JP3372420B2 - Compact zoom lens - Google Patents

Compact zoom lens

Info

Publication number
JP3372420B2
JP3372420B2 JP05157096A JP5157096A JP3372420B2 JP 3372420 B2 JP3372420 B2 JP 3372420B2 JP 05157096 A JP05157096 A JP 05157096A JP 5157096 A JP5157096 A JP 5157096A JP 3372420 B2 JP3372420 B2 JP 3372420B2
Authority
JP
Japan
Prior art keywords
lens
group
lens group
positive
zoom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05157096A
Other languages
Japanese (ja)
Other versions
JPH08234104A (en
Inventor
康司 小方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP05157096A priority Critical patent/JP3372420B2/en
Publication of JPH08234104A publication Critical patent/JPH08234104A/en
Application granted granted Critical
Publication of JP3372420B2 publication Critical patent/JP3372420B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、ズームレンズに関
するものである。 【0002】 【従来の技術】近年、レンズシャッターカメラは一般ユ
ーザーへの普及が著しく、それに伴いより使い易い商品
とするためにカメラ自体のコンパクト化が急速に進めら
れてきた。その一方で従来のレンズシャッターカメラに
は、焦点距離が35mm程度の広角レンズが装着されてい
るために、よりアップの撮影が可能な望遠レンズの装着
に対する要望が強くなっている。 【0003】従来より負の屈折力の前群と正の屈折力の
後群の2群にて構成され、両群間の空気間隔を変化させ
て変倍を行うタイプのズームレンズは良く知られてい
る。しかしこのタイプのズームレンズは、レトロフォー
カスレンズ系の構成を有しているためにバックフォーカ
スが長くなり、一眼レフカメラ用に使用する場合、ミラ
ーを配置するスペースを確保し得る点でメリットを有す
るが、全長の短縮化には適していない。 【0004】一方レンズシャッターカメラに組込める程
度までに小型化されたズームレンズとして、正の屈折力
の前群と負の屈折力の後群とにて構成されているズーム
レンズが知られている。このレンズ系はテレフォトタイ
プの群構成を持つことを特徴とするもので、これによっ
て全長を短くすることが可能となる。このようなタイプ
の従来例としては特開昭57−201213号等が知ら
れている。又このタイプの従来のズームレンズで、変倍
比が2まで達したものとしては、特開昭60−1708
16号、特開昭61−15115号に記載されているレ
ンズ系が知られている。 【0005】又、本発明に似た形状の従来例として、出
願時公開済の特開昭58−215620号、あるいは出
願時に未公開の特開昭63−155113号に記載され
ているレンズ系が知られている。特開昭58−2156
20号では正・負・正の3群ズームタイプであり正の第
1群は物体側より順に、両凸正レンズ、絞り、像側へ凸
な負メニスカスレンズ、像側へ凸な正メニスカスレン
ズ、両凸正レンズにて構成されている。 【0006】一方、特開昭63−155113号では正
・負の2群ズームタイプであり正の第1群は物体側より
順に、物体側へ凸な正メニスカスレンズ、像側へ凸な負
メニスカスレンズ、厚みの大きな像側へ凸な正メニスカ
スレンズ、両凸の接合正レンズにて構成されているが、
絞り位置についての記載はない。 【0007】 【発明が解決しようとする課題】しかしながら、特開昭
57−201213号や特開昭58−215620号記
載のズームレンズでは変倍比が 1.5倍程度と小さいもの
であった。また特開昭60−170816号や特開昭6
1−15115号記載のズームレンズでは、レンズ系の
全長が長く、且つバックフォーカスが短かったため第2
レンズ群の外径が大きくなってしまいコンパクトさが不
十分であった。そして前記いずれの従来技術も第1レン
ズ群の構成が本発明と異なるため、収差補正が十分では
なく、且つ偏心により発生する収差変動の割合も大きく
なっており、製造段階における組立精度が厳格に要求さ
れ、生産性が劣るという欠点を有する。 【0008】本発明はこのような問題点を解決するため
になされたものであり、その目的は、変倍比が高く且つ
コンパクトなズームレンズの構成にあって、収差を良好
に補正すると共に、偏心により発生する収差変動の割合
を小さく抑えることにより製造時における組立精度の緩
和を図り、もって生産性の向上できるズームレンズを提
供することにある。 【0009】 【課題を解決するための手段】上記目的を達成する本発
明のズームレンズは、物体側から順に、全体として正の
屈折力の第1レンズ群と、全体として負の屈折力の第2
レンズ群とを有し、広角端から望遠端への変倍に際し前
記第1レンズ群と前記第2レンズ群との群間隔を変化さ
せるズームレンズにおいて、前記第1レンズ群が物体側
から順に、物体側に凸面を向けた正メニスカス形状の第
1レンズと、像側に凸面を向けた負メニスカス形状の第
2レンズと、像側に凸面を向けた正メニスカス形状の第
3レンズと、正レンズの第4レンズとから構成されたこ
とを特徴とするものである。 【0010】 【0011】以下に本発明において上記構成をとる理由
と作用、また、更に好ましい構成について説明する。本
発明に基づくズームレンズにおいては鏡枠構造を簡単に
するため、絞り位置は第1レンズ群の最も像側あるいは
その近傍に配置することが望ましい。このとき軸外の主
光線は第1レンズへ近づくほど、光線高が高くなり収差
の発生量が増加する。特に、歪曲収差の補正上、第1レ
ンズは物体側へ凸なメニスカス形状が望ましい。そして
球面収差やコマ収差の補正のために第2レンズを両凹レ
ンズ、第3レンズを両凸レンズ、そして正の第4レンズ
とすれば良いことは知られている。しかしこの形状で
は、第2レンズと第3レンズの向き合った面で逆符号の
大きな収差が発生し、これらが互いに打ち消し合うの
で、第2レンズと第3レンズの相対的な偏心公差が厳し
くなっていた。本発明では第2レンズと第3レンズを共
にメニスカス形状となすことで光線の入射角および射出
角を小さく成し、これらのレンズ面で大きな収差が発生
しないようにしている。従って、両レンズの偏心に対し
て収差の劣化が少なく、組立性の良いレンズ系が得られ
ている。 【0012】そして、その第2レンズと第3レンズとが
共に像側に凸面を向けたメニスカス形状であれば、偏心
に対する収差劣化防止はより顕著な効果として得ること
ができる。更に本発明は、ズーム時におけるカム機構の
簡便化を図るために絞りは第1レンズ群と共に移動させ
ることが望ましい。 【0013】また、本発明では高変倍比を確保しつつ、
それに伴うズーム移動量の肥大化を防止しコンパクト化
を実現するために、各群のパワーを比較的強く設定して
いる。そのため、正の第1レンズ群からパワーが増大し
た分、補正不足の球面収差が発生することとなる。そこ
で本発明では、この点を考慮し、第1レンズ群中の第3
レンズと第4レンズに着眼し、少なくとも1面を非球面
とすることが、球面収差を補正する上で効果的であるこ
とを見い出した。そして、その際の非球面形状は、光軸
から離れるに従って正の屈折力が弱くなるような構成が
効果的である。なぜならば、第1レンズ群に増加される
パワーはこの第3及び第4レンズに多く負担されるた
め、第1レンズ群に生じる補正不足の球面収差もレンズ
周辺における第3及び第4レンズの正パワーを弱めて補
正することが有効だからである。 【0014】また、第2レンズ群の構成は、物体側から
順に像側に凸面を向けた正メニスカスレンズと、像側に
凸面を向けた負メニスカスレンズとで形成することが、
少ないレンズ枚数でズームレンズのコンパクト化の上で
望ましい。そしてこの第2レンズ群は、レンズ枚数が少
ない分像面湾曲や歪曲収差が補正しきれず、特に広角端
において糸巻き型の歪曲収差の発生が大きくなる。その
ため、変倍に伴う像面湾曲の変動が大きくなってしま
う。そこで、その解決として第2レンズ群中に少なくと
も1面非球面を設けることが望ましい。そして、その非
球面形状は、負の第2レンズ群に増加される負パワーを
レンズ周辺で弱めることが効果的であり、正メニスカス
レンズに設ける場合には光軸から離れるに従って正の屈
折力が強くなる形状が、又負メニスカスレンズに設ける
場合には光軸から離れるに従って負の屈折力が弱くなる
形状が有効である。 【0015】また、本発明のズームレンズは以下の条件
(1) 及び(2) を満足する構成が望ましい。 0.6 <fF /fW <1.0 ……… (1) 0.7 <|fR |/fW <1.1 ……… (2) 但し、fF ,fR は各々第1及び第2レンズ群の焦点距
離、fW は広角端における全系の焦点距離である。 【0016】この条件(1)及び(2)は夫々第1及び
第2レンズ群における収差性能とコンパクト化とのバラ
ンスを示したものである。そして、各条件の上限を越え
ると収差補正上有利となるが反面コンパクト化に不利と
なる。また、各条件の下限を越えるとコンパクト化には
有利となるが反対に収差劣化を招くこととなる。 【0017】 【発明の実施の形態】以下、本発明のズームレンズの実
施例1及び2について説明する。実施例1は第1図に示
す構成で、物体側より、物体側に凸の正のメニスカスレ
ンズの第1レンズ,像側に凸の負のメニスカスレンズの
第2レンズ,像側に凸の正のメニスカスレンズの第3レ
ンズ,両凸レンズの第4レンズから成る前群と、像側に
凸の正のメニスカスレンズの第5レンズ,像側に凸の負
のメニスカスレンズの第6レンズから成る後群とで構成
され、第4レンズ像側面及び第6レンズ物体側面が非球
面である。 【0018】実施例2は、第2図に示す構成で、物体側
より、物体側に凸の正のメニスカスレンズの第1レン
ズ,像側に凸の負のメニスカスレンズの第2レンズ,像
側に凸の正のメニスカスレンズの第3レンズ,両凸レン
ズの第4レンズから成る前群と、像側に凸の正のメニス
カスレンズの第5レンズ、像側に凸の負のメニスカスレ
ンズの第6レンズから成る後群とで構成され、第4レン
ズ像側面及び第5レンズ物体側面が非球面である。 【0019】以下に各実施例の数値データを示すが、記
号は、r1 ,r2 ……は各レンズ面の曲率半径、d1
2 ……は各レンズ面間の間隔、n1 ,n2 ……は各レ
ンズのd線の屈折率、ν1 ,ν2 ……は各レンズのアッ
ベ数、fは全系の焦点距離、FはFナンバー、2ωは画
角である。又、上記各実施例で用いられている非球面
は、光軸方向をZ(光の進む向きを正とする),光線高
方向をY,近軸曲率半径をRとしたとき、次式にて表わ
される。 【0020】 但、Kは円錐係数,A,B,C,D,Eは非球面係数で
ある。 【0021】 【実施例1】 f=35mm〜70mm,F/4.5 〜5.6 ,2ω=63.4°〜34.3° r1 = 17.237 d1 =3.050 n1 =1.76200 ν1 =40.10 r2 = 21.798 d2 =2.000 r3 =-16.868 d3 =1.200 n2 =1.80518 ν2 =25.43 r4 =-97.444 d4 =1.540 r5 =-64.823 d5 =2.360 n3 =1.60342 ν3 =38.01 r6 =-32.692 d6 =0.150 r7 = 33.202 d7 =3.310 n4 =1.57099 ν4 =50.80 r8 =-18.640 (非球面) d8 =1.500 r9 =∞(絞り) d9 =D9 (可変) r10=-42.314 d10=3.680 n5 =1.65844 ν5 =50.86 r11=-18.266 d11=3.230 r12=-13.636 (非球面)d12=1.550 n6 =1.77250 ν6 =49.66 r13=-178.240 非球面係数 r8 面 r12面 K=-2.8245 K=-0.1497 A= 0 A= 0 B=-0.85829×10-5 B= 0.77385×10-5 C= 0.12565×10-6 C=-0.79455×10-7 D= 0.20809×10-9 D= 0.10995×10-8 E=-0.40616×10-11 E=-0.13464×10-11 f 35 50 70 D9 15.574 6.784 0.924 fF /fW =0.838 , |fR |/fW =0.999 |△F|/fT |△R|/fW =1.232 ×10-3 =5.949 ×10-3 【0022】 【実施例2】 f=35mm〜70mm,F/4.5 〜5.6 ,2ω=63.4°〜34.3° r1 = 15.588 d1 =2.490 n1 =1.72000 ν1 =50.25 r2 = 21.341 d2 =2.200 r3 =-17.934 d3 =1.160 n2 =1.74000 ν2 =28.29 r4 =-269.719 d4 =1.560 r5 =-78.041 d5 =2.340 n3 =1.59270 ν3 =35.29 r6 =-28.521 d6 =0.150 r7 = 34.212 d7 =3.280 n4 =1.55963 ν4 =61.17 r8 =-21.168 (非球面)d8 =0.500 r9 =∞(絞り)d9 =D9 (可変) r10=-44.311 (非球面)d10=4.200 n5 =1.57135 ν5 =52.92 r11=-20.542 d11=3.730 r12=-12.273 d12=1.560 n6 =1.72916 ν6 =54.68 r13=-65.497 非球面係数 r8 面 r10面 K= 0 K= 0 A= 0 A= 0 B= 0.38523×10-4 B= 0.29796×10-4 C= 0.71257×10-7 C= 0.13406×10-6 D= 0.24412×10-8 D= 0.19599×10-8 E=-0.26616×10-10 E=-0.12313×10-10 f 35 50 70 D9 14.245 6.314 1.026 fF /fW =0.814 , |fR |/fW =0.928 |△F|/fT |△R|/fW =9.529 ×10-4 =4.718 ×10-3 【0023】 【発明の効果】以上の説明から明らかなように、本発明
によると、正の第1レンズ群中の負の第2レンズと正の
第3レンズとを共にメニスカス形状のレンズにて構成す
ることにより、製造時の偏心に対する公差を緩めること
ができ、製造が容易になる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens. 2. Description of the Related Art In recent years, the use of lens shutter cameras has been remarkably widespread among general users, and accordingly, the size of cameras themselves has been rapidly reduced in order to make them easier to use. On the other hand, since a conventional lens shutter camera is equipped with a wide-angle lens having a focal length of about 35 mm, there has been a strong demand for a telephoto lens capable of taking a still further image. [0003] Conventionally, a zoom lens of a type comprising a front group having a negative refractive power and a rear group having a positive refractive power and performing zooming by changing an air gap between the two groups is well known. ing. However, this type of zoom lens has a retrofocus lens system configuration, so the back focus is long, and when used for a single-lens reflex camera, there is an advantage in that a space for disposing a mirror can be secured. However, it is not suitable for shortening the overall length. [0004] On the other hand, as a zoom lens which is so small that it can be incorporated in a lens shutter camera, a zoom lens comprising a front group having a positive refractive power and a rear group having a negative refractive power is known. . This lens system is characterized by having a group configuration of a telephoto type, whereby the total length can be shortened. Japanese Patent Application Laid-Open No. 57-201213 is known as a conventional example of this type. A conventional zoom lens of this type having a zoom ratio of up to 2 is disclosed in JP-A-60-1708.
No. 16 and JP-A-61-15115 are known. Further, as a conventional example having a shape similar to the present invention, a lens system described in JP-A-58-215620 published at the time of filing, or JP-A-63-155113 published at the time of filing is disclosed. Are known. JP-A-58-2156
No. 20 is a three-group positive / negative / positive zoom type. The positive first group includes, in order from the object side, a biconvex positive lens, an aperture, a negative meniscus lens convex to the image side, and a positive meniscus lens convex to the image side. , And a biconvex positive lens. On the other hand, Japanese Patent Application Laid-Open No. 63-155113 discloses a positive / negative two-unit zoom type in which a positive first unit is a positive meniscus lens convex to the object side and a negative meniscus convex to the image side in order from the object side. It is composed of a lens, a positive meniscus lens convex to the image side with a large thickness, and a biconvex cemented positive lens.
There is no description about the aperture position. However, the zoom lenses described in JP-A-57-201213 and JP-A-58-215620 have a small zoom ratio of about 1.5 times. Also, Japanese Patent Application Laid-Open No.
In the zoom lens described in No. 1-15115, the second lens system has a long overall length and a short back focus.
The outer diameter of the lens group became large and compactness was insufficient. In each of the prior arts, the configuration of the first lens group is different from that of the present invention. Therefore, the aberration correction is not sufficient, and the ratio of the aberration variation caused by the eccentricity is large. Required and has the disadvantage of poor productivity. SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and an object of the present invention is to provide a compact zoom lens having a high zoom ratio and a good correction of aberrations. It is an object of the present invention to provide a zoom lens capable of reducing the accuracy of assembly during manufacturing by suppressing the ratio of aberration fluctuations caused by eccentricity, thereby improving productivity. A zoom lens according to the present invention that achieves the above object comprises, in order from the object side, a first lens group having a positive refractive power as a whole and a first lens group having a negative refractive power as a whole. 2
A zoom lens that has a lens group, and changes a group interval between the first lens group and the second lens group when zooming from a wide-angle end to a telephoto end. A positive meniscus first lens having a convex surface facing the object side, a negative meniscus second lens having a convex surface facing the image side, a positive meniscus third lens having a convex surface facing the image side, and a positive lens And a fourth lens. Hereinafter, the reason and operation of the above configuration in the present invention, and a more preferable configuration will be described. In the zoom lens according to the present invention, in order to simplify the lens frame structure, it is desirable that the stop position is located closest to the image side of the first lens group or in the vicinity thereof. At this time, as the off-axis principal ray approaches the first lens, the ray height increases and the amount of aberration increases. In particular, it is desirable that the first lens has a meniscus shape convex toward the object side in order to correct distortion. It is known that the second lens may be a biconcave lens, the third lens may be a biconvex lens, and the positive fourth lens may be used to correct spherical aberration and coma. However, in this shape, a large aberration of opposite sign occurs on the surface where the second lens and the third lens face each other, and these cancel each other out, so that the relative eccentricity tolerance between the second lens and the third lens is strict. Was. In the present invention, both the second lens and the third lens are formed in a meniscus shape so that the incident angle and the exit angle of the light beam are reduced, so that large aberration does not occur on these lens surfaces. Therefore, a lens system with little deterioration of aberration with respect to the eccentricity of both lenses and good assemblability is obtained. If both the second lens and the third lens have a meniscus shape with the convex surface facing the image side, it is possible to obtain a more remarkable effect of preventing the aberration from decentration. Further, in the present invention, it is desirable to move the aperture together with the first lens group in order to simplify the cam mechanism during zooming. In the present invention, while maintaining a high zoom ratio,
The power of each group is set relatively high in order to prevent the enlargement of the zoom movement amount and the size reduction. As a result, insufficient correction of spherical aberration occurs due to the increase in power from the positive first lens group. Therefore, in the present invention, taking this point into consideration, the third lens group in the first lens group is set.
It has been found that focusing on the lens and the fourth lens and making at least one surface aspherical is effective in correcting spherical aberration. An effective configuration of the aspherical surface at this time is such that the positive refractive power becomes weaker as the distance from the optical axis increases. This is because the power that is increased by the first lens group is largely borne by the third and fourth lenses, and the undercorrected spherical aberration that occurs in the first lens group is also positive by the third and fourth lenses around the lens. This is because it is effective to reduce power and make correction. The second lens group may be formed of a positive meniscus lens having a convex surface facing the image side and a negative meniscus lens having a convex surface facing the image side in order from the object side.
This is desirable in terms of making the zoom lens compact with a small number of lenses. In the second lens group, the curvature of field and distortion cannot be completely corrected by the small number of lenses, and pincushion type distortion is particularly large at the wide-angle end. For this reason, the fluctuation of the curvature of field accompanying zooming becomes large. Therefore, as a solution, it is desirable to provide at least one aspheric surface in the second lens group. The aspherical shape is effective in weakening the negative power that is increased by the negative second lens group around the lens. When the negative meniscus lens is provided on the positive meniscus lens, the positive refractive power increases as the distance from the optical axis increases. When a stronger shape is provided on the negative meniscus lens, a shape in which the negative refractive power becomes weaker as the distance from the optical axis increases is effective. The zoom lens according to the present invention has the following conditions.
A configuration that satisfies (1) and (2) is desirable. 0.6 <f F / f W <1.0 (1) 0.7 <| f R | / f W <1.1 (2) where f F and f R are the focal points of the first and second lens groups, respectively. distance, f W is the focal length of the entire system at the wide-angle end. The conditions (1) and (2) show the balance between aberration performance and compactness in the first and second lens units, respectively. Exceeding the upper limit of each condition is advantageous for aberration correction, but disadvantageous for compactness. If the lower limit of each condition is exceeded, it is advantageous for downsizing, but on the contrary, it causes deterioration of aberration. DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments 1 and 2 of a zoom lens according to the present invention will be described below. Embodiment 1 has a configuration shown in FIG. 1 and is a first lens of a positive meniscus lens convex on the object side from the object side, a second lens of a negative meniscus lens convex on the image side, and a positive lens on the image side. A front group consisting of a third meniscus lens and a fourth biconvex lens, a fifth lens of a positive meniscus lens convex on the image side, and a sixth lens of a negative meniscus lens convex on the image side The fourth lens image side surface and the sixth lens object side surface are aspherical. The embodiment 2 has the structure shown in FIG. 2 and is a first lens of a positive meniscus lens convex on the object side from the object side, a second lens of a negative meniscus lens convex on the image side, and the image side. A front lens group consisting of a third positive meniscus lens and a fourth biconvex lens, a fifth positive meniscus lens convex on the image side, and a sixth negative meniscus lens convex on the image side. The fourth lens image side surface and the fifth lens object side surface are aspherical. Numerical data of each embodiment are shown below, where the symbols are r 1 , r 2 ... Are the radii of curvature of each lens surface, d 1 ,
d 2 ...... spacing between the lens surfaces, n 1, n 2 ...... d-line refractive index of each lens, ν 1, ν 2 ...... the Abbe number of each lens, f is the focal length of the entire system , F are F numbers and 2ω is the angle of view. The aspherical surface used in each of the above embodiments has the following formula, where Z is the optical axis direction (positive is the direction in which light travels), Y is the ray height direction, and R is the paraxial radius of curvature. Is represented by [0020] Here, K is a conical coefficient, and A, B, C, D, and E are aspherical coefficients. Example 1 f = 35 mm to 70 mm, F / 4.5 to 5.6, 2ω = 63.4 ° to 34.3 ° r 1 = 17.237 d 1 = 3.050 n 1 = 1.76200 ν 1 = 40.10 r 2 = 21.798 d 2 = 2.000 r 3 = -16.868 d 3 = 1.200 n 2 = 1.80518 ν 2 = 25.43 r 4 = -97.444 d 4 = 1.540 r 5 = -64.823 d 5 = 2.360 n 3 = 1.60342 ν 3 = 38.01 r 6 = -32.692 d 6 = 0.150 r 7 = 33.202 d 7 = 3.310 n 4 = 1.57099 ν 4 = 50.80 r 8 = -18.640 ( aspheric surface) d 8 = 1.500 r 9 = ∞ ( stop) d 9 = D 9 (variable) r 10 = -42.314 d 10 = 3.680 n 5 = 1.65844 ν 5 = 50.86 r 11 = -18.266 d 11 = 3.230 r 12 = -13.636 ( aspherical) d 12 = 1.550 n 6 = 1.77250 ν 6 = 49.66 r 13 = -178.240 non Spherical coefficient r 8 plane r 12 plane K = -2.8245 K = -0.1497 A = 0 A = 0 B = -0.85829 × 10 -5 B = 0.77385 × 10 -5 C = 0.125565 × 10 -6 C = -0.79455 × 10 -7 D = 0.20809 x 10 -9 D = 0.10995 x 10 -8 E = -0.40616 x 10 -11 E = -0.13464 x 1 0 -11 f 35 50 70 D 9 15.574 6.784 0.924 f F / f W = 0.838, | f R | / f W = 0.999 | ΔF | / f T | ΔR | / f W = 1.232 × 10 -3 = 5.949 × 10 -3 [0022] example 2 f = 35mm~70mm, F / 4.5 ~5.6 , 2ω = 63.4 ° ~34.3 ° r 1 = 15.588 d 1 = 2.490 n 1 = 1.72000 ν 1 = 50.25 r 2 = 21.341 d 2 = 2.200 r 3 = -17.934 d 3 = 1.160 n 2 = 1.74000 ν 2 = 28.29 r 4 = -269.719 d 4 = 1.560 r 5 = -78.041 d 5 = 2.340 n 3 = 1.59270 ν 3 = 35.29 r 6 = -28.521 d 6 = 0.150 r 7 = 34.212 d 7 = 3.280 n 4 = 1.55963 ν 4 = 61.17 r 8 = -21.168 ( aspheric surface) d 8 = 0.500 r 9 = ∞ ( stop) d 9 = D 9 ( (Variable) r 10 = -44.311 (aspherical surface) d 10 = 4.200 n 5 = 1.57135 v 5 = 52.92 r 11 = -20.542 d 11 = 3.730 r 12 = -12.273 d 12 = 1.560 n 6 = 1.72916 v 6 = 54.68 r 13 = -65.497 Aspherical surface coefficient r 8 plane r 10 plane K = 0 K = 0 A = 0 A = 0 B = 0.3 8523 x 10 -4 B = 0.29796 x 10 -4 C = 0.71257 x 10 -7 C = 0.13406 x 10 -6 D = 0.24412 x 10 -8 D = 0.19599 x 10 -8 E = -0.26616 x 10 -10 E = -0.12313 × 10 -10 f 35 50 70 D 9 14.245 6.314 1.026 f F / f W = 0.814, | f R | / f W = 0.928 | ΔF | / f T | ΔR | / f W = 9.529 × 10 -4 = 4.718 × 10 -3 [0023] as apparent from the above description, according to the present invention, a positive negative second lens in the first lens group and the positive third lens Are made of meniscus-shaped lenses, the tolerance for eccentricity during manufacturing can be relaxed, and manufacturing becomes easy.

【図面の簡単な説明】 【図1】本発明の実施例1の断面図である。 【図2】本発明の実施例2の断面図である。 【図3】本発明の実施例1の広角端における球面収差
(a),非点収差(b),歪曲収差(c)を示す図であ
る。 【図4】本発明の実施例1の中間焦点距離における球面
収差(a),非点収差(b),歪曲収差(c)を示す図
である。 【図5】本発明の実施例1の望遠端における球面収差
(a),非点収差(b),歪曲収差(c)を示す図であ
る。 【図6】本発明の実施例2の広角端における球面収差
(a),非点収差(b),歪曲収差(c)を示す図であ
る。 【図7】本発明の実施例2の中間焦点距離における球面
収差(a),非点収差(b),歪曲収差(c)を示す図
である。 【図8】本発明の実施例2の望遠端における球面収差
(a),非点収差(b),歪曲収差(c)を示す図であ
る。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of Embodiment 1 of the present invention. FIG. 2 is a sectional view of a second embodiment of the present invention. FIG. 3 is a diagram illustrating spherical aberration (a), astigmatism (b), and distortion (c) at the wide-angle end according to the first embodiment of the present invention. FIG. 4 is a diagram showing spherical aberration (a), astigmatism (b), and distortion (c) at an intermediate focal length in Example 1 of the present invention. FIG. 5 is a diagram illustrating spherical aberration (a), astigmatism (b), and distortion (c) at the telephoto end according to the first embodiment of the present invention. FIG. 6 is a diagram illustrating spherical aberration (a), astigmatism (b), and distortion (c) at the wide-angle end according to the second embodiment of the present invention. FIG. 7 is a diagram showing spherical aberration (a), astigmatism (b), and distortion (c) at an intermediate focal length in Example 2 of the present invention. FIG. 8 is a diagram showing spherical aberration (a), astigmatism (b), and distortion (c) at the telephoto end in Example 2 of the present invention.

Claims (1)

(57)【特許請求の範囲】 1.物体側から順に、全体として正の屈折力の第1レン
ズ群と、全体として負の屈折力の第2レンズ群とを有
し、広角端から望遠端への変倍に際し前記第1レンズ群
と前記第2レンズ群との群間隔を変化させるズームレン
ズにおいて、 前記第1レンズ群が物体側から順に、物体側に凸面を向
けた正メニスカス形状の第1レンズと、像側に凸面を向
けた負メニスカス形状の第2レンズと、像側に凸面を向
けた正メニスカス形状の第3レンズと、正レンズの第4
レンズとから構成されたコンパクトなズームレンズ。 2.前記第1レンズ群と前記第2レンズ群との間に絞り
が設けられ、前記絞りが、広角端から望遠端への変倍に
際して、第1レンズ群と共に移動する請求項1記載のコ
ンパクトなズームレンズ。 3.前記第3レンズ及び第4レンズ中の少なくとも1面
に、光軸から離れるに従って正の屈折力が弱くなる形状
の非球面を設けた請求項1又は2記載のコンパクトなズ
ームレンズ。 4.前記第2レンズ群が物体側から順に、像側に凸面を
向けた正メニスカスレンズと、像側に凸面を向けた負メ
ニスカスレンズとから構成される請求項1,2又は3
載のコンパクトなズームレンズ。 5.前記第2レンズ群が少なくとも1面に非球面を有す
る請求項記載のコンパクトなズームレンズ。 6.前記ズームレンズが、以下の条件(1)及び(2)
を満足する請求項1又は4記載のコンパクトなズームレ
ンズ。 0.6 <fF /fW <1.0 ……… (1) 0.7 <|fR |/fW <1.1 ……… (2) 但し、fF R は各々前記第1レンズ群及び第2レン
ズ群の焦点距離、fWは広角端における全系の焦点距離
である。
(57) [Claims] In order from the object side, the zoom lens has a first lens group having a positive refractive power as a whole and a second lens group having a negative refractive power as a whole, and the first lens group and the first lens group when zooming from a wide-angle end to a telephoto end. In a zoom lens that changes a group interval with the second lens group, the first lens group sequentially has, from the object side, a positive meniscus first lens having a convex surface facing the object side, and a convex surface facing the image side.
A negative meniscus second lens with a convex surface facing the image side
A third lens having a positive meniscus shape, and a fourth lens having a positive meniscus shape.
Compact zoom lens composed of lens and lens. 2. 2. The compact zoom according to claim 1, wherein a stop is provided between the first lens group and the second lens group, and the stop moves together with the first lens group when zooming from a wide-angle end to a telephoto end. lens. 3. 3. The compact zoom lens according to claim 1, wherein at least one of the third lens and the fourth lens has an aspheric surface having a shape whose positive refractive power becomes weaker as the distance from the optical axis increases. 4. Wherein in order from the second lens group is an object side, a positive meniscus lens having a convex surface directed toward the image side, compact zoom according to claim 1, wherein composed of a negative meniscus lens having a convex surface directed toward the image side lens. 5. 5. The compact zoom lens according to claim 4, wherein the second lens group has at least one aspheric surface. 6. The zoom lens may satisfy the following conditions (1) and (2).
Claim 1 or 4 compact zoom lens according to satisfy. 0.6 <f F / f W <1.0 (1) 0.7 <| f R | / f W <1.1 (2) where f F and f R are the first lens group and the second lens, respectively. the focal length of the group, f W is the focal length of the entire system at the wide-angle end.
JP05157096A 1996-03-08 1996-03-08 Compact zoom lens Expired - Fee Related JP3372420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05157096A JP3372420B2 (en) 1996-03-08 1996-03-08 Compact zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05157096A JP3372420B2 (en) 1996-03-08 1996-03-08 Compact zoom lens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62146264A Division JP2715385B2 (en) 1987-06-12 1987-06-12 Compact zoom lens

Publications (2)

Publication Number Publication Date
JPH08234104A JPH08234104A (en) 1996-09-13
JP3372420B2 true JP3372420B2 (en) 2003-02-04

Family

ID=12890630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05157096A Expired - Fee Related JP3372420B2 (en) 1996-03-08 1996-03-08 Compact zoom lens

Country Status (1)

Country Link
JP (1) JP3372420B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI622824B (en) 2017-01-19 2018-05-01 大立光電股份有限公司 Optical image assembly, image capturing apparatus and electronic device

Also Published As

Publication number Publication date
JPH08234104A (en) 1996-09-13

Similar Documents

Publication Publication Date Title
JP3253405B2 (en) Two-group zoom lens
US7280284B2 (en) Zoom lens
JP3584107B2 (en) Zoom lens
JP3328001B2 (en) Zoom lens
JP3363571B2 (en) Rear focus zoom lens and imaging system
JP2628633B2 (en) Compact zoom lens
JPH10221601A (en) Zoom lens
JPH11287953A (en) Zoom lens
JP4593971B2 (en) Zoom lens and imaging apparatus having the same
JP3162114B2 (en) Two-group zoom lens
JP3652179B2 (en) Zoom lens
JP3619117B2 (en) Zoom lens and optical apparatus using the same
JPH11258507A (en) Zoom lens
JP3365837B2 (en) Focusing method of 3-group zoom lens
JP3302063B2 (en) Rear focus compact zoom lens
JP3331011B2 (en) Small two-group zoom lens
JP3394624B2 (en) Zoom lens
JP2715385B2 (en) Compact zoom lens
JP3352264B2 (en) Retrofocus type lens and camera having the same
JP3369598B2 (en) Zoom lens
JP3029148B2 (en) Rear focus zoom lens
JPH0660971B2 (en) Zoom lenses
JP3268824B2 (en) Small two-group zoom lens
JP3258375B2 (en) Small two-group zoom lens
JP3084810B2 (en) telescope lens

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000118

LAPS Cancellation because of no payment of annual fees