JP3372224B2 - Surface inspection apparatus, surface inspection method, and recording medium recording surface inspection program - Google Patents

Surface inspection apparatus, surface inspection method, and recording medium recording surface inspection program

Info

Publication number
JP3372224B2
JP3372224B2 JP21743999A JP21743999A JP3372224B2 JP 3372224 B2 JP3372224 B2 JP 3372224B2 JP 21743999 A JP21743999 A JP 21743999A JP 21743999 A JP21743999 A JP 21743999A JP 3372224 B2 JP3372224 B2 JP 3372224B2
Authority
JP
Japan
Prior art keywords
flatness
analysis
surface inspection
inspection
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21743999A
Other languages
Japanese (ja)
Other versions
JP2001041736A (en
Inventor
貴靖 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP21743999A priority Critical patent/JP3372224B2/en
Publication of JP2001041736A publication Critical patent/JP2001041736A/en
Application granted granted Critical
Publication of JP3372224B2 publication Critical patent/JP3372224B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は試料の表面形状を検
査する表面検査装置、表面検査方法及び表面検査プログ
ラムを記録した記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface inspection device for inspecting the surface shape of a sample, a surface inspection method, and a recording medium recording a surface inspection program.

【0002】[0002]

【従来技術】半導体ウェア、光ディスク、磁気ディスク
等においては表面形状が製品の品質に大きく影響する。
殊にガラス又はアルミニウムディスクに磁性材料を塗布
したハードディスク(HDD)では、磁気ヘッドがディ
スク表面から数十nm程度浮上している状態でデータの
読取・記録が行われるため、表面に急激な凹凸部が存在
すると、磁気ヘッドとディスクが衝突してクラッシュし
たり、データの読取・記録が行われなくなる可能性があ
る。この場合、表面全体の平坦度を知ると同時に、急激
な形状変化の測定が重要となってくる。
2. Description of the Related Art In semiconductor wear, optical disks, magnetic disks and the like, the surface shape greatly affects the quality of products.
In particular, in a hard disk (HDD) in which a magnetic material is applied to a glass or aluminum disk, data is read and recorded while the magnetic head is levitating from the disk surface by about several tens of nm, so that the surface has a sharp uneven portion. If there is, there is a possibility that the magnetic head collides with the disk and crashes, or that reading / recording of data cannot be performed. In this case, it is important to know the flatness of the entire surface and at the same time measure abrupt shape change.

【0003】また、急激な形状変化はディスクの製造工
程上、エッジ部分に現われやすい。エッジ付近の表面形
状は、エッジ部のダレ具合を示すロールオフ(以下、R
Oという)と、エッジ部の盛り上がり具合を示すスキー
ジャンプ(以下、SJという)によって評価される。
Further, a sudden change in shape is likely to appear at the edge portion in the manufacturing process of the disk. The surface shape near the edge is a roll-off (hereinafter, R
"O") and a ski jump (hereinafter referred to as "SJ") indicating the degree of swelling of the edge portion.

【0004】従来、このような試料の表面形状を測定す
る技術として触針式の検査装置や、静電容量プローブ等
による非接触式の検査装置が知られている。触針式検査
装置は針を試料表面に直接接触させた状態で試料上を一
方向に走査させ、針の上下動から表面形状を測定する。
非接触式検査装置においても、同様にプローブを一方向
に走査させ、プローブと試料表面との距離を検出するこ
とで表面形状を測定している。
Conventionally, as a technique for measuring the surface shape of such a sample, a probe type inspection device and a non-contact type inspection device using a capacitance probe or the like are known. The stylus type inspection apparatus scans the sample in one direction with the needle in direct contact with the sample surface, and measures the surface shape from the vertical movement of the needle.
In the non-contact type inspection apparatus, the surface shape is measured by similarly scanning the probe in one direction and detecting the distance between the probe and the sample surface.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ような検査装置では検査時に針やプローブを走査させる
必要があるため、1回の走査による測定に対して1断面
しか検査することができず、検査時間が長くなる。この
ため、多くても半径方向の8断面程度しか検査しておら
ず、検査断面以外については未検査のままであり、欠陥
部を見落としてしまう可能性があった。
However, in the above-described inspection apparatus, it is necessary to scan the needle and the probe at the time of inspection, so that only one cross section can be inspected for one scanning measurement. Inspection time becomes longer. Therefore, at most, only about 8 cross sections in the radial direction were inspected, and the other than the inspected cross section was left uninspected, and there was a possibility of overlooking the defective portion.

【0006】また、触針式検査装置では試料表面に接触
して測定を行うため、試料表面に傷が付く可能性があ
る。
Further, in the stylus type inspection apparatus, since the measurement is carried out by contacting the sample surface, the sample surface may be scratched.

【0007】さらに、このような表面形状測定と全体の
平坦度測定を別の検査装置で行うことは手間であるの
で、同時に行うことが望まれている。
Further, since it is troublesome to perform such surface shape measurement and overall flatness measurement by different inspection devices, it is desired to perform them at the same time.

【0008】本発明は上記従来技術の問題点を鑑み、試
料全面に渡って急激な形状変化、特にエッジ部分の形状
変化を、容易に検査できる表面検査装置を提供すること
を技術課題とする。
In view of the above-mentioned problems of the prior art, it is an object of the present invention to provide a surface inspection apparatus capable of easily inspecting a sharp shape change over the entire surface of a sample, particularly an edge part shape change.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明は以下のような構成を備えることを特徴とす
る。
In order to solve the above problems, the present invention is characterized by having the following configuration.

【0010】(1) ディスクの表面形状を検査する表
面検査装置において、斜入射干渉方式であって位相を変
えてディスク表面と参照面で反射した光により干渉縞を
順次形成する干渉縞形成手段と、位相の異なる干渉縞の
画像を取り込む画像取得手段と、を備え平坦度の解析を
行い所定の形式で表示する平坦度解析装置と、前記ディ
スクの半径方向での領域であって、急激な形状変化が生
じやすいエッジ部の検査領域、検査領域外であって検査
領域に近傍しかつ全体撓み等に影響されない小区間の
傍領域を設定する設定手段と、近傍領域における三次元
形状データに基づいて所期する半径方向での断面の基準
腺を得て、基準腺に対する検査領域の断面方向での変位
量を得る解析手段と、該解析手段による解析結果を出力
すると共に、その解析結果と前記三次元形状データに基
づくエッジを含む平坦度の解析結果との対応関係を出力
する出力手段と、を備えたことを特徴とする。
(1) Table for inspecting surface shape of disk
In the surface inspection device, an interference fringe interference method, an interference fringe forming means for sequentially forming interference fringes by the light reflected on the disk surface and the reference surface by changing the phase, and an image acquisition means for capturing images of the interference fringes having different phases And with the flatness analysis
And a flatness analyzer that displays the data in a predetermined format.
This is the area in the radial direction of the disk, where sudden shape changes occur.
Inspection area of the edge part that is easy to bend , inspection outside the inspection area
Setting means for setting a near region of a small section that is close to the region and is not affected by the total deflection, and a reference gland of the desired radial cross section based on the three-dimensional shape data in the neighboring region. Then, the analysis means for obtaining the displacement amount in the cross-sectional direction of the inspection region with respect to the reference gland and the analysis result by the analysis means are output , and based on the analysis result and the three-dimensional shape data.
Outputs the correspondence with the flatness analysis result including edges
And an output unit that operates.

【0011】(2) (1)の表面検査装置において、
前記検査領域はロールオフ又はスキージャンプの検査領
域とし、前記解析結果と平坦度の解析結果との対応関係
は、平坦度の解析図に前記解析手段によって得られるロ
ールオフの最大値又はスキージャンプの最大値を示す位
置にマークを表示することによって得られることを特徴
とする。
(2) In the surface inspection apparatus of (1) ,
The inspection area is a roll-off or ski jump inspection area.
And the correspondence between the analysis results and the flatness analysis results.
Is characterized in that it is obtained by displaying a mark at the position indicating the maximum value of the maximum value or ski jump rolloff obtained by said analyzing means analyzing diagram of flatness.

【0012】(3) (1)の表面検査装置において、
前記検査領域はロールオフ又はスキージャンプの検査領
域とし、前記解析結果と平坦度の解析結果との対応関係
は、平坦度の解析図に前記解析手段によって得られるロ
ールオフ又はスキージャンプのデータの内からの設定さ
れた条件を充足する部分の分布を表示することによって
得られることを特徴とする。
(3) In the surface inspection apparatus of (1),
The inspection area is a roll-off or ski jump inspection area.
And the correspondence between the analysis results and the flatness analysis results.
By displaying the distribution of the portion satisfies a condition set from among the data of the roll-off or ski jump obtained by said analyzing means analyzing diagram of flatness
It is characterized by being obtained .

【0013】[0013]

【0014】[0014]

【0015】[0015]

【0016】[0016]

【0017】[0017]

【0018】[0018]

【発明の実施の形態】以下、本発明について一実施形態
を挙げ、図面に基づいて説明する。図1は表面検査装置
の要部構成図である。以下の説明では、測定試料として
HDDに使用されるガラス又はアルミニウムディスクを
対象とした場合について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a main part of a surface inspection device. In the following description, the case where a glass or aluminum disk used for an HDD is used as a measurement sample will be described.

【0019】測定光源であるHe−Neレーザ光源1から出
射したレーザ光はエキスパンダレンズ2を通過した後、
コリメータレンズ3により平行光束とされプリズム4に
入射する。プリズム4の参照面4′はピエゾ素子5によ
りディスク6の被測定面6′との距離が変えられ、参照
光の位相が変化される。
The laser light emitted from the He-Ne laser light source 1, which is the measurement light source, passes through the expander lens 2 and
The collimator lens 3 collimates the light beam and makes it enter the prism 4. The reference surface 4 ′ of the prism 4 is changed in distance from the measured surface 6 ′ of the disk 6 by the piezo element 5, and the phase of the reference light is changed.

【0020】プリズム4に入射した光の一部は参照面
4′を透過して載置台7に載置されたディスク6の被測
定面6′で反射し、再びプリズム4を通過してスクリー
ン8に向かう。一方、プリズム4に入射した光の内、参
照面4′で反射した光はスクリーン8に向かい、被測定
面6′で反射した光と干渉現象を起こし、スクリーン8
に投影される。
Part of the light incident on the prism 4 is transmitted through the reference surface 4 ', reflected by the surface 6'to be measured of the disk 6 mounted on the mounting table 7, passes through the prism 4 again, and passes through the screen 8'. Head to. On the other hand, of the light incident on the prism 4, the light reflected on the reference surface 4'is directed to the screen 8 and causes an interference phenomenon with the light reflected on the surface 6'to be measured, so that the screen 8 '
Projected on.

【0021】スクリーン8に投影された干渉縞はレンズ
9によりカメラ10の撮像面に結像し、撮像される。撮
像された干渉縞は映像信号として解析装置11に送信さ
れ、各種の演算解析が行われる。解析装置11にはキー
ボードやマウス等の入力部11a、撮影画像や解析結果
を表示するモニタ12が接続されている。13は制御部
で、レーザ光源1、ピエゾ素子5等の駆動制御を行う。
The interference fringes projected on the screen 8 are imaged by the lens 9 on the image pickup surface of the camera 10. The picked-up interference fringes are transmitted to the analysis device 11 as a video signal, and various calculation analyzes are performed. The analysis device 11 is connected to an input unit 11a such as a keyboard and a mouse, and a monitor 12 that displays captured images and analysis results. A control unit 13 controls the driving of the laser light source 1, the piezo element 5, and the like.

【0022】以上のような構成を備える表面検査装置に
おいて、その動作を図2のフローチャート図に基づいて
以下に説明する。
The operation of the surface inspection apparatus having the above structure will be described below with reference to the flowchart of FIG.

【0023】ディスク6を載置台7に載置した後、所定
の測定位置に置く。制御部13の制御によりレーザ光源
1からレーザ光が発せられ、参照面4′と被測定面6′
で反射した光とにより形成される干渉縞がスクリーン8
に投影される。また、制御部13はピエゾ素子5に電圧
を印加し、参照面4′と被測定面6′との距離を変化さ
せることで、干渉縞の位相を変化させる。こうして位相
が変化した干渉縞像がカメラ10によって撮像され、各
画像データは解析装置11内のメモリに取り込まれる。
なお、通常、位相シフト干渉法では、位相シフトの数を
4ステップ以上で行う。
After mounting the disk 6 on the mounting table 7, it is placed at a predetermined measuring position. Laser light is emitted from the laser light source 1 under the control of the control unit 13, and the reference surface 4'and the measured surface 6 '
The interference fringes formed by the light reflected by the screen 8
Projected on. The control unit 13 also applies a voltage to the piezo element 5 to change the distance between the reference surface 4'and the measured surface 6 ', thereby changing the phase of the interference fringes. The interference fringe image with the phase thus changed is captured by the camera 10, and each image data is taken into the memory in the analysis device 11.
In the phase shift interferometry, the number of phase shifts is usually 4 steps or more.

【0024】解析装置11はメモリに取り込んだ位相の
異なる複数の干渉縞画像にノイズ除去等の周知の処理を
施した後、位相シフト解析によって得られる振幅を基に
ディスク領域を決定し、これを基に位相の繋ぎ合わせを
行う。そしてこの位相データを高さデータに変換するこ
とによって被測定面6′の表面三次元形状を算出する。
なお、この位相シフト法による解析の詳細は、本出願人
による特開平10−221033号公報を参照された
い。算出された三次元形状は、鳥瞰図や等高線図等でモ
ニタ12に表示され、検者は被測定面6′の全体の平坦
度を評価できる。
The analyzing device 11 performs a well-known process such as noise removal on a plurality of interference fringe images having different phases stored in the memory and then determines a disk area based on the amplitude obtained by the phase shift analysis. The phases are joined to each other. Then, by converting this phase data into height data, the surface three-dimensional shape of the measured surface 6'is calculated.
For details of the analysis by the phase shift method, refer to Japanese Patent Application Laid-Open No. 10-221033 by the present applicant. The calculated three-dimensional shape is displayed on the monitor 12 in a bird's-eye view or a contour map, and the examiner can evaluate the flatness of the entire surface 6'to be measured.

【0025】次に、SJ/ROの評価を行う場合につい
て説明する。入力部11aにより、モニタ12に表示さ
れるSJ/ROの測定項目を選択し、測定条件の入力と
して、半径方向の断面における測定基準線作成のための
半径位置r1,r2、及びSJ/ROの検査領域の半径
位置r3,r4を入力する。r1,r2,r3,r4は
それぞれディスク中心からの距離を示す。例えば、外周
エッジ部のSJ/ROの測定では、r4は最外周にと
り、r3はそこから3mm内側にとる。r1,r2は検
査領域r3−r4間に近接する近傍領域として、r2は
r3と同じ距離に、r1はr2から4mm内側にとる。
なお、これらr1,r2,r3,r4を固定値として予
めプログラムに組込んでおき、任意位置を検査する場合
のみ、数値変更を行うようにしてもよい。
Next, the case of evaluating SJ / RO will be described. The SJ / RO measurement items displayed on the monitor 12 are selected by the input unit 11a, and the radial positions r1 and r2 for creating the measurement reference line in the radial cross section and the SJ / RO are selected as input of the measurement conditions. Input the radial positions r3 and r4 of the inspection area. r1, r2, r3 and r4 indicate the distances from the center of the disc. For example, in the measurement of SJ / RO of the outer peripheral edge portion, r4 is set to the outermost periphery and r3 is set to 3 mm inward. r1 and r2 are neighboring areas that are close to each other between the inspection areas r3 and r4, r2 is at the same distance as r3, and r1 is located 4 mm inward from r2.
Note that these r1, r2, r3, and r4 may be previously incorporated into the program as fixed values, and the numerical values may be changed only when inspecting an arbitrary position.

【0026】この条件入力によってSJ/ROの解析が
行われる。以下、図3の断面形状の模式図を基にSJ/
ROの解析について説明する。まず、測定開始の角度θ
1における断面について、半径位置r1,r2での表面
形状位置h1,h2を繋ぐ基準線Lを求める。この基準
線Lはディスク半径方向の断面でのSJ/RO算出の基
準となり、基準線Lに対する凸側偏位量をSJ値、基準
線Lに対する凹側偏位量をRO値として求める。ディス
ク表面がなだらかに変化していれば磁気ヘッドは追従で
きるが、表面が急激に変化していると、磁気ヘッドとデ
ィスクのクラッシュが生じたり、データの読取・記録が
行われなくなる。よって、基準線Lを作成するr1,r
2を検査領域r3〜r4の近傍で、かつ磁気ヘッドの追
従特性に応じた小区間で取ることにより、ディスク全体
の撓み等に影響されず、検査領域の急激な変化の程度を
測定することができる。また、基準線Lはh1〜h2間
の最小二乗直線として得てもよい。
By inputting this condition, the SJ / RO is analyzed. Below, based on the schematic diagram of the cross-sectional shape of FIG.
The RO analysis will be described. First, the measurement start angle θ
For the cross section at 1, the reference line L connecting the surface shape positions h1 and h2 at the radial positions r1 and r2 is obtained. The reference line L serves as a reference for SJ / RO calculation in the cross section in the disk radial direction, and the convex side displacement amount with respect to the reference line L is obtained as an SJ value and the concave side displacement amount with respect to the reference line L is obtained as an RO value. If the surface of the disk changes gently, the magnetic head can follow it, but if the surface changes suddenly, the magnetic head and the disk will crash or data will not be read or recorded. Therefore, r1, r that creates the reference line L
By taking 2 in the vicinity of the inspection areas r3 to r4 and in a small section according to the tracking characteristics of the magnetic head, it is possible to measure the degree of abrupt change of the inspection area without being affected by the deflection of the entire disk. it can. Further, the reference line L may be obtained as a least squares straight line between h1 and h2.

【0027】次に、基準線Lに対する表面形状の差(偏
位量)Δhを検査領域であるr3〜r4の間で求める。
r3〜r4の領域での偏位量Δhを順に算出した後、こ
の断面内でのSJ値及びRO値の最大値となるΔhmax
(プラスの最大値)及びΔhm in(マイナスの最大値)
を各々SJ1及びRO1とし、それぞれSJmax,ROmax
として記憶する。
Next, the difference (displacement amount) Δh in the surface shape with respect to the reference line L is determined between the inspection areas r3 to r4.
After sequentially calculating the deviation amount Δh in the region of r3 to r4, Δh max that becomes the maximum value of the SJ value and the RO value in this cross section
(Plus the maximum value) and Δh m in (the maximum value of minus)
Be SJ 1 and RO 1 , respectively, and SJ max and RO max , respectively.
Memorize as.

【0028】角度θ1における断面でのSJmax(S
1)及びROmax(RO1)を算出したら、次の角度θ
2の断面情報を抽出し、その断面内でr1,r2による
基準線Lの算出後、上記同様にΔhmax及びΔhminを算
出し、それぞれSJ2及びRO2とする。そして、S
2,RO2と先に記憶したSJmax,ROmaxを比較し、
値の大きいほうをSJmax,ROmaxとして更新記憶す
る。
SJ max (S
Once J 1 ) and RO max (RO 1 ) have been calculated, the following angle θ
After the cross-section information of No. 2 is extracted and the reference line L is calculated by r1 and r2 in the cross-section, Δh max and Δh min are calculated in the same manner as above, and they are SJ 2 and RO 2 , respectively. And S
Compare J 2 and RO 2 with the previously stored SJ max and RO max ,
The larger value is updated and stored as SJ max and RO max .

【0029】以下、断面情報を抽出する角度θを順次変
更し、各角度毎における断面についてSJ値及びRO値
を算出し、SJmax及びROmaxと比較、更新すること
で、全周に対するSJmax及びROmaxを得る。このよう
にして、干渉計から得られる三次元表面形状データを基
に解析することで、容易に試料全面に対するSJ
max値、ROmax値を得ることができる。
Hereinafter, the angle θ for extracting the cross section information is sequentially changed, the SJ value and the RO value are calculated for the cross section at each angle, and SJ max and RO max are compared and updated to obtain the SJ max for the entire circumference. And RO max . In this way, by performing analysis based on the three-dimensional surface shape data obtained from the interferometer, it is possible to easily perform SJ on the entire surface of the sample.
The max value and the RO max value can be obtained.

【0030】なお、解析を行う断面の角度は所定角度毎
(例えば、1度毎)で行ってもよいが、本実施形態では
外側端部EOが存在する画素毎に、その画素とディスク
中心Oと結ぶ直線を測定断面として解析を行うように構
成している。
The angle of the cross section to be analyzed may be set at a predetermined angle (for example, every 1 degree), but in the present embodiment, for each pixel in which the outer end portion EO exists, the pixel and the disk center O. The straight line connecting with is used as the measurement cross section for analysis.

【0031】こうして全周に対するSJmax及びROmax
が解析されると、モニタ12の画面上には、図4(a)
及び(b)に示すように、SJmax、ROmaxを持つ各断
面の断面形状が表示される。各表示には各断面形状の角
度θ、SJmax値、ROmax値等が表示される。各断面の
SJmax値、ROmax値を持つ位置は、それぞれマーク2
0a、20bにより示される。なお、図4(a)及び
(b)の断面形状の表示においては、縦軸の水平基準
(0の位置)は試料表面形状の全データを基に最小二乗
法により求めた仮想平面を基準として表示している。
Thus, SJ max and RO max for the entire circumference
4A is displayed on the screen of the monitor 12 when is analyzed.
And as shown in (b), the cross-sectional shape of each cross-section having SJ max and RO max is displayed. The angle θ, SJ max value, RO max value, etc. of each cross-sectional shape are displayed on each display. The positions having the SJ max value and RO max value of each cross section are marked 2 respectively.
Indicated by 0a, 20b. In the display of the cross-sectional shapes of FIGS. 4A and 4B, the horizontal reference of the vertical axis (position 0) is based on the virtual plane obtained by the least square method based on all the data of the sample surface shape. it's shown.

【0032】また、図5に示すように、平坦度の解析結
果として表示された等高線図30上には、SJmaxの位
置がマーク31aで、ROmaxの位置がマーク31bで
示される。
As shown in FIG. 5, the position of SJ max is indicated by the mark 31a and the position of RO max is indicated by the mark 31b on the contour diagram 30 displayed as the flatness analysis result.

【0033】このように解析された結果に対し、さらに
入力部11aによって所望する角度を指定すれば、解析
装置11によって指定された角度θにおける断面形状、
SJ max値、ROmax値が計算され、任意角度での結果が
モニタ12に表示される。
With respect to the results analyzed in this way,
If you specify the desired angle with the input section 11a,
Cross-sectional shape at an angle θ specified by the device 11,
SJ maxValue, ROmaxThe value is calculated and the result at any angle is
It is displayed on the monitor 12.

【0034】また、解析結果としては、次のように各種
の変更が可能である。例えば、SJ値やRO値が0.1
μm以上の部分を知りたいときには、この条件を入力す
ることにより、図5に示した等高線図30上に、その分
布状態が表示されるようにする。
As the analysis result, various changes can be made as follows. For example, if the SJ value or RO value is 0.1
When it is desired to know the portion of μm or more, the condition is input so that the distribution state is displayed on the contour diagram 30 shown in FIG.

【0035】以上のようにしてモニタ12に表示される
断面形状やSJ値,RO値によって、検者はディスクの
表面形状を評価することができる。また、全体形状(三
次元形状)に対するSJmax、ROmaxの位置が表示され
るので、平坦度とSJ,ROとの関連性も知ることがで
きる。さらに、全面に対するSJ値,RO値の結果を基
にした分布図を作成したり、統計を取ることにより生産
管理や生産工程の改善等に利用することができる。
As described above, the examiner can evaluate the surface shape of the disk based on the sectional shape, SJ value, and RO value displayed on the monitor 12. Further, since the positions of SJ max and RO max with respect to the overall shape (three-dimensional shape) are displayed, it is possible to know the relationship between the flatness and SJ, RO. Further, it can be used for production management, improvement of production process, etc. by creating a distribution chart based on the result of SJ value and RO value on the entire surface and collecting statistics.

【0036】[0036]

【発明の効果】以上説明したように本発明によれば、試
料の平坦度の検査と、試料エッジ部の形状の変化の度合
いを検査する検査とを1台の機械で短時間に行うことが
できる。また、平坦度とロールオフ又はスキージャンプ
との関連性を知ることができる。
As described above, according to the present invention, the inspection of the flatness of the sample and the inspection of the degree of change of the shape of the edge portion of the sample can be performed by one machine in a short time. it can. Also flatness and roll-off or ski jump
You can know the relationship with.

【図面の簡単な説明】[Brief description of drawings]

【図1】表面検査装置の要部構成図である。FIG. 1 is a configuration diagram of a main part of a surface inspection device.

【図2】表面検査のフローチャート図である。FIG. 2 is a flowchart of surface inspection.

【図3】SJ/ROの検出方法の説明図である。FIG. 3 is an explanatory diagram of an SJ / RO detection method.

【図4】断面形状の表示例である。FIG. 4 is a display example of a cross-sectional shape.

【図5】等高線図上のSJ/ROの表示例である。FIG. 5 is a display example of SJ / RO on a contour map.

【符号の説明】[Explanation of symbols]

4′ 参照面 6 ディスク 6′ 被測定面 11 画像処理装置 12 モニタ 13 制御部 20a,20b マーク 31a,31b マーク L 基準線 4'reference plane 6 discs 6'Measured surface 11 Image processing device 12 monitors 13 Control unit 20a, 20b mark 31a and 31b marks L reference line

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ディスクの表面形状を検査する表面検査
装置において、斜入射干渉方式であって位相を変えて
ィスク表面と参照面で反射した光により干渉縞を順次形
成する干渉縞形成手段と、位相の異なる干渉縞の画像を
取り込む画像取得手段と、を備え平坦度の解析を行い所
定の形式で表示する平坦度解析装置と、前記ディスクの
半径方向での領域であって、急激な形状変化が生じやす
いエッジ部の検査領域、検査領域外であって検査領域に
近傍しかつ全体撓み等に影響されない小区間の近傍領域
を設定する設定手段と、近傍領域における三次元形状デ
ータに基づいて所期する半径方向での断面の基準腺を得
て、基準腺に対する検査領域の断面方向での変位量を得
る解析手段と、該解析手段による解析結果を出力する
共に、その解析結果と前記三次元形状データに基づくエ
ッジを含む平坦度の解析結果との対応関係を出力する
力手段と、を備えたことを特徴とする表面検査装置。
1. A surface inspection for inspecting a surface shape of a disk.
In the device, de changing the phase a oblique incidence interferometry
The flatness analysis is performed by the interference fringe forming means for sequentially forming the interference fringes by the light reflected on the disc surface and the reference surface and the image acquisition means for capturing the images of the interference fringes having different phases.
The flatness analyzer that displays in a fixed format and the disc
Area in the radial direction, where sudden shape changes are likely to occur
Test areas have an edge portion, the inspection area be outside the examination region
Setting means for setting a neighborhood area of a small section that is close to and is not affected by the overall deflection, etc., and a reference gland of a desired radial cross section is obtained based on the three-dimensional shape data in the neighborhood area, and inspection is performed on the reference gland. analyzing means for obtaining the amount of displacement in the cross direction of the area, and outputs an analysis result by said analysis means
Both are based on the analysis results and the 3D shape data.
And a means for outputting a correspondence relationship with the analysis result of the flatness including the edge.
【請求項2】 請求項1の表面検査装置において、前記
検査領域はロールオフ又はスキージャンプの検査領域と
し、前記解析結果と平坦度の解析結果との対応関係は、
平坦度の解析図に前記解析手段によって得られるロール
オフの最大値又はスキージャンプの最大値を示す位置に
マークを表示することによって得られることを特徴とす
る表面検査装置。
2. The surface inspection apparatus according to claim 1, wherein
The inspection area is the same as the inspection area for roll-off or ski jump.
However, the correspondence between the analysis result and the flatness analysis result is
A surface inspection apparatus characterized by being obtained by displaying a mark on a flatness analysis diagram at a position showing the maximum value of roll-off or the maximum value of ski jump obtained by the analysis means.
【請求項3】 請求項1の表面検査装置において、前記
検査領域はロールオフ又はスキージャンプの検査領域と
し、前記解析結果と平坦度の解析結果との対応関係は、
平坦度の解析図に前記解析手段によって得られるロール
オフ又はスキージャンプのデータの内からの設定された
条件を充足する部分の分布を表示することによって得ら
れることを特徴とする表面検査装置。
3. The surface inspection apparatus according to claim 1, wherein
The inspection area is the same as the inspection area for roll-off or ski jump.
However, the correspondence between the analysis result and the flatness analysis result is
It is obtained by displaying the distribution of the portion satisfying the set condition from the roll-off or ski-jump data obtained by the analyzing means on the flatness analysis chart .
Surface inspection apparatus characterized by being.
JP21743999A 1999-07-30 1999-07-30 Surface inspection apparatus, surface inspection method, and recording medium recording surface inspection program Expired - Fee Related JP3372224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21743999A JP3372224B2 (en) 1999-07-30 1999-07-30 Surface inspection apparatus, surface inspection method, and recording medium recording surface inspection program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21743999A JP3372224B2 (en) 1999-07-30 1999-07-30 Surface inspection apparatus, surface inspection method, and recording medium recording surface inspection program

Publications (2)

Publication Number Publication Date
JP2001041736A JP2001041736A (en) 2001-02-16
JP3372224B2 true JP3372224B2 (en) 2003-01-27

Family

ID=16704258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21743999A Expired - Fee Related JP3372224B2 (en) 1999-07-30 1999-07-30 Surface inspection apparatus, surface inspection method, and recording medium recording surface inspection program

Country Status (1)

Country Link
JP (1) JP3372224B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4464033B2 (en) * 2002-06-13 2010-05-19 信越半導体株式会社 Semiconductor wafer shape evaluation method and shape evaluation apparatus
JP5234740B2 (en) * 2007-02-20 2013-07-10 Hoya株式会社 Magnetic disk substrate manufacturing method and magnetic disk manufacturing method
SG192516A1 (en) 2007-02-20 2013-08-30 Hoya Corp Magnetic disk substrate, magnetic disk, and magnetic disk device

Also Published As

Publication number Publication date
JP2001041736A (en) 2001-02-16

Similar Documents

Publication Publication Date Title
JP4351522B2 (en) Pattern defect inspection apparatus and pattern defect inspection method
KR101489030B1 (en) Accurate Image Acqusition for structured-light System For Optical Shape And Positional Measurements
US5818592A (en) Non-contact optical glide tester
KR100266439B1 (en) Optical device for high speed defect analysis
US7860297B2 (en) Method and apparatus for detecting the deformation of objects
JP2011523459A (en) Vision system for scan planning of ultrasound examination
JP2018528397A (en) Interference roll-off measurement using static fringe pattern
JP2000275182A (en) Apparatus and method for inspecting disk-shaped recording medium
JPH09507293A (en) Shape measuring system
US7435941B2 (en) Methods for measuring optical characteristics by differential diffractive scanning
JP3372224B2 (en) Surface inspection apparatus, surface inspection method, and recording medium recording surface inspection program
US5408305A (en) Method and apparatus for analyzing nodal interference patterns vibrationally induced in semi-monocoque structure
TW200938803A (en) Device and method for testing thickness and gaps of transparent objects by means of dual optical probes
JP3228458B2 (en) Optical three-dimensional measuring device
JP6196841B2 (en) Transmitted wavefront measuring apparatus and transmitted wavefront measuring method
US5142588A (en) Method of and apparatus for measuring track displacement on a magnetic tape
US5703684A (en) Apparatus for optical differential measurement of glide height above a magnetic disk
JP4710630B2 (en) Lens measuring device and measuring method
JP2005024505A (en) Device for measuring eccentricity
CN205562427U (en) Optical element surface defect detecting device of reflection -type synthetic aperture digital holographic art
JP3863408B2 (en) Magnetic head slider inspection device
Alvarez et al. Toward online non-contact roughness profile measurements with a sensor based on conoscopic holography: current developments
WO2024034067A1 (en) Sample surface quality management device
JPH10122833A (en) Surface measuring equipment
JP2950579B2 (en) Method and apparatus for measuring toroidal surface

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees