JP3376240B2 - High-strength titanium alloy, product thereof, and method of manufacturing the product - Google Patents

High-strength titanium alloy, product thereof, and method of manufacturing the product

Info

Publication number
JP3376240B2
JP3376240B2 JP07236997A JP7236997A JP3376240B2 JP 3376240 B2 JP3376240 B2 JP 3376240B2 JP 07236997 A JP07236997 A JP 07236997A JP 7236997 A JP7236997 A JP 7236997A JP 3376240 B2 JP3376240 B2 JP 3376240B2
Authority
JP
Japan
Prior art keywords
product
titanium alloy
manufacturing
hardness
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07236997A
Other languages
Japanese (ja)
Other versions
JPH1017961A (en
Inventor
厚 武村
八郎 串田
範夫 橋本
秀夫 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Citizen Watch Co Ltd
Original Assignee
Kobe Steel Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP07236997A priority Critical patent/JP3376240B2/en
Application filed by Kobe Steel Ltd, Citizen Watch Co Ltd filed Critical Kobe Steel Ltd
Priority to PCT/JP1997/001023 priority patent/WO1997037049A1/en
Priority to EP97914549A priority patent/EP0834586B1/en
Priority to US08/952,511 priority patent/US5885375A/en
Priority to KR1019970708576A priority patent/KR19990022097A/en
Priority to CN97190564A priority patent/CN1083015C/en
Priority to DE69715120T priority patent/DE69715120T2/en
Publication of JPH1017961A publication Critical patent/JPH1017961A/en
Priority to HK99100551A priority patent/HK1015419A1/en
Application granted granted Critical
Publication of JP3376240B2 publication Critical patent/JP3376240B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Adornments (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、時計ケース・バン
ド、ブレスレット、イヤリング、ペンダント、ネックレ
ス、メガネフレーム等の装身具の素材として有用な高強
度チタン合金、および該合金によって製造される上記の
様な製品、並びこのような製品を製造するための有用な
方法に関するものである。
TECHNICAL FIELD The present invention relates to a high-strength titanium alloy which is useful as a material for accessories such as watch cases / bands, bracelets, earrings, pendants, necklaces, and eyeglass frames, and the above-mentioned alloys. It relates to products, as well as useful methods for producing such products.

【0002】[0002]

【従来の技術】チタンは耐食性に優れ変色等の経時変化
もなく、しかも(強度/比重)比が高いことから、装身
具の様な身に着ける製品の素材に適した材料として期待
されている。特に近年では、装身具に使用される材料は
人体に対してアレルギーを起こさない生体適合性が要求
されており、こうした観点からしても、代表的ノンメタ
ルアレルギー材料でもあるチタンが装身具用素材として
注目され、ステンレス鋼等のこれまで使用されてきた金
属材料に代わって上記各種の装身具の素材としてその利
用が広まりつつある。
2. Description of the Related Art Titanium is expected to be suitable as a material suitable for wearable products such as jewelry because it has excellent corrosion resistance and does not change with time such as discoloration and has a high (strength / specific gravity) ratio. Particularly in recent years, materials used for jewelry are required to have biocompatibility that does not cause allergies to the human body, and even from this viewpoint, titanium, which is also a typical non-metal allergic material, has been attracting attention as a material for jewelry. As a raw material for the above-mentioned various kinds of accessories, the use of the metal materials such as stainless steel has been widespread.

【0003】装身具はその性格上、表面の美麗さと複雑
精密な形状が要求される他、日常生活での使用中に傷つ
いて美麗さが失われない堅牢性も求められる。また装身
具の美麗性を得るには鏡面性が良好であることは勿論の
こと、鏡面にした後の各種の表面仕上げ加工性(例え
ば、後記実施例に示すヘアライン性)が良好であること
が必要である。しかも機械加工性の点からでは、例えば
多数の精密な微小孔明け加工性が良好であることが要求
される。
In view of its character, jewelry requires not only a beautiful surface and a complicated and precise shape, but also a robustness that does not lose beauty when it is used during daily life. In addition, in order to obtain the beauty of the accessory, it is need not only that the mirror surface is good, but also that various surface finishing processability after being mirror-finished (for example, hairline property shown in Examples described below) is required. Is. In addition, from the viewpoint of machinability, it is required that, for example, a large number of precise micro-drilling machinability be good.

【0004】しかしながら、装身具の素材として用いら
れているチタンやチタン合金、或はこれらの素材から装
身具を製造する方法は、航空宇宙分野、化学工業および
原子力分野等の他の工業用途向けに開発されたものを流
用しているのが実情であり、装身具に求められる各種特
性が得られている訳ではない。
However, titanium and titanium alloys used as materials for jewelry, and methods for manufacturing jewelry from these materials have been developed for other industrial applications such as the aerospace field, chemical industry and nuclear field. It is the actual situation that these items are diverted, and it does not mean that the various characteristics required for jewelry are obtained.

【0005】例えば、装身具に最もよく使用されている
JIS−1種やJIS−2種等の工業用純チタンは、日
常生活における接触や摩擦により疵ついたり、表面に施
された各種の仕上げが磨滅してしまい、装身具に不可欠
の美麗性や装飾性の点でステンレス鋼よりも劣ってい
る。
[0005] For example, industrial pure titanium such as JIS-1 and JIS-2, which are most often used for jewelry, are scratched by contact and friction in daily life, and various finishes are given to the surface. It wears out and is inferior to stainless steel in terms of the beauty and decoration that are essential for jewelry.

【0006】一方、チタン合金は合金元素を多量に添加
して強度が高くなっており、耐疵性の点では工業用純チ
タンよりも優れるものの、加工性に劣り装身具に要求さ
れる精密微妙な機械加工が困難であるので、造形デザイ
ンが制約されるという欠点がある。またほとんどのチタ
ン合金は、Al,Ni,V,Cr等の生体適合性の良く
ない合金元素を添加している。しかも、これらの合金元
素は、比較的高価であるので、素材コストが高いなると
いう欠点もある。
On the other hand, the titanium alloy has a higher strength due to the addition of a large amount of alloying elements. Although it is superior to pure titanium for industrial use in terms of scratch resistance, it is inferior in workability and has a precision and delicate precision required for jewelry. Since it is difficult to machine, it has a drawback that the design design is restricted. In addition, most titanium alloys are added with alloying elements such as Al, Ni, V, and Cr, which have poor biocompatibility. Moreover, since these alloy elements are relatively expensive, there is a drawback that the material cost is high.

【0007】工業用純チタンの耐摩耗性やチタン合金の
機械加工性等の改善するための技術は、他の用途におい
ては様々開発されているが、これらの技術は装身具への
適用を考慮してなされたものではないので、これらの技
術を装身具の改良技術としてそのまま流用することはで
きない。例えば特公平7−62196号には、炭化チタ
ンを分散させてチタンの耐摩耗性を改善した耐摩耗チタ
ン合金が提案されているが、このチタン合金を装身具の
素材として用いても、炭化チタンがあまりにも硬く微小
な孔明け加工ではドリル寿命が著しく短くなるという機
械加工上の難点がある。また機械加工性や快削性を改善
するために、硫化物などの介在物を分散させた快削チタ
ン合金も知られているが(例えば、特公平5−4249
0号)、上記介在物は軟らか過ぎて耐疵性の改善には役
立たないばかりか、粗大な介在物の存在は鏡面加工の妨
げにもなる。
Various techniques for improving the wear resistance of industrial pure titanium and the machinability of titanium alloys have been developed for other applications, but these techniques are considered in consideration of application to jewelry. These techniques cannot be used as they are as techniques for improving jewelry because they have not been made. For example, Japanese Examined Patent Publication No. 7-62196 proposes a wear resistant titanium alloy in which titanium carbide is dispersed to improve the wear resistance of titanium. However, even if this titanium alloy is used as a material for an accessory, titanium carbide is There is a problem in machining that the drill life is shortened remarkably when drilling too hard and minute holes. A free-cutting titanium alloy in which inclusions such as sulfides are dispersed in order to improve machinability and free-cutting property is also known (for example, Japanese Patent Publication No. 5-4249).
No. 0), the inclusions are too soft to be useful in improving the scratch resistance, and the presence of coarse inclusions also hinders mirror-finishing.

【0008】一方、従来の製造技術による材質改善にお
いても、必ずしも装身具としての性能向上に繋るという
ものではない。例えば純チタンの表面に硬質のコーティ
ングを施して耐疵性を改善する技術が提案されているが
(例えば、特開平3−180478号)、この表面処理
によって本来の金属光沢が失われたり、製品の色調が暗
くなり装飾性の点で問題があり、装身具としての魅力を
減じてしまうという欠点がある。またこの技術では、母
材として用いられるチタン自体が疵つき易いものである
ので、表面処理前の加工時のハンドリング中に傷つきて
しまい、商品価値が低下してしまうことにもなる。
On the other hand, the improvement of the material by the conventional manufacturing technique does not always lead to the improvement of the performance of the accessory. For example, there has been proposed a technique for improving the scratch resistance by applying a hard coating on the surface of pure titanium (for example, JP-A-3-180478). However, this surface treatment causes loss of the original metallic luster, There is a problem in that the color tone of is dark and there is a problem in terms of decorativeness, which reduces the attractiveness as an accessory. Further, in this technique, since titanium itself used as a base material is easily scratched, it may be damaged during handling during processing before surface treatment, resulting in a decrease in commercial value.

【0009】ところで、材料強度をより向上させるため
の製造方法として熱処理による方法もあるが、表面だけ
ではなく製品全体の硬さが増加してしまうため機械加工
性が悪化してしまう。またこのような熱処理は、合金元
素の多いβ型あるいはα+β型のチタン合金にしかその
有効性が発揮されない。また冷間加工を行なえば、加工
硬化によって硬度を増加できるが、冷間鍛造では全体の
硬さが増加してしまい、機械加工性が改善されないまま
である。この点からして、ショットピーニングのような
方法では、表面部にのみ歪みを与えることで表面だけの
硬さを向上できるが、微妙な形状の成形品に実施するが
できないという別の欠点がある。
By the way, although there is a method by heat treatment as a manufacturing method for further improving the material strength, the machinability deteriorates because not only the surface but also the hardness of the entire product increases. Further, such heat treatment is effective only for β type or α + β type titanium alloys containing many alloy elements. Further, if cold working is performed, hardness can be increased by work hardening, but cold forging increases the overall hardness, and machinability remains unimproved. From this point, a method such as shot peening can improve the hardness of only the surface by giving distortion only to the surface portion, but has another drawback that it cannot be applied to a molded product having a delicate shape. .

【0010】こうしたことから、純チタンを装身具の素
材として用いるに際して、現状では耐疵性の低い工業用
純チタンをそのまま用いたり、装飾性をある程度犠牲に
して表面処理をしているのが実情である。工業用純チタ
ンと上記チタン合金の中間的な特性を有するTi−3A
l−2.5V系チタン合金が用いられる場合もあるが、
この合金は耐疵性、加工性およびコスト面で要求特性を
満足しているとは言えず、しかも生体適合性の点で難の
あるAlやVを使用している。また上記各欠点があるに
も拘らず、チタン合金が装身具の素材として使用される
場合もあるが、その使用例は極めて限られた部分であ
る。
[0010] Therefore, when using pure titanium as a material for jewelry, it is the actual situation that, at present, pure titanium for industrial use, which has low scratch resistance, is used as it is, or surface treatment is performed at the expense of some decorativeness. is there. Ti-3A having properties intermediate between those of pure titanium for industrial use and the above titanium alloys
In some cases, an l-2.5V titanium alloy is used,
This alloy does not satisfy the required properties in terms of scratch resistance, workability and cost, and uses Al or V, which is difficult in terms of biocompatibility. Despite the drawbacks described above, titanium alloys may be used as a material for jewelry, but the examples of their use are extremely limited.

【0011】[0011]

【発明が解決しようとする課題】上記の様に、従来のチ
タンやチタン合金およびそれらの製造技術は、装身具用
途に真に適しているとは言えない。優れた材料特性を持
つチタンを、上記装身具ばかりでなく、装飾品用途や一
般日用品等により広く普及させる上でも、装飾性、堅牢
性、加工性、生体適合性およびコストの面のいずれをも
満足できる新たなチタン材料、およびそのチタン材料を
用いた製品製造技術の確立が望まれている。
As described above, the conventional titanium and titanium alloys and their manufacturing techniques cannot be said to be truly suitable for use as accessories. Satisfying all of decorativeness, robustness, processability, biocompatibility, and cost when titanium with excellent material properties is widely used not only for the above-mentioned accessories but also for decorative purposes and general daily necessities. It is desired to establish a new titanium material that can be produced and a product manufacturing technique using the titanium material.

【0012】本発明はこうした状況の下になされたもの
であって、その目的は、装飾性および美麗性に優れ且つ
疵やへこみ等がつきにくく、しかも機械加工性も良好
で、特に上記各種の装身具の素材として有用な高強度チ
タン合金、および該合金によって製造される上記の様な
製品、並びにこのような製品を製造するための有用な方
法を提供することにある。
The present invention has been made under these circumstances, and its purpose is excellent in decorativeness and beauty, less susceptible to flaws and dents, and good in machinability. It is an object of the present invention to provide a high-strength titanium alloy useful as a material for jewelry, a product as described above produced by the alloy, and a useful method for producing such a product.

【0013】[0013]

【課題を解決するための手段】上記目的を達成し得た本
発明のチタン合金とは、Fe:0.2〜1.0%、O:
0.15〜0.60%およびSi:0.20〜1.0%
を夫々含み、残部がTiおよび不可避不純物からなる点
に要旨を有する高強度チタン合金である。
The titanium alloy of the present invention which has achieved the above object is Fe: 0.2 to 1.0%, O:
0.15-0.60% and Si: 0.20-1.0%
Is a high-strength titanium alloy having the gist in that each of them contains Ti and inevitable impurities.

【0014】またこの合金においては、Fe,Oおよび
Siの夫々の好ましい範囲は、Fe:0.3〜0.7
%、O:0.20〜0.40%、Si:0.40〜0.
80%であり、要求される特性に応じてそれらの含有量
を適宜組み合わせて合金設計を行なえば良い。
In this alloy, the preferable ranges of Fe, O and Si are Fe: 0.3 to 0.7, respectively.
%, O: 0.20 to 0.40%, Si: 0.40 to 0.
It is 80%, and the alloy design may be performed by appropriately combining the contents according to the required characteristics.

【0015】上記チタン合金は強度が要求される各種製
品の素材として有用である。またこのチタン合金は、加
工性にも優れているので、前記製品が特に時計ケース・
バンド、ブレスレット、イヤリング、ペンダント、ネッ
クレス、メガネフレーム等の装身具であるときにその特
性が最も有効に発揮される。またこの製品は、その特性
を更に効果的に発揮させるためには、表面ビッカース硬
さが内部ビッカース硬さよりも20以上高いものである
ことが好ましい。
The above titanium alloy is useful as a material for various products requiring strength. In addition, this titanium alloy is also excellent in workability, so the product is especially used in watch cases and
The characteristics are most effectively exhibited when the accessory is a band, a bracelet, an earring, a pendant, a necklace, an eyeglass frame or the like. Further, in order to exert the characteristics of this product more effectively, the surface Vickers hardness is preferably 20 or more higher than the internal Vickers hardness.

【0016】上記の高強度チタン製品を製造するに当た
っては、基本的には素材温度が(β変態点−200℃)
以上の状態で熱間鍛造し、その後冷却する工程を含んで
操業すれば良いが、表面ビッカース硬さを内部ビッカー
ス硬さよりも20以上高くするための具体的な製造方法
としては、下記の構成が挙げられる。即ち、素材温度が
(β変態点−200℃)以上の状態で、歪み速度:10
-1/秒以上の熱間鍛造を行なうと共に、下記(a)およ
び(b)の少なくともいずれかを満足する工程を含んで
操業すれば良い。 (a)500℃以下の金型を用いて上記熱間鍛造を行な
い、その後冷却する。 (b)熱間鍛造終了後、10秒以内に冷却速度:102
℃/分以上の冷却を開始し、材料温度が500℃以下に
なるまで冷却を継続する。 尚熱間鍛造時の素材温度は(β変態点−200℃)以上
とする必要があるが、その上限は950℃であることが
好ましい。
In producing the above high-strength titanium product, the material temperature is basically (β transformation point −200 ° C.)
Hot forging in the above state may be carried out including a step of cooling, but as a specific manufacturing method for making the surface Vickers hardness higher than the internal Vickers hardness by 20 or more, the following constitution is used. Can be mentioned. That is, when the material temperature is (β transformation point −200 ° C.) or higher, strain rate: 10
It suffices to carry out hot forging at -1 / sec or more and to operate including a step satisfying at least one of the following (a) and (b). (A) The above-mentioned hot forging is performed using a die of 500 ° C. or lower, and then cooled. (B) Cooling rate: 10 2 within 10 seconds after completion of hot forging
The cooling is started at a rate of not less than 0 ° C./minute and continued until the material temperature becomes 500 ° C. or less. The material temperature during hot forging needs to be (β transformation point −200 ° C.) or higher, but the upper limit is preferably 950 ° C.

【0017】[0017]

【発明の実施の形態】本発明者らは、機械加工性を害さ
ずに耐疵性を改善する材料設計を行なうために、疵が発
生する条件、特に装身具の美麗性に係る肉眼によって認
められる疵発生に影響する材料因子について様々な角度
から検討した。そしてまず、日常生活での擦過による疵
は、ミクロ的には材料表面とその周辺の領域に大きな塑
性変形を伴い、肉眼には異物そのものによる疵だけでな
く、これら疵周囲の変形に伴う表面の凹凸を含めて表面
疵として認識されることが分かった。
BEST MODE FOR CARRYING OUT THE INVENTION In order to design a material that improves the scratch resistance without impairing the machinability, the inventors of the present invention recognize the condition under which the flaw is generated, especially by the naked eye regarding the beauty of the accessory. The material factors that influence the flaw generation were examined from various angles. First of all, scratches due to scratching in daily life are accompanied by large plastic deformation on the surface of the material and its surrounding area on a microscopic scale.The naked eye not only scratches due to the foreign substance itself, but also the surface caused by the deformation around these flaws. It was found that surface defects including irregularities were recognized.

【0018】そしてこのような疵(周辺の表面の凹凸領
域を含む)の大きさと各種材料因子との関係を詳細に調
査した結果、疵の凹凸の幅・深さは主要相の硬さや結晶
粒径に依存することを見出した。即ち、硬さが高いほど
および結晶粒径が細かいほど疵の凹凸領域は抑制された
のである。その理由は、結晶粒が硬いほど変形抵抗が増
大するので、押し込み等の塑性変形加工における結晶粒
の変形は小さくなり、疵が小さくなると考えられる。ま
た結晶粒の一部に疵が入ると、そこから生じた塑性変形
(すべり変形や双晶変形)は、その結晶全体に広がり易
いが、結晶粒径が小さいとそれだけ変形のおよぶ範囲が
狭まり、疵は小さくなると考えられ、こうした観点から
結晶粒径は10μm以下が望ましいことが分かった。
As a result of a detailed investigation of the relationship between the size of such a flaw (including the irregular surface area of the peripheral surface) and various material factors, the width and depth of the irregularity of the flaw are determined by the hardness of the main phase and the grain size. It was found to depend on the diameter. That is, the higher the hardness and the smaller the crystal grain size, the more suppressed the uneven region of the flaw. It is considered that the reason is that the harder the crystal grains are, the more the deformation resistance increases. Therefore, the deformation of the crystal grains in the plastic deformation process such as indentation becomes small and the flaws are small. Also, when a flaw enters a part of a crystal grain, plastic deformation (slip deformation or twinning deformation) generated from it easily spreads throughout the crystal, but if the crystal grain size is small, the extent of deformation narrows, It is considered that the flaws are small, and from this viewpoint, it has been found that the crystal grain size is preferably 10 μm or less.

【0019】こうした知見に基づき本発明者らは、まず
合金設計として装身具が使用される室温で安定なα相を
主要相として強化する手段について検討した。β相を室
温で存在させるには多量のβ安定化元素の添加が必要で
あるため、材質的に硬く且つねばくなり過ぎて加工が困
難になる他、材料が高価になるという欠点がある。これ
に対し、α相が固溶強化し過ぎると、機械加工性、特に
時計などの装身具に必要とされる直径:1mm以下の微
小孔明け時のドリル寿命が低下してしまうことが明らか
となった。
Based on these findings, the present inventors first investigated means for strengthening the α phase, which is stable at room temperature and used as the alloy design, as the main phase, in which jewelry is used. Since it is necessary to add a large amount of β-stabilizing element in order to allow the β phase to exist at room temperature, there are disadvantages that the material becomes too hard and too sticky to be processed, and the material becomes expensive. On the other hand, if the α phase is too solid-solution strengthened, it becomes clear that the machinability, especially the drill life when drilling small holes with a diameter of 1 mm or less, which is required for jewelry such as watches, is shortened. It was

【0020】一方、析出相による析出強化や分散強化に
よる強度増加では、ドリル寿命の低下は比較的少なかっ
た。しかしα相の場合、析出強化によって得られる強度
増加には限界がある。
On the other hand, the increase in strength due to precipitation strengthening due to the precipitation phase and dispersion strengthening resulted in relatively little reduction in drill life. However, in the case of α phase, there is a limit to the increase in strength obtained by precipitation strengthening.

【0021】そこで本発明者らは、α相を固溶強化する
元素を必要最小限にし、それ以上の強化は析出強化する
元素で補うことを考えた。またこの析出相は、α相の粒
成長を抑制して粒径を微細化する効果も同時に期待され
た。更に、添加元素の条件として、少ない添加量で大き
な効果が得られ且つ生体に対する安全性が高いこと、お
よび安価であるという前提で検討した。
Therefore, the present inventors considered that the element for solid solution strengthening the α phase should be minimized, and any further strengthening should be supplemented with an element for precipitation strengthening. At the same time, this precipitation phase was also expected to have the effect of suppressing the grain growth of the α phase and refining the grain size. Further, as conditions for the additive element, the study was conducted on the premise that a large effect can be obtained with a small amount of addition, the safety to living body is high, and the cost is low.

【0022】その結果、α相を固溶強化する最適な元素
として、まず酸素(O)を選んだ。Oは強化能が高く且
つ酸化チタンのような形態で安価に入手可能であり、し
かも偏析の不安も少ない元素である。尚窒素(N)はO
と類似した効果を有することが予想されたが、偏析のし
易さやコストの点でOに劣っていた。またジルコニウム
(Zr)は固溶強化能が小さく且つ極めてコストが高い
点で問題があった。
As a result, oxygen (O) was first selected as the optimum element for solid-solution strengthening the α phase. O is an element that has a high strengthening ability, can be obtained at a low cost in the form of titanium oxide, and has little fear of segregation. Nitrogen (N) is O
Although it was expected to have an effect similar to, it was inferior to O in terms of easiness of segregation and cost. Further, zirconium (Zr) has a problem in that it has a small solid solution strengthening ability and is extremely expensive.

【0023】ところで本発明者らは、他の化合物を形成
する元素として炭素(C)の添加についても試みてみ
た。しかしながらCの添加は、耐摩耗性を改善するとさ
れる炭化チタン(TiC)を形成するが、このTiCは
硬度がビッカース硬さ(Hv)が1000以上もあり、
細径ドリルの寿命を著しく損なうため採用できなかっ
た。また硫黄(S)の添加は快削性を向上するとされ、
チタン合金に利用される場合があるが、硫化物は軟らか
過ぎて耐疵性の向上が図れなかった。
By the way, the present inventors also tried to add carbon (C) as an element which forms another compound. However, addition of C forms titanium carbide (TiC) which is said to improve wear resistance, but this TiC has a Vickers hardness (Hv) of 1000 or more,
It could not be used because the life of the small diameter drill is significantly impaired. In addition, it is said that addition of sulfur (S) improves free-cutting property,
Although it may be used for titanium alloys, sulfides were too soft to improve the scratch resistance.

【0024】これに対しOを添加することでチタン合金
の耐疵性は向上し、O含有量が0.2%以上のときに従
来材であるTi−3Al−2.5V系合金以上の耐疵性
が得られることが分かった。しかしながら、Oのみを
0.2%以上添加したときには、孔明け性の点でTi−
3Al−2.5V系合金よりも低下した。従って、Oの
みの添加ではTi−3Al−2.5V系合金よりも優れ
た耐疵性と加工性のコンビネーションは得られなかっ
た。
On the other hand, the addition of O improves the scratch resistance of the titanium alloy, and when the O content is 0.2% or more, the resistance of the titanium alloy to that of the conventional Ti-3Al-2.5V alloy or more is improved. It was found that flaws could be obtained. However, if only 0.2% or more of O is added, Ti-
It was lower than that of the 3Al-2.5V alloy. Therefore, the addition of O alone did not provide a combination of flaw resistance and workability superior to that of the Ti-3Al-2.5V alloy.

【0025】一方、α相を析出強化する最適な元素とし
て、鉄(Fe)とシリコン(Si)を選んだ。このうち
Feは、α相に固溶量が少なく且つβ相を形成して強化
する能力が高い上、生体安全性にも優れ、しかも極めて
低コストである。尚Ni、Cr、Cu等も類似した効果
を有することが予想されたが、強化能や生体適合性の点
でFeに及ばなかった。またSiは、α相に固溶量が少
なく且つTiと化合物(シリサイド)を形成し易い特徴
があり、α結晶粒の微細化効果も期待できる。このSi
は生体適合性にも優れる上、例えばフェロシリコン(F
eとSiの化合物)のような極めて安い形態で入手可能
である。即ち、Tiに対してOと同時にFeとSiを複
合添加すると、高強度化が実現でき、且つ微細なβ相の
分散状態が得られ、これによって高いレベルで強度と切
削性の良好なバランスが達成できたのである。
On the other hand, iron (Fe) and silicon (Si) were selected as the optimum elements for precipitation strengthening the α phase. Among them, Fe has a small amount of solid solution in the α phase, has a high ability to form and strengthen the β phase, is excellent in biosafety, and is extremely low in cost. Although Ni, Cr, Cu, etc. were expected to have similar effects, they were inferior to Fe in terms of strengthening ability and biocompatibility. Further, Si has a characteristic that it has a small amount of solid solution in the α phase and easily forms a compound (silicide) with Ti, and an effect of refining α crystal grains can be expected. This Si
Is excellent in biocompatibility, and for example, ferrosilicon (F
It is available in an extremely cheap form such as a compound of e and Si). That is, when Fe and Si are simultaneously added to Ti together with O, high strength can be realized and a fine β-phase dispersed state can be obtained, whereby a good balance between strength and machinability can be obtained at a high level. I was able to achieve it.

【0026】本発明のチタン合金は、Oと同時にFeと
Siを複合添加したものであり、これによって耐疵性と
孔明け性のいずれも著しく改善されたのである。即ち、
本発明の合金は、Fe:0.2〜1.0%、O:0.1
5〜0.60%およびSi:0.20〜1.0%を夫々
含み、残部がTiおよび不可避不純物からなる高強度チ
タン合金であり、この化学成分組成においてTi−3A
l−2.5V系合金よりも優れた耐疵性と加工性が得ら
れたのである。このチタン合金における化学成分組成の
範囲限定理由は、下記の通りである。
The titanium alloy of the present invention is a composite addition of Fe and Si at the same time as O, whereby both the scratch resistance and the puncture property are remarkably improved. That is,
The alloy of the present invention has Fe: 0.2 to 1.0% and O: 0.1.
It is a high strength titanium alloy containing 5 to 0.60% and Si: 0.20 to 1.0%, with the balance being Ti and unavoidable impurities.
It is possible to obtain the excellent scratch resistance and workability as compared with the 1-2.5V alloy. The reasons for limiting the range of the chemical composition in this titanium alloy are as follows.

【0027】O:0.15〜0.60% Oの含有量が0.15%未満では耐疵性が劣り、0.6
0%を超えて添加すると加工性が目標値を下回る。また
後述する加工熱処理による表面硬化処理において、O含
有量が0.15%未満では表面硬さが十分に増加しな
い。尚O含有量の好ましい範囲は0.20〜0.40%
であり、この範囲においてO添加効果が最大限に発揮さ
れる。
O: 0.15 to 0.60% If the content of O is less than 0.15%, the flaw resistance is inferior, and 0.6
If added in excess of 0%, the workability will fall below the target value. Further, in the surface hardening treatment by thermomechanical treatment described later, if the O content is less than 0.15%, the surface hardness does not sufficiently increase. The preferred range of O content is 0.20 to 0.40%.
Therefore, the O addition effect is maximized in this range.

【0028】Fe:0.2〜1.0% Feの含有量が0.2%未満では耐疵性と機械加工性の
改善効果が乏しく、1.0%を超えて添加してもこれら
の効果は飽和する他、Fe含有量が過剰になることによ
ってチタン合金の耐食性が低下し、該チタン合金に金メ
ッキ等の表面処理を行なって装身具を製造する場合に、
メッキ処理液によってチタン合金表面が浸食されるとい
う悪影響が生じた。またFe含有量が0.2%未満で
は、熱間加工における変形抵抗が大きくなり、装身具に
必要とされる精密な成形が困難になる。尚Fe含有量の
好ましい範囲は0.3〜0.7%であり、この範囲にお
いてFe添加効果が最大限に発揮される。
Fe: 0.2 to 1.0% If the Fe content is less than 0.2%, the effect of improving the flaw resistance and machinability is poor, and even if added in excess of 1.0%, In addition to saturation of the effect, the corrosion resistance of the titanium alloy decreases due to the excessive Fe content, and when the titanium alloy is subjected to a surface treatment such as gold plating to manufacture an accessory,
The plating solution had the adverse effect of eroding the titanium alloy surface. On the other hand, if the Fe content is less than 0.2%, the deformation resistance in hot working becomes large, and it becomes difficult to perform precise molding required for an accessory. The preferable range of the Fe content is 0.3 to 0.7%, and the Fe addition effect is maximized in this range.

【0029】Si:0.20〜1.0% Siはβ相の微細化と強度の向上によって析出による耐
疵性を改善し、また耐疵性と加工性のコンビネーション
を向上させる作用を発揮する。Siの含有量が0.20
%未満では耐疵性と機械加工性の改善効果が乏しく、
1.0%を超えて添加してもこれらの効果は飽和する
他、Si含有量が過剰になることによって熱間加工性が
低下し、鍛造時等に割れ発生などの悪影響が生じる。尚
Si含有量の好ましい範囲は0.40〜0.80%であ
り、この範囲においてSi添加効果が最大限に発揮され
る。またSiには耐食性を改善し、且つFeに比べ拡散
しにくく熱的に安定であるので、Feを安定化させる作
用も発揮する。
Si: 0.20 to 1.0% Si has the effect of improving the flaw resistance due to precipitation by refining the β phase and improving the strength, and also improving the combination of flaw resistance and workability. . Si content is 0.20
If it is less than%, the effect of improving flaw resistance and machinability is poor,
Even if added in an amount of more than 1.0%, these effects saturate, and the excessive Si content lowers the hot workability, causing adverse effects such as cracking during forging. The preferable range of the Si content is 0.40 to 0.80%, and the Si addition effect is maximized in this range. Further, since Si has improved corrosion resistance and is less likely to diffuse than Fe and is thermally stable, it also has an effect of stabilizing Fe.

【0030】上記の様な本発明のチタン合金材料を用い
て装身具等の製品を製造するに当たっては、基本的には
素材温度が(β変態点−200℃)以上の状態で熱間鍛
造し、その後冷却する工程を含んで操業すれば良いが、
本発明者らは、装飾性、美麗性を劣化させずに表面硬さ
のみを増加させる製造方法、より詳しくは加工熱処理に
よって表面層のみを硬化させることで、耐疵性を一層向
上させながら、内部材質の孔明け等の加工性を低下させ
ないための条件について検討した。そして表面の硬さに
及ぼす加工熱処理条件の影響を詳細に調査した結果、熱
間加工であっても加工の歪み速度が十分速くかつ加工に
より与えられた歪みが回復する前に急冷すれば加工硬化
状態が表面部に保持できることを見出した。例えば金型
温度が回復温度より低ければ、材料の変形とほぼ同時に
冷却され表面付近の材料温度が回復温度以下になり加工
硬化状態が凍結されると考えられる。或は金型温度が高
く加工時点では冷却されない場合でも回復による軟化が
十分進む前に冷却できれば実質的に表面部分の硬さを増
加できると考えられる。
In manufacturing products such as jewelry using the titanium alloy material of the present invention as described above, basically, hot forging is performed in a state where the material temperature is (β transformation point −200 ° C.) or higher, It may be operated afterwards, including the step of cooling,
The present inventors, a decorative method, a manufacturing method of increasing only the surface hardness without deteriorating the beauty, more specifically, by curing only the surface layer by thermomechanical treatment, while further improving the scratch resistance, The conditions for preventing deterioration of workability such as drilling of internal material were examined. As a result of detailed investigation of the effect of thermomechanical treatment conditions on the surface hardness, the strain rate of machining is sufficiently fast even during hot working, and if it is rapidly cooled before the strain given by machining is recovered, work hardening occurs. It has been found that the condition can be retained on the surface. For example, if the mold temperature is lower than the recovery temperature, it is considered that the material is cooled at almost the same time as the deformation of the material, the temperature of the material near the surface becomes lower than the recovery temperature, and the work-hardened state is frozen. Alternatively, even if the mold temperature is high and the mold is not cooled at the time of processing, it is considered that the hardness of the surface portion can be substantially increased if the mold can be cooled before the softening due to the recovery sufficiently progresses.

【0031】こうした知見に基づき、熱間加工のみによ
る表面硬化を有効に実施できる製造条件は次のようにな
った。即ち、素材温度が(β変態点−200℃)以上の
状態で、歪み速度:10-1/秒以上の熱間鍛造を行なう
と共に、下記(a)および(b)の少なくともいずれか
を満足する工程を含んで操業すれば良い。 (a)500℃以下の金型を用いて上記熱間鍛造を行な
い、その後冷却する。 (b)熱間鍛造終了後、10秒以内に冷却速度:102
℃/分以上の冷却を開始し、材料温度が500℃以下に
なるまで継続する。
Based on such knowledge, the manufacturing conditions under which surface hardening can be effectively carried out only by hot working are as follows. That is, while the material temperature is (β transformation point −200 ° C.) or more, hot forging with a strain rate of 10 −1 / sec or more is performed, and at least one of the following (a) and (b) is satisfied. It is sufficient to operate including the process. (A) The above-mentioned hot forging is performed using a die of 500 ° C. or lower, and then cooled. (B) Cooling rate: 10 2 within 10 seconds after completion of hot forging
Start cooling at ℃ / min or more and continue until the material temperature becomes 500 ℃ or less.

【0032】上記製造条件において、例えば金型温度が
500℃を超える温度であっても、歪み速度:10-1
秒以上の熱間鍛造を行ない、加工終了後10秒以内に冷
却速度:102 ℃/分以上の冷却を開始し、材料温度が
500℃以下になるまで冷却を継続すれば、金型温度が
500℃以下の場合よりも硬化量は少なくなるものの表
面を硬化することができる。また上記(a)および
(b)の少なくともいずれかを満足する工程を含んで操
業すれば、本発明の効果が得られるが、(a)および
(b)のいずれをも満足する製造条件で操業すれば、更
に効果的である。こうした製造条件を満足することによ
って、表面層に限定された領域の硬さを内部よりもビッ
カース硬さで20以上増加させることができる。
Under the above manufacturing conditions, for example, even if the mold temperature is higher than 500 ° C., the strain rate: 10 -1 /
If hot forging is performed for more than 10 seconds and cooling is started within 10 seconds after processing, cooling at a cooling rate of 10 2 ° C / minute or more is continued and cooling is continued until the material temperature falls to 500 ° C or less, the mold temperature becomes Although the amount of curing is smaller than that at 500 ° C. or lower, the surface can be cured. Further, the operation of the present invention can be obtained by carrying out the operation including the step satisfying at least one of the above (a) and (b), but the operation is carried out under the manufacturing condition satisfying both (a) and (b). If it does, it will be more effective. By satisfying such manufacturing conditions, the hardness of the region limited to the surface layer can be increased by 20 or more in Vickers hardness as compared with the inside.

【0033】上記製造条件における各要件の限定理由
は、下記の通りである。上記β変態点とはα→βあるい
はα+β→βの変態温度であるが、熱間鍛造時の素材温
度は(β変態点−200℃)以上とする必要がある。素
材温度が(β変態点−200℃)未満では、素材の変形
抵抗が増大すると共に変形能が低くなり、装身具に求め
られる精密な成形が困難になる他、熱間鍛造等の熱間加
工時に表面割れ等の欠陥が生じ必要な表面硬度も得られ
ない。素材温度が高くなると変形抵抗は低下する傾向で
あり成形性は良好になるが、素材温度の上限は950℃
であることが好ましい。即ち、素材温度が950℃を超
える様な温度になると、素材表面の酸化が多くなり、成
形後の表面仕上げの際に行われる表面研磨に要する時間
が長くなる等の支障を来す。
The reasons for limiting each requirement in the above manufacturing conditions are as follows. The β transformation point is a transformation temperature of α → β or α + β → β, but the material temperature during hot forging needs to be (β transformation point −200 ° C.) or higher. If the material temperature is less than (β transformation point −200 ° C.), the deformation resistance of the material increases and the deformability decreases, making it difficult to perform precision molding required for jewelry, and during hot working such as hot forging. Defects such as surface cracks occur and the required surface hardness cannot be obtained. When the material temperature rises, the deformation resistance tends to decrease and the formability improves, but the upper limit of the material temperature is 950 ° C.
Is preferred. That is, when the material temperature exceeds 950 ° C., the surface of the material is oxidized so much that the time required for the surface polishing performed at the time of surface finishing after molding becomes long.

【0034】金型温度が500℃を超える温度であって
も表面硬さ増加の効果が得られ、他の要件を満足すれば
表面の硬さを内部よりもビッカース硬さで20以上増加
させることができるが、金型温度が500℃以下である
場合において、金型による表面硬さは増加効果が得られ
る。鍛造時の歪み速度が10-1/秒以上で表面の硬さは
内部よりも高くなるが、10-1/秒未満の歪み速度で
は、表面硬さは内部と同レベルとなる。即ち、加工は短
時間で終了するが、歪み速度を10-1/秒以上とするこ
とによって、鍛造時に生じた加工硬化が加工中の回復現
象により失われないためと推定される。
Even if the mold temperature exceeds 500 ° C., the effect of increasing the surface hardness can be obtained, and if the other requirements are satisfied, the surface hardness should be increased by 20 or more in Vickers hardness than in the inside. However, when the mold temperature is 500 ° C. or lower, the effect of increasing the surface hardness by the mold can be obtained. When the strain rate during forging is 10 -1 / sec or more, the hardness of the surface becomes higher than that of the inside, but at a strain rate of less than 10 -1 / sec, the surface hardness becomes the same level as the inside. That is, it is presumed that the work is completed in a short time, but the work hardening generated during the forging is not lost due to the recovery phenomenon during the work by setting the strain rate to 10 -1 / sec or more.

【0035】鍛造終了後の冷却開始までの時間が10秒
を超えると、表面硬さは内部と同レベルとなる。しかし
ながら、鍛造終了後10秒以内に冷却速度:102 ℃/
分以上の冷却を開始し、材料温度を500℃以下となる
まで冷却を継続すれば、表面の硬さは内部よりも高くな
る。尚質量の小さな鍛造品では、積極的な冷却ではない
放冷においても102 ℃/分以上の冷却速度が得られる
場合があるので、上記「冷却」とは、鍛造後に単に放冷
されるような場合も含むものである。
When the time from the end of forging to the start of cooling exceeds 10 seconds, the surface hardness becomes the same level as the inside. However, within 10 seconds after completion of forging, cooling rate: 10 2 ° C /
If the cooling is continued for more than a minute and is continued until the material temperature becomes 500 ° C. or less, the hardness of the surface becomes higher than that of the inside. Since a forged product with a small mass may obtain a cooling rate of 10 2 ° C / min or more even in cooling without active cooling, the above-mentioned "cooling" means simply cooling after forging. It also includes the case.

【0036】上記の製造条件は、基本的には最終熱間鍛
造条件を想定したものであって、最終的に行なう熱間鍛
造が上記の条件を満足しさえすれば本発明の効果が得ら
れるのであるが、上記の熱間鍛造を行なう前に、予備的
な熱間加工(例えば、熱間圧延や熱間鍛造)を行なって
も良いのは勿論である。また上記の熱間鍛造加工で形状
出しを行なった後は、切削加工、孔明け加工等の第1次
機械加工する工程、研磨加工等の仕上げ加工する第2次
機械加工する工程を含んで製造することによって最終製
品となる。
The above manufacturing conditions are basically assumed to be final hot forging conditions, and the effect of the present invention can be obtained as long as the finally hot forging satisfies the above conditions. However, it goes without saying that preliminary hot working (for example, hot rolling or hot forging) may be performed before the hot forging described above. In addition, after forming the shape by the hot forging process described above, it is manufactured including a process of primary machining such as cutting and drilling, and a process of secondary machining such as finishing such as polishing. By doing so, it becomes the final product.

【0037】以下本発明を実施例によって更に詳細に説
明するが、下記実施例は本発明を限定する性質のもので
はなく、前・後記の趣旨に徴して設計変更することはい
ずれも本発明の技術的範囲に含まれるものである。
The present invention will be described in more detail with reference to the following examples, but the following examples are not intended to limit the present invention, and any modification of the design of the present invention can be made without departing from the spirit of the preceding and the following. It is included in the technical scope.

【0038】[0038]

【実施例】【Example】

実施例1 下記表1に示す成分組成のチタン合金から、直径:10
mmの棒材を作成した。棒材の製造は、プラズマ溶解に
よって溶製したインゴットをβ温度域で鍛造後、α+β
温度域で直径:10mmの棒材に鍛造し、これを700
℃で30分間焼鈍した。得られた棒材を試験片とし、耐
疵試験および孔明け加工試験に供し、その材質(耐疵性
および加工性)を評価した。このとき耐疵試験は、バフ
研磨した試験片表面に、ダイヤモンド圧子を荷重:50
〜200g、速度:75mm/分の条件で疵をつけ、そ
の疵の深さをTi−3Al−2.5V系合金(以下、
「従来材」と呼ぶ)と比較した。また孔明け試験は、孔
径:1mm、深さ:8mmの孔明け加工を実施し、ドリ
ルが折損して加工不能になるまでの孔明け数を比較し
た。
Example 1 From a titanium alloy having the composition shown in Table 1 below, diameter: 10
A mm bar was created. The rod is manufactured by forging an ingot melted by plasma melting in the β temperature range and then α + β
In the temperature range, forged into a rod with a diameter of 10 mm and 700
Annealed at 30 ° C for 30 minutes. The obtained bar material was used as a test piece and subjected to a flaw resistance test and a drilling processing test, and its material (defect resistance and workability) was evaluated. At this time, in the scratch resistance test, a diamond indenter was loaded on the surface of the buffed test piece: 50
~ 200 g, speed: 75 mm / min under the condition of the flaw, the depth of the flaw is Ti-3Al-2.5V alloy (hereinafter,
(Referred to as "conventional material"). In the drilling test, a drilling process was performed with a hole diameter of 1 mm and a depth of 8 mm, and the numbers of holes until the drill was broken and became unworkable were compared.

【0039】各試験の結果を、下記表1に併記する。耐
疵性の評価は、疵の深さの比(従来材の疵の深さ/試験
片の疵の深さ)で表し、加工性の評価は、孔明け数の比
(試験片の孔明け数/従来材の孔明け数)で表した。ま
た本発明のチタン合金における耐疵性は従来品の1.5
倍、加工性は従来品の同等以上を目標値とした。
The results of each test are also shown in Table 1 below. The evaluation of the scratch resistance is expressed by the ratio of the depth of the defects (the depth of the defects of the conventional material / the depth of the defects of the test piece), and the evaluation of the workability is the ratio of the number of perforations (the perforation of the test piece. (Number / number of holes drilled in conventional material). Further, the titanium alloy of the present invention has a scratch resistance of 1.5 of that of the conventional product.
Double the workability, the target value is equal to or higher than the conventional product.

【0040】[0040]

【表1】 [Table 1]

【0041】この結果から、次の様に考察できる。まず
No.1は、O含有量が低過ぎる比較例であり、従来材
に比べ耐疵性が劣っている。No.2は、Fe含有量が
低過ぎる比較例であり、加工性が劣っている。No.3
は、O含有量が過剰な比較例であり、加工性が劣ってい
る。No.4は、Si含有量が過剰な比較例であり、鍛
造性が損なわれている。No.5は、Fe含有量が過剰
な比較例であり、耐食性が損なわれている。No.6
は、Si含有量が低過ぎる比較例であり、耐疵性および
加工性のいずれも劣っている。これらに対しNo.7〜
20のものは、本発明で規定する成分組成を満足する実
施例であり、耐疵性および加工性のいずれも従来材を上
回る特性を有している。
From this result, the following can be considered. First, No. No. 1 is a comparative example in which the O content is too low, and the scratch resistance is inferior to the conventional material. No. No. 2 is a comparative example in which the Fe content is too low, and the workability is poor. No. Three
Is a comparative example in which the O content is excessive, and the workability is poor. No. No. 4 is a comparative example in which the Si content is excessive, and the forgeability is impaired. No. No. 5 is a comparative example in which the Fe content is excessive, and the corrosion resistance is impaired. No. 6
Is a comparative example in which the Si content is too low, and both the flaw resistance and workability are inferior. For these, 7-
No. 20 is an example satisfying the component composition defined in the present invention, and has both scratch resistance and workability that are superior to conventional materials.

【0042】実施例2 O:0.30%,Fe:0.50%およびSi:0.7
0%を夫々含有し、残部がTiおよび不可避不純物から
なるチタン合金から、直径:20mmの試験片を作成し
た。このとき試験片は、プラズマ溶解によって溶製した
インゴットをβ温度域で鍛造後、α+β温度域で直径:
22mmの棒材に鍛造し、これを機械加工によって直
径:20mm、長さ30mmの試験片に加工した。これ
を下記表2に示す条件により高周波加熱後、高さ:10
mmにプレス成形(熱間鍛造)し、その後冷却した。
Example 2 O: 0.30%, Fe: 0.50% and Si: 0.7
A test piece having a diameter of 20 mm was prepared from a titanium alloy containing 0% of each and the balance of Ti and unavoidable impurities. At this time, the test piece had a diameter in the α + β temperature range after forging an ingot melted by plasma melting in the β temperature range:
A bar material of 22 mm was forged, and this was machined into a test piece having a diameter of 20 mm and a length of 30 mm. After high frequency heating this under the conditions shown in Table 2 below, height: 10
It was press-formed (hot forging) to mm and then cooled.

【0043】熱処理後の試験片について、断面のビッカ
ース硬さ(Hv)をビッカース硬さ計により測定し、表
面部(表面直下から0.5mmの深さまでの領域)とそ
れより内部の硬さを比較し、硬さ増加量(表面の硬さ−
内部の硬さ)として評価した。その結果を、冷却条件と
共に下記表2に併記する。尚上記チタン合金のβ変態点
は935℃であった。
With respect to the test piece after the heat treatment, the Vickers hardness (Hv) of the cross section was measured by a Vickers hardness tester, and the hardness of the surface portion (a region from just below the surface to a depth of 0.5 mm) and the hardness inside it were measured. In comparison, increase in hardness (surface hardness-
Internal hardness) was evaluated. The results are also shown in Table 2 below together with the cooling conditions. The β transformation point of the titanium alloy was 935 ° C.

【0044】[0044]

【表2】 [Table 2]

【0045】この結果から、次の様に考察できる。まず
No.1は、素材の加熱温度が低過ぎるので、プレス成
形時に割れが発生している。No.2は、金型温度は低
いものの、加工の歪み速度が遅過ぎるので表面の硬さの
増加量が少なくなっている。No.3は、金型温度が高
くまた加工の歪み速度が遅すぎるので、表面の硬さの増
加量が少なくなっている。No.4は、鍛造終了後から
冷却開始までの時間が長すぎるので、表面の硬さの増加
量が少なくなっている。No.5は、鍛造終了後の冷却
速度が遅いので、表面の硬さの増加量が少なくなってい
る。No.6は、材料温度が高い段階で冷却が中断され
たため、表面の硬さは内部と同レベルである。
From this result, the following can be considered. First, No. In No. 1, since the heating temperature of the material was too low, cracking occurred during press molding. No. In No. 2, the mold temperature was low, but the strain rate of processing was too slow, and the increase in surface hardness was small. No. In No. 3, since the mold temperature is high and the strain rate of processing is too slow, the increase in surface hardness is small. No. In No. 4, since the time from the end of forging to the start of cooling is too long, the increase in surface hardness is small. No. In No. 5, since the cooling rate after completion of forging is slow, the increase in surface hardness is small. No. In No. 6, the cooling was interrupted when the material temperature was high, so that the hardness of the surface is at the same level as the inside.

【0046】これらに対し、No.7〜17のものは本
発明で規定する製造条件のいずれをも満足するものであ
り、いずれも表面のビッカース硬さは内部のビッカース
硬さよりも20以上増加していることが分かる。但し、
No.9,10のものは素材温度が好ましい上限(95
0℃)を超えているので、No.9では表面酸化がやや
多くなっており、No.10では表面酸化が顕著に増加
していた。
In contrast to these, 7 to 17 satisfy all of the manufacturing conditions specified in the present invention, and it can be seen that the Vickers hardness of the surface is increased by 20 or more than the internal Vickers hardness. However,
No. For 9 and 10, the upper limit of the material temperature is preferable (95
0 ° C.), no. In No. 9, the surface oxidation was slightly increased, and No. 9 was used. 10, the surface oxidation was remarkably increased.

【0047】実施例3 下記表3に示す成分組成のチタン合金を用い、プラズマ
溶解により溶製したインゴットから圧延等の加工によっ
ての丸棒(直径:20mm)を作成した。得られたチタ
ン合金丸棒を、長さ:25mmに切断した。
Example 3 Using a titanium alloy having the composition shown in Table 3 below, a round bar (diameter: 20 mm) was prepared by processing such as rolling from an ingot melted by plasma melting. The obtained titanium alloy round bar was cut into a length of 25 mm.

【0048】次に、熱間鍛造機に時計ケース成形用金型
をセットし、金型を150〜250℃に加熱し、この金
型に高周波加熱により下記表3に示す所定温度に昇温
後、5〜10秒間保持した素材を乗せ1次鍛造を行なっ
た。このとき使用した鍛造機は、200トンのフリクシ
ョンプレスである。
Then, a watch case molding die was set in a hot forging machine, the die was heated to 150 to 250 ° C., and the die was heated to a predetermined temperature shown in Table 3 below by high frequency heating. Primary forging was performed by placing the material held for 5 to 10 seconds. The forging machine used at this time was a 200-ton friction press.

【0049】次に、化学研磨によりスケールを除去した
1次鍛造品を、高周波加熱により下記表3に示す所定温
度に昇温後、5〜10秒間保持した素材を、仕上げ用の
2次鍛造を行なった。このとき使用した金型は、仕上げ
時計ケース成形用金型で200℃に加熱し、80トンの
鍛造機を用いて鍛造した。鍛造時間の歪み速度は、表3
に示す通りである。また加工終了後の冷却は、表3に示
す条件とした。
Next, the primary forged product from which the scale has been removed by chemical polishing is heated to a predetermined temperature shown in Table 3 below by high-frequency heating, and then held for 5 to 10 seconds. I did. The mold used at this time was a mold for forming a finished watch case, heated to 200 ° C., and forged using an 80 ton forging machine. The strain rate of forging time is shown in Table 3.
As shown in. In addition, the cooling after the completion of processing was performed under the conditions shown in Table 3.

【0050】次に、バリ抜き加工(プレスにて)、バレ
ル加工(バリおよびスケールの除去)、化学研磨加工
(スケールの完全除去)を行なった2次鍛造品の内径
(モジュールが収納される裏側部分)、見切り部(文字
板が見える表側部)等を、NC切削加工機で切削すると
共に、バンドを取り付けるためのバネ棒孔と、巻芯を挿
入するための巻芯孔を明ける孔明加工の第1次機械加工
を行なった。孔明加工を行った後、2次鍛造品の表面に
所望の仕上げ品質を得るために、砥石や羽布を使用した
研磨による仕上げ加工を施す第2次機械加工を行ない、
時計ケースを製造した。
Next, the inner diameter of the secondary forged product subjected to the deburring process (by pressing), the barrel process (removal of burrs and scales), and the chemical polishing process (complete removal of scales) (the back side in which the module is stored). Part), parting part (front side where dial plate can be seen), etc. are cut with an NC cutting machine, and a spring rod hole for attaching a band and a core hole for inserting a core are drilled. Primary machining was performed. After performing the perforating process, in order to obtain the desired finishing quality on the surface of the secondary forged product, the secondary machining process is performed in which the finishing process is performed by polishing using a grindstone or feather cloth.
Manufactured watch case.

【0051】得られた時計ケース製品(本発明例と比較
例)について、表面と内部の硬さの差(硬さの増加
量)、耐疵性、孔明け加工性および鏡面性を調査し、従
来材であるTi−3Al−2.5V系合金を基準として
比較した。その結果を、下記表3に併記した。
With respect to the obtained watch case products (inventive example and comparative example), the difference in hardness between the surface and the inside (increased amount of hardness), flaw resistance, drilling workability and specularity were investigated, A comparison was made using a conventional Ti-3Al-2.5V alloy as a reference. The results are also shown in Table 3 below.

【0052】このとき硬さは、ビッカース硬さ計により
荷重100gで測定した。耐疵性の評価は、ダイヤモン
ド圧子を荷重:200g、速度:75mm/分の条件
で、バフ研磨したサンプル表面に疵をつけその疵の幅を
比較し、疵幅の比(従来材の疵幅/得られた製品の疵
幅)で示した。孔明け加工性の評価は、孔径:1.5m
m、回転数:2000RPM、ドリル材質:SKH−9
により連続して加工できた孔明け数を測定し、実施例2
と同様に比較した。また鏡面性は、標準サンプルを基準
にし、ピット、疵、ゆがみ等がなく均一で平滑な鏡面性
を目視感能検査によって評価した。
At this time, the hardness was measured by a Vickers hardness meter under a load of 100 g. The scratch resistance was evaluated by using a diamond indenter under a load of 200 g and a speed of 75 mm / min. The buffed sample surface was scratched and the scratch widths were compared to determine the ratio of the scratch widths (the scratch width of the conventional material). / Scratch width of the obtained product). Evaluation of drilling workability: Pore diameter: 1.5m
m, rotation speed: 2000 RPM, drill material: SKH-9
The number of holes that could be continuously processed was measured by
Similar comparison with. The specularity was evaluated by a visual sensitivity test on the basis of the standard sample, and the specularity was uniform and smooth without pits, scratches, distortion, and the like.

【0053】[0053]

【表3】 [Table 3]

【0054】この結果から、次の様に考察できる。まず
No.1〜3のものは、本発明材と本発明の加工方法と
による実施例であり、表面が内部よりも硬く、いずれの
材料特性も良好であり最も優れていた。またNo.4、
5のものは、本発明材と本発明の規定条件外の加工方法
とによる実施例であり、表面は内部より硬化していない
ものの、材質はNo.1〜3に次いで優れていた。
From this result, the following can be considered. First, No. Samples Nos. 1 to 3 were the examples of the material of the present invention and the processing method of the present invention, and the surface was harder than the inside, and all the material properties were good, which was the most excellent. In addition, No. 4,
No. 5 is an example according to the material of the present invention and a processing method outside the specified conditions of the present invention. Although the surface is not cured from the inside, the material is No. It was excellent next to 1-3.

【0055】これに対し、No.6〜10のものは、従
来材と本発明の加工方法とによる比較例であり、下記の
点で問題があった。 (a)No.6はO含有量が多過ぎ、孔穴明け加工性が
劣る。 (b)No.7はSi含有量が少な過ぎ、耐疵性および
鏡面性が劣る。 (c)No.8はO含有量が少な過ぎ、耐疵性および鏡
面性が劣る。 (d)No.9は、基準としたTi−3Al−2.5V
系合金の例である。 (e)No.10は合金元素が多く含まれ、熱処理(容
体化処理+時効)によって硬化可能なNearβ合金の
例であり、耐疵性は高いが孔明け加工性が劣っている。
On the other hand, in No. Nos. 6 to 10 are comparative examples of the conventional material and the processing method of the present invention, and there were problems in the following points. (A) No. No. 6 has too much O content and is inferior in hole drilling workability. (B) No. No. 7 has an excessively low Si content and is inferior in scratch resistance and specularity. (C) No. No. 8 has an excessively low O content and is inferior in scratch resistance and specularity. (D) No. 9 is the standard Ti-3Al-2.5V
It is an example of a system alloy. (E) No. No. 10 is an example of a Nearβ alloy that contains a large amount of alloying elements and can be hardened by heat treatment (treatment for hardening + aging), and has high flaw resistance but poor drilling workability.

【0056】本発明によるこれらの時計ケース、特に本
発明材と本発明加工方法とにより製造した時計ケース
は、機械加工性と耐疵性等のコンビネーション、および
美麗性において従来技術による時計ケースに対し優れて
いた。
These watch cases according to the present invention, in particular, the watch case produced by the material according to the present invention and the processing method according to the present invention are superior to the watch cases according to the prior art in terms of the combination of machinability and flaw resistance and the beauty. Was excellent.

【0057】即ち、Fe:0.2〜1.0%、O:0.
15〜0.60%、Si:0.20〜1.0%を夫々含
有し、残部が実質的にTiからなるチタン合金素材を加
熱し、時計ケース用金型を使用して熱間鍛造で形状出し
と、バレル加工、切削等の機械加工と、研磨等の仕上げ
加工とにより完成した時計ケースは、従来の素材で作ら
れたものより表面硬度が高いので、疵や凹みが付きにく
く、その上表面品質も従来では得られなかった鏡の様な
鏡面が得られ、軽くて非常に美しい気品のある質感が得
られていた。
That is, Fe: 0.2 to 1.0%, O: 0.
15 to 0.60%, Si: 0.20 to 1.0%, respectively, and the balance is titanium alloy material consisting essentially of Ti, hot forged using a watch case mold. The watch case completed by shaping, barrel machining, machining such as cutting, and finishing such as polishing has a higher surface hardness than those made of conventional materials, so it is less likely to have flaws or dents. As for the surface quality, a mirror-like surface that could not be obtained in the past was obtained, and a light, very beautiful and elegant texture was obtained.

【0058】実施例4 下記表4に示す成分組成のチタン合金を用い、プラズマ
溶解により溶製したインゴットから圧延等の加工によっ
て丸棒(直径:6.5mm)を作成した。得られたチタ
ン合金丸棒を、長さ:47mmに切断した。
Example 4 Using a titanium alloy having the composition shown in Table 4 below, a round bar (diameter: 6.5 mm) was produced from an ingot melted by plasma melting by processing such as rolling. The obtained titanium alloy round bar was cut into a length of 47 mm.

【0059】次に、熱間鍛造機に時計バンド成形用金型
(2駒取り)をセットし、150〜250℃に加熱し、
この金型に高周波加熱により下記表4に示す所定温度に
昇温後、5〜10秒間保持した素材を乗せ1次鍛造を行
なった。このとき使用した鍛造機は、120トンのフリ
クションプレスである。
Next, a watch band forming die (two-piece taking) is set in the hot forging machine and heated to 150 to 250 ° C.,
After the temperature was raised to a predetermined temperature shown in Table 4 below by high frequency heating in this mold, a material held for 5 to 10 seconds was placed on the mold for primary forging. The forging machine used at this time was a 120-ton friction press.

【0060】次に、化学研磨によりスケールの除去を行
なった鍛造品を、バリ抜き加工(プレスにて、バリ抜き
と2つの駒を1つの駒にするばらしを同時に行なう)、
バレル加工(バリおよびスケールの除去)、化学研磨加
工(スケールの完全除去)を行なった。次いで、ピン等
で連結するための孔明け加工を駒に施す第1次機械加工
を行なった。その後、所望の仕上げ品質を得るため、孔
明加工を行った駒の表面に、仕上げバレル研磨や羽布を
使用した研磨による仕上げ加工の第2次機械加工を行な
った。こうして得られた駒を、ピンにより連結し、時計
バンドを完成させた。
Next, the forged product from which the scale has been removed by chemical polishing is subjected to deburring (the deburring and the disengagement of two pieces into one piece are simultaneously performed by a press),
Barrel processing (removal of burr and scale) and chemical polishing processing (complete removal of scale) were performed. Then, a primary machining process was performed in which a piece was perforated for connecting with a pin or the like. After that, in order to obtain a desired finish quality, the surface of the perforated piece was subjected to secondary machining such as finish barrel polishing or polishing using a feather cloth. The pieces thus obtained were connected by pins to complete a watch band.

【0061】得られた時計バンド製品(本発明例と比較
例)の表面と内部の硬さの差(硬さの増加量)、耐疵
性、孔明け加工性およびヘアライン性を調査し、従来材
であるTi−3Al−2.5V系合金を基準として比較
した。その結果を、下記表4に併記した。
The obtained watch band products (examples of the present invention and comparative examples) were examined for differences in hardness between the surface and inside (increased amount of hardness), flaw resistance, punching processability and hairline property, and The Ti-3Al-2.5V alloy as a material was used as a reference for comparison. The results are also shown in Table 4 below.

【0062】このとき硬さは、ビッカース硬さ計により
荷重100gで測定した。耐疵性の評価は、ダイヤモン
ド圧子を荷重:200g、速度:75mm/分の条件
で、バフ研磨したサンプル表面に疵をつけその疵の幅を
比較し、実施例3と同様にして評価した。孔明け加工性
の評価は、孔径:1.0mm、回転数:4000RP
M、ドリル材質:SKH−9により連続して加工できた
孔明け数を測定し、実施例2と同様に比較した。またヘ
アライン性は、標準サンプルを基準にし、ヘアラインの
乱れ、切れ、荒れ等のない均一な光沢性と規則的なヘア
ライン性を目視感能検査によって評価した。
At this time, the hardness was measured by a Vickers hardness meter under a load of 100 g. The scratch resistance was evaluated in the same manner as in Example 3 by using a diamond indenter under a load of 200 g and a speed of 75 mm / min to scratch the surface of the buffed sample and compare the widths of the scratches. The evaluation of the drilling workability is performed by the hole diameter: 1.0 mm, the rotation speed: 4000 RP.
M, drill material: The number of holes that could be continuously processed by SKH-9 was measured, and compared with Example 2. With respect to the hairline property, the standard sample was used as a standard, and the uniform glossiness without irregularity, breakage, and roughness of the hairline and the regular hairline property were evaluated by a visual sensitivity test.

【0063】[0063]

【表4】 [Table 4]

【0064】この結果から、次の様に考察できる。まず
No.1〜3のものは、本発明材と本発明の加工方法と
による実施例であり、表面が内部よりも硬く、いずれの
材料特性も良好であり最も優れていた。またNo.4、
5のものは、本発明材と本発明の規定条件外の加工方法
とによる実施例であり、表面は内部より硬化していない
ものの、材質はNo.1〜3に次いで優れていた。
From this result, the following can be considered. First, No. Samples Nos. 1 to 3 were the examples of the material of the present invention and the processing method of the present invention, and the surface was harder than the inside, and all the material properties were good, which was the most excellent. In addition, No. 4,
No. 5 is an example according to the material of the present invention and a processing method outside the specified conditions of the present invention. Although the surface is not cured from the inside, the material is No. It was excellent next to 1-3.

【0065】これに対し、No.6〜10のものは、従
来材と本発明の加工方法とによる比較例であり、下記の
点で問題があった。 (a)No.6はO含有量が多過ぎ、孔穴明け加工性が
劣る。 (b)No.7はSi含有量が少な過ぎ、耐疵性および
ヘアライン性が劣る。 (c)No.8はO含有量が少な過ぎ、耐疵性およびヘ
アライン性が劣る。 (d)No.9は、基準としたTi−3Al−2.5V
系合金の例である。 (e)No.10は合金元素が多く含まれ、熱処理(容
体化処理+時効)によって硬化可能なNearβ合金の
例であり、耐疵性は高いが孔明け加工性が劣っている。
On the other hand, in No. Nos. 6 to 10 are comparative examples of the conventional material and the processing method of the present invention, and there were problems in the following points. (A) No. No. 6 has too much O content and is inferior in hole drilling workability. (B) No. No. 7 has an excessively low Si content and is inferior in scratch resistance and hairline property. (C) No. No. 8 has an excessively small O content and is inferior in scratch resistance and hairline property. (D) No. 9 is the standard Ti-3Al-2.5V
It is an example of a system alloy. (E) No. No. 10 is an example of a Nearβ alloy that contains a large amount of alloying elements and can be hardened by heat treatment (solution treatment + aging), and has high flaw resistance but poor drilling workability.

【0066】本発明によるこれらの時計バンド、特に本
発明材と本発明加工方法とにより製造した時計バンド
は、機械加工性と耐疵性等のコンビネーション、および
美麗性において従来技術による時計バンドに対し優れて
いた。
These timepiece bands according to the present invention, in particular, the timepiece band produced by the material of the present invention and the processing method of the present invention are superior to the timepiece bands according to the prior art in the combination of machinability and flaw resistance and beauty. Was excellent.

【0067】即ち、Fe:0.2〜1.0%、O:0.
15〜0.60%、Si:0.20〜1.0%を夫々含
有し、残部が実質的にTiからなるチタン合金素材を加
熱し、時計バンド用金型を使用して熱間鍛造で形状出し
と、バレル加工、孔明け等の機械加工と、研磨等の仕上
げ加工とにより完成した駒を、ピン等により連結して作
成された時計バンドは、従来の素材で作られたものより
表面硬度が高いので、疵や凹みが付きにくく、その上表
面品質も従来では得られなかった微細なヘアライン目付
けが得られ、軽くて非常に美しく気品のある質感が得ら
れていた。
That is, Fe: 0.2 to 1.0%, O: 0.
15-0.60%, Si: 0.20-1.0%, respectively, the balance is titanium alloy material consisting essentially of Ti is heated and hot forged using a watch band die. The watch band made by connecting the pieces completed by shaping, barrel processing, mechanical processing such as drilling, and finishing processing such as polishing with pins etc. is more surface than that made of conventional materials. Due to its high hardness, it was difficult to get scratches and dents, and the surface quality was fine, which was previously unobtainable, and a light, very beautiful and elegant texture was obtained.

【0068】尚上記実施例3および実施例4において
は、時計ケースや時計バンドを製造する場合を示した
が、その他ブレスレット、イヤリング、ペンダント、ネ
ックレス、メガネフレームなどの装身具、更に装飾品や
一般日用品等の他の製品に実施しても同様の結果が得ら
れていた。
In the above-mentioned Embodiments 3 and 4, the case of manufacturing the watch case and the watch band was shown, but other accessories such as bracelets, earrings, pendants, necklaces, and eyeglass frames, as well as ornaments and general daily necessities. Similar results were obtained even when applied to other products such as.

【0069】[0069]

【発明の効果】本発明は以上の様に構成されており、装
飾性および美麗性に優れ且つ疵やへこみ等がつきにく
く、しかも機械加工性も良好で、特に上記各種の装身具
の素材として有用な高強度チタン合金、および該合金に
よって製造される上記の様な製品、並びにこのような製
品を製造するための有用な方法が実現できた。また本発
明の技術は、装身具に適用したときにその効果が最も有
効に発揮されるものであるが、装身具と同様に美麗性が
重要視される装飾品の他、自転車部品、ゴルフ、釣り用
具等のスポーツ用途、更には建材、家電製品等の幅広い
製品への適用が期待される。
EFFECTS OF THE INVENTION The present invention is constituted as described above, is excellent in decorativeness and beauty, is not easily scratched or dented, and has good machinability, and is particularly useful as a material for the above-mentioned various accessories. It has been possible to realize various high strength titanium alloys, the above-mentioned products manufactured by the alloys, and useful methods for manufacturing such products. Further, the effect of the technique of the present invention is most effectively exerted when applied to accessories, but in addition to ornaments where beauty is important as in accessories, bicycle parts, golf, fishing equipment, etc. It is expected to be applied to a wide range of products such as sports applications such as building materials and home appliances.

フロントページの続き (51)Int.Cl.7 識別記号 FI C22F 1/00 673 C22F 1/00 673 683 683 684 684A 692 692A 692B 694 694B 694Z 1/18 1/18 H (72)発明者 橋本 範夫 東京都田無市本町6丁目1番12号 シチ ズン時計株式会社内 (72)発明者 田口 秀夫 東京都田無市本町6丁目1番12号 シチ ズン時計株式会社内 (56)参考文献 特開 昭53−28509(JP,A) 特開 平7−70676(JP,A) 特開 平7−43478(JP,A) 特開 平4−176832(JP,A) 特開 平3−226537(JP,A) 特開 平1−252747(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22F 1/00 630 C22F 1/18 C22C 14/00 Front page continuation (51) Int.Cl. 7 Identification code FI C22F 1/00 673 C22F 1/00 673 683 683 683 684 684A 692 692A 692B 694 694B 694Z 1/18 1/18 H (72) Inventor Hashimoto Norio Tokyo 6-12 Hommachi Honcho, Miyakotanashi Citizen Watch Co., Ltd. (72) Inventor Hideo Taguchi 6-12 Hommachi Honmachi, Tokyo Tanashi City Citizen Watch Co., Ltd. (56) Reference JP-A-53- 28509 (JP, A) JP 7-70676 (JP, A) JP 7-43478 (JP, A) JP 4-176832 (JP, A) JP 3-226537 (JP, A) JP-A 1-252747 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C22F 1/00 630 C22F 1/18 C22C 14/00

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Fe:0.2〜1.0%(質量%の意
味、以下同じ)、O:0.15〜0.60%およびS
i:0.20〜1.0%を夫々含み、残部がTiおよび
不可避不純物からなることを特徴とする高強度チタン合
金。
1. Fe: 0.2 to 1.0% (meaning mass%; the same applies hereinafter), O: 0.15 to 0.60% and S
i: 0.20 to 1.0%, respectively, and the balance consisting of Ti and unavoidable impurities, a high strength titanium alloy.
【請求項2】 Fe:0.3〜0.7%、および/また
はO:0.20〜0.40%、および/またはSi:
0.40〜0.80%である請求項1に記載のチタン合
金。
2. Fe: 0.3 to 0.7%, and / or O: 0.20 to 0.40%, and / or Si:
The titanium alloy according to claim 1, which is 0.40 to 0.80%.
【請求項3】 請求項1または2に記載のチタン合金か
らなるものである高強度チタン製品。
3. A high-strength titanium product made of the titanium alloy according to claim 1.
【請求項4】 前記製品が、装身具である請求項3に記
載の製品。
4. The product of claim 3, wherein the product is an accessory.
【請求項5】 表面のビッカース硬さが内部のビッカー
ス硬さよりも20以上高いものである請求項3または4
に記載の高強度チタン製品。
5. The Vickers hardness of the surface is 20 or more higher than the Vickers hardness of the inside.
High strength titanium products described in.
【請求項6】 請求項3または4に記載の製品を製造す
るに当たり、素材温度が(β変態点−200℃)以上の
状態で熱間鍛造し、その後冷却する工程を含んで操業す
ることを特徴とするの高強度チタン製品の製造方法。
6. When manufacturing the product according to claim 3 or 4, hot forging is performed in a state where the material temperature is (β transformation point −200 ° C.) or higher, and then the step of cooling is performed. Characteristic is a method for producing a high-strength titanium product.
【請求項7】 素材温度が950℃以下である請求項6
に記載の製造方法。
7. The material temperature is 950 ° C. or lower.
The manufacturing method described in.
【請求項8】 請求項5に記載の製品を製造するに当た
り、素材温度が(β変態点−200℃)以上の状態で、
歪み速度:10-1/秒以上の熱間鍛造を行なうと共に、
下記(a)および(b)の少なくともいずれかを満足す
る工程を含んで操業することを特徴とする高強度チタン
製品の製造方法。 (a)500℃以下の金型を用いて上記熱間鍛造を行な
い、その後冷却する。 (b)熱間鍛造終了後、10秒以内に冷却速度:102
℃/分以上の冷却を開始し、材料温度が500℃以下に
なるまで冷却を継続する。
8. When manufacturing the product according to claim 5, the material temperature is (β transformation point −200 ° C.) or higher,
Strain rate: 10 -1 / sec or more hot forging,
A method for producing a high-strength titanium product, which comprises operating including a step satisfying at least one of the following (a) and (b): (A) The above-mentioned hot forging is performed using a die of 500 ° C. or lower, and then cooled. (B) Cooling rate: 10 2 within 10 seconds after completion of hot forging
The cooling is started at a rate of not less than 0 ° C./minute and continued until the material temperature becomes 500 ° C. or less.
【請求項9】 素材温度が950℃以下である請求項8
に記載の製造方法。
9. The material temperature is 950 ° C. or lower.
The manufacturing method described in.
JP07236997A 1996-03-29 1997-03-25 High-strength titanium alloy, product thereof, and method of manufacturing the product Expired - Lifetime JP3376240B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP07236997A JP3376240B2 (en) 1996-03-29 1997-03-25 High-strength titanium alloy, product thereof, and method of manufacturing the product
EP97914549A EP0834586B1 (en) 1996-03-29 1997-03-26 High strength titanium alloy, product made therefrom and method for producing the same
US08/952,511 US5885375A (en) 1996-03-29 1997-03-26 High strength titanium alloy, product made of the titanium alloy and method for producing the product
KR1019970708576A KR19990022097A (en) 1996-03-29 1997-03-26 High Strength Titanium Alloy, Its Product and Manufacturing Method of It
PCT/JP1997/001023 WO1997037049A1 (en) 1996-03-29 1997-03-26 High strength titanium alloy, product made therefrom and method for producing the same
CN97190564A CN1083015C (en) 1996-03-29 1997-03-26 High-strength titanium alloy, product thereof, and method for producing the product
DE69715120T DE69715120T2 (en) 1996-03-29 1997-03-26 HIGH-STRENGTH TIT ALLOY, METHOD FOR PRODUCING A PRODUCT THEREOF AND PRODUCT
HK99100551A HK1015419A1 (en) 1996-03-29 1999-02-10 High strength titanium alloy, product made therefrom and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-77596 1996-03-29
JP7759696 1996-03-29
JP07236997A JP3376240B2 (en) 1996-03-29 1997-03-25 High-strength titanium alloy, product thereof, and method of manufacturing the product

Publications (2)

Publication Number Publication Date
JPH1017961A JPH1017961A (en) 1998-01-20
JP3376240B2 true JP3376240B2 (en) 2003-02-10

Family

ID=26413503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07236997A Expired - Lifetime JP3376240B2 (en) 1996-03-29 1997-03-25 High-strength titanium alloy, product thereof, and method of manufacturing the product

Country Status (1)

Country Link
JP (1) JP3376240B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111032896A (en) * 2017-08-28 2020-04-17 日本制铁株式会社 Timepiece component

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4487062B2 (en) * 2000-08-21 2010-06-23 独立行政法人産業技術総合研究所 Ti alloy and its castings
JP3694465B2 (en) 2001-03-26 2005-09-14 有限会社山口ティー・エル・オー Titanium alloy vacuum vessel and vacuum parts
US20040094241A1 (en) 2002-06-21 2004-05-20 Yoji Kosaka Titanium alloy and automotive exhaust systems thereof
WO2010054236A1 (en) 2008-11-06 2010-05-14 Titanium Metals Corporation Methods for the manufacture of a titanium alloy for use in combustion engine exhaust systems
JP5660061B2 (en) * 2012-02-28 2015-01-28 新日鐵住金株式会社 Material for cold rolling of heat-resistant titanium alloy having excellent cold-rollability and cold handleability and method for producing the same
JP6084553B2 (en) * 2013-02-06 2017-02-22 株式会社神戸製鋼所 Titanium alloy forged material and method for producing the same
KR102259844B1 (en) * 2019-09-09 2021-06-01 이효진 Prefabricated wire manufacturing method and its manufacturing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111032896A (en) * 2017-08-28 2020-04-17 日本制铁株式会社 Timepiece component

Also Published As

Publication number Publication date
JPH1017961A (en) 1998-01-20

Similar Documents

Publication Publication Date Title
KR19990022097A (en) High Strength Titanium Alloy, Its Product and Manufacturing Method of It
US7410546B2 (en) Platinum alloy and method of production thereof
JPH07150274A (en) Titanium alloy and its production
US20200308672A1 (en) Sterling silver alloy and articles made from same
JP3376240B2 (en) High-strength titanium alloy, product thereof, and method of manufacturing the product
US5846352A (en) Heat treatment of a platinum-gallium alloy for jewelry
WO2008047232A2 (en) White precious metal alloy
WO1996031632A1 (en) High-purity hard gold alloy and process for production thereof
CN110695612B (en) Processing method for improving hardness of gold ornaments
JPH1017962A (en) High strength titanium alloy, product thereof and production of the same product
US6562158B1 (en) Heat-treatable platinum-gallium-palladium alloy for jewelry
JP2886818B2 (en) Method of manufacturing copper alloy for decoration
JP3653089B1 (en) Silver alloy product and jewelry and method for producing silver alloy product
US20200308673A1 (en) Low gold jewelry alloy
JP2007107040A5 (en)
JPH08104974A (en) Method for hardening platinum or platinum alloy and method for hardening palladium or palladium alloy
CN106636721A (en) Gold alloy
JPH04147932A (en) Pt alloy for outer ornament for wristwatch
JP2897974B2 (en) Age hardenable gold alloy
JPH01127640A (en) Alloy member for decoration
US20080298997A1 (en) Platinum Alloy and Method of Production Thereof
RU2356971C2 (en) Platinum alloy and method of its manufacturing
CN112941517A (en) Article having excellent design and method for producing same
JPH0135911B2 (en)
JPS63145730A (en) Ornamental hard platinum alloy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021112

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131129

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term