JP3380755B2 - Automatic chromatic dispersion equalizing optical transmission system - Google Patents

Automatic chromatic dispersion equalizing optical transmission system

Info

Publication number
JP3380755B2
JP3380755B2 JP28462698A JP28462698A JP3380755B2 JP 3380755 B2 JP3380755 B2 JP 3380755B2 JP 28462698 A JP28462698 A JP 28462698A JP 28462698 A JP28462698 A JP 28462698A JP 3380755 B2 JP3380755 B2 JP 3380755B2
Authority
JP
Japan
Prior art keywords
dispersion
circuit
transmission system
optical transmission
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28462698A
Other languages
Japanese (ja)
Other versions
JP2000115077A (en
Inventor
昭一郎 桑原
明秀 佐野
一茂 米永
宮本  裕
幹夫 米山
弘 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP28462698A priority Critical patent/JP3380755B2/en
Publication of JP2000115077A publication Critical patent/JP2000115077A/en
Application granted granted Critical
Publication of JP3380755B2 publication Critical patent/JP3380755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、伝送用光ファイバ
を介して接続された送信装置と受信装置との間に、所定
の間隔で線形中継器および再生中継器を配置した光伝送
システムのシステム導入時に、再生中継区間の総波長分
散量を線形中継区間ごとに自動的に等化する自動波長分
散等化光伝送システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system of an optical transmission system in which a linear repeater and a regenerator are arranged at a predetermined interval between a transmitter and a receiver connected via a transmission optical fiber. The present invention relates to an automatic chromatic dispersion equalization optical transmission system that automatically equalizes the total chromatic dispersion amount in a regenerative repeater section for each linear repeater section.

【0002】[0002]

【従来の技術】近年、光技術の発展および集積化技術、
高速電気回路技術の進展により光伝送システムの高速化
が図られ、現在までに、電気段の多重により1チャネル
あたり40Gbit/s の伝送速度の伝送実験が報告されてい
る(参考文献:M.Yoneyama etal.,"A 40-Gbit/s Optica
l Repeater Circuits using InAlAs/InGaAs HEMT Digit
al IC Chip Set", IEEE MTT-S Digest, WE1D-2,199
7)。また、実用システムでは、10Gbit/s の伝送容量
を有する超高速光伝送システムが基幹系ネットワークと
して運用されている(参考文献:K.Hagimoto et al.,"M
ulti-Gigabit-per-second Optical Transmission Syste
ms", IOOC'95, WC1-1, 1995)。
2. Description of the Related Art In recent years, development of optical technology and integration technology,
Due to the progress of high-speed electric circuit technology, the speed of optical transmission systems has been increased, and up to now, a transmission experiment with a transmission speed of 40 Gbit / s per channel due to multiplexing of electric stages has been reported (reference: M. Yoneyama). et al., "A 40-Gbit / s Optica
l Repeater Circuits using InAlAs / InGaAs HEMT Digit
al IC Chip Set ", IEEE MTT-S Digest, WE1D-2,199
7). In a practical system, an ultrahigh-speed optical transmission system having a transmission capacity of 10 Gbit / s is operated as a backbone network (reference: K. Hagimoto et al., "M
ulti-Gigabit-per-second Optical Transmission Syste
ms ", IOOC'95, WC1-1, 1995).

【0003】今後、加入者系の光化、マルチメディアサ
ービスの展開などにより、高速広帯域通信サービスの発
展が予想されている。このような通信サービスを経済的
かつ効率的に提供するにはさらに高速化が必要であり、
そのためには光ファイバの波長分散による伝送距離の制
限の克服が重要課題になっている。
In the future, the development of high-speed broadband communication services is expected due to the opticalization of subscriber systems and the development of multimedia services. In order to provide such communication services economically and efficiently, further speedup is required.
For that purpose, it is an important issue to overcome the limitation of the transmission distance due to the wavelength dispersion of the optical fiber.

【0004】ここで、波長分散について説明する。波長
分散は、光パルスを形成している異なる波長成分が屈折
率の波長依存性により異なる速度で伝搬する現象であ
り、伝送後に波形歪みを起こし、伝送速度や伝送距離に
大きな制約を与える。以下の説明では、波長分散を単に
「分散」と呼ぶこととする。
Here, chromatic dispersion will be described. Chromatic dispersion is a phenomenon in which different wavelength components forming an optical pulse propagate at different speeds due to the wavelength dependence of the refractive index, which causes waveform distortion after transmission and greatly limits the transmission speed and transmission distance. In the following description, chromatic dispersion will be simply referred to as “dispersion”.

【0005】ビットレートBと許容分散量Dの関係は、
信号光波長をλ、光速をc、光ファイバ損失をα、カー
定数をn2 、有効コア面積をSeff 、再生中継距離を
L、線形中継距離をZa 、各線形中継器の送信出力をP
out とすると、
The relationship between the bit rate B and the allowable dispersion amount D is
The signal light wavelength is λ, the speed of light is c, the optical fiber loss is α, the Kerr constant is n 2 , the effective core area is Seff, the regenerative repeater distance is L, the linear repeater distance is Za, and the transmission output of each linear repeater is P.
out,

【0006】[0006]

【数1】 と表される(参考文献:A.Naka et al.,"In-Line Ampli
fier Transmission Distance Determined by Self-Phas
e Modulation and Group-Velocity Dispertion",J.Ligh
twave Technol., vol.12, no.2, p.280, 1994) 。
[Equation 1] (Reference: A. Naka et al., "In-Line Ampli
fier Transmission Distance Determined by Self-Phas
e Modulation and Group-Velocity Dispertion ", J.Ligh
twave Technol., vol.12, no.2, p.280, 1994).

【0007】式(1) に示すように、許容分散量Dは、ビ
ットレートBの2乗に比例して減少し、さらに再生中継
距離Lの2乗に比例して減少する。そのため、システム
導入時に伝送路ごとに分散特性を自動的に測定して等化
する自動分散等化技術は、高速光伝送システムにおいて
有用な方法として検討されている。
As shown in the equation (1), the allowable dispersion amount D decreases in proportion to the square of the bit rate B, and further decreases in proportion to the square of the regeneration relay distance L. Therefore, the automatic dispersion equalization technology, which automatically measures and equalizes the dispersion characteristic for each transmission line when the system is introduced, is being considered as a useful method in a high-speed optical transmission system.

【0008】従来の自動分散等化技術としては、例えば
特開平9−326755号公報に記載の「自動等化シス
テム」がある。このシステムでは、送受信装置内に再生
中継区間内の分散を自動的に等化する手段を備えること
により、分散補償に必要であった設計コストおよび人員
コストを削減することができる。これにより、最悪条件
設計というコスト高なオーバースペックを回避すること
ができる。
As a conventional automatic dispersion equalization technique, there is an "automatic equalization system" described in, for example, Japanese Patent Laid-Open No. 9-326755. In this system, by providing a means for automatically equalizing the dispersion in the regenerative repeater section in the transmitter / receiver, it is possible to reduce the design cost and personnel cost required for dispersion compensation. This makes it possible to avoid costly over-specification, which is the worst-case design.

【0009】[0009]

【発明が解決しようとする課題】ところで、前記公報に
記載の自動分散等化技術では、送受信間の伝送路である
再生中継区間の平均分散量に応じて、再生中継区間の分
散量を一括して等化する。一方、高速化を図る場合、従
来のSN比を確保するためには送信パワーの高出力化が
必要となる。しかし、送信パワーの高出力化は、分散と
非線形光学効果の影響を大きくし、一括分散等化が可能
な再生中継距離を制限することになる。また、従来の技
術では、高速化に伴い線形中継が困難になる。そのた
め、従来の線形中継区間ごとに再生中継器を導入する必
要が生じ、大幅なコストの増加を招く問題があった。
By the way, in the automatic dispersion equalization technique described in the above publication, the dispersion amount of the regeneration relay section is collectively determined according to the average dispersion amount of the regeneration relay section which is the transmission path between the transmission and the reception. Equalize. On the other hand, in order to increase the speed, it is necessary to increase the output of the transmission power in order to secure the conventional SN ratio. However, increasing the output power of the transmission power increases the influence of the dispersion and the nonlinear optical effect, and limits the regeneration relay distance at which collective dispersion equalization is possible. Further, in the conventional technique, linear relay becomes difficult as the speed increases. Therefore, it is necessary to introduce a regenerative repeater for each conventional linear repeater section, which causes a significant increase in cost.

【0010】本発明は、線形中継区間ごとに自動的に分
散等化を行い、さらに受信装置および線形中継器の受信
部で識別電圧、データ信号とクロックの位相を最適化す
ることにより、高速光伝送システムの再生中継区間の長
距離化を可能にする自動波長分散等化光伝送システムを
提供することを目的とする。
The present invention automatically performs dispersion equalization for each linear repeater section, and further optimizes the identification voltage, the phase of the data signal and the clock in the receiving section of the linear repeater to realize high-speed optical An object of the present invention is to provide an automatic wavelength dispersion equalization optical transmission system that enables a long distance of a regenerative repeater section of the transmission system.

【0011】[0011]

【課題を解決するための手段】請求項1〜3の自動波長
分散等化光伝送システムは、伝送用光ファイバを介して
接続された送信装置と受信装置との間に所定の間隔で配
置される線形中継器および再生中継器に可変分散等化器
を備え、線形中継器で線形中継区間の波長分散等化を行
い、受信装置および再生中継器の受信部で再生中継区間
の波長分散等化を行う構成である。
An automatic wavelength dispersion equalization optical transmission system according to claims 1 to 3 is arranged at a predetermined interval between a transmitter and a receiver connected via an optical fiber for transmission. Equipped with variable dispersion equalizer in linear repeater and regenerative repeater, chromatic dispersion equalization in linear repeater section is performed by linear repeater, and chromatic dispersion equalization in regenerative repeater section is performed by receiver of receiver and regenerator. It is a configuration for performing.

【0012】請求項4〜9の自動波長分散等化光伝送シ
ステムは、線形中継器の可変分散等化器に設定する分散
量について、試験信号光として伝送される交番チャープ
信号光の変調周波数成分強度が最小になる(請求項
)、交番チャープ信号光の変調周波数成分強度と直流
成分強度の比が最小になる(請求項5)、試験信号光と
して伝送される位相変調信号光のPM−AM変換効果に
よる変調周波数成分強度が最小になる(請求項6)、P
M−AM変換効果による変調周波数成分強度と直流成分
強度の比が最小になる(請求項7)、データ信号のクロ
ック成分強度が最大になる(請求項8)、2波長の試験
信号光の位相差が最小になる(請求項9)ように制御す
る。
In the automatic chromatic dispersion equalization optical transmission system according to claims 4 to 9 , the modulation frequency component of the alternating chirp signal light transmitted as the test signal light with respect to the dispersion amount set in the variable dispersion equalizer of the linear repeater. Minimum strength ( claims
4 ), the ratio of the modulation frequency component intensity of the alternating chirp signal light to the direct current component intensity is minimized ( claim 5 ), and the modulation frequency component intensity of the phase modulation signal light transmitted as the test signal light due to the PM-AM conversion effect. Is minimized ( claim 6 ), P
The ratio of the modulation frequency component intensity to the DC component intensity due to the M-AM conversion effect is minimized ( claim 7 ), the clock component intensity of the data signal is maximized ( claim 8 ), and the position of the test signal light of two wavelengths is increased. Control is performed so that the phase difference is minimized ( claim 9 ).

【0013】請求項10〜12の自動波長分散等化光伝
送システムは、受信装置または再生中継器の受信部の可
変分散等化器に設定する分散量について、受信信号の符
号誤り率が最小になる(請求項10)、受信信号のQ値
が最大になる(請求項11)、受信信号のクロック成分
強度が最大になる(請求項12)ように制御する。
In the automatic wavelength dispersion equalization optical transmission system of claims 10 to 12 , the code error rate of the received signal is minimized with respect to the amount of dispersion set in the variable dispersion equalizer of the receiver of the receiver or the regenerator. ( Claim 10 ), the Q value of the received signal becomes maximum ( Claim 11 ), and the clock component strength of the received signal becomes maximum ( Claim 12 ).

【0014】請求項13の自動波長分散等化光伝送シス
テムは、受信信号の符号誤り率が最小になる、または受
信信号のQ値が最大になるように、受信装置または再生
中継器の受信部の可変分散等化器に設定する分散量、お
よび識別回路のクロック位相を制御する。
According to a thirteenth aspect of the automatic wavelength dispersion equalization optical transmission system of the present invention, the receiving section of the receiving device or the regenerator is arranged so that the code error rate of the received signal is minimized or the Q value of the received signal is maximized. Control the dispersion amount set in the variable dispersion equalizer and the clock phase of the discrimination circuit.

【0015】請求項14の自動波長分散等化光伝送シス
テムは、受信信号の符号誤り率が最小になる、または受
信信号のQ値が最大になるように、受信装置または再生
中継器の受信部の可変分散等化器に設定する分散量、お
よび識別回路の識別電圧を制御する。
The automatic chromatic dispersion such Kahikari transmission system according to claim 14, bit error rate of the received signal is minimized, or as Q values of the received signal is maximized, the reception unit of the reception device or regenerator It controls the amount of dispersion set in the variable dispersion equalizer and the identification voltage of the identification circuit.

【0016】請求項15の自動波長分散等化光伝送シス
テムは、受信信号のクロック成分強度が最大になるよう
に受信装置または再生中継器の受信部の可変分散等化器
に設定する分散量を制御し、さらに受信信号の符号誤り
率が最小になる、または受信信号のQ値が最大になるよ
うに、受信装置または再生中継器の受信部の識別回路の
クロック位相を制御する。
In the automatic chromatic dispersion equalization optical transmission system according to claim 15 , the dispersion amount set in the variable dispersion equalizer of the receiving section of the receiving device or the regenerator is maximized so that the clock component strength of the received signal is maximized. Further, the clock phase of the discriminating circuit of the receiving unit of the receiving device or the regenerative repeater is controlled so that the code error rate of the receiving signal is minimized or the Q value of the receiving signal is maximized.

【0017】請求項16の自動波長分散等化光伝送シス
テムは、受信信号のクロック成分強度が最大になるよう
に受信装置または再生中継器の受信部の可変分散等化器
に設定する分散量を制御し、さらに受信信号の符号誤り
率が最小になる、または受信信号のQ値が最大になるよ
うに、受信装置または再生中継器の受信部の識別回路の
識別電圧を制御する。
The automatic chromatic dispersion such Kahikari transmission system according to claim 16, the amount of dispersion clock component intensity is set in the variable dispersion equalizer of the receiving portion of the receiver or regenerator so as to maximize the received signal Further, the discrimination voltage of the discrimination circuit of the reception device or the reception section of the regenerative repeater is controlled so that the code error rate of the reception signal is minimized or the Q value of the reception signal is maximized.

【0018】請求項17の自動波長分散等化光伝送シス
テムは、送信装置と受信装置との間に制御用回線を配線
し、送信装置と線形中継器と再生中継器の受信部と受信
装置にそれぞれ制御信号送受信回路を備え、自動波長分
散等化の開始および終了に伴う試験信号とデータ信号の
伝送切り替えその他の制御信号を送受信する。
In the automatic chromatic dispersion equalization optical transmission system according to claim 17 , a control line is wired between the transmitter and the receiver, and the transmitter, the linear repeater, the receiving section of the regenerator and the receiver are provided. Each has a control signal transmission / reception circuit, and transmits / receives a test signal and data signal transmission switching and other control signals accompanying the start and end of automatic chromatic dispersion equalization.

【0019】[0019]

【発明の実施の形態】(基本構成:請求項1〜3) 図1は、本発明の自動波長分散等化光伝送システムの基
本構成を示す。図において、本発明の自動波長分散等化
光伝送システムは、伝送用光ファイバ1を介して接続さ
れた送信装置10と受信装置30との間に、所定の間隔
で線形中継器20および再生中継器を配置した構成であ
る。なお、送信装置10および受信装置30は、それぞ
れ再生中継器の送信部および受信部に置き換えることが
できる。本発明の特徴は、線形中継器20で線形中継区
間の波長分散等化を行い、受信装置(再生中継器の受信
部)30で再生中継区間の波長分散等化を行うところに
ある。
BEST MODE FOR CARRYING OUT THE INVENTION (Basic Structure: Claims 1 to 3 ) FIG. 1 shows the basic structure of an automatic wavelength dispersion equalization optical transmission system of the present invention. In the figure, an automatic wavelength dispersion equalization optical transmission system according to the present invention includes a linear repeater 20 and a regenerative repeater at a predetermined interval between a transmitter 10 and a receiver 30 connected via a transmission optical fiber 1. This is a configuration in which vessels are arranged. The transmitting device 10 and the receiving device 30 can be replaced with the transmitting unit and the receiving unit of the regenerator, respectively. A feature of the present invention is that the linear repeater 20 performs chromatic dispersion equalization in the linear repeater section, and the receiving device (reception unit of the regenerative repeater) 30 performs chromatic dispersion equalization in the regenerative repeater section.

【0020】図において、本発明の自動波長分散等化光
伝送システムは、伝送用光ファイバ1を介して接続され
た送信装置10と受信装置30との間に、所定の間隔で
線形中継器20および再生中継器を配置した構成であ
る。なお、送信装置10および受信装置30は、それぞ
れ再生中継器の送信部および受信部に置き換えることが
できる。本発明の特徴は、線形中継器20で線形中継区
間の波長分散等化を行い、受信装置(再生中継器の受信
部)30で再生中継区間の波長分散等化を行うところに
ある。
In the figure, in an automatic wavelength dispersion equalization optical transmission system of the present invention, a linear repeater 20 is provided at a predetermined interval between a transmission device 10 and a reception device 30 connected via a transmission optical fiber 1. And a regenerator is arranged. The transmitting device 10 and the receiving device 30 can be replaced with the transmitting unit and the receiving unit of the regenerator, respectively. A feature of the present invention is that the linear repeater 20 performs chromatic dispersion equalization in the linear repeater section, and the receiving device (reception unit of the regenerative repeater) 30 performs chromatic dispersion equalization in the regenerative repeater section.

【0021】送信装置(再生中継器の送信部)10は、
分散等化用の試験信号とデータ信号を切り替える測定・
データ伝送切替回路11と、データ伝送時にはデータ信
号で変調されたデータ信号光を生成し、分散等化時には
試験信号で変調された試験信号光を生成する光変調回路
12と、光増幅器13とを備える。送信装置(再生中継
器の送信部)10から出力されるデータ信号光および試
験信号光は伝送用光ファイバ1に送出される。
The transmission device (transmission unit of the regenerator) 10 comprises:
Measurement that switches between test signal and data signal for dispersion equalization
A data transmission switching circuit 11, an optical modulation circuit 12 for generating a data signal light modulated with a data signal at the time of data transmission, and a test signal light modulated with a test signal at the time of dispersion equalization, and an optical amplifier 13. Prepare The data signal light and the test signal light output from the transmitter (transmitter of the regenerator) 10 are sent to the transmission optical fiber 1.

【0022】線形中継器20は、分散量を変化させて分
散等化を行う可変分散等化器21と、光分岐器22と、
光増幅器23と、線形中継区間の波長分散に応じて可変
分散等化器21に設定する分散量を制御する制御回路2
4とを備える。
The linear repeater 20 includes a variable dispersion equalizer 21 for performing dispersion equalization by changing the amount of dispersion, an optical branching device 22, and
The optical amplifier 23 and the control circuit 2 for controlling the amount of dispersion set in the variable dispersion equalizer 21 according to the chromatic dispersion in the linear repeater section.
4 and.

【0023】受信装置(再生中継器の受信部)30は、
光増幅器31と、分散量を変化させて分散等化を行う可
変分散等化器32と、光電気変換器(O/E)33と、
等化増幅器34と、クロック抽出回路35と、識別回路
36と、再生中継区間の波長分散に応じて可変分散等化
器32に設定する分散量を制御する制御回路37とを備
える。
The receiving device (reception unit of regenerative repeater) 30 is
An optical amplifier 31, a variable dispersion equalizer 32 that performs dispersion equalization by changing the amount of dispersion, an opto-electric converter (O / E) 33,
The equalization amplifier 34, the clock extraction circuit 35, the identification circuit 36, and the control circuit 37 that controls the amount of dispersion set in the variable dispersion equalizer 32 according to the chromatic dispersion in the regenerative repeater section are provided.

【0024】光増幅器13,23,31には、例えばエ
ルビウム添加光ファイバ増幅器が用いられる。O/E3
3には、例えばPINフォトダイオードが用いられる。
クロック抽出回路35には、例えば微分回路と全波整流
回路と誘電体共振器フィルタの組み合わせが用いられ
る。識別回路36には、例えばInP HEMTが用いら
れる。
For the optical amplifiers 13, 23 and 31, for example, erbium-doped optical fiber amplifiers are used. O / E3
For example, a PIN photodiode is used for 3.
For the clock extraction circuit 35, for example, a combination of a differentiation circuit, a full-wave rectification circuit, and a dielectric resonator filter is used. For the identification circuit 36, for example, InP HEMT is used.

【0025】可変分散等化器21,32は、例えば分散
量(長さ)が異なる分散ファイバを光スイッチを用いて
切り替える構成により実現される。その他の可変分散等
化器21,32の構成としては、複数のファイバグレー
ティングを光スイッチで切り替えてもよいし、チャープ
ドグレーティングに温度または張力を加えてもよいし、
PLCの温度を変化させて分散量を変化させてもよい。
The variable dispersion equalizers 21 and 32 are realized by, for example, a configuration in which dispersion fibers having different dispersion amounts (lengths) are switched using an optical switch. As other configurations of the variable dispersion equalizers 21 and 32, a plurality of fiber gratings may be switched by an optical switch, temperature or tension may be applied to the chirped grating,
The dispersion amount may be changed by changing the temperature of the PLC.

【0026】図2は、本発明の自動波長分散等化伝送シ
ステムの等化手順の一例を示す。ここでは、送信装置
(再生中継器の送信部)10と受信装置(再生中継器の
受信部)30との間、すなわち再生中継区間に3つの線
形中継器20−1,20−2,20−3が配置される例
を示す。
FIG. 2 shows an example of the equalization procedure of the automatic wavelength dispersion equalization transmission system of the present invention. Here, three linear repeaters 20-1, 20-2, 20- are provided between the transmitting device (the transmitting unit of the regenerative repeater) 10 and the receiving device (the receiving unit of the regenerative repeater) 30, that is, in the regenerative repeating section. 3 shows an example in which 3 is arranged.

【0027】第1段階では、第1線形中継器20−1で
第1線形中継区間の分散等化を行う。ここで、線形中継
器の可変分散等化器21として、例えば分散量(長さ)
が異なる分散ファイバを光スイッチを用いて切り替える
構成をとった場合には、設定する分散量が離散的な値に
なり、線形中継区間の分散を完全に零分散に等化するこ
とができず、残留分散値が生じる。そこで、第2段階で
は、第1線形中継区間の残留分散値と第2線形中継区間
を一括して分散等化を行う。第3段階では、第2線形中
継区間までの残留分散値と第3線形中継区間を一括して
分散等化を行う。第4段階では、受信装置(再生中継器
の受信部)30で、第3線形中継区間までの残留分散値
と第4線形中継区間を一括した再生中継区間の分散等化
を行う。
In the first stage, the first linear repeater 20-1 performs dispersion equalization on the first linear repeater section. Here, as the variable dispersion equalizer 21 of the linear repeater, for example, the dispersion amount (length)
When the configuration is such that different dispersion fibers are switched using an optical switch, the amount of dispersion to be set becomes a discrete value, and the dispersion in the linear relay section cannot be completely equalized to zero dispersion. A residual dispersion value results. Therefore, in the second stage, the residual equalization value of the first linear relay section and the second linear relay section are collectively subjected to dispersion equalization. At the third stage, residual equalization values up to the second linear relay section and the third linear relay section are collectively subjected to dispersion equalization. In the fourth stage, the receiving apparatus (reception unit of the regenerative repeater) 30 performs the dispersion equalization of the regenerative repeater section including the residual dispersion value up to the third linear repeater section and the fourth linear repeater section.

【0028】このような手順により、各線形中継器で生
じる残留分散値の累積を抑圧し、各線形中継区間の分散
値を最小値に制御して再生中継区間を最適な分散値に等
化することができるので、再生中継間隔の長距離化を可
能にすることができる。
By such a procedure, the accumulation of residual dispersion values generated in each linear repeater is suppressed, the dispersion value of each linear relay section is controlled to the minimum value, and the regenerative relay section is equalized to the optimum dispersion value. Therefore, it is possible to make the regeneration relay interval longer.

【0029】なお、可変分散等化器21に設定される分
散量が離散的な値をとる場合に、その設定値の数は要求
される等化精度を満たし、かつ最小となるように選択さ
れる。また、システムの分散耐力に応じて、線形中継器
20および受信装置(再生中継器の受信部)30の可変
分散等化器の等化範囲および等化精度を最適化すること
により、可変分散等化器の構成部品の簡素化が可能にな
り、コストを低減することができる。
When the amount of dispersion set in the variable dispersion equalizer 21 has a discrete value, the number of set values is selected so as to satisfy the required equalization accuracy and be minimized. It In addition, the variable dispersion and the like are optimized by optimizing the equalization range and equalization accuracy of the variable repeater equalizers of the linear repeater 20 and the receiving device (reception unit of the regenerative repeater) 30 according to the dispersion tolerance of the system. The constituent parts of the chemical converter can be simplified, and the cost can be reduced.

【0030】(第1の実施形態:請求項4〜12) 本実施形態の説明では、線形中継器における波長分散等
化の構成例として6例(請求項4〜9)、再生中継器に
おける波長分散等化の構成例として3例(請求項10〜1
2)を個別に示すが、自動波長分散等化光伝送システム
としてはそれらの組み合わせ(18例)となる。
(First Embodiment: Claims 4 to 12 ) In the description of this embodiment, there are 6 examples ( claims 4 to 9 ) as a configuration example of chromatic dispersion equalization in a linear repeater, and wavelengths in a regenerative repeater. Three examples of configuration of dispersion equalization ( claims 10 to 1)
2 ) are shown individually, but they are combinations (18 examples) for an automatic wavelength dispersion equalization optical transmission system.

【0031】(線形中継器の構成例) 図3は、線形中継器で波長分散等化を行う第1構成例を
示す(請求項4)。図において、送信装置(再生中継器
の送信部)10は、測定・データ伝送切替回路11と、
光変調回路12を構成する光源121,変調器122,
バイアス電圧設定回路123と、光増幅器13とを備え
る。線形中継器20は、可変分散等化器21と、光分岐
器22と、光増幅器23と、制御回路24を構成する光
電気変換器(O/E)241,変調周波数成分強度測定
回路242,分散量制御回路243とを備える。
(Configuration Example of Linear Repeater) FIG. 3 shows a first configuration example in which chromatic dispersion equalization is performed by the linear repeater ( claim 4 ). In the figure, a transmitter (transmitter of a regenerator) 10 includes a measurement / data transmission switching circuit 11,
A light source 121, a modulator 122, which constitutes the light modulation circuit 12,
A bias voltage setting circuit 123 and an optical amplifier 13 are provided. The linear repeater 20 includes a variable dispersion equalizer 21, an optical branching device 22, an optical amplifier 23, an opto-electric converter (O / E) 241, a modulation frequency component intensity measuring circuit 242, which constitutes a control circuit 24. And a dispersion amount control circuit 243.

【0032】本構成例の特徴は、送信装置(再生中継器
の送信部)10が試験信号光として、パルスごとにチャ
ープパラメータの符号が変化する交番チャープ信号光を
出力し、線形中継器20でその変調周波数成分強度を測
定し、その強度が最小になるように可変分散等化器21
の分散量を制御するところにある。
The feature of this configuration example is that the transmission device (transmission unit of regenerative repeater) 10 outputs, as the test signal light, an alternating chirp signal light in which the sign of the chirp parameter changes for each pulse, and the linear repeater 20 The intensity of the modulation frequency component is measured, and the variable dispersion equalizer 21 is set so that the intensity is minimized.
Is to control the amount of dispersion.

【0033】ここで、交番チャープ信号光の生成方法に
ついて説明する。変調器122の消光比の静特性、入力
信号と出力光信号の関係を図15に示す。変調器122
には、例えばマッハツェンダ型LN変調器が用いられ
る。バイアス電圧設定回路123は、変調器122の出
力光パワーをモニタし(図3は省略)、変調器122の
バイアス電圧を挿入損失が最大(出力光パワーが最小)
となる電圧に設定する。なお、バイアス電圧に微小な強
度変調成分を重畳し、この変調成分強度が最小になるよ
うにバイアス電圧を設定してもよい。このとき、入力信
号電圧と出力光信号パワーは偶関数の関係として表され
る。
Here, a method of generating the alternating chirp signal light will be described. FIG. 15 shows the static characteristic of the extinction ratio of the modulator 122 and the relationship between the input signal and the output optical signal. Modulator 122
For example, a Mach-Zehnder type LN modulator is used. The bias voltage setting circuit 123 monitors the output light power of the modulator 122 (FIG. 3 is omitted), and the insertion loss of the bias voltage of the modulator 122 is maximum (output light power is minimum).
Set the voltage to It is also possible to superimpose a minute intensity modulation component on the bias voltage and set the bias voltage so that the intensity of this modulation component is minimized. At this time, the input signal voltage and the output optical signal power are expressed as an even function relationship.

【0034】測定・データ伝送切替回路11を介して試
験信号が変調器122に与えられると、入力された変調
周波数の2倍に逓倍された周波数成分をもち、パルスご
とにチャープパラメータの符号が変化する交番チャープ
信号光が出力される。この交番チャープ信号光は、伝送
路の分散量の変化に対して同符号のチャープをもつパル
スが同様の分散の影響を受けるので、分散量の変化に対
して入力変調周波数成分強度が変化する。40GHz交番チ
ャープ信号光を用いて分散量の変化に対する20GHz成分
の強度変化を測定した結果を図16に示す。
When a test signal is applied to the modulator 122 via the measurement / data transmission switching circuit 11, it has a frequency component doubled to the input modulation frequency and the sign of the chirp parameter changes for each pulse. Alternating chirp signal light is output. In this alternating chirp signal light, pulses having the same chirp are affected by the same dispersion with respect to the change in the dispersion amount of the transmission path, and thus the input modulation frequency component intensity changes with the change in the dispersion amount. FIG. 16 shows the result of measurement of the intensity change of the 20 GHz component with respect to the change of the dispersion amount using the 40 GHz alternating chirp signal light.

【0035】伝送用光ファイバを介して伝送された交番
チャープ信号光は可変分散等化器21に入力される。可
変分散等化器21により所定の分散量で等化された光信
号は、光分岐器22、光増幅器23を介して次段に出力
されるとともに、O/E241にその一部が分岐されて
電気信号に変換され、変調周波数成分強度測定回路24
2に入力され、変調周波数成分強度が測定される。分散
量制御回路243は、その測定強度が最小になるように
可変分散等化器21に設定する分散量を制御し、線形中
継区間の分散を等化する。変調周波数成分強度測定回路
242は、例えば入力変調周波数成分を抽出するフィル
タ、ダイオード、ローパスフィルタ、電流計の構成によ
り実現することができる。
The alternating chirp signal light transmitted through the transmission optical fiber is input to the variable dispersion equalizer 21. The optical signal equalized with the predetermined dispersion amount by the variable dispersion equalizer 21 is output to the next stage via the optical branching device 22 and the optical amplifier 23, and a part of the optical signal is branched to the O / E 241. Modulation frequency component strength measuring circuit 24 converted into an electric signal
2 and the intensity of the modulation frequency component is measured. The dispersion amount control circuit 243 controls the dispersion amount set in the variable dispersion equalizer 21 so that the measured intensity becomes minimum, and equalizes the dispersion in the linear relay section. The modulation frequency component intensity measuring circuit 242 can be realized by, for example, a configuration of a filter for extracting an input modulation frequency component, a diode, a low pass filter, and an ammeter.

【0036】従来技術では、線形中継区間の分散値を測
定するためには、分散測定器等を用いて分散値を実測す
る必要があり、装置の大規模化、複雑化が問題になって
いたが、本方式では簡単な構成で入力変調周波数成分強
度から伝送路の分散量の変化に対応した情報を得ること
ができる。すなわち、交番チャープ信号光の入力変調周
波数成分強度が最小値となる分散値が零分散となり、こ
の強度が最小値になるように可変分散等化器21の分散
量を設定することにより等化することができる。
In the prior art, in order to measure the dispersion value of the linear relay section, it is necessary to measure the dispersion value using a dispersion measuring instrument or the like, and there has been a problem that the apparatus is large-scaled and complicated. However, in this method, it is possible to obtain the information corresponding to the change in the dispersion amount of the transmission line from the intensity of the input modulation frequency component with a simple configuration. That is, the dispersion value at which the input modulation frequency component intensity of the alternating chirp signal light becomes the minimum value becomes zero dispersion, and equalization is performed by setting the dispersion amount of the variable dispersion equalizer 21 so that this intensity becomes the minimum value. be able to.

【0037】このように、本構成例は試験信号光(交番
チャープ信号光)の生成が簡単であり、また線形中継器
でこの変調周波数成分強度をモニタして分散量を制御す
ることにより線形中継区間の分散等化を簡単に行うこと
ができる。これにより、再生中継間隔の長距離化が可能
になる。なお、送信装置(線形中継器の送信部)10に
おいて、試験信号の変調振幅をデータ伝送時の変調振幅
と同振幅にすることができ、試験信号としてデータ信号
の1,0固定パターンを用いることにより、測定・デー
タ伝送切替回路11を省くことができる。
As described above, in this configuration example, the test signal light (alternating chirp signal light) can be easily generated, and the linear repeater can be used to monitor the intensity of the modulation frequency component and control the dispersion amount. It is possible to easily perform the variance equalization of the sections. As a result, it becomes possible to extend the regeneration relay interval. In the transmission device (transmission unit of the linear repeater) 10, the modulation amplitude of the test signal can be made equal to the modulation amplitude at the time of data transmission, and a fixed pattern of 1 and 0 of the data signal is used as the test signal. As a result, the measurement / data transmission switching circuit 11 can be omitted.

【0038】図4は、線形中継器で波長分散等化を行う
第2構成例を示す(請求項5)。図において、送信装置
(再生中継器の送信部)10は、図3の第1構成例と同
様である。線形中継器20は、可変分散等化器21と、
光分岐器22と、光増幅器23と、制御回路24を構成
する光電気変換器(O/E)241,変調周波数成分強
度測定回路242,直流成分強度測定回路244,分散
量制御回路243とを備える。
FIG. 4 shows a second configuration example in which chromatic dispersion equalization is performed by a linear repeater ( claim 5 ). In the figure, a transmission device (transmission unit of the regenerator) 10 is the same as that of the first configuration example of FIG. The linear repeater 20 includes a variable dispersion equalizer 21 and
An optical branching device 22, an optical amplifier 23, an opto-electric converter (O / E) 241, a modulation frequency component intensity measuring circuit 242, a DC component intensity measuring circuit 244, and a dispersion amount control circuit 243, which constitute a control circuit 24, are provided. Prepare

【0039】本構成例の特徴は、送信装置(再生中継器
の送信部)10が試験信号光として交番チャープ信号光
を出力し、線形中継器20でその変調周波数成分強度と
直流成分強度を測定し、その強度比が最小になるように
可変分散等化器21の分散量を制御するところにある。
本構成で交番チャープ信号光の直流成分強度をモニタし
て規格化することにより、入力光パワーの変動にも対応
することができる。なお、図16の縦軸は、この直流成
分強度で変調周波数成分強度を規格化したものである。
The feature of this configuration example is that the transmission device (transmission unit of the regenerator) 10 outputs an alternating chirp signal light as a test signal light, and the linear repeater 20 measures the modulation frequency component strength and DC component strength thereof. However, the dispersion amount of the variable dispersion equalizer 21 is controlled so that the intensity ratio is minimized.
By monitoring and standardizing the DC component intensity of the alternating chirp signal light with this configuration, it is possible to cope with the fluctuation of the input light power. Note that the vertical axis of FIG. 16 is the standardization of the modulation frequency component intensity with this DC component intensity.

【0040】線形中継器で波長分散等化を行う第3構成
例について説明する(請求項6)。本構成例の特徴は、
図3と同様の構成において、送信装置(再生中継器の送
信部)10が試験信号光として位相変調信号光を出力
し、線形中継器20で伝送路の分散に対する位相変調−
強度変調変換効果(PM−AM変換効果)による変調周
波数成分強度を測定し、その強度が最小になるように可
変分散等化器21の分散量を制御するところにある。
A third configuration example in which chromatic dispersion equalization is performed by a linear repeater will be described ( claim 6 ). The features of this configuration example are:
In a configuration similar to that of FIG. 3, the transmission device (transmission unit of the regenerator) outputs the phase modulation signal light as the test signal light, and the linear repeater 20 performs the phase modulation on the dispersion of the transmission line.
The intensity of the modulation frequency component due to the intensity modulation conversion effect (PM-AM conversion effect) is measured, and the dispersion amount of the variable dispersion equalizer 21 is controlled so that the intensity is minimized.

【0041】なお、変調器122には位相変調器と強度
変調器を用い、データ伝送時には強度変調器にデータ信
号を入力し、分散等化時には位相変調器に試験信号を入
力する。また、位相変調器として、図17に示すよう
に、強度変調器の挿入損失が最小となるバイアス電圧
で、損失が変化しない振幅で変調するようにしてもよ
い。
A phase modulator and an intensity modulator are used as the modulator 122. A data signal is input to the intensity modulator during data transmission, and a test signal is input to the phase modulator during dispersion equalization. As the phase modulator, as shown in FIG. 17, the intensity modulator may perform modulation with a bias voltage that minimizes the insertion loss of the intensity modulator and with an amplitude that does not change the loss.

【0042】PM−AM変換効果は、位相変調信号光が
伝送路の分散によって強度変調に変換される効果であ
り、分散量により変調周波数成分の強度が変化する。変
調周波数20GHzにおいて、PM−AM変換効果による分
散量変化に対する強度変化を測定した結果を図18に示
す。図の横軸は位相変調信号光の波長であり、伝送路の
分散量を変化させる代わりに、位相変調信号光の波長を
変化させた。交番チャープ信号光の場合と同様に、位相
変調信号光の変調周波数成分強度が最小値となる分散値
が零分散となり、この強度が最小値になるように可変分
散等化器21の分散量を設定することにより、線形中継
区間の分散等化を行うことができる。
The PM-AM conversion effect is an effect in which the phase-modulated signal light is converted into intensity modulation by the dispersion of the transmission line, and the intensity of the modulation frequency component changes depending on the dispersion amount. FIG. 18 shows the measurement result of the intensity change with respect to the change in dispersion amount due to the PM-AM conversion effect at the modulation frequency of 20 GHz. The horizontal axis of the figure is the wavelength of the phase modulation signal light, and the wavelength of the phase modulation signal light was changed instead of changing the dispersion amount of the transmission line. As in the case of the alternating chirp signal light, the dispersion value at which the modulation frequency component intensity of the phase modulation signal light becomes the minimum value becomes zero dispersion, and the dispersion amount of the variable dispersion equalizer 21 is set so that this intensity becomes the minimum value. By setting, it is possible to perform distributed equalization of the linear relay section.

【0043】図3において、伝送用光ファイバを介して
伝送された位相変調信号光は可変分散等化器21に入力
される。可変分散等化器21により所定の分散量で等化
された光信号は、光分岐器22、光増幅器23を介して
次段に出力されるとともに、O/E241にその一部が
分岐されて電気信号に変換され、変調周波数成分強度測
定回路242に入力され、変調周波数成分強度が測定さ
れる。分散量制御回路243は、その測定強度が最小に
なるように可変分散等化器21に設定する分散量を制御
し、線形中継区間の分散を等化する。すなわち、入力変
調周波数成分強度が最小値となる分散値が零分散とな
り、この強度が最小値になるように可変分散等化器21
の分散量を設定することにより等化することができる。
In FIG. 3, the phase modulated signal light transmitted through the transmission optical fiber is input to the variable dispersion equalizer 21. The optical signal equalized with the predetermined dispersion amount by the variable dispersion equalizer 21 is output to the next stage via the optical branching device 22 and the optical amplifier 23, and a part of the optical signal is branched to the O / E 241. The signal is converted into an electric signal and input to the modulation frequency component strength measuring circuit 242, and the modulation frequency component strength is measured. The dispersion amount control circuit 243 controls the dispersion amount set in the variable dispersion equalizer 21 so that the measured intensity becomes minimum, and equalizes the dispersion in the linear relay section. That is, the variance value at which the intensity of the input modulation frequency component becomes the minimum value becomes zero variance, and the variable dispersion equalizer 21 is set so that the intensity becomes the minimum value.
Equalization can be performed by setting the dispersion amount of.

【0044】本構成例は、試験信号光(位相変調信号
光)の生成が簡単であり、また線形中継器でこの変調周
波数成分強度をモニタして分散量を制御することにより
線形中継区間の分散等化を簡単に行うことができる。こ
れにより、再生中継間隔の長距離化が可能になる。
In this configuration example, the test signal light (phase modulated signal light) is easily generated, and the linear repeater monitors the intensity of the modulation frequency component to control the amount of dispersion, whereby the dispersion of the linear repeater section is controlled. Equalization can be easily performed. As a result, it becomes possible to extend the regeneration relay interval.

【0045】線形中継器で波長分散等化を行う第4構成
例について説明する(請求項7)。本構成例の特徴は、
図4と同様の構成において、送信装置(再生中継器の送
信部)10が試験信号光として位相変調信号光を出力
し、線形中継器20で分散に対する位相変調−強度変調
変換効果(PM−AM変換効果)による変調周波数成分
強度と直流成分強度を測定し、その強度比が最小になる
ように可変分散等化器21の分散量を制御するところに
ある。本構成で位相変調信号光の直流成分強度をモニタ
して規格化することにより、入力光パワーの変動にも対
応することができる。
A fourth configuration example for performing chromatic dispersion equalization with a linear repeater will be described ( claim 7 ). The features of this configuration example are:
In the same configuration as in FIG. 4, the transmitter (transmitter of the regenerator) 10 outputs the phase modulation signal light as the test signal light, and the linear repeater 20 outputs the phase modulation-intensity modulation conversion effect (PM-AM) for dispersion. The modulation frequency component intensity and the direct current component intensity due to the conversion effect) are measured, and the dispersion amount of the variable dispersion equalizer 21 is controlled so that the intensity ratio becomes a minimum. By monitoring and standardizing the intensity of the DC component of the phase-modulated signal light with this configuration, it is possible to deal with fluctuations in the input light power.

【0046】図5は、線形中継器で波長分散等化を行う
第5構成例を示す(請求項8)。図において、送信装置
(再生中継器の送信部)10は、光変調回路12を構成
する光源121,変調器122,バイアス電圧設定回路
123と、光増幅器13とを備える。線形中継器20
は、可変分散等化器21と、光分岐器22と、光増幅器
23と、制御回路24を構成する光電気変換器(O/
E)241,クロック抽出回路245,クロック成分強
度測定回路246,分散量制御回路243とを備える。
クロック抽出回路245は、例えば微分回路と全波整流
回路と誘電体共振器フィルタの組み合わせにより実現す
ることができる。クロック成分強度測定回路246は、
例えばRFパワーメータを用いることができる。
FIG. 5 shows a fifth configuration example in which chromatic dispersion equalization is performed by a linear repeater ( claim 8 ). In the figure, a transmission device (transmission unit of a regenerator) 10 includes a light source 121, a modulator 122, a bias voltage setting circuit 123, and an optical amplifier 13 which form an optical modulation circuit 12. Linear repeater 20
Is a variable dispersion equalizer 21, an optical branching device 22, an optical amplifier 23, and an opto-electric converter (O / O) that constitutes a control circuit 24.
E) 241, a clock extraction circuit 245, a clock component strength measurement circuit 246, and a dispersion amount control circuit 243.
The clock extraction circuit 245 can be realized by, for example, a combination of a differentiating circuit, a full-wave rectifying circuit, and a dielectric resonator filter. The clock component strength measuring circuit 246
For example, an RF power meter can be used.

【0047】本構成例の特徴は、線形中継器10でデー
タ信号から抽出したクロックの強度を測定し、その強度
が最大になるように可変分散等化器21の分散量を制御
するところにある。
The feature of this configuration example is that the intensity of the clock extracted from the data signal is measured by the linear repeater 10 and the dispersion amount of the variable dispersion equalizer 21 is controlled so that the intensity is maximized. .

【0048】伝送用光ファイバを介して伝送されたデー
タ信号光は可変分散等化器21に入力される。可変分散
等化器21により所定の分散量で等化された光信号は、
光分岐器22、光増幅器23を介して次段に出力される
とともに、O/E241にその一部が分岐されて電気信
号に変換され、クロック抽出回路245に入力されてク
ロック成分が抽出され、クロック成分強度測定回路24
6でクロック成分強度が測定される。ここで、20Gbit/
s 、NRZ信号から抽出したクロック成分の分散量の変
化に対する強度変化を測定した結果を図19に示す。図
に示すように、分散量の変化に対してクロック成分強度
が変化する。分散量制御回路243は、そのクロック成
分強度が最大になるように可変分散等化器21に設定す
る分散量を制御し、線形中継区間の分散を等化する。
The data signal light transmitted through the transmission optical fiber is input to the variable dispersion equalizer 21. The optical signal equalized with the predetermined dispersion amount by the variable dispersion equalizer 21 is
While being output to the next stage via the optical branching device 22 and the optical amplifier 23, a part thereof is branched to the O / E 241 and converted into an electric signal, which is input to the clock extraction circuit 245 to extract the clock component, Clock component strength measuring circuit 24
At 6, the clock component strength is measured. Here, 20Gbit /
FIG. 19 shows the measurement result of the intensity change with respect to the change of the dispersion amount of the clock component extracted from the s and NRZ signals. As shown in the figure, the strength of the clock component changes with the change of the dispersion amount. The dispersion amount control circuit 243 controls the dispersion amount set in the variable dispersion equalizer 21 so that the clock component strength becomes maximum, and equalizes the dispersion in the linear relay section.

【0049】従来技術では、線形中継区間の分散値を測
定するためには、分散測定器等を用いて分散値を実測す
る必要があり、装置の大規模化、複雑化が問題になって
いたが、本方式では簡単な構成でデータ信号のクロック
成分強度から伝送路の分散量の変化に対応した情報を得
ることができる。すなわち、クロック成分強度が最大値
となる分散値が零分散となり、この強度が最大値になる
ように可変分散等化器21の分散量を設定することによ
り等化することができる。
In the prior art, in order to measure the dispersion value in the linear relay section, it is necessary to measure the dispersion value using a dispersion measuring instrument or the like, which poses a problem of large scale and complicated apparatus. However, in this method, it is possible to obtain information corresponding to the change in the dispersion amount of the transmission line from the clock component strength of the data signal with a simple configuration. That is, the variance value at which the clock component intensity becomes the maximum value becomes zero variance, and equalization can be performed by setting the variance amount of the variable dispersion equalizer 21 so that the intensity becomes the maximum value.

【0050】本構成例は、データ信号と試験信号の切り
替えが不要であり、さらに線形中継器でデータ信号のク
ロック成分強度をモニタして分散量を制御することによ
り、線形中継区間の分散等化を簡単に行うことができ
る。これにより、再生中継間隔の長距離化が可能にな
る。
In this configuration example, it is not necessary to switch between the data signal and the test signal, and the linear repeater monitors the intensity of the clock component of the data signal to control the amount of dispersion, thereby performing the dispersion equalization of the linear relay section. Can be done easily. As a result, it becomes possible to extend the regeneration relay interval.

【0051】図6は、線形中継器で波長分散等化を行う
第6構成例を示す(請求項9)。図において、送信装置
(再生中継器の送信部)10は、測定・データ伝送切替
回路11と、光変調回路12を構成する光源121−
1,121−2、変調器122−1,122−2と、光
合波器14と、光増幅器13とを備える。線形中継器2
0は、可変分散等化器21と、光分岐器22と、光増幅
器23と、制御回路24を構成する光分波器247、光
電気変換器(O/E)241−1,241−2、位相比
較回路248、分散量制御回路243とを備える。
FIG. 6 shows a sixth configuration example in which chromatic dispersion equalization is performed by a linear repeater ( claim 9 ). In the figure, a transmitter (transmitter of a regenerator) 10 includes a light source 121- that constitutes a measurement / data transmission switching circuit 11 and an optical modulation circuit 12.
1, 121-2, modulators 122-1 and 122-2, an optical multiplexer 14, and an optical amplifier 13. Linear repeater 2
Reference numeral 0 denotes a variable dispersion equalizer 21, an optical branching device 22, an optical amplifier 23, an optical demultiplexer 247 constituting the control circuit 24, and optoelectric converters (O / E) 241-1 and 241-2. , A phase comparison circuit 248 and a dispersion amount control circuit 243.

【0052】本構成例の特徴は、送信装置(再生中継器
の送信部)10が2波長の試験信号光を出力し、線形中
継器10で2波長の試験信号光の位相差を測定し、その
位相差が最小になるように可変分散等化器21の分散量
を制御するところにある。
The feature of this configuration example is that the transmitter (transmitter of the regenerator) 10 outputs the test signal light of two wavelengths, and the linear repeater 10 measures the phase difference of the test signal light of two wavelengths. The dispersion amount of the variable dispersion equalizer 21 is controlled so that the phase difference is minimized.

【0053】測定・データ伝送切替回路11は、データ
信号を変調器122−1に入力し、試験信号を変調器1
22−1,122−2に入力する。試験信号には、発振
器から出力される信号または分周クロックを用いてもよ
い。変調器122−1,122−2は、波長λs の光源
121−1および波長λm の光源121−2の出力光を
変調する。これにより、2波長の試験信号光が生成さ
れ、光合波器14で合波され光増幅器13を介して出力
される。なお、2波長の試験信号光は、伝送用光ファイ
バに入力される点までの位相差が等しくなるように調整
するか、内部位相差をあらかじめ測定しておく。
The measurement / data transmission switching circuit 11 inputs the data signal to the modulator 122-1 and outputs the test signal to the modulator 1.
22-1 and 122-2. A signal output from an oscillator or a divided clock may be used as the test signal. The modulators 122-1 and 122-2 modulate the output light from the light source 121-1 having the wavelength λs and the light source 121-2 having the wavelength λm. Thereby, the test signal light of two wavelengths is generated, multiplexed by the optical multiplexer 14, and output via the optical amplifier 13. The two-wavelength test signal light is adjusted so that the phase difference up to the point where it is input to the transmission optical fiber becomes equal, or the internal phase difference is measured in advance.

【0054】伝送用光ファイバを介して伝送された2波
長の試験信号光は可変分散等化器21に入力される。可
変分散等化器21により所定の分散量で等化された光信
号は、光分岐器22、光増幅器23を介して次段に出力
されるとともに、光分波器247で波長λs とλm の各
光信号に分波され、O/E241−1,241−2でそ
れぞれ電気信号に変換され、位相比較回路248でその
位相差が検出される。なお、光分波器247に代えて、
光分岐器と光バンドパスフィルタを用いてもよい。位相
比較回路248にはミキサを用いることができる。
The test signal light of two wavelengths transmitted through the transmission optical fiber is input to the variable dispersion equalizer 21. The optical signal equalized with the predetermined dispersion amount by the variable dispersion equalizer 21 is output to the next stage via the optical branching device 22 and the optical amplifier 23, and the optical demultiplexer 247 converts the wavelengths λs and λm. The optical signals are demultiplexed, converted into electrical signals by O / Es 241-1 and 241-2, and the phase difference is detected by the phase comparison circuit 248. In addition, instead of the optical demultiplexer 247,
An optical branching device and an optical bandpass filter may be used. A mixer can be used for the phase comparison circuit 248.

【0055】分散量制御回路243は、両信号の位相差
が最小になるように可変分散等化器21に設定する分散
量を制御し、線形中継区間の分散を等化する。なお、線
形中継器20内においても、2波長の試験信号光の位相
差が等しくなるように調整するか、内部位相差をあらか
じめ測定しておく。
The dispersion amount control circuit 243 controls the dispersion amount set in the variable dispersion equalizer 21 so as to minimize the phase difference between the two signals, and equalizes the dispersion in the linear relay section. In the linear repeater 20 as well, adjustment is made so that the phase difference between the test signal lights of two wavelengths becomes equal, or the internal phase difference is measured in advance.

【0056】本構成例は、2波長の試験信号光を用い、
線形中継器で各試験信号光の位相差をモニタして分散量
を制御することにより、線形中継区間の分散等化を簡単
に行うことができる。これにより、再生中継間隔の長距
離化が可能になる。
This configuration example uses test signal light of two wavelengths,
By controlling the amount of dispersion by monitoring the phase difference of each test signal light with the linear repeater, it is possible to easily perform dispersion equalization in the linear repeater section. As a result, it becomes possible to extend the regeneration relay interval.

【0057】(受信装置または再生中継器の受信部の構
成例) 図7は、受信装置または再生中継器の受信部で波長分散
等化を行う第1構成例を示す(請求項10)。
(Configuration Example of Receiving Unit of Receiving Device or Regenerative Repeater) FIG. 7 shows a first configuration example of performing chromatic dispersion equalization in the receiving unit of the receiving device or regenerating repeater ( claim 10 ).

【0058】図において、送信装置(再生中継器の送信
部)10は、測定・データ伝送切替回路11と、光変調
回路12を構成する光源121,変調器122,バイア
ス電圧設定回路123と、光増幅器13とを備える。受
信装置(再生中継器の受信部)30は、光増幅器31
と、可変分散等化器32と、光電気変換器(O/E)3
3と、等化増幅器34と、クロック抽出回路35と、識
別回路36と、制御回路37として誤り率検出回路37
1および分散量制御回路372とを備える。
In the figure, a transmitter (transmitter section of a regenerator) 10 includes a measurement / data transmission switching circuit 11, a light source 121, a modulator 122, a bias voltage setting circuit 123, and an optical modulator 121. And an amplifier 13. The receiving device (reception unit of the regenerator) 30 includes an optical amplifier 31.
, Variable dispersion equalizer 32, and photoelectric converter (O / E) 3
3, an equalization amplifier 34, a clock extraction circuit 35, an identification circuit 36, and an error rate detection circuit 37 as a control circuit 37.
1 and a dispersion amount control circuit 372.

【0059】本構成例の特徴は、受信装置(再生中継器
の受信部)30の識別回路36の出力信号の符号誤り率
を測定し、その符号誤り率が最小になるように可変分散
等化器32の分散量を制御するところにある(符号誤り
率モニタ法)。
The feature of this configuration example is that the code error rate of the output signal of the identification circuit 36 of the receiving apparatus (reception section of the regenerator) 30 is measured, and variable dispersion equalization is performed so that the code error rate is minimized. This is to control the dispersion amount of the device 32 (code error rate monitoring method).

【0060】伝送用光ファイバを介して伝送されたデー
タ信号光は、光増幅器31を介して可変分散等化器32
に入力される。可変分散等化器32により所定の分散量
で等化された光信号は、O/E33で電気信号に変換さ
れ、等化増幅器34で増幅されてクロック抽出回路35
および識別回路36に入力される。クロック抽出回路3
5で抽出されたクロック成分は、識別回路36の識別処
理に供される。誤り率検出回路371は、識別回路36
の出力信号の符号誤り率を測定する。分散量制御回路3
72は、その符号誤り率が最小になるように可変分散等
化器32に設定する分散量を制御し、再生中継区間の分
散を等化する。なお、符号誤り率に対する可変分散等化
器32の分散量の設定方法の詳細については後述する。
The data signal light transmitted through the transmission optical fiber is transmitted through the optical amplifier 31 to the variable dispersion equalizer 32.
Entered in. The optical signal equalized by the variable dispersion equalizer 32 with a predetermined dispersion amount is converted into an electric signal by the O / E 33, amplified by the equalization amplifier 34, and then extracted by the clock extraction circuit 35.
And the identification circuit 36. Clock extraction circuit 3
The clock component extracted in 5 is supplied to the discrimination processing of the discrimination circuit 36. The error rate detection circuit 371 includes the identification circuit 36.
The bit error rate of the output signal of is measured. Dispersion amount control circuit 3
Reference numeral 72 controls the amount of dispersion set in the variable dispersion equalizer 32 so that the code error rate is minimized, and equalizes the dispersion in the regenerative repeater section. The details of the method of setting the dispersion amount of the variable dispersion equalizer 32 with respect to the code error rate will be described later.

【0061】従来の分散等化技術では、再生中継区間で
伝送路の総分散量が零分散になるように制御されていた
が、高速化に伴う非線形光学効果の影響により、受信感
度からみた最適な分散量が零分散になるとは限らなくな
っている。本構成例では、受信信号の符号誤り率をモニ
タすることにより、再生中継区間を最適な分散量に設定
することができ、再生中継間隔の長距離化を図ることが
できる。
In the conventional dispersion equalization technique, the total dispersion amount of the transmission line is controlled to be zero dispersion in the regenerative repeater section. However, due to the influence of the non-linear optical effect due to the increase in speed, it is optimum from the viewpoint of reception sensitivity. That is, the amount of dispersion does not always become zero. In this configuration example, by monitoring the bit error rate of the received signal, the regenerative relay section can be set to an optimum dispersion amount, and the regenerative relay interval can be increased.

【0062】図8は、受信装置または再生中継器の受信
部で波長分散等化を行う第2構成例を示す(請求項1
)。図において、送信装置(再生中継器の送信部)1
0は、図7に示す第1構成例と同様である。受信装置
(再生中継器の受信部)30は、光増幅器31と、可変
分散等化器32と、光電気変換器(O/E)33と、等
化増幅器34と、クロック抽出回路35と、識別回路3
6と、制御回路37としてQ値測定回路373および分
散量制御回路372とを備える。
FIG. 8 shows a second configuration example in which chromatic dispersion equalization is performed in the receiving unit of the receiving device or the regenerator ( claim 1).
1 ). In the figure, a transmitter (transmitter of a regenerator) 1
0 is the same as the first configuration example shown in FIG. 7. The receiving device (reception unit of the regenerator) 30 includes an optical amplifier 31, a variable dispersion equalizer 32, an optoelectric converter (O / E) 33, an equalizing amplifier 34, a clock extracting circuit 35, and Identification circuit 3
6 and a Q value measuring circuit 373 and a dispersion amount control circuit 372 as the control circuit 37.

【0063】本構成例の特徴は、受信装置(再生中継器
の受信部)30の識別回路36の出力信号のQ値を測定
し、そのQ値が最大になるように可変分散等化器32の
分散量を制御するところにある(Q値モニタ法)。
The feature of this configuration example is that the Q value of the output signal of the identification circuit 36 of the receiving device (reception unit of the regenerator) 30 is measured, and the variable dispersion equalizer 32 is set so that the Q value becomes maximum. Is to control the dispersion amount of (Q value monitoring method).

【0064】伝送用光ファイバを介して伝送されたデー
タ信号光は、光増幅器31を介して可変分散等化器32
に入力される。可変分散等化器32により所定の分散量
で等化された光信号は、O/E33で電気信号に変換さ
れ、等化増幅器34で増幅されてクロック抽出回路35
および識別回路36に入力される。クロック抽出回路3
5で抽出されたクロック成分は、識別回路36の識別処
理に供される。Q値測定回路373は、識別回路36の
出力信号の符号誤り率を測定し、その誤り率と識別回路
36の識別電圧からQ値を求める(符号誤り率モニタに
よるQ値モニタ法)。分散量制御回路372は、そのQ
値が最大になるように可変分散等化器32に設定する分
散量を制御し、再生中継区間の分散を等化する。
The data signal light transmitted through the transmission optical fiber is transmitted via the optical amplifier 31 to the variable dispersion equalizer 32.
Entered in. The optical signal equalized by the variable dispersion equalizer 32 with a predetermined dispersion amount is converted into an electric signal by the O / E 33, amplified by the equalization amplifier 34, and then extracted by the clock extraction circuit 35.
And the identification circuit 36. Clock extraction circuit 3
The clock component extracted in 5 is supplied to the discrimination processing of the discrimination circuit 36. The Q value measurement circuit 373 measures the code error rate of the output signal of the identification circuit 36, and obtains the Q value from the error rate and the identification voltage of the identification circuit 36 (Q value monitoring method by code error rate monitor). The dispersion amount control circuit 372 determines the Q
The amount of dispersion set in the variable dispersion equalizer 32 is controlled so that the value becomes maximum, and the dispersion in the regenerative repeater section is equalized.

【0065】なお、図7の第1構成例の符号誤り率の最
小値をモニタする構成では相当な時間を要するが、本方
式によりQ値を外挿することにより短時間で測定が可能
となる。また、Q値の測定法としては、光サンプリング
を用いて0,1レベルの各平均値と標準偏差を測定する
方法でもよい(光波形モニタによるQ値モニタ法)。ま
た、本構成例でも、受信信号のQ値をモニタすることに
より、再生中継区間を最適な分散量に設定することがで
き、再生中継間隔の長距離化を図ることができる。
It should be noted that although the configuration for monitoring the minimum value of the code error rate in the first configuration example of FIG. 7 requires a considerable amount of time, extrapolation of the Q value by this method enables measurement in a short time. . As a method of measuring the Q value, a method of measuring each average value and standard deviation of 0 and 1 levels using optical sampling may be used (Q value monitoring method by optical waveform monitor). Also in this configuration example, the regeneration relay section can be set to an optimum dispersion amount by monitoring the Q value of the received signal, and the regeneration relay interval can be lengthened.

【0066】図9は、受信装置または再生中継器の受信
部で波長分散等化を行う第3構成例を示す(請求項1
)。図において、送信装置(再生中継器の送信部)1
0は、図7に示す第1構成例と同様である。受信装置
(再生中継器の受信部)30は、光増幅器31と、可変
分散等化器32と、光電気変換器(O/E)33と、等
化増幅器34と、クロック抽出回路35と、識別回路3
6と、制御回路37としてクロック成分強度測定回路3
74および分散量制御回路372とを備える。
FIG. 9 shows a third configuration example in which chromatic dispersion equalization is performed in the receiving section of the receiving device or the regenerator ( claim 1
2 ). In the figure, a transmitter (transmitter of a regenerator) 1
0 is the same as the first configuration example shown in FIG. 7. The receiving device (reception unit of the regenerator) 30 includes an optical amplifier 31, a variable dispersion equalizer 32, an optoelectric converter (O / E) 33, an equalizing amplifier 34, a clock extracting circuit 35, and Identification circuit 3
6 and the clock component strength measuring circuit 3 as the control circuit 37.
74 and a dispersion amount control circuit 372.

【0067】本構成例の特徴は、受信装置(再生中継器
の受信部)30のクロック抽出回路35で抽出されたク
ロック成分の強度を測定し、その強度が最大になるよう
に可変分散等化器32の分散量を制御するところにある
(クロック成分強度モニタ法)。
The feature of this configuration example is that the strength of the clock component extracted by the clock extraction circuit 35 of the receiver (reception repeater) 30 is measured, and variable dispersion equalization is performed so that the strength is maximized. This is to control the amount of dispersion of the device 32 (clock component intensity monitor method).

【0068】伝送用光ファイバを介して伝送されたデー
タ信号光は、光増幅器31を介して可変分散等化器32
に入力される。可変分散等化器32により所定の分散量
で等化された光信号は、O/E33で電気信号に変換さ
れ、等化増幅器34で増幅されてクロック抽出回路35
および識別回路36に入力される。クロック抽出回路3
5で抽出されたクロック成分は、識別回路36の識別処
理に供されるとともにクロック成分強度測定回路374
に入力され、クロック成分強度が測定される。分散量制
御回路372は、そのクロック成分強度が最大になるよ
うに可変分散等化器32に設定する分散量を制御し、再
生中継区間の分散を等化する。
The data signal light transmitted through the transmission optical fiber is transmitted through the optical amplifier 31 to the variable dispersion equalizer 32.
Entered in. The optical signal equalized by the variable dispersion equalizer 32 with a predetermined dispersion amount is converted into an electric signal by the O / E 33, amplified by the equalization amplifier 34, and then extracted by the clock extraction circuit 35.
And the identification circuit 36. Clock extraction circuit 3
The clock component extracted in 5 is supplied to the identification processing of the identification circuit 36 and the clock component strength measuring circuit 374.
And the clock component strength is measured. The dispersion amount control circuit 372 controls the dispersion amount set in the variable dispersion equalizer 32 so that the strength of the clock component becomes maximum, and equalizes the dispersion in the regeneration relay section.

【0069】本方式は、符号誤り率を測定せずに抽出さ
れたクロック成分強度をモニタするので、上記の符号誤
り率モニタ法、Q値モニタ法と比較して短時間で再生中
継区間の最適分散量を得ることができる。これにより、
再生中継間隔の長距離化を図ることができる。
Since the present method monitors the strength of the extracted clock component without measuring the code error rate, it is possible to optimize the regeneration repeating section in a shorter time than the above-mentioned code error rate monitoring method and Q value monitoring method. The amount of dispersion can be obtained. This allows
It is possible to increase the regenerative relay interval.

【0070】以上示した線形中継器20で線形中継区間
の分散等化を行う6通りの構成と、受信装置(再生中継
器の受信部)30で再生中継区間の分散等化を行う3通
りの構成を組み合わせた18通りの構成により、線形中継
器20で線形中継区間の波長分散等化を行い、さらに受
信装置(再生中継器の受信部)30で再生中継器区間の
波長分散等化を行うことができる。
The above-described six configurations for performing the linear equalization of the linear relay section in the linear repeater 20 and the three configurations for performing the equalization of the distribution of the regeneration relay section in the receiving device (reception unit of the regenerative repeater) 30. The linear repeater 20 performs chromatic dispersion equalization in the linear repeater section, and the receiving device (reception unit of the regenerative repeater) 30 further performs chromatic dispersion equalization in the regenerative repeater section according to the 18 combinations of configurations. be able to.

【0071】(第2の実施形態:請求項13) 伝送路の分散により、受信装置または再生中継器の受信
部の識別回路の最適クロック位相および位相余裕が変化
する。このため、高速光伝送システムでは識別感度が劣
化し、再生中継間隔の長距離化の制限となるので、クロ
ック位相の最適化が必要となる。
(Second Embodiment: Claim 13 ) Due to the dispersion of the transmission path, the optimum clock phase and the phase margin of the identification circuit of the receiver of the receiver or the regenerator are changed. For this reason, in the high-speed optical transmission system, the identification sensitivity is deteriorated and the extension of the regenerative repeater interval is limited, so that it is necessary to optimize the clock phase.

【0072】図10は、受信装置または再生中継器の受
信部にクロック位相調整回路を付加した構成例を示す。
本構成例は、図7に示す受信装置または再生中継器の受
信部の第1構成例にクロック位相調整回路を付加したも
のである(請求項10,13)。
FIG. 10 shows a configuration example in which a clock phase adjusting circuit is added to the receiving section of the receiving device or the regenerator.
In this configuration example, a clock phase adjusting circuit is added to the first configuration example of the receiving unit of the receiving device or the regenerator shown in FIG. 7 ( claims 10 and 13 ).

【0073】図において、送信装置(再生中継器の送信
部)10の構成は同様である。受信装置(再生中継器の
受信部)30は、光増幅器31と、可変分散等化器32
と、光電気変換器(O/E)33と、等化増幅器34
と、クロック抽出回路35と、クロック位相調整回路3
8と、識別回路36と、制御回路37として誤り率検出
回路371、コントローラ375および分散量制御回路
372とを備える。
In the figure, the configuration of the transmission device (transmission unit of the regenerator) 10 is the same. The receiving device (reception unit of the regenerator) 30 includes an optical amplifier 31 and a variable dispersion equalizer 32.
An opto-electrical converter (O / E) 33 and an equalizing amplifier 34.
, Clock extraction circuit 35, and clock phase adjustment circuit 3
8, an identification circuit 36, an error rate detection circuit 371 as a control circuit 37, a controller 375, and a dispersion amount control circuit 372.

【0074】本構成例の特徴は、受信装置(再生中継器
の受信部)30の識別回路36の出力信号の符号誤り率
を測定し、その符号誤り率が最小になるように可変分散
等化器32の分散量および識別回路36のクロック位相
を制御するところにある。
The feature of this configuration example is that the code error rate of the output signal of the discriminating circuit 36 of the receiving device (reception unit of the regenerator) 30 is measured, and variable dispersion equalization is performed so that the code error rate is minimized. This is to control the dispersion amount of the device 32 and the clock phase of the identification circuit 36.

【0075】伝送用光ファイバを介して伝送されたデー
タ信号光は、光増幅器31を介して可変分散等化器32
に入力される。可変分散等化器32により所定の分散量
で等化された光信号は、O/E33で電気信号に変換さ
れ、等化増幅器34で増幅されてクロック抽出回路35
および識別回路36に入力される。クロック抽出回路3
5で抽出されたクロック成分は、クロック位相調整回路
38を介して識別回路36の識別処理に供される。誤り
率検出回路371は、識別回路36の出力信号の符号誤
り率を測定する。コントローラ375は、クロック位相
調整回路38および分散量制御回路372に対して、符
号誤り率が最小になるようにクロック位相および可変分
散等化器32に設定する分散量を制御し、再生中継区間
の分散を等化する。なお、分散量の設定方法と最適クロ
ック位相の設定方法の関連については後述する。
The data signal light transmitted through the transmission optical fiber is transmitted through the optical amplifier 31 to the variable dispersion equalizer 32.
Entered in. The optical signal equalized by the variable dispersion equalizer 32 with a predetermined dispersion amount is converted into an electric signal by the O / E 33, amplified by the equalization amplifier 34, and then extracted by the clock extraction circuit 35.
And the identification circuit 36. Clock extraction circuit 3
The clock component extracted in 5 is supplied to the identification processing of the identification circuit 36 via the clock phase adjustment circuit 38. The error rate detection circuit 371 measures the code error rate of the output signal of the identification circuit 36. The controller 375 controls the clock phase adjustment circuit 38 and the dispersion amount control circuit 372 to control the clock phase and the dispersion amount set in the variable dispersion equalizer 32 so as to minimize the code error rate, and Equalize the variance. The relationship between the dispersion amount setting method and the optimum clock phase setting method will be described later.

【0076】このように、可変分散等化器32を用いて
再生中継区間の分散等化を行いながら、符号誤り率が最
小になる最適なクロック位相を設定することにより、受
信感度劣化を抑圧し、再生中継間隔の長距離化を図るこ
とができる。
As described above, while the variable equalizer 32 is used to perform the dispersion equalization of the regenerative repeater section, the optimum clock phase that minimizes the code error rate is set to suppress the deterioration of the reception sensitivity. Therefore, it is possible to increase the regenerative relay interval.

【0077】また、最適クロック位相の検出手段は、誤
り率検出回路371をQ値測定回路373に置き換える
Q値モニタ法でもよい。すなわち、図8に示す受信装置
または再生中継器の受信部の第2構成例にクロック位相
調整回路38を付加したものでもよい(請求項11,1
3)。
The optimum clock phase detecting means may be a Q value monitor method in which the error rate detecting circuit 371 is replaced with a Q value measuring circuit 373. That is, the clock phase adjusting circuit 38 may be added to the second configuration example of the receiving unit of the receiving device or the regenerator shown in FIG. 8 ( claims 11, 1
3 ).

【0078】(第3の実施形態:請求項14) 伝送路の分散により、受信装置または再生中継器の受信
部の識別回路の最適識別電圧および識別余裕が変化す
る。このため、高速光伝送システムでは識別感度が劣化
し、再生中継間隔の長距離化の制限となるので、識別電
圧の最適化が必要となる。
(Third Embodiment: Claim 14 ) Due to the dispersion of the transmission path, the optimum discrimination voltage and discrimination margin of the discrimination circuit of the receiving unit of the receiving device or the regenerator are changed. For this reason, in the high-speed optical transmission system, the identification sensitivity is deteriorated and the regeneration relay interval is limited to a long distance. Therefore, it is necessary to optimize the identification voltage.

【0079】図11は、受信装置または再生中継器の受
信部に識別電圧調整回路を付加した構成例を示す。本構
成例は、図7に示す受信装置または再生中継器の受信部
の第1構成例に識別電圧調整回路を付加したものである
請求項10,14)。
FIG. 11 shows a configuration example in which an identification voltage adjusting circuit is added to the receiving section of the receiving device or the regenerative repeater. In this configuration example, an identification voltage adjusting circuit is added to the first configuration example of the receiving section of the receiving device or the regenerator shown in FIG. 7 ( claims 10 and 14 ).

【0080】図において、送信装置(再生中継器の送信
部)10の構成は同様である。受信装置(再生中継器の
受信部)30は、光増幅器31と、可変分散等化器32
と、光電気変換器(O/E)33と、等化増幅器34
と、クロック抽出回路35と、識別回路36と、識別電
圧調整回路39と、制御回路37として誤り率検出回路
371、コントローラ375および分散量制御回路37
2とを備える。
In the figure, the configuration of the transmission device (transmission unit of the regenerator) 10 is the same. The receiving device (reception unit of the regenerator) 30 includes an optical amplifier 31 and a variable dispersion equalizer 32.
An opto-electrical converter (O / E) 33 and an equalizing amplifier 34.
A clock extraction circuit 35, an identification circuit 36, an identification voltage adjustment circuit 39, a control circuit 37, an error rate detection circuit 371, a controller 375, and a dispersion amount control circuit 37.
2 and.

【0081】本構成例の特徴は、受信装置(再生中継器
の受信部)30の識別回路36の出力信号の符号誤り率
を測定し、その符号誤り率が最小になるように可変分散
等化器32の分散量および識別回路36の識別電圧を制
御するところにある。
The feature of this configuration example is that the code error rate of the output signal of the identification circuit 36 of the receiver (reception repeater) 30 is measured, and variable dispersion equalization is performed so that the code error rate is minimized. This is to control the dispersion amount of the device 32 and the discrimination voltage of the discrimination circuit 36.

【0082】伝送用光ファイバを介して伝送されたデー
タ信号光は、光増幅器31を介して可変分散等化器32
に入力される。可変分散等化器32により所定の分散量
で等化された光信号は、O/E33で電気信号に変換さ
れ、等化増幅器34で増幅されてクロック抽出回路35
および識別回路36に入力される。クロック抽出回路3
5で抽出されたクロック成分は、識別回路36の識別処
理に供される。誤り率検出回路371は、識別回路36
の出力信号の符号誤り率を測定する。コントローラ37
5は、識別電圧調整回路39および分散量制御回路37
2に対して、符号誤り率が最小になるように識別電圧お
よび可変分散等化器32に設定する分散量を制御し、再
生中継区間の分散を等化する。なお、分散量の設定方法
と最適識別電圧の設定方法の関連については後述する。
The data signal light transmitted through the transmission optical fiber is transmitted through the optical amplifier 31 to the variable dispersion equalizer 32.
Entered in. The optical signal equalized by the variable dispersion equalizer 32 with a predetermined dispersion amount is converted into an electric signal by the O / E 33, amplified by the equalization amplifier 34, and then extracted by the clock extraction circuit 35.
And the identification circuit 36. Clock extraction circuit 3
The clock component extracted in 5 is supplied to the discrimination processing of the discrimination circuit 36. The error rate detection circuit 371 includes the identification circuit 36.
The bit error rate of the output signal of is measured. Controller 37
5 is an identification voltage adjustment circuit 39 and a dispersion amount control circuit 37.
For 2, the discrimination voltage and the amount of dispersion set in the variable dispersion equalizer 32 are controlled so that the code error rate is minimized, and the dispersion in the regenerative repeater section is equalized. The relationship between the setting method of the dispersion amount and the setting method of the optimum discrimination voltage will be described later.

【0083】このように、再生中継区間の分散等化を行
いながら、符号誤り率が最小になる最適な識別電圧を設
定することにより、受信感度劣化を抑圧し、再生中継間
隔の長距離化を図ることができる。
As described above, by performing the dispersion equalization of the regenerative repeater interval and setting the optimum discrimination voltage that minimizes the code error rate, the deterioration of the reception sensitivity is suppressed and the regenerative repeater interval is made longer. Can be planned.

【0084】また、最適識別電圧の検出手段は、誤り率
検出回路371をQ値測定回路373に置き換えるQ値
モニタ法でもよい。すなわち、図8に示す受信装置また
は再生中継器の受信部の第2構成例に識別電圧調整回路
39を付加したものでもよい(請求項11,14)。
Further, the optimum discrimination voltage detecting means may be a Q value monitor method in which the error rate detecting circuit 371 is replaced with a Q value measuring circuit 373. That is, the identification voltage adjusting circuit 39 may be added to the second configuration example of the receiving unit of the receiving device or the regenerator shown in FIG. 8 ( claims 11 and 14 ).

【0085】図12は、受信装置または再生中継器の受
信部にクロック位相調整回路および識別電圧調整回路を
付加した構成例を示す。本構成例は、図7に示す受信装
置または再生中継器の受信部の第1構成例に、クロック
位相調整回路38および識別電圧調整回路39を付加し
たものであり、図10,11を合わせたものである(
求項10,13,14)。
FIG. 12 shows a configuration example in which a clock phase adjusting circuit and a discrimination voltage adjusting circuit are added to the receiving section of the receiving device or the regenerator. In this configuration example, a clock phase adjustment circuit 38 and an identification voltage adjustment circuit 39 are added to the first configuration example of the receiving unit of the receiving device or the regenerator shown in FIG. 7, and FIGS. it is those (請
Requirement 10, 13, 14 ).

【0086】本構成例の特徴は、受信装置(再生中継器
の受信部)30の識別回路36の出力信号の符号誤り率
を測定し、その符号誤り率が最小になるように可変分散
等化器32の分散量、識別回路36のクロック位相およ
び識別電圧を制御するところにある。コントローラ37
5は、クロック位相調整回路38、識別電圧調整回路3
9および分散量制御回路372に対して、符号誤り率が
最小になるようにクロック位相、識別電圧および可変分
散等化器32に設定する分散量を制御し、再生中継区間
の分散を等化する。
The feature of this configuration example is that the code error rate of the output signal of the identification circuit 36 of the receiving device (reception unit of the regenerator) 30 is measured, and variable dispersion equalization is performed so that the code error rate is minimized. This is for controlling the dispersion amount of the device 32, the clock phase of the discrimination circuit 36, and the discrimination voltage. Controller 37
Reference numeral 5 is a clock phase adjustment circuit 38, an identification voltage adjustment circuit 3
9 and the dispersion amount control circuit 372, the clock phase, the discrimination voltage, and the dispersion amount set in the variable dispersion equalizer 32 are controlled so as to minimize the code error rate, and the dispersion in the regenerative repeater section is equalized. .

【0087】なお、最適クロック位相および識別電圧の
検出手段は、誤り率検出回路371をQ値測定回路37
3に置き換えるQ値モニタ法でもよい。このように、受
信装置(再生中継器の受信部)30の識別回路36の出
力信号の符号誤り率またはQ値により分散量制御を行う
構成に、クロック位相調整回路38または識別電圧調整
回路39の少なくとも一方を備えた6通りの構成が可能
である。図10,11,12は、そのうちの3通りの構
成である。
The means for detecting the optimum clock phase and the discrimination voltage are the error rate detection circuit 371 and the Q value measurement circuit 37.
A Q value monitor method in which the Q value is replaced by 3 may be used. As described above, the clock phase adjustment circuit 38 or the identification voltage adjustment circuit 39 is provided in the configuration in which the amount of dispersion is controlled by the code error rate or the Q value of the output signal of the identification circuit 36 of the receiver (reception repeater) 30. Six configurations with at least one are possible. 10, 11, and 12 have three configurations among them.

【0088】(第4の実施形態:請求項15,16) 可変分散等化器32に設定する分散量は、図9に示すよ
うに、クロック抽出回路35で抽出されたクロック成分
の強度が最大になるように制御し、識別回路36のクロ
ック位相または識別電圧は、識別回路36の出力信号の
符号誤り率が最小になるように、またはQ値が最大にな
るように制御する構成としてもよい。
(Fourth Embodiment: Claims 15 and 16 ) The dispersion amount set in the variable dispersion equalizer 32 has the maximum intensity of the clock component extracted by the clock extraction circuit 35, as shown in FIG. The clock phase or the discrimination voltage of the discrimination circuit 36 may be controlled so that the code error rate of the output signal of the discrimination circuit 36 is minimized or the Q value is maximized. .

【0089】図13は、受信装置または再生中継器の受
信部にクロック位相調整回路および識別電圧調整回路を
付加した他の構成例を示す。本構成例は、図9に示す受
信装置または再生中継器の受信部の第3構成例に、クロ
ック位相調整回路38および識別電圧調整回路39を付
加したものである(請求項12,15,16)。
FIG. 13 shows another configuration example in which a clock phase adjusting circuit and a discrimination voltage adjusting circuit are added to the receiving section of the receiving device or the regenerator. In this configuration example, a clock phase adjusting circuit 38 and an identification voltage adjusting circuit 39 are added to the third configuration example of the receiving unit of the receiving device or the regenerator shown in FIG. 9 ( claims 12, 15, 16). ).

【0090】図において、送信装置(再生中継器の送信
部)10の構成は同様である。受信装置(再生中継器の
受信部)30は、光増幅器31と、可変分散等化器32
と、光電気変換器(O/E)33と、等化増幅器34
と、クロック抽出回路35と、クロック位相調整回路3
8と、識別回路36と、識別電圧調整回路39と、制御
回路37として誤り率検出回路371、クロック成分強
度測定回路374、コントローラ375および分散量制
御回路372とを備える。
In the figure, the configuration of the transmission device (transmission unit of the regenerator) 10 is the same. The receiving device (reception unit of the regenerator) 30 includes an optical amplifier 31 and a variable dispersion equalizer 32.
An opto-electrical converter (O / E) 33 and an equalizing amplifier 34.
, Clock extraction circuit 35, and clock phase adjustment circuit 3
8, an identification circuit 36, an identification voltage adjustment circuit 39, an error rate detection circuit 371 as a control circuit 37, a clock component strength measurement circuit 374, a controller 375, and a dispersion amount control circuit 372.

【0091】本構成例の特徴は、クロック抽出回路35
で抽出されたクロック成分の強度が最大になるように可
変分散等化器32の分散量を制御し、識別回路36の出
力信号の符号誤り率が最小になるように、識別回路36
のクロック位相および識別電圧を制御するところにあ
る。コントローラ375は、クロック成分強度測定回路
374で測定されたクロック成分強度が最大になるよう
に分散量制御回路372を制御し、クロック位相調整回
路38および識別電圧調整回路39に対して、符号誤り
率が最小になるようにクロック位相および識別電圧を制
御する。
The feature of this configuration example is that the clock extraction circuit 35 is used.
The dispersion amount of the variable dispersion equalizer 32 is controlled so that the intensity of the clock component extracted in step 6 is maximized, and the discrimination circuit 36 is controlled so that the code error rate of the output signal of the discrimination circuit 36 is minimized.
Is to control the clock phase and identification voltage of the. The controller 375 controls the dispersion amount control circuit 372 so that the clock component strength measured by the clock component strength measuring circuit 374 is maximized, and causes the clock phase adjusting circuit 38 and the discrimination voltage adjusting circuit 39 to have a code error rate. The clock phase and the discrimination voltage are controlled so that

【0092】なお、最適クロック位相および識別電圧の
検出手段は、誤り率検出回路371をQ値測定回路37
3に置き換えるQ値モニタ法でもよい。このように、受
信装置(再生中継器の受信部)30の識別回路36のク
ロック成分強度により分散量制御を行う構成に、クロッ
ク位相調整回路38または識別電圧調整回路39の少な
くとも一方を備えた3通りの構成が可能である。図13
は、そのうちの1つである。
The means for detecting the optimum clock phase and the discrimination voltage includes the error rate detecting circuit 371 and the Q value measuring circuit 37.
A Q value monitor method in which the Q value is replaced by 3 may be used. In this way, at least one of the clock phase adjusting circuit 38 and the identifying voltage adjusting circuit 39 is provided in the configuration for controlling the amount of dispersion by the clock component intensity of the identifying circuit 36 of the receiving device (reception unit of the regenerator) 30. Street configurations are possible. FIG.
Is one of them.

【0093】本発明の自動波長分散等化光伝送システム
では、以上示した線形中継器20の構成および受信装置
(再生中継器の受信部)30の構成の組み合わせによ
り、72通りの構成が可能である。これにより、線形中継
器20で線形中継区間の波長分散等化を行い、受信装置
(再生中継器の受信部)30で再生中継器区間の波長分
散等化を行い、さらにクロック位相および識別電圧の最
適化により、再生中継間隔の長距離化を図ることができ
る。
In the automatic wavelength dispersion equalization optical transmission system of the present invention, 72 kinds of configurations are possible by combining the configurations of the linear repeater 20 and the receiving device (reception section of the regenerative repeater) 30 described above. is there. As a result, the linear repeater 20 performs chromatic dispersion equalization in the linear repeater section, the receiving device (reception section of the regenerative repeater) 30 performs chromatic dispersion equalization in the regenerative repeater section, and further, the clock phase and the identification voltage By optimizing, the regeneration relay interval can be increased.

【0094】(第5の実施形態:請求項17) 図14は、本発明の自動波長分散等化光伝送システムに
制御用回線を備えた構成例を示す。本構成例は、送信装
置10と受信装置30との間に制御用回線2を配線し、
送信装置(線形中継器の送信部)10に制御信号受信回
路3を備え、線形中継器20と受信装置(再生中継器の
受信部)30にそれぞれ制御信号送受信回路4を備え
る。そして、自動波長分散等化の開始および終了に伴う
試験信号とデータ信号の伝送切り替えその他の制御信号
を送受信する。制御信号の具体例については第6の実施
形態において説明する。これにより、伝送モードと試験
モードの切り替えや測定を自動的に行うことができ、試
験の際の人員およびコストを削減することができる。
(Fifth Embodiment: Claim 17 ) FIG. 14 shows a configuration example in which the automatic chromatic dispersion equalization optical transmission system of the present invention is provided with a control line. In this configuration example, the control line 2 is wired between the transmitter 10 and the receiver 30,
The transmission device (transmission unit of the linear repeater) 10 is provided with the control signal receiving circuit 3, and the linear repeater 20 and the reception device (reception unit of the regenerative repeater) 30 are provided with the control signal transmission / reception circuit 4, respectively. Then, transmission / reception of control signals such as transmission switching of test signals and data signals accompanying the start and end of automatic chromatic dispersion equalization are performed. A specific example of the control signal will be described in the sixth embodiment. As a result, it is possible to automatically switch between the transmission mode and the test mode and perform the measurement, and it is possible to reduce the number of personnel and the cost during the test.

【0095】(第6の実施形態) 本実施形態では、受信装置(再生中継器の受信部)の最
適分散量、最適識別電圧、最適クロック位相の設定方法
および最適化手順について説明する。受信装置(再生中
継器の受信部)30の可変分散等化器32の各分散量に
対して、それぞれ図20に示す識別電圧に対する符号誤
り率(BER)特性を測定し、要求される符号誤り率に
対する2つの識別電圧を記録する。すべての分散量に対
して測定を行った後に、図21に示す分散量に対する識
別電圧のマップを記録する。このマップの中で、識別電
圧間の電位差が最大となる分散量を最適分散量とし、2
つの識別電圧の平均値(中間値)を最適識別電圧として
設定する。図では、×印が最適識別電圧となる。
(Sixth Embodiment) In this embodiment, a method of setting an optimum dispersion amount, an optimum discrimination voltage, an optimum clock phase of a receiving device (reception unit of a regenerator) and an optimizing procedure will be described. For each dispersion amount of the variable dispersion equalizer 32 of the receiving device (reception unit of regenerative repeater) 30, the bit error rate (BER) characteristic with respect to the identification voltage shown in FIG. The two discriminating voltages against the rate are recorded. After the measurement is performed for all the dispersion amounts, the map of the identification voltage with respect to the dispersion amount shown in FIG. 21 is recorded. In this map, the amount of variance that maximizes the potential difference between the identification voltages is defined as the optimal amount of variance.
The average value (intermediate value) of the two discrimination voltages is set as the optimum discrimination voltage. In the figure, the cross indicates the optimum discrimination voltage.

【0096】本手順を用いることにより、伝送路の分散
変動に対して識別電圧の変動耐力を増加させることがで
きる。また、最適識別電圧として、上記の手順で測定さ
れた符号誤り率が最小となる識別電圧に設定する方式で
は、受信感度劣化を最小にすることができ、再生中継間
隔の長距離化が可能となる。
By using this procedure, it is possible to increase the fluctuation tolerance of the identification voltage against the dispersion fluctuation of the transmission line. Further, in the method of setting the identification voltage that minimizes the code error rate measured in the above procedure as the optimum identification voltage, it is possible to minimize the deterioration of the reception sensitivity, and it is possible to lengthen the regenerative relay interval. Become.

【0097】図22は、10Gbit/s 、NRZ信号伝送時
の特定の符号誤り率(BER)における分散量に対する
識別電圧を測定した結果を示す。伝送路の分散値を変化
させる代わりに、信号光の波長を変化させて等価とし
た。図の横軸は信号光の波長を示し、縦軸は識別電圧を
示す。図のように、分散に対して要求する符号誤り率と
なる識別電圧間の電位差が変化している。この電位差が
最大となる信号光波長に設定したときに受信感度劣化を
最小にすることができ、本方式の有効性を確認できた。
FIG. 22 shows the result of measuring the discrimination voltage with respect to the amount of dispersion at a specific code error rate (BER) at the time of 10 Gbit / s, NRZ signal transmission. Instead of changing the dispersion value of the transmission line, the wavelength of the signal light was changed to be equivalent. The horizontal axis of the figure shows the wavelength of the signal light, and the vertical axis shows the discrimination voltage. As shown in the figure, the potential difference between the identification voltages, which is the code error rate required for dispersion, changes. When the signal light wavelength that maximizes this potential difference is set, the deterioration of reception sensitivity can be minimized, and the effectiveness of this method was confirmed.

【0098】最適クロック位相の設定方法についても同
様である。受信装置(再生中継器の受信部)の可変分散
等化器32の各分散量に対して、それぞれ図23に示す
クロック位相に対する符号誤り率(BER)特性を測定
し、要求される符号誤り率に対する2つのクロック位相
を記録し、さらに図24に示す分散量に対するクロック
位相のマップを記録する。このマップの中で、クロック
位相間の位相差が最も大きくなる分散量を最適分散量と
し、2つのクロック位相の平均値(中間値)を最適クロ
ック位相として設定する。図では、×印が最適クロック
位相となる。
The same applies to the method of setting the optimum clock phase. The bit error rate (BER) characteristic with respect to the clock phase shown in FIG. 23 is measured for each dispersion amount of the variable dispersion equalizer 32 of the receiving device (reception unit of the regenerative repeater), and the required code error rate is obtained. 24 are recorded, and the map of the clock phase with respect to the dispersion amount shown in FIG. 24 is recorded. In this map, the amount of dispersion that maximizes the phase difference between the clock phases is set as the optimum amount of dispersion, and the average value (intermediate value) of the two clock phases is set as the optimum clock phase. In the figure, the mark x indicates the optimum clock phase.

【0099】本手順を用いることにより、伝送路の分散
変動に対してクロック位相の変動耐力を増加させること
ができる。また、最適クロック位相として、上記の手順
で測定された符号誤り率が最小となるクロック位相に設
定する方式では、受信感度劣化を最小にすることがで
き、再生中継間隔の長距離化が可能となる。
By using this procedure, it is possible to increase the fluctuation tolerance of the clock phase against the dispersion fluctuation of the transmission line. In addition, the method of setting the clock phase that minimizes the code error rate measured by the above procedure as the optimum clock phase can minimize the deterioration of the reception sensitivity and can lengthen the regenerative relay interval. Become.

【0100】図25は、本発明の自動波長分散等化光伝
送システムの分散等化手順の一例を示す。ここでは、試
験信号光として交番チャープ信号光を用いる場合につい
て示す。
FIG. 25 shows an example of the dispersion equalization procedure of the automatic wavelength dispersion equalization optical transmission system of the present invention. Here, a case where an alternating chirp signal light is used as the test signal light will be described.

【0101】送信装置(再生中継器の送信部)は、まず
変調器のバイアス電圧を調整し、変調器入力を試験信号
に切り替え、ACK信号を送信した後に交番チャープ信
号光を送信する。
The transmitter (the transmitter of the regenerator) first adjusts the bias voltage of the modulator, switches the modulator input to the test signal, transmits the ACK signal, and then transmits the alternating chirp signal light.

【0102】線形中継器は、ACK信号を受信すると測
定モードに入り、交番チャープ信号光を受信すると、線
形中継区間の分散等化処理を行う。そして、ACK信号
を次段の線形中継器に送信し、測定モードを終了して伝
送モードに入る。この処理を各線形中継器で順次行う。
線形中継区間の分散等化処理は、図26に示すように、
可変分散等化器の分散量を変化させて交番チャープ信号
光の変調周波数成分強度を測定し、その強度が最小とな
る分散量を可変分散等化器に設定する。
The linear repeater enters the measurement mode when it receives the ACK signal, and performs the dispersion equalization processing of the linear repeater section when it receives the alternating chirp signal light. Then, the ACK signal is transmitted to the next-stage linear repeater, the measurement mode is terminated, and the transmission mode is entered. This process is sequentially performed by each linear repeater.
As shown in FIG. 26, the distributed equalization processing of the linear relay section is performed as follows.
The dispersion amount of the variable dispersion equalizer is changed to measure the modulation frequency component intensity of the alternating chirp signal light, and the dispersion amount that minimizes the intensity is set in the variable dispersion equalizer.

【0103】受信装置(再生中継器の受信部)は、AC
K信号を受信すると交番チャープ信号光終了コマンドを
送信して測定モードに入る。送信装置(再生中継器の送
信部)は、この交番チャープ信号光終了コマンドを受信
すると、変調器のバイアス電圧を調整し、変調器入力を
データ信号に切り替えてデータ信号光を送信する。受信
装置(再生中継器の受信部)は、データ信号光を受信す
ると、符号誤り率モニタ法により最適分散量および最適
識別電圧の設定処理を行う。その後、同様の符号誤り率
モニタ法により最適クロック位相の設定処理を行う。そ
して、試験終了コマンドを送信し、測定モードを終了し
て伝送モードに入る。
The receiving device (reception unit of the regenerator) is an AC
When the K signal is received, the alternating chirp signal light end command is transmitted to enter the measurement mode. Upon receiving the alternating chirp signal light end command, the transmitter (the transmitter of the regenerator) adjusts the bias voltage of the modulator, switches the modulator input to the data signal, and transmits the data signal light. When receiving the data signal light, the receiving device (reception unit of the regenerator) performs the setting process of the optimum dispersion amount and the optimum discrimination voltage by the code error rate monitoring method. After that, the optimum clock phase is set by the same code error rate monitoring method. Then, a test end command is transmitted to end the measurement mode and enter the transmission mode.

【0104】最適分散量、最適識別電圧、最適クロック
位相の設定処理は、図27に示すように、可変分散等化
器の分散量を変化させて識別電圧に対する符号誤り率を
測定し、特定の符号誤り率となる2つの識別電圧を記録
する。これをすべての分散量に対して行った後に、2つ
の識別電圧の電位差が最大となる分散量を最適分散量と
して設定し、さらに2つの識別電圧の中点を最適識別電
圧として設定する。その後、クロック位相を変化させて
クロック位相に対する符号誤り率を測定し、特定の符号
誤り率となる2つのクロック位相の中点を最適クロック
位相として設定する。
As shown in FIG. 27, the optimum dispersion amount, the optimum discrimination voltage, and the optimum clock phase are set by changing the dispersion amount of the variable dispersion equalizer to measure the code error rate with respect to the discrimination voltage, The two discrimination voltages, which are the code error rate, are recorded. After this is performed for all the dispersion amounts, the dispersion amount that maximizes the potential difference between the two identification voltages is set as the optimal dispersion amount, and the midpoint between the two identification voltages is set as the optimal identification voltage. After that, the clock phase is changed to measure the code error rate with respect to the clock phase, and the midpoint between the two clock phases having a specific code error rate is set as the optimum clock phase.

【0105】図28は、受信装置(再生中継器の受信
部)における最適分散量、最適識別電圧、最適クロック
位相の他の設定処理手順を示す。ここでは、可変分散等
化器の分散量を変化させるごとに、クロック位相を変化
させ、その分散量に対する最適クロック位相を設定する
手順を示す。
FIG. 28 shows another procedure for setting the optimum dispersion amount, the optimum discrimination voltage, and the optimum clock phase in the receiver (reception unit of the regenerator). Here, the procedure for changing the clock phase each time the dispersion amount of the variable dispersion equalizer is changed and setting the optimum clock phase for the dispersion amount will be described.

【0106】線形中継器での分散等化を終えた後に、受
信装置(再生中継器の受信部)の可変分散等化器の分散
量を設定する。クロック位相を変化させてクロック位相
に対する符号誤り率を測定する。特定の符号誤り率とな
る2つのクロック位相の中点にクロック位相を設定し、
識別電圧に対する符号誤り率を測定し、特定の符号誤り
率となる2つの識別電圧を記録する。これをすべての分
散量に対して行った後に、2つの識別電圧の電位差が最
大となる分散量を最適分散量として設定し、さらに設定
された分散量のときに測定された最適クロック位相を設
定し、さらに2つの識別電圧の中点を最適識別電圧とし
て設定する。
After the dispersion equalization in the linear repeater is completed, the dispersion amount of the variable dispersion equalizer of the receiver (reception section of the regenerative repeater) is set. The clock error is measured by changing the clock phase. Set the clock phase at the midpoint of the two clock phases that will result in a specific code error rate,
The code error rate with respect to the identification voltage is measured, and two identification voltages having a specific code error rate are recorded. After performing this for all dispersion amounts, the dispersion amount that maximizes the potential difference between the two identification voltages is set as the optimum dispersion amount, and the optimum clock phase measured at the set dispersion amount is set. Then, the midpoint between the two discrimination voltages is set as the optimum discrimination voltage.

【0107】伝送路の分散に対して最適クロック位相が
変化するので、等化する分散量ごとにクロック位相の調
整を行うことにより、最適分散量と最適識別電圧を正確
に検出することができる。なお、識別電圧とクロック位
相の最適化については、それぞれ独立に最適化する簡便
法を用いてもよいし、2次元格子上のすべての点を走査
する2次元法および局所探索法の山登り法を用いてもよ
い。
Since the optimum clock phase changes with respect to the dispersion of the transmission line, the optimum dispersion amount and the optimum discrimination voltage can be accurately detected by adjusting the clock phase for each dispersion amount to be equalized. For the optimization of the discrimination voltage and the clock phase, a simple method of independently optimizing each may be used, or the two-dimensional method of scanning all points on the two-dimensional grid and the hill climbing method of the local search method may be used. You may use.

【0108】図29は、伝送路の分散変動を考慮した最
適分散量、最適識別電圧、最適クロック位相の設定処理
手順を示す。線形中継器での分散等化を終えた後に、受
信装置(再生中継器の受信部)の可変分散等化器の分散
量を設定する。クロック位相を変化させてクロック位相
に対する符号誤り率を測定する。特定の符号誤り率とな
る2つのクロック位相の中点にクロック位相を設定し、
識別電圧に対する符号誤り率を測定し、分散量に対する
識別電圧のマップを記録する。
FIG. 29 shows the procedure for setting the optimum dispersion amount, the optimum discrimination voltage, and the optimum clock phase in consideration of the dispersion fluctuation of the transmission line. After the dispersion equalization in the linear repeater is completed, the dispersion amount of the variable dispersion equalizer of the receiving device (reception unit of the regenerative repeater) is set. The clock error is measured by changing the clock phase. Set the clock phase at the midpoint of the two clock phases that will result in a specific code error rate,
The code error rate with respect to the discrimination voltage is measured, and a map of the discrimination voltage with respect to the dispersion amount is recorded.

【0109】この際に、要求条件内の分散量のうち記録
された両端の分散量から予想される分散変動量ΔDの範
囲内に存在する分散量を対象外として除外する。さら
に、対象内の分散量が複数存在する場合には、例えば対
象となる分散量の2つの識別電圧の電位差と、その両側
にある分散量の2つの識別電圧の電位差の合計が最大と
なる分散量と最適値とする。さらに、最適分散量から予
想される分散変動量以上離れた最も近い2つの分散量に
おいて記録された識別電圧のうち、電位差が最小となる
組み合わせの中間点を最適識別電圧に設定する。
At this time, among the dispersion amounts within the required conditions, the dispersion amounts within the range of the dispersion variation amount ΔD expected from the recorded dispersion amounts at both ends are excluded from the target. Further, when there are a plurality of dispersion amounts in the target, for example, the sum of the potential difference between the two identification voltages having the target dispersion amount and the potential difference between the two identification voltages having the dispersion amounts on both sides thereof becomes the maximum. Amount and optimum value. Further, among the discrimination voltages recorded at the two closest dispersion amounts separated from the optimal dispersion amount by the expected dispersion variation amount or more, the intermediate point of the combination having the smallest potential difference is set as the optimal discrimination voltage.

【0110】この方法を用いることにより、伝送路の分
散変動に耐力のある分散量、識別電圧を設定することが
できる。
By using this method, it is possible to set the amount of dispersion and the identification voltage that are resistant to the dispersion fluctuation of the transmission line.

【0111】[0111]

【発明の効果】以上説明したように、本発明の自動波長
分散等化光伝送システムは、線形中継器で線形中継区間
ごとに波長分散等化を行い、受信装置および再生中継器
の受信部で最終的に再生中継区間の波長分散等化を行う
ことができる。さらに、受信装置および再生中継器の受
信部で、データ信号を識別するための識別電圧およびク
ロック位相を最適化することにより、高速光伝送システ
ムの再生中継区間の長距離化を図ることができる。
As described above, the automatic chromatic dispersion equalization optical transmission system of the present invention performs chromatic dispersion equalization for each linear repeater section in the linear repeater, and the receiving section of the receiving device and the regenerative repeater. Finally, chromatic dispersion equalization in the regenerative repeater section can be performed. Further, by optimizing the identification voltage and the clock phase for identifying the data signal in the receiving device and the receiving section of the regenerative repeater, it is possible to increase the length of the regenerative repeater section of the high-speed optical transmission system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の自動波長分散等化光伝送システムの基
本構成を示すブロック図。
FIG. 1 is a block diagram showing a basic configuration of an automatic wavelength dispersion equalization optical transmission system of the present invention.

【図2】本発明の自動波長分散等化光伝送システムの等
化手順の一例を示す図。
FIG. 2 is a diagram showing an example of an equalization procedure of the automatic wavelength dispersion equalization optical transmission system of the present invention.

【図3】線形中継器で波長分散等化を行う第1構成例を
示すブロック図。
FIG. 3 is a block diagram showing a first configuration example in which chromatic dispersion equalization is performed by a linear repeater.

【図4】線形中継器で波長分散等化を行う第2構成例を
示すブロック図。
FIG. 4 is a block diagram showing a second configuration example in which chromatic dispersion equalization is performed by a linear repeater.

【図5】線形中継器で波長分散等化を行う第5構成例を
示すブロック図。
FIG. 5 is a block diagram showing a fifth configuration example in which chromatic dispersion equalization is performed by a linear repeater.

【図6】線形中継器で波長分散等化を行う第6構成例を
示すブロック図。
FIG. 6 is a block diagram showing a sixth configuration example in which chromatic dispersion equalization is performed by a linear repeater.

【図7】受信装置または再生中継器の受信部で波長分散
等化を行う第1構成例を示すブロック図。
FIG. 7 is a block diagram showing a first configuration example in which chromatic dispersion equalization is performed in a receiver of a receiver or a regenerator.

【図8】受信装置または再生中継器の受信部で波長分散
等化を行う第2構成例を示すブロック図。
FIG. 8 is a block diagram showing a second configuration example in which chromatic dispersion equalization is performed in the receiving unit of the receiving device or the regenerator.

【図9】受信装置または再生中継器の受信部で波長分散
等化を行う第3構成例を示すブロック図。
FIG. 9 is a block diagram showing a third configuration example in which chromatic dispersion equalization is performed in the receiving unit of the receiving device or the regenerator.

【図10】受信装置または再生中継器の受信部にクロッ
ク位相調整回路を付加した構成例を示すブロック図。
FIG. 10 is a block diagram showing a configuration example in which a clock phase adjusting circuit is added to the receiving unit of the receiving device or the regenerator.

【図11】受信装置または再生中継器の受信部に識別電
圧調整回路を付加した構成例を示すブロック図。
FIG. 11 is a block diagram showing a configuration example in which an identification voltage adjusting circuit is added to the receiving unit of the receiving device or the regenerator.

【図12】受信装置または再生中継器の受信部にクロッ
ク位相調整回路と識別電圧調整回路を付加した構成例を
示すブロック図。
FIG. 12 is a block diagram showing a configuration example in which a clock phase adjusting circuit and an identification voltage adjusting circuit are added to the receiving unit of the receiving device or the regenerator.

【図13】受信装置または再生中継器の受信部にクロッ
ク位相調整回路と識別電圧調整回路を付加した他の構成
例を示すブロック図。
FIG. 13 is a block diagram showing another configuration example in which a clock phase adjusting circuit and a discrimination voltage adjusting circuit are added to the receiving unit of the receiving device or the regenerator.

【図14】本発明の自動波長分散等化光伝送システムに
制御用回線を備えた構成例。
FIG. 14 is a configuration example in which a control line is provided in the automatic wavelength dispersion equalization optical transmission system of the present invention.

【図15】交番チャープ信号光の生成例を示す図。FIG. 15 is a diagram showing an example of generating alternating chirp signal light.

【図16】分散に対する交番チャープ信号光の変調周波
数成分強度の測定例を示す図。
FIG. 16 is a diagram showing an example of measurement of modulation frequency component intensity of alternating chirp signal light with respect to dispersion.

【図17】位相変調信号の生成例を示す図。FIG. 17 is a diagram showing an example of generation of a phase modulation signal.

【図18】分散に対するPM−AM変換効果による変調
周波数成分強度の測定例を示す図。
FIG. 18 is a diagram showing an example of measurement of modulation frequency component strength by the PM-AM conversion effect on dispersion.

【図19】分散に対するクロック成分強度の測定例を示
す図。
FIG. 19 is a diagram showing a measurement example of clock component strength with respect to dispersion.

【図20】識別電圧に対する符号誤り率特性を示す図。FIG. 20 is a diagram showing a code error rate characteristic with respect to an identification voltage.

【図21】特定の符号誤り率の分散に対する識別電圧を
示す図。
FIG. 21 is a diagram showing an identification voltage with respect to a specific variance of a code error rate.

【図22】特定の符号誤り率の分散に対する識別電圧の
測定例を示す図。
FIG. 22 is a diagram showing an example of measurement of an identification voltage with respect to a specific dispersion of a code error rate.

【図23】クロック位相に対する符号誤り率特性を示す
図。
FIG. 23 is a diagram showing a code error rate characteristic with respect to a clock phase.

【図24】特定の符号誤り率の分散に対するクロック位
相を示す図。
FIG. 24 is a diagram showing a clock phase with respect to a specific dispersion of a code error rate.

【図25】本発明の自動波長分散等化光伝送システムの
分散等化手順の一例を示すフローチャート。
FIG. 25 is a flowchart showing an example of a dispersion equalization procedure of the automatic wavelength dispersion equalization optical transmission system of the present invention.

【図26】線形中継区間の分散等化手順を示すフローチ
ャート。
FIG. 26 is a flowchart showing a distributed equalization procedure of a linear relay section.

【図27】受信装置(線形中継器の受信部)における最
適分散量、最適識別電圧、最適クロック位相の設定処理
手順を示すフローチャート。
FIG. 27 is a flowchart showing the procedure for setting the optimum dispersion amount, the optimum discrimination voltage, and the optimum clock phase in the reception device (reception unit of the linear repeater).

【図28】受信装置(再生中継器の受信部)における最
適分散量、最適識別電圧、最適クロック位相の他の設定
処理手順を示すフローチャート。
FIG. 28 is a flowchart showing another setting processing procedure of the optimum dispersion amount, the optimum discrimination voltage, and the optimum clock phase in the receiving device (reception unit of the regenerator).

【図29】伝送路の分散変動を考慮した最適分散量、最
適識別電圧、最適クロック位相の設定処理手順を示すフ
ローチャート。
FIG. 29 is a flowchart showing a procedure for setting the optimum dispersion amount, the optimum discrimination voltage, and the optimum clock phase in consideration of the dispersion fluctuation of the transmission line.

【符号の説明】[Explanation of symbols]

1 伝送用光ファイバ 2 制御用回線 3 制御信号受信回路 4 制御信号送受信回路 10 送信装置(再生中継器の送信部) 11 測定・データ伝送切替回路 12 光変調回路 121 光源 122 変調器 123 バイアス電圧設定回路 13 光増幅器 14 光合波器 20 線形中継器 21 可変分散等化器 22 光分岐器 23 光増幅器 24 制御回路 241 光電気変換器(O/E) 242 変調周波数成分強度測定回路 243 分散量制御回路 244 直流成分強度測定回路 245 クロック抽出回路 246 クロック成分強度測定回路 247 光分波器 248 位相比較回路 30 受信装置(再生中継器の受信部) 31 光増幅器 32 可変分散等化器 33 光電気変換器(O/E) 34 等化増幅器 35 クロック抽出回路 36 識別回路 37 制御回路 371 誤り率検出回路 372 分散量制御回路 373 Q値測定回路 374 クロック成分強度測定回路 375 コントローラ 38 クロック位相調整回路 39 識別電圧調整回路 1 Optical fiber for transmission 2 control lines 3 Control signal receiving circuit 4 Control signal transmission / reception circuit 10 Transmitter (transmitter of regenerator) 11 Measurement / data transmission switching circuit 12 Optical modulation circuit 121 light source 122 modulator 123 Bias voltage setting circuit 13 Optical amplifier 14 Optical multiplexer 20 linear repeater 21 Variable dispersion equalizer 22 Optical splitter 23 Optical amplifier 24 Control circuit 241 Photoelectric converter (O / E) 242 Modulation frequency component strength measurement circuit 243 Dispersion control circuit 244 DC component strength measurement circuit 245 clock extraction circuit 246 Clock component strength measurement circuit 247 Optical demultiplexer 248 Phase comparison circuit 30 Receiver (reception repeater receiver) 31 Optical amplifier 32 Variable dispersion equalizer 33 Opto-electric converter (O / E) 34 Equalization amplifier 35 Clock extraction circuit 36 Identification circuit 37 Control circuit 371 Error rate detection circuit 372 Dispersion amount control circuit 373 Q value measurement circuit 374 Clock component strength measurement circuit 375 controller 38 Clock phase adjustment circuit 39 Identification voltage adjustment circuit

フロントページの続き (72)発明者 宮本 裕 東京都新宿区西新宿三丁目19番2号 日 本電信電話株式会社内 (72)発明者 米山 幹夫 東京都新宿区西新宿三丁目19番2号 日 本電信電話株式会社内 (72)発明者 鳥羽 弘 東京都新宿区西新宿三丁目19番2号 日 本電信電話株式会社内 (56)参考文献 特開 平9−326755(JP,A) 特開 平10−163962(JP,A) 特開 平8−340320(JP,A) 桑原昭一郎 他,交番チャープ信号を 用いたプリセット型自動分散等化方式の 一検討,1998年電子情報通信学会総合大 会講演論文集通信2,日本,社団法人電 子情報通信学会,1998年3月6日,p. 587 (58)調査した分野(Int.Cl.7,DB名) H04B 10/00 - 10/28 H04J 14/00 - 14/08 JICSTファイル(JOIS)Front page continuation (72) Inventor Hiroshi Miyamoto 3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo Japan Telegraph and Telephone Corporation (72) Inventor Mikio Yoneyama 3-19-3 Nishishinjuku, Shinjuku-ku, Tokyo Date Inside the Telegraph and Telephone Corporation (72) Inventor Hiroshi Toba 3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo Inside the Nippon Telegraph and Telephone Corporation (56) Reference JP-A-9-326755 (JP, A) HEI 10-163962 (JP, A) JP-A-8-340320 (JP, A) Shoichiro Kuwahara et al., A study on a preset automatic distributed equalization system using alternating chirp signals, 1998 IEICE General Conference Proceedings of the Communications 2, Japan, The Institute of Electronics, Information and Communication Engineers, March 6, 1998, p. 587 (58) Fields investigated (Int.Cl. 7 , DB name) H04B 10/00-10/28 H04J 14/00-14/08 JISST file (JOIS)

Claims (17)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 伝送用光ファイバを介して接続された送
信装置と受信装置との間に、所定の間隔で線形中継器お
よび再生中継器を配置した光伝送システムにおいて、 前記線形中継器は、分散量を変化させて分散等化を行う
可変分散等化器と、線形中継区間の波長分散に応じて可
変分散等化器に設定する分散量を制御する制御回路とを
備え、 前記受信装置および前記再生中継器の受信部は、分散量
を変化させて分散等化を行う可変分散等化器と、再生中
継区間の波長分散に応じて可変分散等化器に設定する分
散量を制御する制御回路とを備え、前記再生中継区間内で、伝送方向順に第1線形中継器は
第1線形中継区間の波長分散を等化し、第2線形中継器
は第1〜第2線形中継区間の波長分散を等化し、第n線
形中継器(nは2以上の整数)は第1〜第n線形中継区
間の波長分散を等化する構成である ことを特徴とする自
動波長分散等化光伝送システム。
1. An optical transmission system in which a linear repeater and a regenerative repeater are arranged at predetermined intervals between a transmitter and a receiver connected via a transmission optical fiber, wherein the linear repeater comprises A variable dispersion equalizer that performs dispersion equalization by changing the amount of dispersion, and a control circuit that controls the amount of dispersion set in the variable dispersion equalizer according to the chromatic dispersion in the linear relay section are provided. The receiving unit of the regenerative repeater controls a variable dispersion equalizer that performs dispersion equalization by changing the amount of dispersion, and a control that controls the amount of dispersion set in the variable dispersion equalizer according to chromatic dispersion in the regenerative repeater section. A first linear repeater in the transmission direction order within the regeneration repeater section.
A second linear repeater for equalizing chromatic dispersion in the first linear repeater section;
Equalizes the chromatic dispersion in the first and second linear repeater sections,
Type repeater (n is an integer of 2 or more) is a first to nth linear repeater section
An automatic chromatic dispersion equalization optical transmission system characterized in that it is configured to equalize chromatic dispersion between the two .
【請求項2】 請求項1に記載の自動波長分散等化光伝
送システムにおいて、 第m線形中継器(mは1〜nの整数)の制御回路は、第
1〜第m線形中継区間の波長分散値が最小になるよう
に、可変分散等化器に設定する分散量を制御する構成で
あることを特徴とする自動波長分散等化光伝送システ
ム。
2. The automatic chromatic dispersion equalization optical transmission system according to claim 1 , wherein the control circuit of the m-th linear repeater (m is an integer of 1 to n) has wavelengths in the first to m-th linear repeater sections. An automatic chromatic dispersion equalization optical transmission system having a configuration for controlling the amount of dispersion set in a variable dispersion equalizer so that the dispersion value is minimized.
【請求項3】 請求項1に記載の自動波長分散等化光伝
送システムにおいて、 線形中継器、受信装置および再生中継器の受信部の各制
御回路は、可変分散等化器に離散的な分散量を設定して
等化処理を行う構成であり、その設定値の数は要求され
る等化精度を満たしかつ最小となることを特徴とする自
動波長分散等化光伝送システム。
3. The automatic wavelength dispersion equalization optical transmission system according to claim 1, wherein each control circuit of the linear repeater, the receiver and the receiver of the regenerative repeater has a discrete dispersion in the variable dispersion equalizer. An automatic chromatic dispersion equalization optical transmission system, which is configured to set an amount and perform equalization processing, and the number of set values satisfies a required equalization accuracy and is minimum.
【請求項4】 請求項1に記載の自動波長分散等化光伝
送システムにおいて、 送信装置および再生中継器の送信部は、パルスごとにチ
ャープパラメータの符号が変化する交番チャープ信号光
を出力する手段を備え、 線形中継器の制御回路は、前記交番チャープ信号光の変
調周波数成分強度を測定する変調周波数成分強度測定回
路と、その測定強度が最小になるように可変分散等化器
に設定する分散量を制御する分散量制御回路とを備えた
ことを特徴とする自動波長分散等化光伝送システム。
4. The automatic chromatic dispersion equalization optical transmission system according to claim 1, wherein the transmitter and the transmitter of the regenerator output an alternating chirp signal light in which the sign of the chirp parameter changes for each pulse. The control circuit of the linear repeater comprises a modulation frequency component intensity measuring circuit for measuring the modulation frequency component intensity of the alternating chirp signal light, and a dispersion set in the variable dispersion equalizer so that the measurement intensity is minimized. An automatic chromatic dispersion equalization optical transmission system comprising a dispersion amount control circuit for controlling the amount.
【請求項5】 請求項4に記載の自動波長分散等化光伝
送システムにおいて、 線形中継器の制御回路は、交番チャープ信号光の直流成
分強度を測定する直流成分強度測定回路を備え、分散量
制御回路は交番チャープ信号光の変調周波数成分と直流
成分の強度比が最小になるように可変分散等化器に設定
する分散量を制御する構成であることを特徴とする自動
波長分散等化光伝送システム。
5. The automatic wavelength dispersion equalization optical transmission system according to claim 4 , wherein the control circuit of the linear repeater comprises a DC component intensity measuring circuit for measuring the DC component intensity of the alternating chirp signal light, and the dispersion amount. The control circuit is configured to control the amount of dispersion set in the variable dispersion equalizer so that the intensity ratio of the modulation frequency component and the DC component of the alternating chirp signal light is minimized. Transmission system.
【請求項6】 請求項1に記載の自動波長分散等化光伝
送システムにおいて、 送信装置および再生中継器の送信部は、位相変調または
周波数変調された試験信号光を出力する手段を備え、 線形中継器の制御回路は、前記試験信号光の変調周波数
成分強度を測定する変調周波数成分強度測定回路と、そ
の測定強度が最小になるように可変分散等化器に設定す
る分散量を制御する分散量制御回路とを備えたことを特
徴とする自動波長分散等化光伝送システム。
6. The automatic chromatic dispersion equalization optical transmission system according to claim 1, wherein the transmitter and the transmitter of the regenerator have means for outputting phase-modulated or frequency-modulated test signal light. The control circuit of the repeater comprises a modulation frequency component intensity measuring circuit for measuring the modulation frequency component intensity of the test signal light and a dispersion controlling the amount of dispersion set in the variable dispersion equalizer so that the measurement intensity is minimized. An automatic wavelength dispersion equalization optical transmission system comprising a quantity control circuit.
【請求項7】 請求項6に記載の自動波長分散等化光伝
送システムにおいて、 線形中継器の制御回路は、位相変調または周波数変調さ
れた試験信号光の直流成分強度を測定する直流成分強度
測定回路を備え、分散量制御回路は試験信号光の変調周
波数成分と直流成分の強度比が最小になるように可変分
散等化器に設定する分散量を制御する構成であることを
特徴とする自動波長分散等化光伝送システム。
7. The automatic chromatic dispersion equalization optical transmission system according to claim 6 , wherein the control circuit of the linear repeater measures the direct current component intensity of the phase modulated or frequency modulated test signal light. A dispersion amount control circuit is provided with a circuit, and the dispersion amount control circuit is configured to control the dispersion amount set in the variable dispersion equalizer so that the intensity ratio of the modulation frequency component and the DC component of the test signal light is minimized. Wavelength dispersion equalization optical transmission system.
【請求項8】 請求項1に記載の自動波長分散等化光伝
送システムにおいて、 線形中継器の制御回路は、データ信号光のクロック成分
を抽出するクロック抽出回路と、抽出されたクロック成
分の強度を測定するクロック成分強度測定回路と、その
測定強度が最大になるように可変分散等化器に設定する
分散量を制御する分散量制御回路とを備えたことを特徴
とする自動波長分散等化光伝送システム。
8. The automatic chromatic dispersion equalization optical transmission system according to claim 1, wherein the control circuit of the linear repeater has a clock extraction circuit for extracting a clock component of the data signal light, and an intensity of the extracted clock component. An automatic chromatic dispersion equalization characterized by comprising a clock component intensity measuring circuit for measuring the dispersion intensity and a dispersion amount control circuit for controlling the dispersion amount set in the variable dispersion equalizer so that the measurement intensity is maximized. Optical transmission system.
【請求項9】 請求項1に記載の自動波長分散等化光伝
送システムにおいて、 送信装置および再生中継器の送信部は、相異なる2波長
の試験信号光を出力する手段を備え、 線形中継器の制御回路は、前記2波長の試験信号光の位
相差を測定する位相比較回路と、その位相差が最小にな
るように可変分散等化器に設定する分散量を制御する分
散量制御回路とを備えたことを特徴とする自動波長分散
等化光伝送システム。
9. The automatic chromatic dispersion equalization optical transmission system according to claim 1, wherein the transmitter and the transmitter of the regenerator have means for outputting test signal lights of two different wavelengths, and a linear repeater. The control circuit includes a phase comparison circuit that measures the phase difference between the test signal lights of the two wavelengths, and a dispersion amount control circuit that controls the dispersion amount set in the variable dispersion equalizer so as to minimize the phase difference. An automatic chromatic dispersion equalization optical transmission system characterized by comprising:
【請求項10】 請求項1に記載の自動波長分散等化光
伝送システムにおいて、 受信装置および再生中継器の受信部の制御回路は、受信
信号の誤り率を測定する誤り率測定回路と、その誤り率
が最小になるように可変分散等化器に設定する分散量を
制御する分散量制御回路とを備えたことを特徴とする自
動波長分散等化光伝送システム。
10. The automatic chromatic dispersion equalization optical transmission system according to claim 1, wherein the control circuit of the receiving unit of the receiving device and the regenerator is an error rate measuring circuit for measuring an error rate of a received signal, and An automatic chromatic dispersion equalization optical transmission system comprising: a dispersion amount control circuit that controls a dispersion amount set in a variable dispersion equalizer so that an error rate is minimized.
【請求項11】 請求項1に記載の自動波長分散等化光
伝送システムにおいて、 受信装置および再生中継器の受信部の制御回路は、受信
信号のQ値を測定するQ値測定回路と、そのQ値が最大
になるように可変分散等化器に設定する分散量を制御す
る分散量制御回路とを備えたことを特徴とする自動波長
分散等化光伝送システム。
11. The automatic chromatic dispersion equalization optical transmission system according to claim 1, wherein the control circuit of the receiving section of the receiving device and the regenerator is a Q value measuring circuit for measuring the Q value of the received signal, and An automatic chromatic dispersion equalization optical transmission system, comprising: a dispersion amount control circuit that controls a dispersion amount set in a variable dispersion equalizer so that a Q value becomes maximum.
【請求項12】 請求項1に記載の自動波長分散等化光
伝送システムにおいて、 受信装置および再生中継器の受信部の制御回路は、受信
信号のクロック成分強度を測定するクロック成分強度測
定回路と、その測定強度が最大になるように可変分散等
化器に設定する分散量を制御する分散量制御回路とを備
えたことを特徴とする自動波長分散等化光伝送システ
ム。
12. The automatic chromatic dispersion equalization optical transmission system according to claim 1, wherein the control circuit of the receiving unit of the receiving device and the regenerator is a clock component intensity measuring circuit for measuring the clock component intensity of the received signal. An automatic chromatic dispersion equalization optical transmission system comprising: a dispersion amount control circuit that controls a dispersion amount set in a variable dispersion equalizer so that the measured intensity is maximized.
【請求項13】 請求項10または請求項11に記載の
自動波長分散等化光伝送システムにおいて、 受信装置および再生中継器の受信部は、クロック抽出回
路で抽出されたクロックの位相を調整して識別回路に与
えるクロック位相調整回路と、受信信号の誤り率または
Q値に応じて、データ信号に対するクロック位相が最適
になるようにクロック位相調整回路を制御するコントロ
ーラとを備えたことを特徴とする自動波長分散等化光伝
送システム。
13. The automatic wavelength dispersion equalization optical transmission system according to claim 10 or 11 , wherein the receiver and the receiver of the regenerator adjust the phase of the clock extracted by the clock extraction circuit. A clock phase adjustment circuit provided to the identification circuit, and a controller for controlling the clock phase adjustment circuit so that the clock phase with respect to the data signal becomes optimum according to the error rate or Q value of the received signal. Automatic wavelength dispersion equalization optical transmission system.
【請求項14】 請求項10または請求項11に記載の
自動波長分散等化光伝送システムにおいて、 受信装置および再生中継器の受信部は、データ信号を識
別する識別回路の識別電圧を調整する識別電圧調整回路
と、受信信号の誤り率またはQ値に応じて、識別回路に
設定する識別電圧が最適になるように識別電圧調整回路
を制御するコントローラとを備えたことを特徴とする自
動波長分散等化光伝送システム。
14. The automatic chromatic dispersion equalization optical transmission system according to claim 10 or 11 , wherein the receiving section of the receiving device and the regenerator has an identification voltage for adjusting an identification voltage of an identification circuit for identifying a data signal. An automatic chromatic dispersion comprising a voltage adjustment circuit and a controller for controlling the identification voltage adjustment circuit so that the identification voltage set in the identification circuit is optimized according to the error rate or Q value of the received signal. Equalized optical transmission system.
【請求項15】 請求項12に記載の自動波長分散等化
光伝送システムにおいて、 受信装置および再生中継器の受信部は、受信信号の誤り
率またはQ値を測定する誤り率/Q値測定回路と、クロ
ック抽出回路で抽出されたクロックの位相を調整して識
別回路に与えるクロック位相調整回路と、受信信号の誤
り率またはQ値に応じて、データ信号に対するクロック
位相が最適になるようにクロック位相調整回路を制御す
るコントローラとを備えたことを特徴とする自動波長分
散等化光伝送システム。
15. The automatic chromatic dispersion equalization optical transmission system according to claim 12 , wherein the receiving section of the receiving device and the regenerator is an error rate / Q value measuring circuit for measuring the error rate or Q value of the received signal. And a clock phase adjustment circuit that adjusts the phase of the clock extracted by the clock extraction circuit and provides it to the identification circuit, and a clock that optimizes the clock phase for the data signal according to the error rate or Q value of the received signal. An automatic wavelength dispersion equalization optical transmission system, comprising: a controller for controlling a phase adjustment circuit.
【請求項16】 請求項12に記載の自動波長分散等化
光伝送システムにおいて、 受信装置および再生中継器の受信部は、受信信号の誤り
率またはQ値を測定する誤り率/Q値測定回路と、デー
タ信号を識別する識別回路の識別電圧を調整する識別電
圧調整回路と、受信信号の誤り率またはQ値に応じて、
識別回路に設定する識別電圧が最適になるように識別電
圧調整回路を制御するコントローラとを備えたことを特
徴とする自動波長分散等化光伝送システム。
16. The automatic chromatic dispersion equalization optical transmission system according to claim 12 , wherein the receiving section of the receiving device and the regenerator is an error rate / Q value measuring circuit for measuring the error rate or Q value of the received signal. And an identification voltage adjusting circuit for adjusting an identification voltage of an identification circuit for identifying a data signal, and an error rate or a Q value of a received signal,
An automatic wavelength dispersion equalization optical transmission system comprising: a controller that controls an identification voltage adjusting circuit so that an identification voltage set in the identification circuit is optimal.
【請求項17】 請求項1〜16のいずれかに記載の自
動波長分散等化光伝送システムにおいて、 送信装置と受信装置との間に制御用回線を配線し、送信
装置と線形中継器と再生中継器の受信部と受信装置にそ
れぞれ制御信号送受信回路を備え、自動波長分散等化の
開始および終了に伴う試験信号とデータ信号の伝送切り
替えその他の制御信号を送受信する構成であることを特
徴とする自動波長分散等化光伝送システム。
17. The automatic wavelength dispersion equalization optical transmission system according to claim 1 , wherein a control line is wired between the transmitter and the receiver, and the transmitter, the linear repeater and the regenerator are connected. Each of the receiving unit and the receiving device of the repeater is equipped with a control signal transmission / reception circuit, and is configured to transmit / receive a control signal and other control signals for transmission / reception of a test signal and a data signal accompanying the start and end of automatic chromatic dispersion equalization. Automatic wavelength dispersion equalization optical transmission system.
JP28462698A 1998-10-06 1998-10-06 Automatic chromatic dispersion equalizing optical transmission system Expired - Fee Related JP3380755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28462698A JP3380755B2 (en) 1998-10-06 1998-10-06 Automatic chromatic dispersion equalizing optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28462698A JP3380755B2 (en) 1998-10-06 1998-10-06 Automatic chromatic dispersion equalizing optical transmission system

Publications (2)

Publication Number Publication Date
JP2000115077A JP2000115077A (en) 2000-04-21
JP3380755B2 true JP3380755B2 (en) 2003-02-24

Family

ID=17680910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28462698A Expired - Fee Related JP3380755B2 (en) 1998-10-06 1998-10-06 Automatic chromatic dispersion equalizing optical transmission system

Country Status (1)

Country Link
JP (1) JP3380755B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4592887B2 (en) * 2000-08-07 2010-12-08 富士通株式会社 Method and system for compensating chromatic dispersion
JP3731505B2 (en) 2001-07-18 2006-01-05 日本電気株式会社 Optical receiver, optical data signal waveform optimization method, and optical data signal waveform optimization program
JP3880906B2 (en) 2002-08-22 2007-02-14 富士通株式会社 Receiver having waveform deterioration compensation function
WO2004045114A1 (en) * 2002-11-14 2004-05-27 Fujitsu Limited Optical receiver
JP2005159928A (en) * 2003-11-28 2005-06-16 Hitachi Communication Technologies Ltd Automatic dispersion compensating method
US7516226B2 (en) * 2004-09-30 2009-04-07 Agere Systems Inc. Transmit adaptive equalization using ordered sets
JP4516907B2 (en) 2005-08-26 2010-08-04 富士通株式会社 Optical receiver and control method thereof
JP2008010971A (en) 2006-06-27 2008-01-17 Fujitsu Ltd High speed dispersion compensation controller
JP4783702B2 (en) 2006-09-15 2011-09-28 富士通株式会社 Optical receiver
JP4818142B2 (en) 2007-02-06 2011-11-16 富士通株式会社 Optical receiver, control method therefor, and optical transmission system
JP5169710B2 (en) * 2008-10-10 2013-03-27 富士通株式会社 Optical receiver and dispersion compensation sequence control method
JP5446362B2 (en) * 2009-03-25 2014-03-19 日本電気株式会社 Transmission system, transmission method thereof, and transmission apparatus
JP5206867B2 (en) * 2009-03-30 2013-06-12 富士通株式会社 Optical communication apparatus and dispersion compensation method
JP5351788B2 (en) 2010-01-29 2013-11-27 富士通テレコムネットワークス株式会社 Optical receiver and optical transmission system
JP5533034B2 (en) * 2010-03-01 2014-06-25 富士通株式会社 Optical receiver and clock generation method
JP6589276B2 (en) * 2015-01-13 2019-10-16 富士通株式会社 Optical transmission apparatus, optical transmission system, and transmission wavelength control method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
桑原昭一郎 他,交番チャープ信号を用いたプリセット型自動分散等化方式の一検討,1998年電子情報通信学会総合大会講演論文集通信2,日本,社団法人電子情報通信学会,1998年3月6日,p.587

Also Published As

Publication number Publication date
JP2000115077A (en) 2000-04-21

Similar Documents

Publication Publication Date Title
JP3380755B2 (en) Automatic chromatic dispersion equalizing optical transmission system
US6501580B1 (en) Method and apparatus for optimizing dispersion in an optical fiber transmission line in accordance with an optical signal power level
JP3464744B2 (en) Automatic equalization system
US5822100A (en) Method and system for equalizing PMD using incremental delay switching
JP3910003B2 (en) Optical receiving station, optical communication system, and dispersion control method
US6411416B1 (en) Method and apparatus for minimizing the intensity of a specific frequency component of an optical signal travelling through an optical fiber transmission line to thereby minimize the total dispersion
EP0539177B1 (en) An optical transmission system
EP1635488B1 (en) Optical transmission system using in-line amplifiers
US6959154B1 (en) Diversity receiver for mitigating the effects of fiber dispersion by separate detection of the two transmitted sidebands
WO1998037645A1 (en) Method and system for equalizing pmd using incremental delay switching
JP2000031900A (en) Method for optical fiber communication and terminal station device and system used for execution of the method
JP3886223B2 (en) Distributed control method and apparatus
EP2641344B1 (en) Multi-stage polarization mode dispersion compensation
JP2004515186A (en) Performance monitoring method, optical amplifier, optical transmission link
US5825521A (en) Method of determining inter-symbol interference in transmission systems
US11075698B2 (en) Optical communication system
JPH05110517A (en) Optical repeater transmission system
JP2000031904A (en) Compensation of optical dispersion
Tomizawa et al. Automatic dispersion equalization for installing high-speed optical transmission systems
Bachus et al. Coherent optical multicarrier systems
JP3370595B2 (en) Preset type automatic equalizer
Koch et al. Experimental demonstration of a silicon-photonics WDM NFT soliton transmitter
US20030117612A1 (en) Dispersion measurement using a two-colour signal with ber/eye opening response
Kiaee et al. Design of a 32× 5 Gb/s DWDM Optical Network over a Distance of 1000 km
JP2001119344A (en) Optical transmission system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071213

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121213

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121213

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131213

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees