JP3373101B2 - Paint for cathode ray tube interior - Google Patents

Paint for cathode ray tube interior

Info

Publication number
JP3373101B2
JP3373101B2 JP35001995A JP35001995A JP3373101B2 JP 3373101 B2 JP3373101 B2 JP 3373101B2 JP 35001995 A JP35001995 A JP 35001995A JP 35001995 A JP35001995 A JP 35001995A JP 3373101 B2 JP3373101 B2 JP 3373101B2
Authority
JP
Japan
Prior art keywords
paint
coating
alumina
silica
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35001995A
Other languages
Japanese (ja)
Other versions
JPH09175836A (en
Inventor
寛 新堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP35001995A priority Critical patent/JP3373101B2/en
Priority to US08/627,681 priority patent/US5667729A/en
Priority to NL1002804A priority patent/NL1002804C2/en
Priority to DE19613656A priority patent/DE19613656C2/en
Publication of JPH09175836A publication Critical patent/JPH09175836A/en
Application granted granted Critical
Publication of JP3373101B2 publication Critical patent/JP3373101B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Surface Treatment Of Glass (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、媒質中に水ガラス
を含み、酸化鉄粒子と黒鉛粒子とを分散させた陰極線管
内装用の塗料に関する。 【0002】 【従来の技術】陰極線管のファンネルガラス内面には導
電性被膜が施されている。この導電性被膜は、導電性粒
子を含有する塗料をファンネル部の内面に塗布し、次い
で乾燥させ、空気中で加熱することにより形成される。 【0003】この塗料は、接着剤である水ガラスと分散
剤を含有する水媒体中に、導電材の黒鉛粒子と任意の電
気抵抗値に調整するための酸化鉄、酸化チタン、炭化珪
素に代表される金属酸化物または金属炭化物の粒子を懸
濁、分散させたものである。この他に適用するブラウン
管の仕様によっては導電材料の黒鉛粒子のみを懸濁、分
散させた塗料もあるが、特公昭63−45428号公報
に詳記されているようにスパーク電流が比較的高くなる
ため、黒鉛と金属酸化物等の粒子を併用するのが一般的
である。即ち、黒鉛は導電性を付与し被膜の電気抵抗値
を下げ、金属酸化物等は充填材として機能する一方、接
着剤の水ガラスと同様に被膜の抵抗値を高める作用を持
っている。そこでこれらの配合比率を加減することによ
って、被膜の電気抵抗値や接着強度を所定の値に制御す
るのである。 【0004】このように金属酸化物粒子を水性塗料中に
分散させること、加えて塗料の可使時間を長くするため
に分散し続けさせることは、陰極線管の内装用塗料にお
いて、大変重要なことである。陰極線管の内装用塗料中
の含有成分の分散安定性の向上、可使時間の延長化につ
いては、当出願人においても種々の検討を重ねており、
例えば、前記した公報には以下のような知見を記載して
いる。これは黒鉛と金属酸化物の微粒子を陰電荷を帯び
た表面処理剤を用いて造粒することで全体として陰電荷
を帯びた複合粉末を先ず作製し、次いでこの複合粉末
を、結合剤および分散剤を含む水中に懸濁させて塗料に
するというものである。 【0005】 【発明が解決しようとする課題】陰極線管の内面に塗料
を塗布する作業工程では、従来、スプレー塗布法、刷毛
塗り法が多用されていたが、近年、生産技術改善の要請
からフローコート法と呼ばれる流し塗り法が主体になっ
てきている。これにより、適用する塗料には塗料粘度を
低くすることが要求されている。すなわち、従来の塗布
方法による塗料の粘度は100〜200mPa・sであ
ったのに対し、フローコート用塗料の粘度は10mPa
・s程度と低い。この結果、塗料中の金属酸化物粒子の
分散を保持することが困難になることは液体中の粒子の
自然沈降状態を表すストークスの式より明らかである。
さらに保存環境に対する影響を加味すると、上記の従来
技術では不満足であり、より一層の分散性の改善が求め
られている。また、この塗料から得られる導電性被膜は
ファンネル内面に強固に付着していないと、ブラウン管
特性に悪影響を及ぼしてしまう。 【0006】そこで、本発明の目的は、以上の背景に鑑
み、酸化鉄粒子と黒鉛粒子とが分散した水ガラス含有の
陰極線管内装用の塗料において、特に高温下での分散安
定性に優れ、長時間の保存を可能にし、さらに取扱いが
簡便な塗料を提供することにある。他の目的は以下の説
明で明らかにする。 【0007】 【課題を解決するための手段】上記目的は、本発明の要
部である、分散剤と水ガラスを含む水媒体中にシリカ・
アルミナ被覆が施された酸化鉄粒子と黒鉛粒子とを懸
濁、分散した陰極線管の内面に塗布する塗料において、
前記酸化鉄粒子に対するシリカ・アルミナ被覆の量を4
〜20重量%にし、さらに前記シリカ・アルミナ被覆中
のアルミナ含有量を40〜90重量%に調整することに
ある。 【0008】 【発明の実施の形態】本発明は水ガラスを含有した水媒
体中に、シリカ・アルミナ被覆を施こした酸化鉄粒子と
黒鉛粒子とを懸濁、分散させた陰極線管の内装用塗料に
おいて、前記酸化鉄粒子に対するシリカ・アルミナ被覆
の量を4〜20重量%にしたものである。この場合、シ
リカ・アルミナ被覆量は10〜15重量%であることが
より好ましい。酸化鉄粒子に対するシリカ・アルミナ被
覆は、酸化鉄粒子の表面の電荷(陽電荷)を陰電荷に変
化させる効果がある。本発明に係る陰極線管内装用塗料
のように陰電荷を帯びている黒鉛粒子を一緒に分散させ
る塗料では、お互いの粒子表面を同性の電荷にすること
で粒子同士が電気的に反発し合って、分散状態を保って
いる。現状、酸化鉄粒子の表面をシリカ・アルミナによ
る完全被覆ができる最下限量が4重量%であり、これ未
満では、酸化鉄自体が表面に露出するところができてし
まい、この部分に黒鉛粒子が引き付けられて、塗料中で
分散粒子の凝集が発生してしまい好ましくない。 【0009】逆に被覆量が20重量%を越えると、シリ
カ・アルミナの被覆が酸化鉄粒子に対し主要な形成物と
なってしまい、形成した導電性被膜のブラウン管に対す
る接着性が低下してしまう。これは、シリカ・アルミナ
の被覆は酸化鉄粒子に比べて硬度が低い、言い換えると
柔らかいので、被覆の量が多くなると陰極線管の内装被
覆に金属酸化物等の粒子(本発明では酸化鉄粒子)を配
合することによる、充填材としての機能が発揮されなく
なって、得られる導電性被膜の硬度が低下し、ブラウン
管に対する接着性が低下するものである。また、塗料中
における粒子の分散状態の観点からは、被覆量が20重
量%を越えても特段の変化はみられない。被覆の量を多
くしても、処理の費用や時間がかさむだけで経済的では
ない。 【0010】さらに、本発明はアルカリ水溶液でも特に
シリケートアニオンを含んだ水溶液、つまり水ガラスを
含有した水媒体中に、シリカ・アルミナ被覆を施こした
酸化鉄粒子と黒鉛粒子を懸濁、分散させた陰極線管の内
装用塗料において、前記シリカ・アルミナ被覆中のアル
ミナ含有量を40〜90重量%にしたものである。この
場合、アルミナ含有量は45〜60重量%であることが
より好ましい。アルミナにはシリカの溶解を抑制する効
果があるが、この含有量も90重量%を越えると、KO
H水溶液、NaOH水溶液等のアルカリ水溶液中に懸濁
させた場合と同様に水ガラスを含んだ水媒体中において
も、アルミナの表面電荷が低いことに起因する粒子の凝
集・沈降が発生する。 【0011】逆にシリカ・アルミナ被覆中におけるアル
ミナ含有量が40重量%未満、言い換えるとシリカ含有
量が60重量%以上でも粒子の凝集、沈降が発生する。
これは、シリカはアルミナに比べ、水ガラスへの溶解度
が非常に高いためで、塗料の長期間の放置或いは保存環
境の温度変化で生じる現象である。すなわち、シリカ・
アルミナ被覆中のシリカ含有量が高いと、被覆中のシリ
カ成分がシリケートとして水ガラス中に溶解していき、
局所的に水溶液中のシリケートのイオンミセル濃度が上
昇する。このようにイオンミセル濃度の上昇した水溶液
は濃度平衡の点で不安定であり、液中に存在する粒子の
表面にシリカとして析出していく。この現象が続くと分
散粒子同士の結合が起こり易くなり、上記したとおり、
粒子の凝集、沈降が発生し、本発明の目的である塗料の
分散安定性の向上、可使時間の延長化が図れなくなる。 【0012】 【実施例】以下、本発明を実施例によりさらに詳細に説
明していく。 (塗料の調整)導電材として粒径0.05〜0.1μm
程度に粉砕した黒鉛粒子と、表1に示す15種の酸化鉄
粒子(F1〜F15)を分散粒子とし、分散剤にカルボ
キシメチルセルロース(Carboxy Methyl Cellulos
e、以下CMCと略す)、結合剤に珪酸カリウムと媒質
である水を塗料材料として用意した。これら材料を以下
に示す配合割合で投入し、攪拌機を用いて十分に攪拌し
て各懸濁液を作製した。 黒鉛粒子 3.0重量% 酸化鉄粒子 18.0重量% CMC 0.3重量% 珪酸カリウム 8.7重量% 水 70.0重量% 【0013】そして、これらの懸濁液をボールミルにて
分散処理をすることで陰極線管の内装用塗料とした。 【0014】(塗料の評価)高温下で塗料を放置すると
分散粒子の分散状態が変化すると共に、塗料温度の上昇
で粘度が低下し、分散粒子は沈降し易くなる。このた
め、高温下での分散安定性は、環境の影響を受けずに長
期にわたり塗料の可使時間を保つという観点で重要な課
題項目である。そこで、この検討評価としては製作した
各塗料を50℃で3週間塗料を放置して含有分散粒子の
沈降状況を調査した。具体的には、100mlのスクリ
ュー管に塗料を注ぎ、密栓して、50℃に保った恒温槽
中で3週間塗料を放置をした。放置後、管中の沈降物の
厚み(又は高さ)と注ぎ込んだ塗料の高さから沈降率
を、沈降率(%)=(管中の沈降物の厚み(又は高さ)
÷管中の塗料の高さ)×100 により算出した。そし
て、この検討で沈降物が少ない塗料ほど高温下で良好な
分散性を有すると判断した。結果を第1表に示す。 【0015】さらに、陰極線管内装用塗料に求められる
均一化処理に対する評価の説明をする。発明が解決しよ
うとする課題の項でも記したように、近年のブラウン管
製造工程では内装被膜を形成するための塗料の塗布方法
として、流し塗り(フローコート)法が主体である。こ
の流し塗り法では過剰に流れ出た導電塗料は回収され、
再度、流し塗られる。このため、塗料の一部は数回にわ
たる循環をし、塗料溜まりのタンク内で均一化(攪拌)
処理を受けることとなる。しかしながら、この攪拌処理
を長時間受けると金属酸化物表面の被覆が破壊され、金
属酸化物表面の電荷が変化をし、電気的吸引による凝集
が発生するようになる。この現象の実験的な検討とし
て、塗料を400回転/分の速度で回転する攪拌機で6
時間処理し、その後、スクリュー管に静かに塗料を注
ぎ、10分間放置したときの沈降状況を観察した。沈降
の状態は、前述の高温下放置の時と同様、沈降率(%)
=(管中の沈降物の厚み(又は高さ)÷管中の塗料の高
さ)×100より算出した。 【0016】(導電性被膜の評価)続いて、作成した各
種塗料から得られる導電性被膜の評価(接着性)につい
て説明する。この接着性に関しては、150mm×10
0mm×1mmのガラス板を60度に傾け、清浄なガラ
ス板の上部から塗料を流し塗りし、余分の塗料が垂れ落
ちるのを待って、約100℃の温度で乾燥した後、40
0℃程度にて焼成することにより、各種塗料からの導電
性被膜を作製した。そして、得られた各被膜にテープを
各々貼り付けた後、引き剥して、各テープ側に付着する
被膜の状況を観察し、剥離の有無を調べる方法にて評価
した。 【0017】なお、表1中、被覆の量(%)はシリカ・
アルミナ被覆量/(酸化鉄+シリカ・アルミナ被覆量)
を、また、被覆中のアルミナ量(%)はAl2O3/(A
l2O3+SiO2)を示す。沈降率(%)50℃は50
℃で3週間放置後における沈降物の厚み/全塗料の高さ
を示す。沈降率(%)撹拌は攪拌機−400回転/分の
条件で6時間撹拌処理し、10分間放置したときの沈降
物の厚み/全塗料の高さを示す。接着性はテープ側への
被膜の付着の状態について、剥離あり、なしで示した。
備考は評価結果に応じて実施例と比較例とに区分けした
ものである。 【0018】 【表1】【0019】試験結果は表1に示すとおりである。酸化
鉄にシリカ・アルミナ被覆を施していない(酸化鉄粒子
F1)塗料およびシリカ・アルミナ被覆の量が1.9重
量%(酸化鉄粒子F2)の塗料は50℃の放置および撹
拌後の放置のどちらでも塗料含有粒子の沈降が著しく、
また、接着性においても被膜の剥離がみられた。また、
シリカ・アルミナ被覆の量が4重量%程度(酸化鉄粒子
F3,F4)の塗料では、その被覆中のアルミナ量が1
9.5重量%(F3)では、沈降率で10%程度の沈降
が発生するが、被覆中のアルミナ量が39.7重量%
(F4)になると沈降に対して、著しい改善効果がみら
れるようになる。被覆の量が10重量%程度の場合(F
5〜F8)でも、シリカ・アルミナ被覆中のアルミナ量
による影響が確認され、被覆中のアルミナ量が49.6
重量%と80.8重量%(酸化鉄粒子F6,F7)の塗
料では50℃の3週間放置および撹拌処理後でも、粒子
の沈降はほとんど認められず、良好な分散状態であっ
た。以下、被覆の量が15重量%(酸化鉄粒子F9〜F
11),20重量%(F12〜F14)程度に変化して
も、同様に被覆中のアルミナ量の依存が確認された。酸
化鉄粒子に対する被覆の量が24.8重量%(酸化鉄粒
子F15)の塗料では分散状態を示す、沈降率の評価結
果は良好であるが、接着性で剥離がみられた。このこと
は、発明の実施の形態の項でも述べたとおり、シリカ・
アルミナ被覆の量が多すぎることにより、被覆の硬度が
低下し、充分な接着性が得られなかったためである。 【0020】以上をとりまとめると、被覆の量が4〜2
0重量%でその被覆中のアルミナ含有量が40〜90重
量%の塗料の沈降率は低く、得られる導電性被膜のガラ
スとの接着性も良好である。特に被覆の量が約10〜1
5重量%で、さらにアルミナ含有量が45〜60%重量
であるときに分散安定性がより最良のものとなる。そし
て、この範囲をはずれた塗料との間では沈降率の差が顕
著であり、表1中、実施例1〜6の塗料が陰極線管内装
用塗料に求められる均一化処理の点においても、非常に
優れていることが分かる。 【0021】このように、酸化鉄粒子および黒鉛粒子が
分散した水ガラス含有の塗料においては、酸化鉄粒子対
するシリカ・アルミナ被覆の被覆量およびその被覆中の
アルミナ含有率を特定した範囲に調整するだけで有用な
結果が得られることが判明した。このことから、本発明
塗料は温度環境、長時間の均一化処理のような環境下で
安定な分散状態を保つことができる。 【0022】 【発明の効果】以上説明したとおり、本発明に係る陰極
線管内装用塗料は、従来塗料に対し保存環境の影響を受
けにくく、長期間の保存が可能であり、さらに取扱いが
簡便な塗料を供給することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a paint for the interior of a cathode ray tube, comprising water glass in a medium and having iron oxide particles and graphite particles dispersed therein. 2. Description of the Related Art A conductive film is provided on the inner surface of a funnel glass of a cathode ray tube. This conductive film is formed by applying a paint containing conductive particles to the inner surface of the funnel portion, then drying and heating in the air. [0003] This coating material is typically represented by graphite particles of a conductive material and iron oxide, titanium oxide and silicon carbide for adjusting to an arbitrary electric resistance value in an aqueous medium containing water glass as an adhesive and a dispersant. Of the metal oxide or metal carbide to be suspended and dispersed. Depending on the specifications of the cathode ray tube to be applied, there is also a paint in which only graphite particles of a conductive material are suspended or dispersed, but as described in JP-B-63-45428, the spark current becomes relatively high. Therefore, it is common to use particles of graphite and metal oxides in combination. That is, graphite imparts conductivity and lowers the electric resistance of the coating, and metal oxide and the like function as a filler, while increasing the resistance of the coating similarly to the water glass of the adhesive. Therefore, by adjusting these compounding ratios, the electric resistance value and the adhesive strength of the coating are controlled to predetermined values. [0004] As described above, it is very important to disperse metal oxide particles in an aqueous paint and, in addition, to continuously disperse the metal oxide particles in order to prolong the pot life of the paint, in a paint for an interior of a cathode ray tube. It is. Improving the dispersion stability of the components contained in the paint for the interior of the cathode ray tube, extending the pot life, the applicant has been conducting various studies,
For example, the above publication describes the following findings. In this method, graphite and metal oxide fine particles are granulated using a negatively charged surface treatment agent to produce a composite powder having a negative charge as a whole, and then the composite powder is mixed with a binder and a dispersion. It is suspended in water containing the agent to make a paint. [0005] In the process of applying paint to the inner surface of a cathode ray tube, a spray coating method and a brush coating method have been frequently used in the past. The flow coating method called a coating method is becoming mainstream. Accordingly, it is required that the applied paint has a low viscosity. That is, while the viscosity of the paint by the conventional coating method was 100 to 200 mPa · s, the viscosity of the paint for flow coating was 10 mPa · s.
・ Low as s. As a result, it is clear from the Stokes equation representing the spontaneous sedimentation state of the particles in the liquid that it becomes difficult to maintain the dispersion of the metal oxide particles in the paint.
Further, considering the influence on the preservation environment, the above-mentioned prior art is unsatisfactory, and further improvement in dispersibility is required. In addition, if the conductive coating obtained from this coating is not firmly adhered to the inner surface of the funnel, it has an adverse effect on the characteristics of the cathode ray tube. In view of the above, an object of the present invention is to provide a coating for a cathode ray tube containing water glass in which iron oxide particles and graphite particles are dispersed, particularly, having excellent dispersion stability at a high temperature and a long time. It is an object of the present invention to provide a paint which can save time and is easy to handle. Other objects will be clarified in the following description. SUMMARY OF THE INVENTION The object of the present invention is to provide a method for producing silica and water in a water medium containing a dispersant and water glass, which is a main part of the present invention.
Suspended iron oxide particles and graphite particles coated with alumina, the coating applied to the inner surface of the cathode ray tube dispersed,
The amount of silica-alumina coating on the iron oxide particles is 4
-20% by weight, and the alumina content in the silica-alumina coating is adjusted to 40-90% by weight. DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cathode ray tube interior in which silica-alumina-coated iron oxide particles and graphite particles are suspended and dispersed in an aqueous medium containing water glass. In the paint, the amount of the silica-alumina coating on the iron oxide particles is 4 to 20% by weight. In this case, the silica / alumina coating amount is more preferably 10 to 15% by weight. The silica-alumina coating on the iron oxide particles has the effect of changing the charge (positive charge) on the surface of the iron oxide particles into a negative charge. In a paint in which negatively charged graphite particles are dispersed together, such as a cathode ray tube interior paint according to the present invention, the particles are electrically repelled by making each particle surface have the same charge, Maintains a dispersed state. At present, the minimum amount that the surface of the iron oxide particles can be completely covered with silica-alumina is 4% by weight. If the amount is less than 4%, the iron oxide itself is exposed on the surface, and the graphite particles are attracted to this portion. As a result, agglomeration of dispersed particles occurs in the paint, which is not preferable. Conversely, if the coating amount exceeds 20% by weight, the silica-alumina coating becomes a main product to the iron oxide particles, and the adhesion of the formed conductive coating to the cathode ray tube decreases. . This is because silica-alumina coating has a lower hardness than iron oxide particles, in other words, it is soft, so if the amount of coating is large, particles such as metal oxides (iron oxide particles in the present invention) will be applied to the interior coating of the cathode ray tube. The function as a filler is no longer exhibited due to the incorporation of, and the hardness of the resulting conductive coating is reduced, and the adhesiveness to a CRT is reduced. Further, from the viewpoint of the dispersion state of the particles in the paint, no particular change is observed even if the coating amount exceeds 20% by weight. Increasing the amount of coating is not economical because it increases processing cost and time. Further, the present invention provides a method of suspending and dispersing silica-alumina-coated iron oxide particles and graphite particles in an aqueous alkali solution, particularly an aqueous solution containing silicate anions, ie, an aqueous medium containing water glass. In the cathode ray tube interior coating, the alumina content in the silica-alumina coating is 40 to 90% by weight. In this case, the alumina content is more preferably 45 to 60% by weight. Alumina has the effect of suppressing the dissolution of silica, but if its content also exceeds 90% by weight, KO
As in the case of suspension in an aqueous alkali solution such as an aqueous H solution or an aqueous NaOH solution, even in an aqueous medium containing water glass, aggregation and precipitation of particles due to the low surface charge of alumina occur. Conversely, even if the alumina content in the silica-alumina coating is less than 40% by weight, in other words, even if the silica content is 60% by weight or more, agglomeration and sedimentation of particles occur.
This is because silica has a much higher solubility in water glass than alumina, and is a phenomenon that occurs when the paint is left for a long time or the storage environment changes in temperature. That is, silica
If the silica content in the alumina coating is high, the silica component in the coating will dissolve in the water glass as silicate,
The ionic micelle concentration of the silicate in the aqueous solution locally increases. The aqueous solution having the increased ionic micelle concentration is unstable in terms of concentration equilibrium, and precipitates as silica on the surface of the particles existing in the solution. If this phenomenon continues, the bonding of the dispersed particles tends to occur, and as described above,
Agglomeration and sedimentation of the particles occur, which makes it impossible to improve the dispersion stability of the paint and extend the pot life, which are the objects of the present invention. Hereinafter, the present invention will be described in more detail by way of examples. (Adjustment of paint) Particle size 0.05 to 0.1 μm as conductive material
The graphite particles pulverized to a sufficient degree and the 15 types of iron oxide particles (F1 to F15) shown in Table 1 were used as dispersed particles, and carboxymethyl cellulose (Carboxy Methyl Cellulos) was used as a dispersant.
e, hereinafter abbreviated as CMC), potassium silicate as a binder and water as a medium were prepared as coating materials. These materials were added in the following mixing ratios, and sufficiently stirred using a stirrer to prepare each suspension. Graphite particles 3.0% by weight Iron oxide particles 18.0% by weight CMC 0.3% by weight Potassium silicate 8.7% by weight Water 70.0% by weight Then, these suspensions are dispersed by a ball mill. By doing so, it became a paint for the interior of the cathode ray tube. (Evaluation of paint) When the paint is left at a high temperature, the dispersion state of the dispersed particles changes, and the viscosity decreases as the paint temperature rises, so that the dispersed particles tend to settle. For this reason, dispersion stability at high temperatures is an important issue from the viewpoint of maintaining the usable life of the paint for a long time without being affected by the environment. Therefore, as a study evaluation, each of the produced paints was allowed to stand at 50 ° C. for 3 weeks, and the sedimentation state of the contained dispersed particles was investigated. Specifically, the paint was poured into a 100 ml screw tube, sealed, and left in a thermostat kept at 50 ° C. for 3 weeks. After standing, the sedimentation rate was calculated from the thickness (or height) of the sediment in the tube and the height of the poured paint, and the sedimentation rate (%) = (thickness (or height) of the sediment in the tube.
塗料 height of paint in pipe) × 100. In this study, it was determined that a paint with less sediment had better dispersibility at high temperatures. The results are shown in Table 1. The evaluation of the homogenization treatment required for the cathode ray tube interior paint will be described. As described in the section of the problem to be solved by the invention, in a recent cathode ray tube manufacturing process, a flow coating method is mainly used as a method of applying a paint for forming an interior coating. In this flow coating method, the excessively flowing conductive paint is collected,
Again, it is sink-coated. For this reason, a part of the paint circulates several times, and is homogenized (stirred) in the paint pool tank.
Will be processed. However, when the stirring treatment is performed for a long time, the coating on the surface of the metal oxide is destroyed, the charge on the surface of the metal oxide changes, and aggregation by electric suction occurs. As an experimental study of this phenomenon, a paint stirrer that rotates the paint at a speed of 400 revolutions / min.
The coating was gently poured into a screw tube, and the sedimentation state was observed when the coating was left for 10 minutes. The state of sedimentation is the same as the case of leaving under high temperature as described above, the sedimentation rate (%)
= (Thickness (or height) of sediment in tube / height of paint in tube) × 100. (Evaluation of Conductive Coating) Next, the evaluation (adhesion) of the conductive coating obtained from each of the prepared paints will be described. Regarding this adhesion, 150 mm × 10
A glass plate of 0 mm x 1 mm is tilted at 60 degrees, paint is applied from the top of a clean glass plate, and after waiting for excess paint to drip, it is dried at a temperature of about 100 ° C.
By baking at about 0 ° C., conductive coatings from various paints were prepared. Then, after a tape was applied to each of the obtained coatings, the tape was peeled off, the state of the coating adhered to each tape was observed, and the presence or absence of peeling was evaluated. In Table 1, the amount (%) of coating is silica
Alumina coverage / (iron oxide + silica / alumina coverage)
And the amount (%) of alumina in the coating is Al2O3 / (A
l2 O3 + SiO2). Settling rate (%) 50 ° C is 50
It shows the thickness of the sediment / the height of the total paint after standing at 3 ° C. for 3 weeks. The sedimentation rate (%) stirring is the thickness of the sediment / the height of the total paint when the stirring treatment is performed for 6 hours under the condition of a stirrer-400 revolutions / minute and left for 10 minutes. The adhesiveness was shown with and without peeling on the state of adhesion of the film to the tape side.
Remarks are classified into Examples and Comparative Examples according to the evaluation results. [Table 1] The test results are as shown in Table 1. Coatings in which iron oxide was not coated with silica-alumina (iron oxide particles F1) and coatings in which the amount of silica-alumina coating was 1.9% by weight (iron oxide particles F2) were left at 50 ° C. and left after stirring. In both cases, the sedimentation of paint-containing particles is remarkable,
In addition, peeling of the film was observed in the adhesiveness. Also,
In a coating material having a silica / alumina coating amount of about 4% by weight (iron oxide particles F3 and F4), the amount of alumina in the coating is 1%.
At 9.5% by weight (F3), sedimentation of about 10% occurs at a sedimentation rate, but the amount of alumina in the coating is 39.7% by weight.
At (F4), a remarkable improvement effect on sedimentation can be seen. When the coating amount is about 10% by weight (F
5 to F8), the effect of the amount of alumina in the silica-alumina coating was confirmed, and the amount of alumina in the coating was 49.6.
In the case of the coatings of 8% by weight and 80.8% by weight (iron oxide particles F6 and F7), even after standing at 50 ° C. for 3 weeks and stirring, the particles were hardly sedimented and were in a good dispersion state. Hereinafter, the coating amount is 15% by weight (iron oxide particles F9 to F9).
11) Even when it changed to about 20% by weight (F12 to F14), the dependence of the amount of alumina in the coating was similarly confirmed. The paint having an amount of coating on the iron oxide particles of 24.8% by weight (iron oxide particles F15) shows a dispersed state. The evaluation result of the sedimentation rate is good, but peeling was observed due to adhesiveness. This is because, as described in the embodiments of the invention, silica
This is because when the amount of the alumina coating was too large, the hardness of the coating was lowered, and sufficient adhesiveness was not obtained. To summarize the above, the amount of coating is 4 to 2
When the coating content is 0% by weight and the alumina content in the coating is 40 to 90% by weight, the sedimentation rate of the coating is low, and the adhesion of the obtained conductive coating to glass is good. Especially when the amount of coating is about 10-1
The dispersion stability is best when the content is 5% by weight and the alumina content is 45 to 60% by weight. The difference between the sedimentation rate and the paint outside this range is remarkable, and in Table 1, the paints of Examples 1 to 6 are very similar in terms of the homogenization treatment required for the cathode ray tube interior paint. It turns out that it is excellent. As described above, in the water glass-containing coating material in which the iron oxide particles and the graphite particles are dispersed, the coating amount of the silica-alumina coating on the iron oxide particles and the alumina content in the coating are adjusted to a specified range. It turned out that useful results were obtained alone. From this, the paint of the present invention can maintain a stable dispersion state in an environment such as a temperature environment or a long-time homogenization treatment. As described above, the cathode ray tube interior paint according to the present invention is less affected by the storage environment than conventional paints, can be stored for a long period of time, and is easy to handle. Can be supplied.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01J 9/20 H01J 9/20 A 29/88 29/88 (58)調査した分野(Int.Cl.7,DB名) C03C 15/00 - 23/00 C09C 1/00 - 3/12 C09C 15/00 - 17/00 C09D 1/00 - 10/00 C09D 101/00 - 201/00 H01J 9/20 - 9/236 H01J 29/86 - 29/98 H01J 61/30 - 61/48 ──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 7 identification code FI H01J 9/20 H01J 9/20 A 29/88 29/88 (58) Field surveyed (Int.Cl. 7 , DB name) C03C 15/00-23/00 C09C 1/00-3/12 C09C 15/00-17/00 C09D 1/00-10/00 C09D 101/00-201/00 H01J 9/20-9/236 H01J 29 / 86-29/98 H01J 61/30-61/48

Claims (1)

(57)【特許請求の範囲】 【請求項1】 分散剤と水ガラスを含む水媒体中に、シ
リカ・アルミナ被覆が施された酸化鉄粒子と黒鉛粒子と
を懸濁、分散した陰極線管の内面に塗布する塗料におい
て、前記酸化鉄粒子に対するシリカ・アルミナ被覆の量
を4〜20重量%に調整し、かつ前記シリカ・アルミナ
被覆中のアルミナ含有量を40〜90重量%に調整する
ことを特徴とする陰極線管内装用塗料。
(57) [Claim 1] A cathode ray tube in which iron oxide particles and graphite particles coated with silica / alumina are suspended and dispersed in an aqueous medium containing a dispersant and water glass. In the paint applied to the inner surface, the amount of the silica-alumina coating based on the iron oxide particles is adjusted to 4 to 20% by weight, and the alumina content in the silica-alumina coating is adjusted to 40 to 90% by weight. Characteristic paint for cathode ray tube interior.
JP35001995A 1995-04-04 1995-12-25 Paint for cathode ray tube interior Expired - Fee Related JP3373101B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP35001995A JP3373101B2 (en) 1995-12-25 1995-12-25 Paint for cathode ray tube interior
US08/627,681 US5667729A (en) 1995-04-04 1996-04-02 Coating material for inner coat of cathode-ray tube
NL1002804A NL1002804C2 (en) 1995-04-04 1996-04-04 Coating material for an inner layer of a cathode ray tube.
DE19613656A DE19613656C2 (en) 1995-04-04 1996-04-04 Coating material and its use for the inner coating of a cathode ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35001995A JP3373101B2 (en) 1995-12-25 1995-12-25 Paint for cathode ray tube interior

Publications (2)

Publication Number Publication Date
JPH09175836A JPH09175836A (en) 1997-07-08
JP3373101B2 true JP3373101B2 (en) 2003-02-04

Family

ID=18407692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35001995A Expired - Fee Related JP3373101B2 (en) 1995-04-04 1995-12-25 Paint for cathode ray tube interior

Country Status (1)

Country Link
JP (1) JP3373101B2 (en)

Also Published As

Publication number Publication date
JPH09175836A (en) 1997-07-08

Similar Documents

Publication Publication Date Title
JP5395656B2 (en) Transparent coating
US4379762A (en) Method of producing picture tube coating compositions
JPH0782821B2 (en) Interior coating agent composition for cathode ray tube
WO2009093609A1 (en) Powder coated with copper (i) oxide, and process for production thereof
JP3373101B2 (en) Paint for cathode ray tube interior
JP3301885B2 (en) Paint for cathode ray tube interior
JPH07166091A (en) Flatting agent for coating composition
JPH10231187A (en) Antimicrobial glaze, pottery product using the same, and preparation of antimicrobial glaze
US5667729A (en) Coating material for inner coat of cathode-ray tube
JPH08283617A (en) Powder coating material
JP4722412B2 (en) Conductive tin oxide powder, method for producing the same, conductive paste and conductive paint
KR101976301B1 (en) Aggregate of flaked silver particles and paste containing said aggregate of silver particles
JPH0598212A (en) Coating composition
JP2001040287A (en) Antimicrobial coating film and substrate with the same
JP2005054011A (en) Method for producing superfine powder silica dispersed slurry for resin filling
JP2774065B2 (en) Anti-sagging composition for paint and paint composition
JP2004169039A (en) Metallic paint composition
JPS58213061A (en) Sprayable enamel suspension
JP7225469B2 (en) Manufacturing method of glass lined product
JPS6089506A (en) Flaky zinc powder
JPS63272458A (en) Composition for finely polishing wafer
JPH01213368A (en) Composite pigment for antifouling coating and production thereof
JPH08253711A (en) Powder coating material
JP2005047802A (en) Method for producing antibacterial glass
JP2001139889A (en) Coating composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees