JP3374994B2 - Paste type nickel electrode - Google Patents

Paste type nickel electrode

Info

Publication number
JP3374994B2
JP3374994B2 JP25473493A JP25473493A JP3374994B2 JP 3374994 B2 JP3374994 B2 JP 3374994B2 JP 25473493 A JP25473493 A JP 25473493A JP 25473493 A JP25473493 A JP 25473493A JP 3374994 B2 JP3374994 B2 JP 3374994B2
Authority
JP
Japan
Prior art keywords
nickel
electrode
nickel electrode
swelling
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25473493A
Other languages
Japanese (ja)
Other versions
JPH0785872A (en
Inventor
浩 福永
政嗣 石澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP25473493A priority Critical patent/JP3374994B2/en
Publication of JPH0785872A publication Critical patent/JPH0785872A/en
Application granted granted Critical
Publication of JP3374994B2 publication Critical patent/JP3374994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、アルカリ二次電池の正
極として用いられるニッケル電極に係わり、さらに詳し
くはサイクル特性の優れたニッケル電極に関する。 【0002】 【従来の技術】近年、ニッケル−水素吸蔵合金電池、ニ
ッケル−カドミウム電池などのアルカリ二次電池の正極
として用いられるニッケル電極においては、高容量化、
低価格化を図るべく、導電作用を兼ねた基体として、空
孔率が95%以上で、孔径または繊維間隙が数μmから
100μm程度の金属発泡体または繊維状金属多孔体を
用い、それに水酸化ニッケルを主剤とする活物質ペース
トを直接保持させる、いわゆるペースト式ニッケル電極
が使用されるようになってきた(特開平1−22736
3号公報)。 【0003】上記のような金属発泡体または繊維状金属
多孔体を基体として用いる場合には、基体の空孔または
繊維間隙の平均径が大きいので、活物質の充填が容易で
あり、その充填量も多くすることができる。 【0004】しかしながら、活物質の充填量が多くなる
と、該ニッケル電極を用いて電池を組み立てたときに、
充放電に伴うγ−NiOOHの生成による膨潤も大きく
なり、その結果、セパレータ中に存在する電解液がニッ
ケル電極に吸収されて、セパレータ中の電解液が減少
し、電池の内部抵抗が上昇してサイクル特性が低下す
る。 【0005】そのため、水酸化ニッケル〔Ni(O
2 )〕に酸化カドミウム(CdO)や亜鉛化合物を添
加してγ−NiOOHの生成を抑制し、ニッケル電極の
膨潤を抑制して、電池のサイクル特性の低下を防止する
方法(特開昭59−112574号公報)や、鉄(F
e)、カルシウム(Ca)、亜鉛(Zn)、マグネシウ
ム(Mg)、コバルト(Co)などを添加してγ−Ni
OOHの生成を抑制し、ニッケル電極の膨潤を抑制し
て、電池のサイクル特性の低下を防止する方法(特開平
5−41212号公報)などが提案されている。 【0006】 【発明が解決しようとする課題】しかしながら、上記の
方法によっても、γ−NiOOHの生成によるニッケル
電極の膨潤を充分に抑制することができず、そのため電
池のサイクル特性の低下を充分に抑制することができな
かった。 【0007】したがって、本発明は、従来のニッケル電
極が持っていたサイクル特性が悪いという問題点を解決
し、充放電に伴うγ−NiOOHの生成によるニッケル
電極の膨潤を抑制して、サイクル特性の優れたニッケル
電極を提供することを目的とする。 【0008】 【課題を解決するための手段】本発明は、基体の金属発
泡体の格子の接点の一部を水かき状にすることによっ
て、充放電に伴うγ−NiOOHの生成によるニッケル
電極の膨潤を抑制して、サイクル特性の優れたニッケル
電極を提供したものである。 【0009】すなわち、基体の金属発泡体の格子の接点
の一部が水かき状になっていることによって、基体の機
械的強度が向上し、それによって、充放電に伴うニッケ
ル電極の膨潤が抑制され、ニッケル電極のサイクル特性
が向上するのである。 【0010】上記特定の金属発泡体からなる基体に充填
する活物質ペーストとしては、特に限られることなく、
たとえば従来使用のものと同様の活物質ペーストを使用
することができるなど、各種のものを使用することがで
きる。 【0011】そして、本発明のペースト式ニッケル電極
は、たとえばニッケル−水素吸蔵合金電池、ニッケル−
カドミウム電池、ニッケル−亜鉛電池などをはじめ、各
種のアルカリ二次電池の正極として使用することができ
る。 【0012】 【実施例】つぎに、実施例を挙げて本発明をさらに具体
的に説明する。ただし、本発明はそれらの実施例のみに
限定されるものではない。 【0013】実施例1 基体として、日本重化学工業社で、厚さ0.14mm、
単位重量600kg/cm2 、空孔率95%のニッケル
発泡体を用いた。このニッケル発泡体からなる基体の倍
率50倍の電子顕微鏡写真を図1に示す。 【0014】そして、この図1に示すニッケル発泡体か
らなる基体の電子顕微鏡写真を模式的に図示した模式図
を図2に示す。 【0015】図2に示すように、このニッケル発泡体か
らなる基体では、そのニッケルで構成される格子1の接
点の一部が水かき状2になっている。 【0016】ニッケル電極作製用の活物質ペーストは、
水酸化ニッケル(亜鉛2%およびコバルト0.7%含
有)100重量部に対して、ニッケル粉末11.6重量
部、コバルト粉末2.2重量部、酸化コバルト(Co
O)28重量部、カルボキシメチルセルロース5.8重
量部、ポリテトラフルオロエチレンディスパージョン
(固形分濃度60%)5.8重量部、水酸化カリウム
1.8重量部および水49.5重量部を加えて、室温で
72時間混練することによって調製した。 【0017】このニッケル電極作製用の活物質ペースト
を上記特定のニッケル発泡体からなる基体に充填し、8
0℃で1時間乾燥した後、プレスにより2ton/cm
2 の荷重で0.66mmの厚さになるまで加圧し、それ
を長さ×幅が82mm×39mmに切断し、集電タブを
取り付けてニッケル電極を作製した。 【0018】比較例1 基体として、従来から使用している住友電気工業社製
で、厚さ0.14mm、単位重量600g/cm2 、空
孔率95%のニッケル発泡体を用いた。このニッケル発
泡体からなる基体の倍率50倍の電子顕微鏡写真を図3
に示す。 【0019】図3に示すように、このニッケル発泡体か
らなる基体の格子の接点には、図2に見られるような水
かき状部分が見られない。 【0020】このニッケル発泡体からなる基体に、実施
例1と同様の活物質ペーストを実施例1と同様に充填、
乾燥、加圧、切断、タブ取付けを行ってニッケル電極を
作製した。 【0021】つぎに、上記実施例1および比較例1のニ
ッケル電極を正極として電池を組み立て、その充放電に
伴うニッケル電極の膨潤の度合いとサイクル特性を調べ
た。 【0022】まず、ニッケル電極の膨潤に関しては、負
極にカドミウム電極を用い、図4に示すモデルセルを作
製し、それを用いて図5に示す電極膨潤測定装置を組み
立てた。 【0023】図4において、10はモデルセル、11は
ニッケル電極であり、このニッケル電極11はこのモデ
ルセル10において正極として作用するものであって、
前記のようにして作製したニッケル電極を1cm角に切
断したものである。12はカドミウム電極であり、この
カドミウム電極12はこのモデルセル10において負極
として作用するものである。13はガラス繊維不織布か
らなるセパレータであり、14は電解液であって、30
%水酸化カリウム水溶液からなり、15は錘であって、
この錘15の重量は2100kg/cm2 である。 【0024】図5において、10は図4に示すモデルセ
ルであり、20は膨潤の検知器、21は検知した膨潤を
増幅する増幅器、22はその記録計である。 【0025】試験は、モデルセルにおいて正極として使
用されているニッケル電極の充填容量に対して1Cで
1.5時間(150%に相当)充電し、1Cで0.9V
まで放電する充放電を繰り返し、充放電後のニッケル電
極(正極)の膨潤を測定することによって行った。その
結果を図6に示す。 【0026】図6において、白丸は実施例1のニッケル
電極の放電後の膨潤率を示し、黒丸は実施例1のニッケ
ル電極の充電後の膨潤率を示す。そして、白三角は比較
例1のニッケル電極の放電後の膨潤率を示し、黒三角は
比較例1のニッケル電極の充電後の膨潤率を示す。 【0027】図6に示すように、11サイクル後の膨潤
率は、従来品に相当する比較例1が28%であったのに
対し、本発明の実施例1は20%であって、膨潤が少な
かった。 【0028】つぎに、サイクル特性は、上記ニッケル電
極を正極、水素吸蔵合金電極を負極とし、30%水酸化
カリウム水溶液を電解液として単3形電池を作製し、1
C×120%充電および1C、0.9V終止の充放電を
繰り返すことによって調べた。その結果を図7に示す。
なお、水素吸蔵合金電極は次に示すようにして作製し
た。 【0029】市販のTi、Zr、V、Ni、Cr(いず
れも純度99.9%以上)をTi17Zr1623Ni37
7 の組成になるように秤量し、高周波溶解炉で加熱溶
解して、多相系合金を得た。 【0030】この合金を耐圧容器中で10-4torrま
で真空引きを行い、アルゴンで3回パージを行ったあ
と、水素圧力14kg/cm2 の加圧下で24時間保持
した後、水素を排気し、400℃に加熱して水素を完全
に脱蔵することにより、粒径20〜100μmの水素吸
蔵合金粉末を得た。 【0031】この水素吸蔵合金粉末をニッケルのエキス
パンドメタルからなる基体にロールミルを用いて圧着
し、Ar/H2 =99/1の雰囲気中875℃で12時
間保持し、30℃まで冷却した後、切断して厚さ0.3
3mmで長さ×幅が120mm×41mmの水素吸蔵合
金電極を作製した。 【0032】この水素吸蔵合金電極を負極として用い、
前記ニッケル電極を正極として用い、1C×120%充
電および1C、0.9V終止の充放電を繰り返すことに
よって調べたサイクル特性は図7に示す通りである。 【0033】図7に示すように、比較例1は放電容量が
0.5Ahになるまでのサイクル数が700回であった
のに対し、本発明の実施例1は放電容量が0.5Ahに
なるまでのサイクル数が950回あり、比較例1に比べ
てサイクル特性が大幅に向上していた。 【0034】 【発明の効果】以上説明したように、本発明では、ニッ
ケル電極の基体として、格子の接点の一部が水かき状に
なった金属発泡体を用いることによって、充放電に伴う
ニッケル電極の膨潤を抑制し、サイクル特性の優れたニ
ッケル電極を提供することができた。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel electrode used as a positive electrode of an alkaline secondary battery, and more particularly to a nickel electrode having excellent cycle characteristics. 2. Description of the Related Art In recent years, nickel electrodes used as positive electrodes of alkaline secondary batteries such as nickel-hydrogen storage alloy batteries and nickel-cadmium batteries have increased capacity.
In order to reduce the cost, a metal foam or fibrous metal porous body having a porosity of 95% or more, a pore diameter or a fiber gap of about several μm to 100 μm is used as a substrate having a conductive action, A so-called paste-type nickel electrode that directly holds an active material paste containing nickel as a main component has been used (Japanese Patent Application Laid-Open No. 1-22736).
No. 3). When the above-described metal foam or fibrous metal porous body is used as a substrate, the average diameter of pores or fiber gaps in the substrate is large, so that the active material can be easily filled, and the amount of the active material can be easily filled. Can also be many. However, when the amount of the active material is increased, when a battery is assembled using the nickel electrode,
The swelling due to the generation of γ-NiOOH due to charge and discharge also increases, and as a result, the electrolyte present in the separator is absorbed by the nickel electrode, the electrolyte in the separator decreases, and the internal resistance of the battery increases. Cycle characteristics deteriorate. Therefore, nickel hydroxide [Ni (O
H 2 )], a method of adding cadmium oxide (CdO) or a zinc compound to suppress the production of γ-NiOOH, to suppress the swelling of the nickel electrode, and to prevent the deterioration of the cycle characteristics of the battery (Japanese Patent Laid-Open No. No. 112574), iron (F
e), calcium (Ca), zinc (Zn), magnesium (Mg), cobalt (Co), etc.
A method has been proposed in which the generation of OOH is suppressed and the swelling of the nickel electrode is suppressed to prevent a decrease in the cycle characteristics of the battery (JP-A-5-41212). [0006] However, even with the above method, swelling of the nickel electrode due to the formation of γ-NiOOH cannot be sufficiently suppressed, and thus the deterioration of the cycle characteristics of the battery can be sufficiently reduced. Could not be suppressed. Accordingly, the present invention solves the problem that the conventional nickel electrode has poor cycle characteristics, suppresses the swelling of the nickel electrode due to the generation of γ-NiOOH due to charge and discharge, and improves the cycle characteristics. An object is to provide an excellent nickel electrode. SUMMARY OF THE INVENTION The present invention relates to a method of forming a swelling of a nickel electrode by forming γ-NiOOH upon charging and discharging by forming a part of a contact point of a lattice of a metal foam of a substrate into a web shape. And a nickel electrode having excellent cycle characteristics is provided. [0009] That is, since a part of the contacts of the grid of the metal foam of the base is web-like, the mechanical strength of the base is improved, whereby the swelling of the nickel electrode due to charging and discharging is suppressed. Thus, the cycle characteristics of the nickel electrode are improved. The active material paste to be filled in the substrate made of the specific metal foam is not particularly limited.
For example, various pastes such as the same active material paste as those conventionally used can be used. The paste-type nickel electrode of the present invention is, for example, a nickel-hydrogen storage alloy battery,
It can be used as a positive electrode of various alkaline secondary batteries such as a cadmium battery and a nickel-zinc battery. Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples. Example 1 A substrate having a thickness of 0.14 mm was manufactured by Nippon Heavy Chemical Industry Co., Ltd.
A nickel foam having a unit weight of 600 kg / cm 2 and a porosity of 95% was used. FIG. 1 shows an electron micrograph of the nickel foam at a magnification of 50 times. FIG. 2 is a schematic diagram schematically showing an electron micrograph of the substrate made of the nickel foam shown in FIG. As shown in FIG. 2, in the base made of the nickel foam, a part of the contacts of the grid 1 made of nickel has a web-like shape 2. An active material paste for producing a nickel electrode is:
With respect to 100 parts by weight of nickel hydroxide (containing 2% of zinc and 0.7% of cobalt), 11.6 parts by weight of nickel powder, 2.2 parts by weight of cobalt powder, and cobalt oxide (Co
O) 28 parts by weight, 5.8 parts by weight of carboxymethylcellulose, 5.8 parts by weight of polytetrafluoroethylene dispersion (solid concentration: 60%), 1.8 parts by weight of potassium hydroxide and 49.5 parts by weight of water are added. And kneaded at room temperature for 72 hours. The active material paste for producing a nickel electrode is filled in a substrate made of the above-mentioned specific nickel foam,
After drying at 0 ° C for 1 hour, 2 ton / cm
Pressure was applied under a load of 2 to a thickness of 0.66 mm, which was cut into a length × width of 82 mm × 39 mm, and a current collecting tab was attached to produce a nickel electrode. Comparative Example 1 As a substrate, a nickel foam having a thickness of 0.14 mm, a unit weight of 600 g / cm 2 and a porosity of 95%, which was conventionally used by Sumitomo Electric Industries, Ltd., was used. FIG. 3 shows an electron micrograph of the nickel foam body at a magnification of 50 times.
Shown in As shown in FIG. 3, the web-like portions shown in FIG. 2 are not seen at the contacts of the grid of the substrate made of the nickel foam. The substrate made of the nickel foam was filled with the same active material paste as in Example 1 in the same manner as in Example 1.
After drying, pressing, cutting, and attaching a tab, a nickel electrode was produced. Next, a battery was assembled using the nickel electrodes of Example 1 and Comparative Example 1 as positive electrodes, and the degree of swelling and cycle characteristics of the nickel electrodes caused by charging and discharging were examined. First, regarding the swelling of the nickel electrode, a model cell shown in FIG. 4 was prepared using a cadmium electrode as a negative electrode, and an electrode swelling measuring apparatus shown in FIG. 5 was assembled using the model cell. In FIG. 4, reference numeral 10 denotes a model cell, 11 denotes a nickel electrode, and the nickel electrode 11 functions as a positive electrode in the model cell 10.
The nickel electrode produced as described above was cut into 1 cm square. Reference numeral 12 denotes a cadmium electrode. The cadmium electrode 12 functions as a negative electrode in the model cell 10. 13 is a separator made of a glass fiber nonwoven fabric, 14 is an electrolyte, and 30
% Potassium hydroxide aqueous solution, 15 is a weight,
The weight of the weight 15 is 2100 kg / cm 2 . In FIG. 5, reference numeral 10 denotes a model cell shown in FIG. 4, reference numeral 20 denotes a swelling detector, reference numeral 21 denotes an amplifier for amplifying the detected swelling, and reference numeral 22 denotes a recorder thereof. In the test, the charged capacity of the nickel electrode used as a positive electrode in the model cell was charged at 1 C for 1.5 hours (corresponding to 150%), and charged at 0.9 V at 1 C.
The charge and discharge were repeated until the nickel electrode (positive electrode) after the charge and discharge was measured. FIG. 6 shows the result. In FIG. 6, open circles indicate the swelling rate of the nickel electrode of Example 1 after discharging, and black circles indicate the swelling rate of the nickel electrode of Example 1 after charging. The open triangle indicates the swelling rate of the nickel electrode of Comparative Example 1 after discharging, and the closed triangle indicates the swelling rate of the nickel electrode of Comparative Example 1 after charging. As shown in FIG. 6, the swelling ratio after 11 cycles was 28% in Comparative Example 1 corresponding to the conventional product, whereas it was 20% in Example 1 of the present invention. There were few. Next, the cycle characteristics were determined as follows. AA batteries were prepared using the nickel electrode as a positive electrode, the hydrogen storage alloy electrode as a negative electrode, and a 30% aqueous solution of potassium hydroxide as an electrolyte.
It investigated by repeating charge and discharge of Cx120% charge and 1C, 0.9V termination. FIG. 7 shows the result.
In addition, the hydrogen storage alloy electrode was produced as follows. Commercially available Ti, Zr, V, Ni, Cr (all of which have a purity of 99.9% or more) were converted to Ti 17 Zr 16 V 23 Ni 37 C
It was weighed so as to obtain a composition of r 7, dissolved by heating in a high frequency melting furnace, to obtain a multi-phase alloy. This alloy was evacuated to 10 -4 torr in a pressure vessel, purged with argon three times, and kept under a hydrogen pressure of 14 kg / cm 2 for 24 hours, followed by evacuation of hydrogen. By heating to 400 ° C. to completely devolatilize hydrogen, a hydrogen storage alloy powder having a particle size of 20 to 100 μm was obtained. This hydrogen storage alloy powder was pressed against a substrate made of expanded metal of nickel using a roll mill, kept at 875 ° C. for 12 hours in an atmosphere of Ar / H 2 = 99/1, and cooled to 30 ° C. Cut to thickness 0.3
A hydrogen storage alloy electrode having a length of 3 mm and a length × width of 120 mm × 41 mm was produced. Using this hydrogen storage alloy electrode as a negative electrode,
Using the nickel electrode as a positive electrode, the cycle characteristics examined by repeating charging and discharging at 1C × 120% and termination at 1C and 0.9V are as shown in FIG. As shown in FIG. 7, Comparative Example 1 had 700 cycles until the discharge capacity reached 0.5 Ah, whereas Example 1 of the present invention reduced the discharge capacity to 0.5 Ah. There were 950 cycles until the cycle was completed, and the cycle characteristics were significantly improved as compared with Comparative Example 1. As described above, according to the present invention, by using a metal foam in which a part of a grid contact is in a web shape as a base of a nickel electrode, the nickel electrode accompanying charge / discharge is used. Swelling was suppressed, and a nickel electrode having excellent cycle characteristics could be provided.

【図面の簡単な説明】 【図1】本発明の実施例1において、基体として用いる
ニッケル発泡体の金属組織を示す倍率50倍の電子顕微
鏡写真である。 【図2】図1に示すニッケル発泡体の電子顕微鏡写真を
模式的に図示した模式図である。 【図3】比較例1において、基体として用いるニッケル
発泡体の金属組織を示す倍率50倍の電子顕微鏡写真で
ある。 【図4】ニッケル電極を正極として用いたモデルセルの
概略図である。 【図5】図4に示すモデルセルを組み込んだ電極膨潤測
定装置を示す概略図である。 【図6】実施例1および比較例1のニッケル電極を正極
として用い、カドミウム電極を負極として用いて作製し
たモデルセルの充放電サイクル数の増加に伴うニッケル
電極の膨潤率の変化を示す図である。 【図7】実施例1および比較例1のニッケル電極を正極
として用い、水素吸蔵合金電極を負極として用いて作製
した電池の充放電サイクル数の増加に伴う放電容量の変
化を示す図である。 【符号の説明】 1 格子 2 水かき状
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an electron micrograph (× 50) showing a metal structure of a nickel foam used as a substrate in Example 1 of the present invention. FIG. 2 is a schematic view schematically showing an electron micrograph of the nickel foam shown in FIG. FIG. 3 is an electron micrograph (magnification: 50) showing a metal structure of a nickel foam used as a substrate in Comparative Example 1. FIG. 4 is a schematic diagram of a model cell using a nickel electrode as a positive electrode. FIG. 5 is a schematic diagram showing an electrode swelling measuring device incorporating the model cell shown in FIG. FIG. 6 is a diagram showing a change in the swelling rate of a nickel electrode with an increase in the number of charge / discharge cycles of a model cell manufactured using the nickel electrode of Example 1 and Comparative Example 1 as a positive electrode and a cadmium electrode as a negative electrode. is there. FIG. 7 is a diagram showing a change in discharge capacity with an increase in the number of charge / discharge cycles of a battery manufactured using the nickel electrode of Example 1 and Comparative Example 1 as a positive electrode and a hydrogen storage alloy electrode as a negative electrode. [Explanation of Signs] 1 Grid 2 Webbed

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/80 H01M 4/32 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 4/80 H01M 4/32

Claims (1)

(57)【特許請求の範囲】 【請求項1】 水酸化ニッケルを主剤とする活物質ペー
ストを金属発泡体からなる基体に、少なくとも、充填、
乾燥、加圧する工程を経て作製されるペースト式ニッケ
ル電極において、上記基体の金属発泡体の格子の接点の
一部が水かき状になっていることを特徴とするペースト
式ニッケル電極。
(57) [Claims 1] At least a base material made of a metal foam is filled with an active material paste mainly composed of nickel hydroxide.
A paste-type nickel electrode produced by a step of drying and pressurizing, wherein a part of a contact point of a lattice of a metal foam of the base is web-shaped.
JP25473493A 1993-09-17 1993-09-17 Paste type nickel electrode Expired - Fee Related JP3374994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25473493A JP3374994B2 (en) 1993-09-17 1993-09-17 Paste type nickel electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25473493A JP3374994B2 (en) 1993-09-17 1993-09-17 Paste type nickel electrode

Publications (2)

Publication Number Publication Date
JPH0785872A JPH0785872A (en) 1995-03-31
JP3374994B2 true JP3374994B2 (en) 2003-02-10

Family

ID=17269121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25473493A Expired - Fee Related JP3374994B2 (en) 1993-09-17 1993-09-17 Paste type nickel electrode

Country Status (1)

Country Link
JP (1) JP3374994B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6020088A (en) * 1997-11-18 2000-02-01 Moltech Power Systems, Inc. Gamma niooh nickel electrodes

Also Published As

Publication number Publication date
JPH0785872A (en) 1995-03-31

Similar Documents

Publication Publication Date Title
JP2575840B2 (en) Dry manufacturing method of hydrogen storage alloy electrode
US5965295A (en) Alkaline secondary battery, paste type positive electrode for alkaline secondary battery, method for manufacturing alkaline secondary battery
CN101662012B (en) Negative pole piece, preparation method thereof and battery comprising same
US5034289A (en) Alkaline storage battery and method of producing negative electrode thereof
JP2708452B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2020087554A (en) Electrolyte solution for zinc battery and zinc battery
JP3374994B2 (en) Paste type nickel electrode
JP3079303B2 (en) Activation method of alkaline secondary battery
JP2002025604A (en) Alkaline secondary battery
JP2018147626A (en) Alkaline secondary battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3399265B2 (en) Alkaline battery with nickel positive electrode and method of activating the same
JP4359678B2 (en) Secondary battery electrode and secondary battery using the same
US20070077489A1 (en) Positive electrode for an alkaline battery
Etiemble et al. On the use of the acoustic emission technique for in-situ monitoring of the pulverization of battery electrodes
JP7166705B2 (en) Method for manufacturing negative electrode for zinc battery and method for manufacturing zinc battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP6951047B2 (en) Alkaline secondary battery
JP3374995B2 (en) Manufacturing method of nickel electrode
JP3501382B2 (en) Hydrogen storage alloy negative electrode and method for producing the same
JP3454780B2 (en) Alkaline storage battery
JP3162595B2 (en) Method of manufacturing alkaline storage battery, nickel positive electrode for alkaline storage battery, and alkaline storage battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP2733230B2 (en) Sealed nickel-hydrogen storage battery using hydrogen storage alloy
JP2854920B2 (en) Nickel-metal hydride battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees