JP3373741B2 - Limit current type oxygen sensor device and sensor driving method - Google Patents

Limit current type oxygen sensor device and sensor driving method

Info

Publication number
JP3373741B2
JP3373741B2 JP29425496A JP29425496A JP3373741B2 JP 3373741 B2 JP3373741 B2 JP 3373741B2 JP 29425496 A JP29425496 A JP 29425496A JP 29425496 A JP29425496 A JP 29425496A JP 3373741 B2 JP3373741 B2 JP 3373741B2
Authority
JP
Japan
Prior art keywords
oxygen sensor
current type
limiting current
type oxygen
monitoring voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29425496A
Other languages
Japanese (ja)
Other versions
JPH10142191A (en
Inventor
昭人 黒坂
昭良 浅田
孝文 鹿嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP29425496A priority Critical patent/JP3373741B2/en
Publication of JPH10142191A publication Critical patent/JPH10142191A/en
Application granted granted Critical
Publication of JP3373741B2 publication Critical patent/JP3373741B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、医療用酸素濃縮
機や酸欠監視システム等の分野において酸素濃度の検知
測定を行うために用いられる限界電流式酸素センサ装置
に係り、特に固体電解質からなるイオン伝導体を用いて
構成された限界電流式酸素センサ装置およびセンサ駆動
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a limiting current type oxygen sensor device used for detecting and measuring oxygen concentration in the fields of medical oxygen concentrators, oxygen deficiency monitoring systems, etc., and is particularly composed of a solid electrolyte. The present invention relates to a limiting current type oxygen sensor device and a sensor driving method configured by using an ionic conductor.

【0002】[0002]

【従来の技術】従来より、限界電流式酸素センサとし
て、安定化ジルコニアをイオン伝導体として用いたもの
が知られている。この種の限界電流式酸素センサは一般
に、イオン伝導体の両面に監視電圧を印加するための多
孔質材料からなる電極が形成され、その一方の電極側は
拡散律速されたガスを供給するためのガス拡散孔が開け
られたキャップで覆われる。キャップの上には、イオン
伝導板を数百度の監視温度に設定するためにヒータが設
けられる。
2. Description of the Related Art Conventionally, as a limiting current type oxygen sensor, one using stabilized zirconia as an ion conductor is known. This kind of limiting current type oxygen sensor is generally formed with electrodes made of a porous material for applying a monitoring voltage on both sides of an ionic conductor, and one of the electrodes is provided with a diffusion-controlled gas for supplying gas. It is covered with a cap that has gas diffusion holes. A heater is provided on the cap to set the ion conduction plate at a monitoring temperature of several hundred degrees.

【0003】図3は、この種の限界電流式酸素センサの
特性を示す。電極間にセンサ電圧を印加すると、電圧が
小さい間は電圧に比例する出力電流が流れる。センサ電
圧を更に上昇させるとやがて電流は飽和する。この飽和
領域の電流を限界電流と呼び、その限界電流の大きさ
は、図3に酸素濃度をパラメータとして示したように、
酸素濃度と一定の対応関係がある。従って、例えば図3
に示すVsを監視電圧として与え、この監視電圧Vsで
得られる限界電流値から酸素濃度を検知することができ
る。
FIG. 3 shows the characteristics of a limiting current type oxygen sensor of this type. When a sensor voltage is applied between the electrodes, an output current proportional to the voltage flows while the voltage is small. If the sensor voltage is further increased, the current will eventually be saturated. The current in this saturation region is called the limiting current, and the magnitude of the limiting current is as shown by the oxygen concentration in FIG. 3 as a parameter.
There is a certain correspondence with the oxygen concentration. Therefore, for example, in FIG.
The oxygen concentration can be detected from the limiting current value obtained by the monitoring voltage Vs.

【0004】イオン伝導体に流れる電流は、酸素イオン
の移動に基づくもので、その電流値は電圧と温度に依存
する。そのため限界電流式酸素センサは、400〜50
0℃の監視温度に設定されて電圧駆動がなされる。この
監視温度の設定は通常、上述のようにセンサ本体にヒー
タを設けて、これに通電することにより行われる。多く
の場合限界電流式酸素センサの駆動には、ヒータに常時
通電した状態で且つ電極間の常時監視電圧を与えるとい
う方法が用いられる。
The current flowing through the ionic conductor is based on the movement of oxygen ions, and its current value depends on the voltage and temperature. Therefore, the limiting current type oxygen sensor is 400 to 50
The monitoring temperature is set to 0 ° C. and voltage driving is performed. The setting of the monitoring temperature is usually performed by providing the heater on the sensor body and energizing the heater as described above. In many cases, the limiting current type oxygen sensor is driven by a method in which the heater is always energized and a monitoring voltage is constantly applied between the electrodes.

【0005】ところが、監視温度と監視電圧を常時与え
て酸素センサを駆動すると、イオン伝導体のイオン伝導
度の劣化による特性劣化が生じる。この特性劣化は、図
3に一点鎖線で示すように、出力電流のセンサ電圧に対
する傾斜が緩くなるという形で現れる。この様な特性劣
化が生じると、限界電流領域が狭くなり、図3の例で
は、酸素濃度21%の場合に監視電圧Vsが限界電流領
域から外れて、限界電流値よりも小さい電流値が測定さ
れることになる。従って測定すべき酸素濃度範囲と監視
電圧を仕様で定めた場合、その範囲で監視電圧が限界電
流領域から外れると、正しい酸素濃度を測定できなくな
り、酸素センサは寿命となる。
However, if the oxygen sensor is driven by constantly applying the monitoring temperature and the monitoring voltage, the characteristics of the ionic conductor deteriorate due to the deterioration of the ionic conductivity. This characteristic deterioration appears as the slope of the output current with respect to the sensor voltage becomes gentle, as indicated by the alternate long and short dash line in FIG. When such characteristic deterioration occurs, the limiting current region becomes narrower. In the example of FIG. 3, when the oxygen concentration is 21%, the monitoring voltage Vs deviates from the limiting current region, and a current value smaller than the limiting current value is measured. Will be done. Therefore, when the oxygen concentration range to be measured and the monitoring voltage are defined by the specifications, if the monitoring voltage deviates from the limiting current region within that range, the correct oxygen concentration cannot be measured, and the oxygen sensor reaches the end of its life.

【0006】[0006]

【発明が解決しようとする課題】近年、各種応用分野で
限界電流式酸素センサの長寿命化の要求が強く、具体的
には3年以上安定に且つ正確な酸素濃度検知ができるこ
とが求められるようになっている。しかし、ヒータを連
続通電し且つ監視電圧を連続的に与える従来の駆動方式
では、使用期間3年以内に、約20〜30%のセンサが
寿命に達するというのが実状であった。一方、限界電流
式酸素センサに監視電圧を間欠的に与える間欠駆動方式
が提案されている(特願昭59−158158号参
照)。この方式では、監視電圧を与えない期間は測定を
行わないので、ヒータにも通電する必要がなく、従って
監視電圧印加とヒータ通電とを同時にオン,オフする事
により、消費電力を低減することができる。この間欠駆
動方式を用いると、上述した連続通電の場合に比べると
劣化の進行が抑えられるが、それでも使用期間3年以内
に約5〜10%のセンサが寿命に達する。またこの様な
間欠駆動を行うと、センサ全体がヒートサイクルを受け
るために、素子破壊が生じ易くなるという問題もある。
In recent years, there has been a strong demand for a long life of the limiting current type oxygen sensor in various application fields, and specifically, it is required to be able to detect oxygen concentration stably and accurately for three years or more. It has become. However, in the conventional driving method in which the heater is continuously energized and the monitoring voltage is continuously supplied, it is the actual situation that about 20 to 30% of the sensors reach the end of their lives within the usage period of 3 years. On the other hand, an intermittent driving method has been proposed in which a monitoring voltage is intermittently applied to a limiting current type oxygen sensor (see Japanese Patent Application No. 59-158158). In this method, since the measurement is not performed during the period when the monitoring voltage is not applied, it is not necessary to energize the heater. Therefore, it is possible to reduce the power consumption by simultaneously turning on and off the monitoring voltage application and the heater energization. it can. When this intermittent drive method is used, the progress of deterioration is suppressed as compared with the case of the continuous energization described above, but still about 5-10% of the sensor reaches the end of its service life within 3 years of use. Further, if such intermittent driving is performed, the entire sensor is subjected to a heat cycle, so that there is a problem in that element breakdown is likely to occur.

【0007】この発明は、上記事情を考慮してなされた
もので、長期間安定的に且つ高精度に酸素濃度測定を可
能とする限界電流式酸素センサ装置およびセンサ駆動方
法を提供することを目的としている。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a limiting current type oxygen sensor device and a sensor driving method capable of stably and highly accurately measuring oxygen concentration for a long period of time. I am trying.

【0008】[0008]

【課題を解決するための手段】この発明は、固体電解質
からなるイオン伝導体と、このイオン伝導体に設けられ
た電界を印加するための多孔質の電極対と、この電極対
の一方の面に拡散律速されたガスを供給するガス拡散手
段と、前記イオン伝導体を加熱するヒータとを有する限
界電流式酸素センサを駆動する方法であって、前記ヒー
タに常時通電を行い前記イオン伝導体の加熱温度を40
0℃以上に保持しながら、前記電極対の間に間欠的に監
視電圧を印加することを特徴としている。この発明にお
いて好ましくは、監視電圧を印加するオン時間とオフ時
間の比(以下、単にオン/オフ比という)は、好ましく
は、1/12〜1の範囲に設定する。
SUMMARY OF THE INVENTION The present invention is directed to an ionic conductor made of a solid electrolyte, a porous electrode pair for applying an electric field to the ionic conductor, and one surface of the electrode pair. A method for driving a limiting current type oxygen sensor having a gas diffusing means for supplying a diffusion-controlled gas and a heater for heating the ionic conductor, in which the heater is always energized so that the ionic conductor Heating temperature to 40
It is characterized in that a monitoring voltage is intermittently applied between the electrode pairs while maintaining the temperature at 0 ° C. or higher . In the present invention, the ratio of the ON time and the OFF time for applying the monitoring voltage (hereinafter, simply referred to as ON / OFF ratio) is preferably set in the range of 1/12 to 1.

【0009】この発明に係る限界電流式酸素センサ装置
は、固体電解質からなるイオン伝導体と、このイオン伝
導体に設けられた電界を印加するための多孔質の電極対
と、この電極対の一方の面に拡散律速されたガスを供給
するガス拡散手段と、前記イオン伝導体を400℃以上
に保持すべく常時通電されるヒータと、前記電極対の間
に間欠的に監視電圧を印加する駆動手段とを備えたこと
を特徴としている。
A limiting current type oxygen sensor device according to the present invention comprises an ionic conductor made of a solid electrolyte, a pair of porous electrodes for applying an electric field to the ionic conductor, and one of the pair of electrodes. a gas diffusion means for supplying a surface to diffusion limited gas of, the ion conductor 400 ° C. or higher
It is characterized in that it is provided with a heater which is constantly energized so as to be held at a constant temperature, and a drive means which intermittently applies a monitoring voltage between the electrode pairs.

【0010】この発明は、経時変化により特性が劣化し
た限界電流式酸素センサに対して、監視電圧を印加する
ことなくヒータに通電して一定時間加熱を行うと、特性
がほぼ初期状態にまで回復するという本発明者等の知見
に基づいている。図4は、安定化ジルコニアをイオン伝
導体として用いた限界電流式酸素センサを、温度400
℃に設定して連続駆動により3年間使用した場合の特性
の経時変化を示している。図の曲線Aは初期特性であ
り、監視電圧Vs=0.8〜2.0Vの間で限界電流が
得られている。曲線Bは3年間使用後の劣化特性であ
り、限界電流領域は殆どなくなっている。この特性劣化
した酸素センサに対して、ヒータをオンの状態(イオン
伝導体が約400℃の状態)に保持しながら、監視電圧
を印加せずに一定時間放置すると、図4の曲線Cに示す
ように特性は回復して、ほぼ初期特性に近い限界電流領
域が得られることを発見した。なお、ヒータに通電して
いる間、電極間を短絡すると、微小な短絡電流が流れる
ことも確認している。
According to the present invention, when a limiting current type oxygen sensor whose characteristics are deteriorated due to aging is heated for a certain time by energizing the heater without applying a monitoring voltage, the characteristics are restored to almost the initial state. It is based on the knowledge of the inventors of the present invention. FIG. 4 shows a limiting current type oxygen sensor using stabilized zirconia as an ionic conductor at a temperature of 400
The graph shows the change over time in the characteristics when the temperature is set to ° C and the device is used continuously for 3 years. The curve A in the figure is the initial characteristic, and the limiting current is obtained between the monitoring voltage Vs = 0.8 to 2.0V. Curve B is the deterioration characteristic after three years of use, and the limiting current region is almost gone. With respect to the oxygen sensor whose characteristics have deteriorated, when the heater is kept in the ON state (the state in which the ionic conductor is about 400 ° C.) and the monitoring voltage is not applied for a certain period of time, a curve C in FIG. 4 is obtained. Thus, it was discovered that the characteristics recovered and that the limiting current region close to the initial characteristics was obtained. It has also been confirmed that a minute short-circuit current flows if the electrodes are short-circuited while the heater is energized.

【0011】以上の実験結果に対する本発明者等の考察
は次の通りである。誘電体セラミックである安定化ジル
コニアをイオン伝導体とし、これを電極でサンドイッチ
した構造を有する酸素センサは一種のコンデンサである
から、両電極間に電場を印加すると電荷を蓄積する。こ
のイオン伝導体内部の電荷蓄積がイオン伝導性に影響を
及ぼし、蓄積電荷量が多くなるに従ってセンサ特性が劣
化してくる。
The inventors' consideration of the above experimental results is as follows. An oxygen sensor having a structure in which stabilized zirconia, which is a dielectric ceramic, is used as an ionic conductor and sandwiched by electrodes is a kind of capacitor, and therefore charges are accumulated when an electric field is applied between both electrodes. The charge accumulation inside the ionic conductor affects the ionic conductivity, and the sensor characteristics deteriorate as the accumulated charge amount increases.

【0012】電荷の蓄積し易い箇所は、図5に示したよ
うに、焼結されたイオン伝導体51の結晶粒界52や電
極53とイオン伝導体51の界面にできる空隙部54で
ある。この様な空隙部54が多い酸素センサ程、電荷が
蓄積しやすい。従って、従来の駆動法でセンサ素子によ
り特性劣化に差が生じるのは、空隙部54の存在割合の
差、言い換えると製造プロセスにおける電極やイオン伝
導体の焼結度の差に起因するものと推定される。
As shown in FIG. 5, the places where charges are easily accumulated are the crystal grain boundaries 52 of the sintered ion conductor 51 and the voids 54 formed at the interface between the electrode 53 and the ion conductor 51. The oxygen sensor having more voids 54 as described above is more likely to accumulate charges. Therefore, it is presumed that the difference in the characteristic deterioration between the sensor elements in the conventional driving method is caused by the difference in the existence ratio of the void portion 54, in other words, the difference in the degree of sintering of the electrode or the ion conductor in the manufacturing process. To be done.

【0013】以上の考察に対して、その妥当性を確認す
るため本発明者等は種々の実験を行った。先ず、酸素セ
ンサを、常時監視温度400℃に設定し、常時監視電圧
1.5Vを与えて1年間使用した場合、イオン伝導体に
蓄積される電荷量は、10-5〜10-4Cとなることが確
認された。使用条件を種々変更して実験を行った結果、
次のことが明らかになった。 イオン伝導体に蓄積される電荷量は、監視電圧、監視
温度、および使用時間に依存する。具体的に、監視電圧
が高い程、また使用時間が長い程、蓄積電荷量が多くな
る。監視温度については、高い程蓄積電荷量が少なくな
る。 蓄積電荷量の増大に伴って、センサ特性の劣化度合い
は増大する。 ヒータをオンにした状態で監視電圧を印加しなけれ
ば、電極間を短絡してもしなくても、イオン伝導体に蓄
積された電荷は徐々に放電する。ヒータ加熱による保持
温度が高い程、電荷放電に要する時間は短い。
In order to confirm the validity of the above consideration, the present inventors conducted various experiments. First, when the oxygen sensor is set to a constant monitoring temperature of 400 ° C. and a constant monitoring voltage of 1.5 V is applied for one year, the charge amount accumulated in the ionic conductor is 10 −5 to 10 −4 C. It was confirmed that As a result of conducting experiments with various use conditions changed,
The following things became clear. The amount of charge stored in the ionic conductor depends on the monitoring voltage, the monitoring temperature, and the usage time. Specifically, the higher the monitor voltage and the longer the usage time, the larger the accumulated charge amount. Regarding the monitored temperature, the higher the monitored charge, the smaller the accumulated charge amount. The degree of deterioration in sensor characteristics increases as the amount of accumulated charge increases. If the monitoring voltage is not applied with the heater turned on, the electric charge accumulated in the ionic conductor is gradually discharged regardless of whether or not the electrodes are short-circuited. The higher the holding temperature due to heating by the heater, the shorter the time required for charge discharge.

【0014】以上の検討結果から、イオン伝導体を用い
た限界電流式酸素センサの長寿命化のためには、電荷蓄
積量の増大を抑えることが重要であることが分かる。監
視電圧および監視温度を常時与える従来の駆動法では、
蓄積電荷量の増大が抑えられない。監視電圧および監視
温度を同時に間欠的に与えるもう一つの駆動法では、監
視電圧が零の期間は電荷放電モードになるものの、この
期間に同時に監視温度も低下させてしまうために放電は
不十分であり、従って使用時間と共に徐々に蓄積電荷量
は増大してしまう。
From the above examination results, it is understood that it is important to suppress an increase in the amount of accumulated charge in order to extend the life of the limiting current type oxygen sensor using an ionic conductor. In the conventional driving method that constantly supplies the monitoring voltage and the monitoring temperature,
An increase in the accumulated charge amount cannot be suppressed. In another driving method in which the monitoring voltage and the monitoring temperature are applied intermittently at the same time, the discharge temperature is zero during the period when the monitoring voltage is zero, but the monitoring temperature is also lowered during this period, so the discharge is insufficient. Therefore, the accumulated charge amount gradually increases with the use time.

【0015】これに対してこの発明では、ヒータには常
時通電しながら、監視電圧を間欠的に与えることによ
り、監視電圧が零の期間にイオン伝導体が高温に保持さ
れて十分に電荷放電が行われ、長期間使用しても電荷蓄
積量は小さく抑えられる。また、使用中はヒータに連続
通電するために、無用なヒートサイクルがかからず、こ
れも素子劣化を抑制する。従ってこの発明によると、長
期間安定に且つ高精度に酸素濃度測定を可能とする限界
電流式酸素センサ装置が得られる。
On the other hand, in the present invention, the monitoring voltage is intermittently applied while the heater is always energized.
Ri, ionic conductor monitoring voltage during the zero is performed sufficiently charge discharging is maintained at a high temperature, long-term charge storage amount used is kept small. Further, since the heater is continuously energized during use, an unnecessary heat cycle is not required, which also suppresses element deterioration. Therefore, according to the present invention, it is possible to obtain a limiting current type oxygen sensor device capable of stably and highly accurately measuring oxygen concentration for a long period of time.

【0016】[0016]

【発明の実施の形態】以下、図面を参照して、この発明
の実施例を説明する。図1は、この発明の実施例による
限界電流式酸素センサ10とその駆動回路20を示して
いる。酸素センサ10は、安定化ジルコニアからなるイ
オン伝導体11の両面にPt等の多孔質の電極対12
a,12bを設けて、アノードとなる電極12a側にキ
ャップ13を取り付けて構成される。キャップ13の中
央部には、電極12aに拡散律速されたガスを供給する
ガス拡散孔14が設けられ、またキャップ13の上面に
はイオン伝導体11を加熱するためのヒータ15が配設
されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a limiting current type oxygen sensor 10 and its drive circuit 20 according to an embodiment of the present invention. The oxygen sensor 10 comprises a pair of porous electrodes 12 made of Pt or the like on both surfaces of an ion conductor 11 made of stabilized zirconia.
a and 12b are provided, and the cap 13 is attached to the side of the electrode 12a serving as the anode. A gas diffusion hole 14 for supplying a diffusion-controlled gas to the electrode 12a is provided in the center of the cap 13, and a heater 15 for heating the ion conductor 11 is provided on the upper surface of the cap 13. There is.

【0017】電極対12a,12bのリードは外部に取
り出されて、監視電圧を与えるための駆動回路10に接
続される。この実施例の場合、駆動回路10は、電極対
12a,12b間に監視電圧を与えるための直流電源E
1と、この直流電源E1と電極12aの間に挿入された
スイッチSW1と、このスイッチSW1を使用期間中間
欠的にオンオフするタイマ21とから構成される。但
し、図に破線で示したように、電極対12a,12bの
間にもう一つのスイッチSW2を設け、これをタイマ2
1の出力をインバータ22により反転した出力でオンオ
フ駆動して、監視電圧がオフの期間電極対12a,12
b間を短絡するようにしてもよい。ヒータ15は直流の
ヒータ電源E2により使用期間中、常時通電される。
The leads of the electrode pairs 12a and 12b are taken out to the outside and connected to a drive circuit 10 for applying a monitoring voltage. In the case of this embodiment, the drive circuit 10 includes a DC power source E for applying a monitoring voltage between the electrode pairs 12a and 12b.
1, a switch SW1 inserted between the DC power source E1 and the electrode 12a, and a timer 21 for intermittently turning on / off the switch SW1 during a use period. However, as shown by the broken line in the drawing, another switch SW2 is provided between the electrode pair 12a and 12b, and this is used by the timer 2
The output of No. 1 is inverted by the inverter 22 to be turned on and off, and the electrode pair 12a, 12
You may make it short-circuit between b. The heater 15 is constantly energized by a DC heater power source E2 during the period of use.

【0018】図2は、スイッチSW1,SW2のオンオ
フの動作の一例を示している。以上のような駆動回路を
備えて、使用期間中、ヒータ15を常時通電して監視温
度(保持温度)を与えた状態で、監視電圧を間欠的に与
えることにより、特性劣化が防止される。保持温度は高
いほど、イオン伝導度が高くなりセンサ機能も向上する
が、余り高く設定すると、消費電力が大きくなり、また
センサ素子内部の熱応力が大きくなって破壊が生じ易く
なる。従って、実用上は、センサ機能が十分発揮され、
特性劣化が十分抑制される範囲の温度を選択することに
なる。後にデータで明らかにするように、イオン伝導体
として安定化ジルコニアを用いた場合、好ましい保持温
度は400℃以上である。
FIG. 2 shows an example of ON / OFF operation of the switches SW1 and SW2. The drive circuit as described above is provided, and the heater 15 is always energized during the period of use to provide the monitoring temperature (holding temperature), and the monitoring voltage is intermittently applied to prevent characteristic deterioration. The higher the holding temperature, the higher the ionic conductivity and the improved sensor function. However, if the holding temperature is set too high, the power consumption becomes large and the thermal stress inside the sensor element becomes large, so that the sensor element easily breaks. Therefore, in practice, the sensor function is fully exerted,
The temperature is selected within the range in which the characteristic deterioration is sufficiently suppressed. As will be made clear later by data, when the stabilized zirconia is used as the ionic conductor, the preferable holding temperature is 400 ° C. or higher.

【0019】監視電圧のオン,オフの周期に関しては、
オフの時間の長さが重要になる。オン時間は酸素濃度を
検知する時間であり、この時間にイオン伝導体は電荷を
蓄積し、オフ時間で蓄積電荷を放電するから、長時間の
使用で電荷蓄積を抑えるためには好ましくは、オン/オ
フ比を1以下とする。オフ時間はできるだけ長い方が電
荷蓄積を抑えるためには好ましいが、オフ期間は酸素濃
度検知を行わない期間であるから、60分を越えるよう
に設定した場合には、一定時間に酸素濃度を検知する回
数が非常に少なくなるため、応用分野が限定されてしま
う。また、酸素センサを高温に保持した状態で酸化性雰
囲気に長時間放置すると、安定化ジルコニア中の酸素欠
損量を少なくしてしまう可能性がある。白金/ジルコニ
ア界面において酸素ガスを酸素イオンに変換する反応
は、次の化1で表される(N.L.Robertson & J.N.Micael
s;Electrochemical Engineering Applications,Vol.83,
No.254,p56〜p63参照)。
Regarding the ON / OFF cycle of the monitoring voltage,
The length of time off is important. The on-time is the time for detecting the oxygen concentration, and during this time, the ionic conductor accumulates the charge and discharges the accumulated charge during the off-time, so in order to suppress the charge accumulation during long-term use, the on-time is preferably on. The / off ratio is 1 or less. It is preferable that the off time is as long as possible in order to suppress the charge accumulation, but since the off period is a period in which the oxygen concentration is not detected, when it is set to exceed 60 minutes, the oxygen concentration is detected at a fixed time. Since the number of times to do is very small, the application field is limited. Further, if the oxygen sensor is kept at a high temperature and left in an oxidizing atmosphere for a long time, the amount of oxygen deficiency in the stabilized zirconia may be reduced. The reaction of converting oxygen gas to oxygen ions at the platinum / zirconia interface is represented by the following chemical formula 1 (NLRobertson & JNMicael).
s; Electrochemical Engineering Applications, Vol.83,
No.254, p56-p63).

【0020】[0020]

【化1】O2(gass)+4e-+2Vo→2O--2(gass):雰囲気中の酸素ガス e-:電極中の電子 Vo:ジルコニア中の酸素欠損 O--:ジルコニア中の酸素イオン## STR1 ## O 2 (gass) + 4e - + 2Vo → 2O - O 2 (gass): oxygen gas e in the atmosphere -: electrons in the electrode Vo: oxygen vacancy O in Zirconia -: oxygen ions in the zirconia

【0021】従って、電極対12a,12bに監視電圧
を印加しない状態でセンサ素子を単に酸化させるような
雰囲気と温度条件下に長時間保持することは、酸素欠損
への酸素供給を促すだけであり、好ましくない。一方、
後にデータを示すが、監視電圧のオフ時間を60分,オ
ン時間を5分に設定した場合、3年以上の寿命は安定に
得られることが確認されている。従って監視電圧印加の
好ましいオン/オフ比は、1/12≦オン/オフ比≦1
となる。監視電圧オフ期間が60分を越えるような場合
は、センサ全体をオフ、即ちヒータもオフにすることが
好ましい。これは消費電力低減のためにも有効である。
Therefore, maintaining the sensor element for a long time in an atmosphere and temperature condition in which the sensor element is simply oxidized without applying a monitoring voltage to the electrode pair 12a, 12b only promotes oxygen supply to oxygen deficiency. , Not preferable. on the other hand,
Although data will be shown later, it has been confirmed that a life of three years or more can be stably obtained when the off time of the monitoring voltage is set to 60 minutes and the on time is set to 5 minutes. Therefore, the preferable on / off ratio of the monitoring voltage application is 1/12 ≦ on / off ratio ≦ 1
Becomes When the monitoring voltage off period exceeds 60 minutes, it is preferable to turn off the entire sensor, that is, turn off the heater. This is also effective for reducing power consumption.

【0022】[実施例1]図1の酸素センサ10を、イ
オン伝導体11にZrO2−8mol%Y23、電極12
a,12bに白金(Pt)、キャップ13にZrO2−3
mol%Y23をそれぞれ用いて作製した。このうち10
0個の酸素センサを、大気中において450℃に保持し
ながら、監視電圧を間欠的に与えて3年間使用した。監
視電圧Vs=1.3V、オン/オフ比=5分/5分とし
た。3年の使用後、100個の酸素センサ全てが、監視
電圧1.3Vで限界電流を示し、寿命に達していないこ
とが確認された。
[Embodiment 1] The oxygen sensor 10 shown in FIG. 1 was used in which the ion conductor 11 was ZrO 2 -8 mol% Y 2 O 3 and the electrode 12 was used.
Platinum (Pt) for a and 12b, ZrO 2-3 for cap 13
It was prepared using mol% Y 2 O 3 , respectively. 10 of these
Zero oxygen sensors were used for 3 years by intermittently applying a monitoring voltage while maintaining the temperature at 450 ° C. in the atmosphere. The monitoring voltage Vs was 1.3 V, and the on / off ratio was 5 minutes / 5 minutes. After 3 years of use, it was confirmed that all 100 oxygen sensors showed a limiting current at a monitoring voltage of 1.3 V and had not reached the end of their lives.

【0023】[実施例2]実施例1と同じ酸素センサに
ついて、オン/オフ比=5分/60分とした他、実施例
1と同じ条件でテストした。3年の使用後、100個の
酸素センサ全てが寿命に達していないことが確認され
た。
Example 2 The same oxygen sensor as in Example 1 was tested under the same conditions as in Example 1 except that the on / off ratio was 5 minutes / 60 minutes. After three years of use, it was confirmed that all 100 oxygen sensors had not reached the end of their life.

【0024】[実施例3]実施例1と同じ酸素センサに
ついて、保持温度を400℃とした他、実施例1と同じ
条件でテストした。3年の使用後、100個の酸素セン
サ全てが寿命に達していないことが確認された。なお、
保持温度を350℃にして同様のテストを行った結果、
3000時間の使用で100個の酸素センサの寿命がつ
きた。しかしこれは、実施例で使用されたイオン伝導体
11の好ましい監視温度が400℃以上であることを示
すもので、他の材料のイオン伝導体を用いた場合には、
350℃でも良好に機能することが十分考えられる。
Example 3 The same oxygen sensor as in Example 1 was tested under the same conditions as in Example 1 except that the holding temperature was 400 ° C. After three years of use, it was confirmed that all 100 oxygen sensors had not reached the end of their life. In addition,
As a result of performing the same test with the holding temperature at 350 ° C,
The life of 100 oxygen sensors was reached after 3000 hours of use. However, this shows that the preferable monitoring temperature of the ionic conductor 11 used in the examples is 400 ° C. or higher, and when the ionic conductor of another material is used,
It is fully conceivable that it will function well even at 350 ° C.

【0025】[比較例1]実施例1と同じ酸素センサに
ついて、保持温度を400℃とし、監視電圧Vs=1.
3Vを連続印加して使用した。酸素センサ100個中、
使用期間1年で6個が不良、1〜2年で8個が不良、2
〜3年で12個が不良となった。3年の使用後、生き残
ったのは100個中74個であった。
Comparative Example 1 With respect to the same oxygen sensor as in Example 1, the holding temperature was 400 ° C. and the monitoring voltage Vs = 1.
3V was continuously applied and used. Of 100 oxygen sensors,
6 defective after 1 year of use, 8 defective after 1 to 2 years, 2
~ 12 pieces became defective in 3 years. After 3 years of use, 74 out of 100 survived.

【0026】[比較例2]実施例1と同じ酸素センサに
ついて、ヒータ電圧および監視電圧を同時にオンオフし
て間欠駆動して使用した。ヒータ・オンによる保持温度
は400℃であり、ヒータ・オフの保持温度は室温であ
る。オン/オフ比は5分/5分とした。酸素センサ10
0個中、使用期間1〜2年で2個が不良、2〜3年で4
個が不良となった。また使用期間1年で、2個の酸素セ
ンサについて、イオン伝導板にクラックが認められた。
従って3年の使用後、生き残ったのは100個中92個
であった。
[Comparative Example 2] The same oxygen sensor as in Example 1 was used by intermittently driving it by turning on and off the heater voltage and the monitoring voltage at the same time. The holding temperature when the heater is turned on is 400 ° C., and the holding temperature when the heater is turned off is room temperature. The on / off ratio was 5 minutes / 5 minutes. Oxygen sensor 10
Out of 0 pieces, 2 pieces are defective after 1 to 2 years of use period, 4 after 2 to 3 years
The piece became defective. In addition, cracks were observed in the ion conductive plates of the two oxygen sensors after one year of use.
Therefore, after 3 years of use, 92 out of 100 survived.

【0027】[0027]

【発明の効果】以上述べたようにこの発明によれば、ヒ
ータに常時通電を行いながら、監視電圧印加を間欠的に
行うことにより、イオン伝導体を用いた限界電流式酸素
センサの特性劣化を抑制して、長期間安定的に且つ高精
度に酸素濃度測定を可能とすることができる。
As described above, according to the present invention, the monitoring voltage is intermittently applied while the heater is always energized, thereby deteriorating the characteristics of the limiting current type oxygen sensor using the ion conductor. It is possible to suppress the oxygen concentration and stably and accurately measure the oxygen concentration for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の一実施例に係る限界電流式酸素セ
ンサとその駆動回路を示す。
FIG. 1 shows a limiting current type oxygen sensor and its drive circuit according to an embodiment of the present invention.

【図2】 同実施例の駆動回路によるスイッチ制御の動
作を示す。
FIG. 2 shows a switch control operation by the drive circuit of the embodiment.

【図3】 限界電流式酸素センサの特性を示す。FIG. 3 shows characteristics of a limiting current type oxygen sensor.

【図4】 限界電流式酸素センサの特性の経時変化を示
す。
FIG. 4 shows changes with time in characteristics of a limiting current type oxygen sensor.

【図5】 センサ素子内部の電荷蓄積の様子を示す。FIG. 5 shows how charges are accumulated inside the sensor element.

【符号の説明】[Explanation of symbols]

10…限界電流式酸素センサ、11…イオン伝導体、1
2a,12b…電極対、13…キャップ、14…ガス拡
散孔、15…ヒータ、20…駆動回路、21…タイマ、
22…インバータ、SW1,SW2…スイッチ、E1,
E2…直流電源。
10 ... Limiting current type oxygen sensor, 11 ... Ion conductor, 1
2a, 12b ... Electrode pair, 13 ... Cap, 14 ... Gas diffusion hole, 15 ... Heater, 20 ... Drive circuit, 21 ... Timer,
22 ... Inverter, SW1, SW2 ... Switch, E1,
E2 ... DC power supply.

フロントページの続き (56)参考文献 特開 平9−318593(JP,A) 特開 昭61−36016(JP,A) 特開 昭59−65755(JP,A) 特開 昭61−294352(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 27/41 Continuation of the front page (56) Reference JP-A-9-318593 (JP, A) JP-A-61-36016 (JP, A) JP-A-59-65755 (JP, A) JP-A-61-294352 (JP , A) (58) Fields investigated (Int.Cl. 7 , DB name) G01N 27/41

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 固体電解質からなるイオン伝導体と、こ
のイオン伝導体に設けられた電界を印加するための多孔
質の電極対と、この電極対の一方の面に拡散律速された
ガスを供給するガス拡散手段と、前記イオン伝導体を加
熱するヒータとを有する限界電流式酸素センサを駆動す
る方法であって、 前記ヒータに常時通電を行い前記イオン伝導体の加熱温
度を400℃以上に保持しながら、前記電極対の間に間
欠的に監視電圧を印加することを特徴とする限界電流式
酸素センサの駆動方法。
1. An ionic conductor made of a solid electrolyte, a porous electrode pair for applying an electric field provided in the ionic conductor, and a diffusion-controlled gas supplied to one surface of the electrode pair. A method for driving a limiting current type oxygen sensor having a gas diffusing means for controlling the ion conductor and a heater for heating the ion conductor, wherein the heater is constantly energized to heat the ion conductor.
A method of driving a limiting current type oxygen sensor, wherein a monitoring voltage is intermittently applied between the electrode pairs while maintaining the temperature at 400 ° C. or higher .
【請求項2】 前記監視電圧を印加するオン時間とオフ
時間の比を、1/12〜1の範囲に設定することを特徴
とする請求項1記載の限界電流式酸素センサの駆動方
法。
2. The method for driving a limiting current type oxygen sensor according to claim 1, wherein the ratio of the on time and the off time for applying the monitoring voltage is set in the range of 1/12 to 1.
【請求項3】 固体電解質からなるイオン伝導体と、 このイオン伝導体に設けられた電界を印加するための多
孔質の電極対と、 この電極対の一方の面に拡散律速されたガスを供給する
ガス拡散手段と、 前記イオン伝導体を400℃以上に保持すべく常時通電
されるヒータと、 前記電極対の間に間欠的に監視電圧を印加する駆動手段
とを備えたことを特徴とする限界電流式酸素センサ装
置。
3. An ion conductor made of a solid electrolyte, a porous electrode pair for applying an electric field provided in the ion conductor, and a diffusion-controlled gas is supplied to one surface of the electrode pair. Gas diffusing means, and constantly energizing to keep the ionic conductor at 400 ° C or higher
Heater and, limiting current type oxygen sensor device being characterized in that a driving means for applying intermittently monitored voltage between said electrode pairs being.
【請求項4】 前記駆動手段により前記監視電圧を印加
するオン時間とオフ時間の比を、1/12〜1の範囲に
設定することを特徴とする請求項3記載の限界電流式酸
素センサ装置。
4. The limiting current type oxygen sensor device according to claim 3, wherein a ratio of an on-time and an off-time at which the monitoring voltage is applied by the driving means is set in a range of 1/12 to 1. .
JP29425496A 1996-11-06 1996-11-06 Limit current type oxygen sensor device and sensor driving method Expired - Lifetime JP3373741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29425496A JP3373741B2 (en) 1996-11-06 1996-11-06 Limit current type oxygen sensor device and sensor driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29425496A JP3373741B2 (en) 1996-11-06 1996-11-06 Limit current type oxygen sensor device and sensor driving method

Publications (2)

Publication Number Publication Date
JPH10142191A JPH10142191A (en) 1998-05-29
JP3373741B2 true JP3373741B2 (en) 2003-02-04

Family

ID=17805350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29425496A Expired - Lifetime JP3373741B2 (en) 1996-11-06 1996-11-06 Limit current type oxygen sensor device and sensor driving method

Country Status (1)

Country Link
JP (1) JP3373741B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2042862A1 (en) 2006-06-27 2009-04-01 Fujikura, Ltd. Limiting current type oxygen sensor and method of sensing and measuring oxygen concentrations using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011089383A1 (en) * 2011-12-21 2013-06-27 Robert Bosch Gmbh Method for correcting measured values of a sensor element
JP5648001B2 (en) 2012-01-13 2015-01-07 日本特殊陶業株式会社 Gas sensor processing equipment
JP7043437B2 (en) * 2019-02-01 2022-03-29 株式会社東芝 Oxygen measuring device and oxygen measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2042862A1 (en) 2006-06-27 2009-04-01 Fujikura, Ltd. Limiting current type oxygen sensor and method of sensing and measuring oxygen concentrations using the same
US8052862B2 (en) 2006-06-27 2011-11-08 Fujikura Ltd. Limiting current type oxygen sensor and method of sensing and measuring oxygen concentrations using the same

Also Published As

Publication number Publication date
JPH10142191A (en) 1998-05-29

Similar Documents

Publication Publication Date Title
JP4123895B2 (en) GAS SENSOR ELEMENT, ITS MANUFACTURING METHOD, AND REPRODUCTION METHOD
JP2016524789A (en) Estimating the charge state of the positive electrolyte solution in a working redox flow battery cell without a reference electrode
JP2000321238A (en) Gas sensor
US20090057163A1 (en) Measuring Apparatus For Monitoring Residual Oxygen In An Exhaust Gas
US7445698B2 (en) Gas concentration detecting apparatus
US20100140113A1 (en) Gas sensor control apparatus and method
JPH09257746A (en) Method for cleaning limit current type gas sensor and gas concentration detector utilizing the same
JP2020125928A (en) Oxygen measurement device and oxygen measurement method
JP3373741B2 (en) Limit current type oxygen sensor device and sensor driving method
CN108318563A (en) A kind of oxygenerator oxygen concentration detection sensor
EP0849590A3 (en) Gas sensor
JPH03156361A (en) Processing method of oxygen-concentration detector and oxygen concentration detector obtained by such method and the like
US8004288B1 (en) Methods and apparatus for testing of high dielectric capacitors
JP2655885B2 (en) Driving method of limiting current type gas concentration sensor
US20040129562A1 (en) Low impedance oxygen sensor and associated methods
JP3831320B2 (en) Limit current type oxygen sensor
JPH08201336A (en) Electrochemical gas sensor and driving method thereof
JPH01262460A (en) Self-diagnosis method for deterioration of oxygen sensor
JP2003166973A (en) Gas concentration detector for internal combustion engine
JP3905632B2 (en) Coulometric titration method
JPS61237047A (en) Oxygen concentration detector
JP2003166967A (en) Gas concentration-detecting apparatus of internal engine
JPH07167833A (en) Gas sensor
JP2004028676A (en) Oxygen concentration measurement apparatus equipped with deterioration diagnosis function
JP2993340B2 (en) Gas sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term