するように円柱レンズ2を構
成することが好ましく、これにより、非点収差量を焦点
深度以内に抑えることが可能となる。
F2 ≧ − (f GF −D 2 ) + [(NA R ) 2 (f GF ) 2 ] / λ (43) Therefore, the cylindrical lens 2 can be configured to satisfy the expression (43). Preferably, this makes it possible to suppress the amount of astigmatism within the depth of focus.

【0083】この(43)式を一般的に表現すれば、ト
ーリック型光学部材の直交した方向でのパワー差をΔf
とすると、以下の如くなる。
If this equation (43) is generally expressed, the power difference in the orthogonal direction of the toric optical member is Δf.
Then, it becomes as follows.

【0084】 Δf≧|−(fGF−D2 )+〔(NAR )2(fGF2 〕/λ| (44) この様に、トーリック型光学部材を用いた場合、この部
材による非点収差量を投影光学系のレチクル側での焦点
深度以内に抑えるためには、上式(44)を満足するこ
とが好ましいことが理解される。なお、上式(43)及
び(44)の関係は、投影光学系が等倍、縮小または拡
大の倍率を有する場合にも成立する事は言うまでもな
い。
Δf ≧ | − (f GF −D 2 ) + [(NA R ) 2 (f GF ) 2 ] / λ | (44) Thus, when the toric optical member is used, It is understood that it is preferable to satisfy the above expression (44) in order to suppress the amount of point aberration within the depth of focus on the reticle side of the projection optical system. Needless to say, the relations of the above equations (43) and (44) are also established when the projection optical system has the same magnification, reduction or enlargement magnification.

【0085】一例として、投影光学系のレチクル側の開
口数NAR を0.1、露光光の波長をλを436nm、
GF=250mm、fGR=250mm、D2 =200m
mとすると、上記(43)式より、円柱レンズのメリジ
オナル方向での焦点距離f2、一般的に言うと上記(4
4)式より、トーリック型光学部材の直交した方向での
パワー差Δfは、1.43×106 mm以上となり、こ
の時の可変にし得る倍率補正量(倍率差ΔB1 )は、3
5ppm(=3.5×10-5)以下となる。
As an example, the numerical aperture NA R on the reticle side of the projection optical system is 0.1, the wavelength of the exposure light is λ of 436 nm,
f GF = 250 mm, f GR = 250 mm, D 2 = 200 m
Assuming that m is the focal length f2 of the cylindrical lens in the meridional direction from the equation (43), generally speaking (4)
From the equation (4), the power difference Δf in the orthogonal direction of the toric optical member is 1.43 × 10 6 mm or more, and the variable magnification correction amount (magnification difference ΔB 1 ) at this time is 3
It becomes 5 ppm (= 3.5 × 10 −5 ) or less.

【0086】以上の図9〜図11にて解析の結果より、
レチクルと投影光学系との間または投影光学系とウエハ
との間にトーリック型光学部材を配置した場合には、非
点収差に対する補正の寄与を小さく抑えつつ、倍率誤差
に対する補正の寄与を大きくすることが可能となり、一
方、投影光学系の瞳もしくはその近傍にトーリック型光
学部材を配置した場合には、倍率誤差に対する補正の寄
与を小さく抑えつつ、非点収差に対する補正の寄与を大
きくすることが可能となることが理解できる。
From the results of the analysis shown in FIGS. 9 to 11,
When a toric optical member is arranged between the reticle and the projection optical system or between the projection optical system and the wafer, the contribution of the correction to the astigmatism is suppressed to be small while the contribution of the correction to the magnification error is increased. On the other hand, when a toric optical member is arranged at or near the pupil of the projection optical system, the contribution of the correction to the astigmatism can be increased while suppressing the contribution of the correction to the magnification error to be small. Understand that it will be possible.

【0087】なお、本発明で言うトーリック光学部材と
は、回転対称な球面の1方向に対して研磨を施し、直交
した方向で異なるパワーを持たせたトーリックレンズで
も良いし、あるいは直交した方向で異なるパワーを持つ
反射鏡でも良く、さらには、直交した方向で異なるパワ
ーを持つ屈折率分布型のレンズでも良い。
The toric optical member referred to in the present invention may be a toric lens having a rotationally symmetric spherical surface polished in one direction and having different powers in the orthogonal directions, or in the orthogonal directions. It may be a reflecting mirror having different powers, or may be a gradient index lens having different powers in orthogonal directions.

【0088】ところで、これまでの説明は、投影光学系
の光軸に対して回転非対称なる非球面として、直交した
方向で異なるパワーのあるトーリック光学部材を用いて
回転非対称に発生する非点収差、像面湾曲、倍率誤差等
を補正することについて述べたが、回転非対称に発生す
るこれらの収差や倍率誤差に加えて、投影光学系内にて
回転非対称で局所的にランダムに残存する倍率誤差成分
や歪曲収差成分が発生する場合には、光軸方向に沿って
移動可能または光軸を中心に回転可能なトーリック光学
部材の1種としての円柱レンズのレンズ面に局所的に研
磨等の加工を施し、その加工が施された円柱レンズをレ
チクルとウエハとの間に配置すれば、回転非対称に発生
する非点収差、像面湾曲、倍率誤差の補正に加えて、ラ
ンダムに発生する倍率誤差成分や歪曲収差成分を補正す
ることが可能である。
By the way, in the above description, astigmatism which occurs rotationally asymmetrical by using a toric optical member having different powers in orthogonal directions as an aspherical surface rotationally asymmetrical with respect to the optical axis of the projection optical system, Although correction of field curvature, magnification error, etc. was described, in addition to these aberrations and magnification errors that are rotationally asymmetrical, the magnification error component locally remaining randomly due to rotational asymmetry in the projection optical system. When a distortion component is generated, the lens surface of the cylindrical lens, which is a type of toric optical member that can move along the optical axis direction or can rotate about the optical axis, is locally processed by polishing or the like. By placing the processed and processed cylindrical lens between the reticle and the wafer, in addition to the correction of astigmatism, field curvature, and magnification error that occur rotationally asymmetrically, it occurs randomly. It is possible to correct the rate error components or distortion components.

【0089】さらに、投影光学系が回転非対称で局所的
にランダムに残存する倍率誤差成分や歪曲収差成分のみ
を有している場合には、投影光学系を構成する光学素子
(レンズ、反射鏡)自体に局所的に研磨等の加工を施せ
ば、ランダムに発生する倍率誤差成分や歪曲収差成分を
補正することも可能である。
Further, when the projection optical system has only a magnification error component and a distortion aberration component which are rotationally asymmetric and locally remain randomly, an optical element (lens, reflecting mirror) constituting the projection optical system is provided. If processing such as polishing is locally performed on itself, it is possible to correct a magnification error component and a distortion component that are randomly generated.

【0090】また、投影光学系が回転非対称で局所的に
ランダムに残存する倍率誤差成分や歪曲収差成分のみを
有している場合において、ランダムに発生する倍率誤差
成分や歪曲収差成分を補正するために、所定の厚みを持
つ平行平面板に局所的に研磨等の加工を施し、その加工
が施された平行平面板を、レチクルと投影光学系の間、
投影光学系の内部または投影光学系とウエハとの間に配
置しても良い。但し、この場合、平行平面板は所定の厚
みを持っているため、球面収差が発生するが、その球面
収差を補正し得るように投影光学系を予め構成すれば良
い。
Further, in the case where the projection optical system has only the magnification error component and the distortion aberration component which are rotationally asymmetric and locally remain at random, in order to correct the magnification error component and the distortion aberration component which are randomly generated. , The parallel plane plate having a predetermined thickness is locally subjected to processing such as polishing, and the processed parallel plane plate is placed between the reticle and the projection optical system.
It may be arranged inside the projection optical system or between the projection optical system and the wafer. However, in this case, since the plane-parallel plate has a predetermined thickness, spherical aberration occurs, but the projection optical system may be configured in advance so as to correct the spherical aberration.

【0091】次に、図12を参照しながら本発明の実施
の形態について詳述する。図12は、本発明の実施の形
態による投影露光装置の構成を示している。図12に示
す如く、両側(又は片側)テレセントリックな投影レン
ズ36の上方には、不図示のレチクルステージに保持さ
れたレチクル35が配置され、レチクル35と投影レン
ズ36との間には、その投影レンズ36の光軸に対して
回転非対称なパワーを持つ光学手段として直交した方向
に異なるパワーを有するトーリック型光学部材が配置さ
れている。このトーリック型光学部材は、レチクル側か
ら順に、投影レンズ側に凹面を向け紙面方向に負のパワ
ーを持つ負の円柱レンズ1と、レチクル側に凸面を向け
紙面方向に正のパワーを持つ正の円柱レンズ2とを有
し、円柱レンズ1と円柱レンズ2とは投影レンズ36の
光軸を中心にそれぞれ回転可能に設けられている。
Next, an embodiment of the present invention will be described in detail with reference to FIG. FIG. 12 shows the configuration of the projection exposure apparatus according to the embodiment of the present invention. As shown in FIG. 12, a reticle 35 held by a reticle stage (not shown) is arranged above both sides (or one side) of the telecentric projection lens 36, and the projection is provided between the reticle 35 and the projection lens 36. As an optical means having rotationally asymmetric power with respect to the optical axis of the lens 36, toric optical members having different powers are arranged in the orthogonal direction. This toric-type optical member has, in order from the reticle side, a negative cylindrical lens 1 having a concave surface facing the projection lens side and having a negative power in the paper surface direction, and a positive cylinder lens having a convex surface facing the reticle side and having a positive power in the paper surface direction. The cylindrical lens 2 is provided, and the cylindrical lens 1 and the cylindrical lens 2 are provided so as to be rotatable about the optical axis of the projection lens 36, respectively.

【0092】また、投影レンズ36に関してレチクル3
5と共役な位置には、ウエハステージ37上に載置され
たウエハ38が配置されており、このウエハステージ3
7は、2次元的に移動可能なXYステージ及び投影レン
ズ36の光軸方向に移動可能なZステージより構成され
ている。
Further, regarding the projection lens 36, the reticle 3
The wafer 38 placed on the wafer stage 37 is arranged at a position conjugate with the wafer stage 3.
Reference numeral 7 is composed of a two-dimensionally movable XY stage and a Z stage movable in the optical axis direction of the projection lens 36.

【0093】一方、レチクル35の上方には、レチクル
35を均一にケーラー照明するための照明光学系(2
1,22,23,24,25,32,33,34)が設
けられており、照明光学系中には投影レンズの光学特性
を計測するための計測系42と、後述する露光光ILと
は異なる波長の光によってレチクル35とウエハ38と
の相対的な位置検出を光学的に行う第1アライメント系
47とがそれぞれ設けられている。
On the other hand, above the reticle 35, there is an illumination optical system (2) for uniformly illuminating the reticle 35 by Koehler.
1, 22, 23, 24, 25, 32, 33, 34) are provided, and in the illumination optical system, a measurement system 42 for measuring the optical characteristics of the projection lens and the exposure light IL described later are provided. A first alignment system 47 that optically detects the relative position between the reticle 35 and the wafer 38 by using light of different wavelengths is provided.

【0094】また、投影レンズ36の外側には、オフ・
アクシス型の第2アライメント系48が設けられてお
り、この第2アライメント系48は、後述する露光光I
Lとは異なる波長の光によってウエハ38の位置を光学
的に検出する。
On the outside of the projection lens 36, the off
An axis-type second alignment system 48 is provided, and the second alignment system 48 is used for the exposure light I described later.
The position of the wafer 38 is optically detected by light having a wavelength different from L.

【0095】図12に示した実施の形態を具体的に説明
すると、水銀灯等の光源21から放射される露光光IL
は、楕円鏡22によって集光され、反射ミラー23によ
って反射された後、コリメータレンズ24によりほぼ平
行光束に変換され、フライアイレンズよりなるオプティ
カルインテグレータ25に入射する。楕円鏡22の第2
焦点近傍にはシャッター26が配置され、このシャッタ
ー26をモータ等の駆動部27を介して回転することに
より、その露光光ILを随時遮断することができる。
The embodiment shown in FIG. 12 will be specifically described. Exposure light IL emitted from a light source 21 such as a mercury lamp.
Is condensed by the elliptical mirror 22, reflected by the reflection mirror 23, converted into a substantially parallel light flux by the collimator lens 24, and is incident on the optical integrator 25 including a fly-eye lens. Second of the elliptical mirror 22
A shutter 26 is arranged in the vicinity of the focal point, and the exposure light IL can be interrupted at any time by rotating the shutter 26 via a drive unit 27 such as a motor.

【0096】シャッター26で露光光ILを遮断してい
る時にはそのシャッター26により反射された露光光I
Lが楕円鏡22の光軸にほぼ垂直な方向に射出されるの
で、この様に射出された露光光ILは集光レンズ28に
よりライトガイド29の一端に入射させる。従って、光
源21から放射される露光光ILはオプティカルインテ
グレータ25またはライトガイド29の何れかに入射す
る。
When the exposure light IL is blocked by the shutter 26, the exposure light I reflected by the shutter 26
Since L is emitted in a direction substantially perpendicular to the optical axis of the elliptic mirror 22, the exposure light IL emitted in this way is made incident on one end of the light guide 29 by the condenser lens 28. Therefore, the exposure light IL emitted from the light source 21 enters either the optical integrator 25 or the light guide 29.

【0097】オプティカルインテグレータ25に露光光
ILが入射すると、オプティカルインテグレータ25の
レチクル側の焦点面には多数の2次光源像(以下、単に
2次光源と称する。)が形成され、この2次光源形成面
に可変開口絞り30が配置されている。それら2次光源
から射出された露光光ILは光軸に対し45度傾斜して
配置されたハーフミラー31を透過した後に、第1のコ
ンデンサーレンズ32,ダイクロイックミラー33及び
第2コンデンサーレンズ34を経てレチクル35の下面
側のパターン領域を均一な照度で照明する。
When the exposure light IL enters the optical integrator 25, a large number of secondary light source images (hereinafter, simply referred to as secondary light sources) are formed on the reticle side focal plane of the optical integrator 25. A variable aperture stop 30 is arranged on the forming surface. The exposure light IL emitted from these secondary light sources passes through the half mirror 31 arranged at an angle of 45 degrees with respect to the optical axis, and then passes through the first condenser lens 32, the dichroic mirror 33, and the second condenser lens 34. The pattern area on the lower surface side of the reticle 35 is illuminated with a uniform illuminance.

【0098】露光時には、トーリック型光学部材(1,
2)及び投影レンズ36によりレチクル35のパターン
の像がウエハ38上に結像される。この場合、オプティ
カルインテグレータ25の2次光源形成面は投影レンズ
36の瞳面と共役であり、その2次光源形成面に配置さ
れた可変開口絞り30の口径を調整することにより、レ
チクル35を照明する照明光学系のコヒーレンシィを表
すσ値を変更することができる。レチクル35を照明す
る露光光ILの最大入射角をθIL、投影レンズ36のレ
チクル35側の開口半角をθPLとすると、σ値はsin
θIL/sinθ PLで表すことかできる。ここで、σ値は
0.3〜0.7程度に設定される。
At the time of exposure, the toric optical member (1,
2) and the pattern of the reticle 35 by the projection lens 36
Is formed on the wafer 38. In this case, Opti
The secondary light source forming surface of the cal integrator 25 is a projection lens
It is conjugate with the pupil plane of 36 and is placed on the secondary light source formation surface.
By adjusting the aperture of the variable aperture stop 30
The coherency of the illumination optical system that illuminates the chicle 35 is shown.
The σ value can be changed. Illuminates the reticle 35
The maximum incident angle of the exposure light ILIL, The projection lens 36
The half angle of the opening on the side of the chicle 35PLThen, the σ value is sin
θIL/ Sin θ PLCan be expressed as Where the σ value is
It is set to about 0.3 to 0.7.

【0099】なお、投影レンズ36の瞳位置には不図示
であるが開口絞りが設けられており、この開口絞りの開
口を可変となるように構成しても良い。また、ウエハス
テージ37のウエハホルダー近傍には、例えばガラス板
よりなる調整板39が固設されており、この調整板39
の投影レンズ36側の面には、基準パターンが形成され
ている。これに対応して、投影レンズ36のイメージフ
ィールド内でかつレチクル35のパターン領域近傍に
は、その調整板39上の基準パターンと投影レンズ36
に関して共役な位置にレチクルマークRMが形成されて
いる。一例として、調整板39側の基準パターンは遮光
部の中に形成された十字型の開口パターンよりなり、ウ
エハ35側のレチクルマークRMはその基準パターンに
トーリック型光学部材(1,2)及び投影レンズ36に
よる投影倍率を乗じて得られたパターンの明暗を反転し
て得られるパターンよりなる。
Although not shown, an aperture stop is provided at the pupil position of the projection lens 36, and the aperture of this aperture stop may be variable. An adjusting plate 39 made of, for example, a glass plate is fixedly provided near the wafer holder of the wafer stage 37.
A reference pattern is formed on the surface of the projection lens 36 side. Correspondingly, in the image field of the projection lens 36 and in the vicinity of the pattern area of the reticle 35, the reference pattern on the adjustment plate 39 and the projection lens 36 are provided.
The reticle mark RM is formed at a position conjugate with respect to. As an example, the reference pattern on the adjustment plate 39 side is a cross-shaped opening pattern formed in the light-shielding portion, and the reticle mark RM on the wafer 35 side is the toric optical member (1, 2) and the projection on the reference pattern. The pattern is obtained by inverting the lightness and darkness of the pattern obtained by multiplying the projection magnification by the lens 36.

【0100】ウエハステージ37の調整板39の下面に
はコンデンサーレンズ41及び反射ミラー40が配置さ
れ、コンデンサーレンズ41の後側焦点面にライトガイ
ド29の射出端が固定されている。このライトガイド2
9の射出端の面は投影レンズ36の瞳面と共役なので可
変開口絞り30とも共役である。また、このライトガイ
ド29の射出端の発光面は、可変開口絞り30上への投
影像の大きさを可変開口絞り30の口径にほぼ等しく取
ってあり、これによって調整板39上の基準パターンは
露光光IL用の照明σ値にほぼ等しい照明σ値で照明さ
れる。さらに、露光光ILの照明光学系中において、ハ
ーフミラー31に関して可変開口絞り30と共役な位置
にフォトマルチプライアー42の受光部が配置されてい
る。即ち、フォトマルチプライアー42の受光部は投影
レンズ36の瞳面及びライトガイド29の射出端面と共
役となるうよに配置されている。その受光部の検出面
は、その上に投影されるライトガイド39の射出端の発
光面の像よりも大きく取って光量ロスを防いでいる。従
って、調整板39の基準パターンを下面側から照明した
場合には、調整板39が投影レンズ36のイメージフィ
ールドのどの位置に存在しても調整板39の基準パター
ンから射出した光の大部分は投影レンズ36及びトーリ
ック型光学部材(1,2)に入射し、レチクル35のレ
チクルマークRMを経てフォトマルチプライアー42の
受光面に入射する。
A condenser lens 41 and a reflection mirror 40 are arranged on the lower surface of the adjusting plate 39 of the wafer stage 37, and the exit end of the light guide 29 is fixed to the rear focal plane of the condenser lens 41. This light guide 2
The exit end surface of 9 is conjugate with the pupil plane of the projection lens 36, and thus is also conjugate with the variable aperture stop 30. Further, the light emitting surface at the exit end of the light guide 29 is such that the size of the projected image on the variable aperture stop 30 is set to be substantially equal to the aperture of the variable aperture stop 30, whereby the reference pattern on the adjusting plate 39 is set. The illumination σ value is approximately equal to the illumination σ value for the exposure light IL. Further, in the illumination optical system of the exposure light IL, the light receiving unit of the photomultiplier 42 is arranged at a position conjugate with the variable aperture stop 30 with respect to the half mirror 31. That is, the light receiving portion of the photomultiplier 42 is arranged so as to be conjugate with the pupil surface of the projection lens 36 and the exit end surface of the light guide 29. The detection surface of the light receiving portion is made larger than the image of the light emitting surface at the exit end of the light guide 39 projected on the detection surface to prevent light amount loss. Therefore, when the reference pattern of the adjusting plate 39 is illuminated from the lower surface side, most of the light emitted from the reference pattern of the adjusting plate 39 is irrespective of where the adjusting plate 39 is in the image field of the projection lens 36. The light enters the projection lens 36 and the toric optical member (1, 2), and enters the light receiving surface of the photomultiplier 42 through the reticle mark RM of the reticle 35.

【0101】中央処理ユニット43(以下、CPUと称
する。)は、フォトマルチプライアー42と電気的に接
続されており、このフォトマルチプライアー42から出
力される光電変換信号がCPU43に供給される。ま
た、ウエハステージ37の上面にはX方向用ミラー及び
不図示のY方向用ミラーが固定され、レーザ干渉系44
及びそれら2個のミラーを用いることにより、ウエハス
テージ37上の位置の座標を常時モニターすることがで
きる。レーザ干渉系44からCPU43に対してそのウ
エハステージ37からの座標情報が供給され、CPU4
3はステージ駆動部45を介してそのウエハステージ3
7の位置を所望の座標位置まで移動させることかでき
る。
The central processing unit 43 (hereinafter referred to as CPU) is electrically connected to the photomultiplier 42, and the photoelectric conversion signal output from the photomultiplier 42 is supplied to the CPU 43. Further, an X-direction mirror and a Y-direction mirror (not shown) are fixed to the upper surface of the wafer stage 37, and a laser interference system 44 is provided.
And, by using these two mirrors, the coordinates of the position on the wafer stage 37 can be constantly monitored. The coordinate information from the wafer stage 37 is supplied from the laser interference system 44 to the CPU 43, and the CPU 4
3 is the wafer stage 3 via the stage drive unit 45.
The position 7 can be moved to a desired coordinate position.

【0102】さて、次に、本実施の形態の動作について
説明する。組み立て誤差等により投影レンズ36及びト
ーリック型光学部材(1,2)内にて残存する投影光学
系の光軸に対して回転非対称な光学特性(非点収差、像
面湾曲、倍率誤差、歪曲収差)を計測するために、ま
ず、不図示のレチクルステージには、図13に示す如き
予め基準レチクル35’が配置されている。この基準レ
チクル35’のパターン領域には、図13に示す如く、
十字状のクロム等の遮光パターンが2次元的に所定の間
隔で配列されている。
Now, the operation of this embodiment will be described. Optical characteristics (astigmatism, field curvature, magnification error, distortion aberration) that are rotationally asymmetrical with respect to the optical axis of the projection optical system remaining in the projection lens 36 and the toric optical member (1, 2) due to assembly error or the like. ), A reference reticle 35 'as shown in FIG. 13 is arranged in advance on a reticle stage (not shown). In the pattern area of the reference reticle 35 ', as shown in FIG.
Cross-shaped light-shielding patterns such as chrome are two-dimensionally arranged at predetermined intervals.

【0103】CPU43は、駆動部27を介してシャッ
ター26で露光光ILを遮断した後に、ステージ駆動部
45を介してウエハステージ37上の調整板39を投影
レンズ36のイメージフィールド内に移動させる。これ
により、シャッター26から反射された露光光IL(以
下、単に照明光と称する。)が集光レンズ28及びライ
トガイド29を介してウエハステージ37の内部へ射出
される。この照明光は反射ミラー40で反射された後
に、コンデンサーレンズ41でほぼ平行光束に変換され
て、調整板39に形成された基準パターンを下面側から
照明する。この調整板39の基準パターンは、投影レン
ズ36及びトーリック型光学部材(1,2)により、基
準レチクル35’の遮光パターン上に投影され、この2
つのパターン同志の整合状態は、第2のコンデンサーレ
ンズ34、ダイクロイックミラー33、第1のコンデン
サーレンズ33及びハーフミラー31を介してフォトマ
ルチプライアー42にて光電的に検出される。そして、
CPU43は、基準レチクル35’内で2次元的に配列
された複数の遮光パターンの位置の座標をフォトマルチ
プライアー42を介して順次検出するために、レーザ干
渉系44を介してウエハステージ37の座標位置を常時
モニターしながら、ステージ駆動部45を介してウエハ
ステージ37を順次移動させる。これによって、フォト
マルチプライアー42は基準レチクル35’内で2次元
的に配列された複数の遮光パターンと調整板39の基準
パターンとの整合状態をそれぞれ光電的に検出し、CP
U43はそれぞれの整合状態となる座標位置をレーザ干
渉系44を介して、CPU43内部の第1メモリー部に
て順次格納する。さらにCPU43の内部には不図示の
第2メモリー部及び第1補正量算出部を有しており、こ
の第2メモリー部には、投影光学系の光軸に対して回転
非対称な光学特性(非点収差、像面湾曲、倍率誤差、歪
曲収差)とトーリック型光学部材(1,2)の相対的な
回転量とに関する相関的な情報が予め格納されている。
従って、第1補正量算出部は、第1及び第2メモリー部
からの情報に基づいて、トーリック型光学部材(1,
2)の補正すべき最適な相対的な回転量を算出する。そ
して、この第1補正量算出部からの補正情報に基づいて
CPU43は駆動信号をモータ等の駆動部46へ出力
し、駆動部46は所定の補正量(回転量)だけトーリッ
ク型光学部材(1,2)の相対的に回転させる。
The CPU 43 blocks the exposure light IL by the shutter 26 via the drive unit 27, and then moves the adjustment plate 39 on the wafer stage 37 into the image field of the projection lens 36 via the stage drive unit 45. As a result, the exposure light IL (hereinafter, simply referred to as illumination light) reflected from the shutter 26 is emitted to the inside of the wafer stage 37 via the condenser lens 28 and the light guide 29. This illumination light is reflected by the reflection mirror 40, then converted into a substantially parallel light flux by the condenser lens 41, and illuminates the reference pattern formed on the adjustment plate 39 from the lower surface side. The reference pattern of the adjusting plate 39 is projected onto the light-shielding pattern of the reference reticle 35 'by the projection lens 36 and the toric optical member (1, 2).
The matching state between the two patterns is photoelectrically detected by the photomultiplier 42 via the second condenser lens 34, the dichroic mirror 33, the first condenser lens 33, and the half mirror 31. And
The CPU 43 sequentially detects, via the photomultiplier 42, the coordinates of the positions of the plurality of light-shielding patterns two-dimensionally arranged in the reference reticle 35 ′, and the coordinates of the wafer stage 37 via the laser interference system 44. While constantly monitoring the position, the wafer stage 37 is sequentially moved via the stage drive unit 45. As a result, the photomultiplier 42 photoelectrically detects the matching state between the plurality of light-shielding patterns two-dimensionally arranged in the reference reticle 35 'and the reference pattern of the adjusting plate 39, and CP
The U 43 sequentially stores the coordinate positions in the respective matching states in the first memory section inside the CPU 43 via the laser interference system 44. Further, the CPU 43 has a second memory unit and a first correction amount calculation unit (not shown) inside the CPU 43. The second memory unit has optical characteristics (non-rotationally asymmetric with respect to the optical axis of the projection optical system). Correlative information regarding point aberration, field curvature, magnification error, distortion, and the relative amount of rotation of the toric optical members (1, 2) is stored in advance.
Therefore, the first correction amount calculation unit, based on the information from the first and second memory unit, the toric optical member (1,
The optimum relative rotation amount to be corrected in 2) is calculated. Then, the CPU 43 outputs a drive signal to the drive unit 46 such as a motor based on the correction information from the first correction amount calculation unit, and the drive unit 46 outputs a predetermined correction amount (rotation amount) to the toric optical member (1 , 2) Rotate relatively.

【0104】以上の動作が完了した後、実際のプロセス
に用いる通常のレチクル35を不図示のレチクルステー
ジ上に設定し、CPU43は駆動部27を介してシャッ
ター26を切り換える。これによって、露光光ILは照
明光学系を介してレチクル35を照明して、レチクル3
5のパターン像はトーリック型光学部材(1,2)及び
投影レンズ36を介してウエハ38上に忠実に転写され
る。この様に、投影露光装置による露光転写を連続的に
行うと、投影レンズ36には露光光ILによる熱エネル
ギーが蓄えられ、投影レンズ36の光学特性の変動が生
じる恐れがあるため、露光転写の動作の途中で定期的
に、以上にて述べた如く、投影レンズ36による光学特
性を計測し、その計測した結果に基づいてトーリック型
光学部材(1,2)を回転させれば良い。この時、投影
レンズ36を構成するレンズ間での圧力を制御して、投
影レンズ36自体の倍率を調整するという周知の技術と
併用することがより望ましい。
After the above operation is completed, the normal reticle 35 used in the actual process is set on the reticle stage (not shown), and the CPU 43 switches the shutter 26 via the drive unit 27. As a result, the exposure light IL illuminates the reticle 35 via the illumination optical system, and the reticle 3 is illuminated.
The pattern image 5 is faithfully transferred onto the wafer 38 via the toric optical members (1, 2) and the projection lens 36. As described above, when the exposure transfer is continuously performed by the projection exposure apparatus, thermal energy due to the exposure light IL is accumulated in the projection lens 36 and the optical characteristics of the projection lens 36 may fluctuate. As described above, the optical characteristics of the projection lens 36 may be measured periodically during the operation, and the toric optical members (1, 2) may be rotated based on the measured results. At this time, it is more desirable to use the well-known technique of controlling the pressure between the lenses forming the projection lens 36 to adjust the magnification of the projection lens 36 itself.

【0105】なお、トーリック型光学部材(1,2)の
相対的な回転量によって、投影レンズ36に残存する回
転非対称な光学特性(非点収差、像面湾曲、倍率誤差、
歪曲収差)が完全に最適化された状態で補正されている
かを確認する事が望ましく、この場合には、以上の述べ
た動作を繰り返せば、より完全なる補正が達成できる。
The rotationally asymmetric optical characteristics (astigmatism, field curvature, magnification error, etc.) remaining in the projection lens 36 depend on the relative rotation amount of the toric optical members (1, 2).
It is desirable to confirm whether or not the distortion is corrected in a completely optimized state. In this case, more complete correction can be achieved by repeating the above-described operation.

【0106】また、投影レンズ36内に残存する倍率誤
差、歪曲収差を計測する際には、ウエハステージ37を
2次元的に移動させて基準レチクル35’内の各遮光パ
ターンの座標位置を求めれば良いが、投影レンズ36内
に残存する非点収差、像面湾曲をより正確に計測する際
には、ウエハステージ37を投影レンズ36の光軸方向
へ移動させながら、フォトマルチプライアー42からの
出力信号のコントラストが最大となるような基準レチク
ル35’内の各遮光パターンの座標位置を求めれば良
い。
When measuring the magnification error and distortion remaining in the projection lens 36, the wafer stage 37 is two-dimensionally moved to find the coordinate position of each light shielding pattern in the reference reticle 35 '. Although it is good, when the astigmatism and the field curvature remaining in the projection lens 36 are measured more accurately, the output from the photomultiplier 42 while moving the wafer stage 37 in the optical axis direction of the projection lens 36. The coordinate position of each light-shielding pattern within the reference reticle 35 'that maximizes the signal contrast may be obtained.

【0107】さて、本実施の形態の投影露光装置は、半
導体製造プロセス等によりウエハ38の非線型な伸縮、
複数の投影露光装置によって半導体を製造する場合での
投影露光装置間の倍率誤差及び歪曲収差の差が生じる際
にも十分に対応することができる。具体的には、まず、
CPU43は、ウエハ上に形成されている複数のウエハ
マークの座標位置を、投影レンズ36の外側に設けられ
ている第2アライメント48を介して順次、光学的に検
出するために、レーザ干渉系44を介してウエハステー
ジ37の座標位置を常時モニターしながら、ステージ駆
動部45を介してウエハステージ37を順次移動させ
る。これによって、CPU43は第2アライメント48
及びレーザ干渉系44から得られるウエハ上に形成され
た各ウエハマークの座標位置をCPU43の内部の第3
メモリー部にて順次格納する。さらにCPU43の内部
には不図示の第4メモリー部及び第2補正量算出部を有
しており、この第4メモリー部には、投影光学系の光軸
に対して回転非対称な光学特性(非点収差、像面湾曲、
倍率誤差、歪曲収差)とトーリック型光学部材(1,
2)の相対的な回転量とに関する相関的な情報が予め格
納されている。従って、第2補正量算出部は、第3及び
第4メモリー部からの情報に基づいて、トーリック型光
学部材(1,2)の補正すべき最適な相対的な回転量を
算出する。そして、この補正量算出部からの補正情報に
基づいてCPU43は駆動信号をモータ等の駆動部46
へ出力し、駆動部46は所定の補正量(回転量)だけト
ーリック型光学部材(1,2)の相対的に回転させる。
In the projection exposure apparatus of this embodiment, the non-linear expansion / contraction of the wafer 38 is performed by the semiconductor manufacturing process or the like.
Even when a semiconductor is manufactured by a plurality of projection exposure apparatuses, a difference in magnification error and distortion between the projection exposure apparatuses can be sufficiently dealt with. Specifically, first,
The CPU 43 sequentially and optically detects the coordinate positions of the plurality of wafer marks formed on the wafer via the second alignment 48 provided outside the projection lens 36, and thus the laser interference system 44. The wafer stage 37 is sequentially moved via the stage drive unit 45 while constantly monitoring the coordinate position of the wafer stage 37 via. As a result, the CPU 43 causes the second alignment 48
And the coordinate position of each wafer mark formed on the wafer obtained from the laser interference system 44 to the third position inside the CPU 43.
Sequentially stored in the memory section. Further, the CPU 43 has a fourth memory section and a second correction amount calculation section (not shown) inside the CPU 43. The fourth memory section has optical characteristics (non-rotationally asymmetrical with respect to the optical axis of the projection optical system) Point aberration, field curvature,
Magnification error, distortion) and toric optical member (1,
Information related to the relative rotation amount of 2) is stored in advance. Therefore, the second correction amount calculation unit calculates the optimum relative rotation amount of the toric optical member (1, 2) to be corrected based on the information from the third and fourth memory units. Then, based on the correction information from the correction amount calculation unit, the CPU 43 sends a drive signal to the drive unit 46 such as a motor.
The drive unit 46 causes the toric optical members (1, 2) to relatively rotate by a predetermined correction amount (rotation amount).

【0108】以上の図12に示した実施の形態ではトー
リック型光学部材(1,2)の相対的な回転量によって
投影レンズ36に残存する回転非対称な光学特性(非点
収差、像面湾曲、倍率誤差、歪曲収差)を補正する例を
述べたが、トーリック型光学部材(1,2)を相対的に
投影レンズ36の光軸方向へ移動させても良いことは言
うまでもない。また、図12の実施の形態では投影レン
ズ36に残存する回転非対称な光学特性(非点収差、像
面湾曲、倍率誤差、歪曲収差)を自動補正する例を示し
たが、トーリック型光学部材(1,2)の回転または移
動をマニュアル的に行うことも可能である。
In the embodiment shown in FIG. 12, the rotationally asymmetrical optical characteristics (astigmatism, field curvature, etc.) remaining in the projection lens 36 due to the relative rotation amount of the toric optical members (1, 2). Although the example of correcting the magnification error and the distortion aberration has been described, it goes without saying that the toric optical members (1, 2) may be relatively moved in the optical axis direction of the projection lens 36. Further, in the embodiment of FIG. 12, an example of automatically correcting the rotationally asymmetric optical characteristics (astigmatism, field curvature, magnification error, distortion aberration) remaining in the projection lens 36 is shown, but a toric optical member ( It is also possible to manually rotate or move 1) or 2).

【0109】また、本実施の形態中の光源21、楕円鏡
22及びコリメータレンズ24の代わりに平行光束を供
給するエキシマレーザ等のレーザ光源を用いても良く、
さらにはこのレーザ、及びこのレーザ光を所定の光束断
面の光に変換するビームエキスパンダとを組み合わせて
も良い。さて、図12に示した実施の形態では、レチク
ルと投影レンズとの間にトーリック型光学部材(1,
2)を配置した例を述べたがこの配置に限ることはな
く、図14に示す如き構成としても良い。
Further, instead of the light source 21, the elliptic mirror 22 and the collimator lens 24 in this embodiment, a laser light source such as an excimer laser which supplies a parallel light flux may be used.
Furthermore, this laser and a beam expander that converts this laser light into light having a predetermined cross section of the light flux may be combined. Now, in the embodiment shown in FIG. 12, a toric optical member (1,
The example in which 2) is arranged has been described, but the arrangement is not limited to this, and the structure shown in FIG. 14 may be adopted.

【0110】図14の(a)は、投影レンズ36とウエ
ハ38との間にトーリック型光学部材(1,2)を配置
した例を示している。図示の如く、トーリック型光学部
材(1,2)は、ウエハ38側から順に、レチクル35
側に凹面を向けた負の円柱レンズ1と、ウエハ38側に
凸面を向けた正の円柱レンズ2とを有している。この構
成によれば、図12に示した実施例と同様に、非点収差
に対して余り影響を及ばさずに、倍率誤差の補正に対し
て大きく寄与させることができる。従って、投影レンズ
36内にて倍率誤差が大きく残存している場合において
有効(図12に示した実施例と同様に有効)である。
FIG. 14A shows an example in which toric optical members (1, 2) are arranged between the projection lens 36 and the wafer 38. As shown, the toric optical members (1, 2) are arranged on the reticle 35 in order from the wafer 38 side.
It has a negative cylindrical lens 1 having a concave surface facing the side and a positive cylindrical lens 2 having a convex surface facing the wafer 38 side. According to this configuration, similarly to the embodiment shown in FIG. 12, it is possible to largely contribute to the correction of the magnification error without affecting the astigmatism. Therefore, it is effective when the magnification error remains large in the projection lens 36 (effective as in the embodiment shown in FIG. 12).

【0111】図14の(b)は、前群36Aと後群36
Bとからなる投影レンズ36において、前群36Aと後
群36Bとの間、即ち投影レンズ36の瞳位置もしくは
その近傍にトーリック型光学部材(1,2)を配置した
例を示している。図示の如く、トーリック型光学部材
(1,2)は、レチクル35側から順に、ウエハ38側
に凹面を向けた負の円柱レンズ1と、レチクル35側に
凸面を向けた正の円柱レンズ2とを有している。この構
成によれば、倍率誤差に対して余り影響を及ばさずに、
非点収差の補正に対して大きく寄与させることができ
る。従って、投影レンズ36内にて非点収差が大きく残
存している場合において有効である。
FIG. 14B shows the front group 36A and the rear group 36.
In the projection lens 36 including B, the toric optical members (1, 2) are arranged between the front group 36A and the rear group 36B, that is, at or near the pupil position of the projection lens 36. As shown in the figure, the toric optical member (1, 2) comprises, in order from the reticle 35 side, a negative cylindrical lens 1 having a concave surface facing the wafer 38 side and a positive cylindrical lens 2 having a convex surface facing the reticle 35 side. have. According to this configuration, the error in magnification is not affected so much,
It can greatly contribute to the correction of astigmatism. Therefore, it is effective when a large amount of astigmatism remains in the projection lens 36.

【0112】図14の(c)は、投影レンズ36を挟ん
でレチクル35側とウエハ38側とにそれぞれトーリッ
ク型光学部材(2A,2B)を配置した例を示してい
る。図示の如く、レチクル35と投影レンズ36との間
には、ウエハ38側に凸面を向けた第1の正の円柱レン
ズ2Aが設けられており、投影レンズ36とウエハ38
との間にはレチクル35側に凸面を向けた第2の正の円
柱レンズ2Bが設けられている。この構成によれば、図
12及び図14(a)に示した例と同様に、非点収差に
対して余り影響を及ばさずに、倍率誤差の補正に対して
大きく寄与させることができる。
FIG. 14C shows an example in which the toric optical members (2A, 2B) are arranged on the reticle 35 side and the wafer 38 side with the projection lens 36 interposed therebetween. As shown in the figure, a first positive cylindrical lens 2A having a convex surface facing the wafer 38 is provided between the reticle 35 and the projection lens 36, and the projection lens 36 and the wafer 38 are provided.
A second positive cylindrical lens 2B having a convex surface facing the reticle 35 side is provided between and. According to this configuration, similarly to the example shown in FIGS. 12 and 14A, it is possible to largely contribute to the correction of the magnification error without affecting the astigmatism.

【0113】図14の(d)は図14の(c)をさらに
応用した例を示しており、投影レンズ36を挟んでレチ
クル35側とウエハ38側とにそれぞれ配置された正の
円柱レンズ(2A,2B)の各々に負の円柱レンズ(1
A,1B)を組み合わせた例を示している。この構成に
よれば、非点収差に対して余り影響を及ばさずに、倍率
誤差の補正に対して大きく寄与させることができる。こ
の場合、第1のトーリック型光学部材(1A,2A)と
第2のトーリック型光学部材(1B,2B)との内の一
方によって投影レンズ36に残存する倍率誤差を主に補
正し、他方によってウエハ38の伸縮に対する倍率誤差
の補正を行っても良い。さらには、この構成に基づい
て、第1のトーリック型光学部材(1A,2A)と第2
のトーリック型光学部材(1B,2B)との内の一方の
パワーを強くし、他方を弱くなるように構成すれば、一
方のパワー強いトーリック型光学部材では、非点収差に
対して余り影響を及ばさずに倍率誤差の粗調整が行え、
他方のパワーの弱いトーリック型光学部材では、非点収
差に対して余り影響を及ばさずに倍率誤差の微調整が行
える。
FIG. 14D shows an example in which FIG. 14C is further applied, and positive cylindrical lenses (which are respectively arranged on the reticle 35 side and the wafer 38 side with the projection lens 36 interposed therebetween ( 2A, 2B) with a negative cylindrical lens (1
An example in which A, 1B) are combined is shown. According to this configuration, it is possible to greatly contribute to the correction of the magnification error without affecting the astigmatism. In this case, the magnification error remaining in the projection lens 36 is mainly corrected by one of the first toric optical member (1A, 2A) and the second toric optical member (1B, 2B), and the other is corrected by the other. A magnification error with respect to the expansion and contraction of the wafer 38 may be corrected. Furthermore, based on this configuration, the first toric optical member (1A, 2A) and the second toric optical member
If the power of one of the toric optical members (1B, 2B) is increased and the other is weakened, the toric optical member of one strong power will not affect the astigmatism. Rough adjustment of magnification error can be done without affecting
On the other hand, with a toric optical member having weak power, fine adjustment of the magnification error can be performed without affecting the astigmatism.

【0114】図14の(e)は図14の(a)と図14
の(b)とを組み合わせてさらに応用した例を示してお
り、図示の如く、レチクル35と投影レンズ(前群36
A)との間には、負の円柱レンズ1Aと正の円柱レンズ
2Aとで構成される第1のトーリック型光学部材(1
A,2A)が設けられており、投影レンズ36中におけ
る前群36Aと後群36Bとの間(投影レンズ36の瞳
位置もしくはその近傍)には、負の円柱レンズ1Bと正
の円柱レンズ2Bとで構成される第2のトーリック型光
学部材(1B,2B)が設けられている。この構成によ
れば、第1のトーリック型光学部材(1A,2A)では
非点収差に対して余り影響を及ばさずに倍率誤差の調整
が行え、第2のトーリック型光学部材(1B,2B)で
は倍率誤差に対して余り影響を及ばさずに非点収差の調
整が行え、すなわち、倍率誤差と非点収差とを独立に補
正することができる。
FIG. 14 (e) is the same as FIG. 14 (a).
(B) is further applied in combination, and as shown in the figure, the reticle 35 and the projection lens (front group 36
A) is a first toric optical member (1) composed of a negative cylindrical lens 1A and a positive cylindrical lens 2A.
A, 2A) are provided, and between the front group 36A and the rear group 36B in the projection lens 36 (at or near the pupil position of the projection lens 36), a negative cylindrical lens 1B and a positive cylindrical lens 2B are provided. A second toric optical member (1B, 2B) constituted by is provided. With this configuration, the first toric optical member (1A, 2A) can adjust the magnification error without affecting astigmatism so much, and the second toric optical member (1B, 2B) can be adjusted. In (), the astigmatism can be adjusted without affecting the magnification error so much, that is, the magnification error and the astigmatism can be independently corrected.

【0115】図14の(f)は図14の(d)と図14
の(e)とを組み合わせた例を示しており、倍率誤差と
非点収差との独立補正に加えて、倍率誤差と非点収差と
の各々の粗調整と微調整とを行うことができる。
FIG. 14 (f) is the same as FIG. 14 (d).
(E) is shown in combination, and in addition to independent correction of magnification error and astigmatism, coarse adjustment and fine adjustment of magnification error and astigmatism can be performed.

【0116】本発明によれば、投影光学系の回転非対称
な光学特性、例えば回転非対称な軸外収差成分(非点収
差成分、像面湾曲等)や回転非対称な倍率誤差成分等を
補正することができる。
According to the present invention, the rotationally asymmetrical optical characteristics of the projection optical system, such as the rotationally asymmetrical off-axis aberration component (astigmatism component, field curvature, etc.), rotationally asymmetrical magnification error component, etc., can be corrected. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】トーリックレンズを負の円柱レンズとした時の
原理図である。
FIG. 1 is a principle diagram when a toric lens is a negative cylindrical lens.

【図2】トーリックレンズを正の円柱レンズとした時の
原理図である。
FIG. 2 is a principle diagram when a toric lens is a positive cylindrical lens.

【図3】図1の負の円柱レンズによる作用を示す図であ
る。
FIG. 3 is a diagram showing an operation of the negative cylindrical lens of FIG.

【図4】図2の正の円柱レンズによる作用を示す図であ
る。
FIG. 4 is a diagram showing the operation of the positive cylindrical lens of FIG.

【図5】図3に示した仮想平面での光束断面の様子を示
す平面図である。
5 is a plan view showing a state of a light beam cross section on the virtual plane shown in FIG. 3. FIG.

【図6】図4に示した仮想平面での光束断面の様子を示
す平面図である。
6 is a plan view showing a state of a light beam cross section on the virtual plane shown in FIG. 4. FIG.

【図7】図3に示した負の円柱レンズの幾何光学的な関
係を示す図である。
FIG. 7 is a diagram showing a geometrical optical relationship of the negative cylindrical lens shown in FIG.

【図8】図4に示した正の円柱レンズの幾何光学的な関
係を示す図である。
8 is a diagram showing a geometrical optical relationship of the positive cylindrical lens shown in FIG.

【図9】投影光学系の幾何光学的な関係を示す図であ
る。
FIG. 9 is a diagram showing a geometrical optical relationship of a projection optical system.

【図10】図9に示した投影光学系とレチクルとの間に
トーリックレンズとしての円柱レンズを配置した時の幾
何光学的な関係を示す図である。
10 is a diagram showing a geometrical optical relationship when a cylindrical lens as a toric lens is arranged between the projection optical system and the reticle shown in FIG.

【図11】図9に示した投影光学系の瞳近傍にトーリッ
クレンズとしての円柱レンズを配置した時の幾何光学的
な関係を示す図である。
11 is a diagram showing a geometrical-optical relationship when a cylindrical lens as a toric lens is arranged near the pupil of the projection optical system shown in FIG.

【図12】本発明による実施例の構成を示す図である。FIG. 12 is a diagram showing a configuration of an exemplary embodiment according to the present invention.

【図13】基準レチクルの様子を示す平面図である。FIG. 13 is a plan view showing a state of a reference reticle.

【図14】(a)はレチクルと投影レンズとの間にトー
リックレンズとしての正の円柱レンズと負の円柱レンズ
とを配置した時の様子を示す図、(b)は投影レンズの
瞳位置またはその近傍にトーリックレンズとしての正の
円柱レンズと負の円柱レンズとを配置した時の様子を示
す図、(c)はレチクルと投影レンズとの間及び投影レ
ンズとウエハとの間の各々にトーリックレンズとしての
正の円柱レンズを配置した時の様子を示す図、(d)は
レチクルと投影レンズとの間及び投影レンズとウエハと
の間の各々にトーリックレンズとしての正の円柱レンズ
と負の円柱レンズとを配置した時の様子を示す図、
(e)はレチクルと投影レンズとの間及び投影レンズの
瞳位置またはその近傍の各々にトーリックレンズとして
の正の円柱レンズと負の円柱レンズとを配置した時の様
子を示す図、(f)はレチクルと投影レンズとの間、及
び投影レンズの瞳位置またはその近傍及び投影レンズと
ウエハとの間の各々にトーリックレンズとしての正の円
柱レンズと負の円柱レンズとを配置した時の様子を示す
図である。
FIG. 14A is a diagram showing a state in which a positive cylindrical lens and a negative cylindrical lens as toric lenses are arranged between a reticle and a projection lens, and FIG. 14B is a pupil position of the projection lens or The figure which shows a mode when a positive cylinder lens and a negative cylinder lens as a toric lens are arrange | positioned in the vicinity, (c) is a toric to each between a reticle and a projection lens, and between a projection lens and a wafer. FIG. 3D is a diagram showing a state in which a positive cylindrical lens as a lens is arranged, and FIG. 7D shows a positive cylindrical lens as a toric lens and a negative cylindrical lens as a toric lens between the reticle and the projection lens and between the projection lens and the wafer. Diagram showing how the cylindrical lens is arranged,
(E) is a diagram showing a state in which a positive cylindrical lens and a negative cylindrical lens as toric lenses are arranged between the reticle and the projection lens and at or near the pupil position of the projection lens, respectively, (f) Shows a state in which a positive cylindrical lens and a negative cylindrical lens as toric lenses are arranged between the reticle and the projection lens, and at or near the pupil position of the projection lens and between the projection lens and the wafer. FIG.

【符号の説明】[Explanation of symbols]

1…負の円柱レンズ、2…正の円柱レンズ、21…光
源、22…楕円鏡、23…反射ミラー、24…コリメー
タレンズ、25…オプティカルインテグレータ、32…
第1のコンデンサーレンズ、34…第2コンデンサーレ
ンズ、36…投影レンズ、37…ウエハステージ、38
…ウエハ、42…フォトマルチプライアー、48…第2
アライメント系。
1 ... Negative cylindrical lens, 2 ... Positive cylindrical lens, 21 ... Light source, 22 ... Elliptic mirror, 23 ... Reflecting mirror, 24 ... Collimator lens, 25 ... Optical integrator, 32 ...
1st condenser lens, 34 ... 2nd condenser lens, 36 ... Projection lens, 37 ... Wafer stage, 38
... Wafer, 42 ... Photomultiplier, 48 ... Second
Alignment system.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−183190(JP,A) 特開 昭59−144127(JP,A) 特開 昭62−21118(JP,A) 特開 平6−89842(JP,A) 特開 平4−134813(JP,A) 特開 平3−88317(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/027 G02B 3/06 G02B 13/18 G03F 7/20 ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-7-183190 (JP, A) JP-A-59-144127 (JP, A) JP-A-62-21118 (JP, A) JP-A-6- 89842 (JP, A) JP-A-4-134813 (JP, A) JP-A-3-88317 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01L 21/027 G02B 3 / 06 G02B 13/18 G03F 7/20

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 レチクルのパターン像を基板に投影する
投影露光方法において、 前記投影光学系の回転非対称な光学特性を補正するため
に、前記投影光学系中の回転非対称な光学特性を有する
2つの光学素子間の相対的な回転量を算出する工程と、 前記算出結果に基づいて、前記相対的な回転量となるよ
うに前記2つの光学素子を設定する工程とを含むことを
特徴とする投影露光方法。
1. A projection exposure method for projecting a pattern image of a reticle onto a substrate, wherein two projections have rotationally asymmetrical optical characteristics in the projection optical system in order to correct rotationally asymmetrical optical characteristics of the projection optical system. A projection including: a step of calculating a relative rotation amount between the optical elements; and a step of setting the two optical elements so as to have the relative rotation amount based on the calculation result. Exposure method.
【請求項2】 前記2つの光学素子は、回転非対称なパ
ワーを有することを特徴とする請求項1記載の投影露光
方法。
2. The projection exposure method according to claim 1, wherein the two optical elements have rotationally asymmetric powers.
【請求項3】 前記2つの光学素子は、それぞれ直交し
た方向でパワーが異なることを特徴とする請求項1又は
請求項2に記載の投影露光方法。
3. The projection exposure method according to claim 1, wherein the two optical elements have different powers in directions orthogonal to each other.
【請求項4】 前記2つの光学素子は、それぞれ所定の
屈折率分布を有することを特徴とする請求項1又は請求
項2に記載の投影露光方法。
4. The projection exposure method according to claim 1, wherein each of the two optical elements has a predetermined refractive index distribution.
【請求項5】 前記投影光学系の光軸に対して回転非対
称な光学特性を計測する工程をさらに含み、 前記相対的な回転量は、計測された前記回転非対称な光
学特性に基づいて算出されることを特徴とする請求項1
〜請求項4の何れか一項に記載の投影露光方法。
5. The method further includes measuring a rotationally asymmetric optical characteristic with respect to an optical axis of the projection optical system, wherein the relative rotation amount is calculated based on the measured rotationally asymmetric optical characteristic. Claim 1 characterized by the above-mentioned.
~ The projection exposure method according to claim 4.
【請求項6】 前記2つの光学素子を設定した後に、前
記レチクルの前記パターン像を前記基板に投影すること
を特徴とする請求項1〜請求項5の何れか一項に記載の
投影露光方法。
6. The projection exposure method according to claim 1, wherein the pattern image of the reticle is projected onto the substrate after setting the two optical elements. .
JP2001164377A 2001-05-31 2001-05-31 Projection exposure method Expired - Lifetime JP3381257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001164377A JP3381257B2 (en) 2001-05-31 2001-05-31 Projection exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001164377A JP3381257B2 (en) 2001-05-31 2001-05-31 Projection exposure method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP32372193A Division JP3341269B2 (en) 1993-12-22 1993-12-22 Projection exposure apparatus, exposure method, semiconductor manufacturing method, and projection optical system adjustment method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2002309570A Division JP3465793B2 (en) 2002-10-24 2002-10-24 Projection exposure apparatus and projection exposure method
JP2002309436A Division JP2003178971A (en) 2002-10-24 2002-10-24 Projection light exposure apparatus, and projection light exposure method

Publications (2)

Publication Number Publication Date
JP2002033276A JP2002033276A (en) 2002-01-31
JP3381257B2 true JP3381257B2 (en) 2003-02-24

Family

ID=19007207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001164377A Expired - Lifetime JP3381257B2 (en) 2001-05-31 2001-05-31 Projection exposure method

Country Status (1)

Country Link
JP (1) JP3381257B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4261275B2 (en) * 2002-11-28 2009-04-30 Hoya株式会社 Image shift device
WO2006053751A2 (en) 2004-11-18 2006-05-26 Carl Zeiss Smt Ag Projection lens system of a microlithographic projection exposure installation
JP6031755B2 (en) 2011-12-14 2016-11-24 ソニー株式会社 Stereo imaging device
JP7005364B2 (en) * 2018-01-29 2022-01-21 キヤノン株式会社 Projection optical system, exposure equipment, manufacturing method and adjustment method of articles
WO2020188487A1 (en) 2019-03-20 2020-09-24 Ricoh Company, Ltd. Virtual image display device
CN111443411A (en) * 2020-04-21 2020-07-24 南昌嘉研科技有限公司 Two-way spectroscope

Also Published As

Publication number Publication date
JP2002033276A (en) 2002-01-31

Similar Documents

Publication Publication Date Title
JP3341269B2 (en) Projection exposure apparatus, exposure method, semiconductor manufacturing method, and projection optical system adjustment method
JP4070257B2 (en) High numerical aperture ring field optical reduction system
US7236254B2 (en) Exposure apparatus with interferometer
JP2000091209A (en) Aligner and manufacture thereof, and device manufacturing method
US20080068705A1 (en) Projection optical system and method
JP4833211B2 (en) Projection objective for microlithography
JP2003114387A (en) Cata-dioptic system and projection exposure device equipped with the same system
JP2005233979A (en) Catadioptric system
JP5105743B2 (en) Refractive projection objective for immersion lithography
JP2000195782A (en) Projector and aligner
JP3774590B2 (en) Projection exposure apparatus and device manufacturing method using the same
CN114279690A (en) Fourier transform objective lens for micro fly's eye lens array element measurement
JP3381257B2 (en) Projection exposure method
JP2001308006A (en) Microlithography illuminating system and microlithography projection exposure system equipped therewith
JP2001155993A (en) Illumination optical unit and projection aligner equipped with it
JPWO2002042728A1 (en) Projection optical system aberration measurement method and apparatus, and exposure method and apparatus
JP3381256B2 (en) Projection exposure apparatus, exposure method, semiconductor manufacturing method, and projection optical system adjustment method
JP3465793B2 (en) Projection exposure apparatus and projection exposure method
KR20050033492A (en) Illumination optical system and exposure apparatus having the same
JP2003178971A (en) Projection light exposure apparatus, and projection light exposure method
JP3358192B2 (en) Projection exposure apparatus, exposure method, semiconductor manufacturing method, and projection optical system adjustment method
US7511890B2 (en) Refractive optical imaging system, in particular projection objective for microlithography
JP3358193B2 (en) Projection exposure apparatus, exposure method, semiconductor manufacturing method, and projection optical system adjustment method
CN114019653B (en) Fourier transform objective lens for measuring diffractive optical element
JP2004029458A (en) Projection optical system and stepper

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141220

Year of fee payment: 12

EXPY Cancellation because of completion of term