JP3371209B2 - Ultra-low frequency vibration noise prevention device for vibration equipment - Google Patents

Ultra-low frequency vibration noise prevention device for vibration equipment

Info

Publication number
JP3371209B2
JP3371209B2 JP01842192A JP1842192A JP3371209B2 JP 3371209 B2 JP3371209 B2 JP 3371209B2 JP 01842192 A JP01842192 A JP 01842192A JP 1842192 A JP1842192 A JP 1842192A JP 3371209 B2 JP3371209 B2 JP 3371209B2
Authority
JP
Japan
Prior art keywords
vibration
frequency
control amount
difference
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01842192A
Other languages
Japanese (ja)
Other versions
JPH05188978A (en
Inventor
正純 塩田
季延 内田
栄助 沼口
保明 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tobishima Corp
Original Assignee
Tobishima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tobishima Corp filed Critical Tobishima Corp
Priority to JP01842192A priority Critical patent/JP3371209B2/en
Publication of JPH05188978A publication Critical patent/JPH05188978A/en
Application granted granted Critical
Publication of JP3371209B2 publication Critical patent/JP3371209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Combined Means For Separation Of Solids (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、泥水シールド工事など
で使用される振動篩機等の振動機器から発生する超低周
波の振動音を防止する装置に関する。 【0002】 【従来の技術】泥水シールド工事等で使用されている振
動篩機は、篩網を一定の振動数で振動させて材料を篩い
分けるもので、該篩網上に充分な材料が乗った状態で
は、一枚の大きな中実の板が振動しているのと同じであ
り、その振動のストロークは数mmにも達し、発生する
振動音は20Hz以下の超低周波音となる。このような
超低周波音は、作業現場の周辺住民に対し不快感を与え
たり、窓や戸などの建具をがたつかせる等の弊害をもた
らしている。特に、泥水シールド工事では複数台の振動
篩機を同時稼働させることが多いため、複数の振動音が
重畳してうなりを生じ、その悪影響は大きかった。 【0003】従来、上記のような超低周波音に対する騒
音対策として、図9及び図10に示すように振動篩機全
体を堅牢な防音カバーaで覆い、篩網bの上下に生ずる
逆位相の音圧が互いに相殺し合うようにして、超低周波
音が防音カバーaの外方へ伝播するのを軽減する方法と
か、又は実公平3−23341号公報に記載されている
ように、振動篩機の背板に大きい開口部を設けて振動音
の発生の低減化を図る方法が提案されている。 【0004】しかし、防音カバーで覆う方法は次のよう
な問題点があった。 防音カバー自体が、振動篩機の
振動そのもの及び音圧で振動してしまわないような充分
に強度をもった構造にしなければならないため、大掛か
りな設備となる。 振動篩機へ材料を供給・排出する
ためのコンベア用の出入り口が必要になるため、防音カ
バーで完全に覆うことが困難な場合が多い。 防音カ
バーが、振動篩機のメンテナンスや篩い状況の監視など
の邪魔になる。 【0005】また、振動篩機の背板に開口部を設ける方
法では、機械稼働状況による振動パターン(周期、位
相、振幅等)の変動に対して一律に振動音発生の低減を
図ることが困難であり、しかも充分な低減効果を期待で
きなく、また振動篩機の機械的強度が弱くなる等の問題
がある。 【0006】そこで、本発明の目的は、振動機器の振動
パターンが変動しても、その変動に時々刻々に対応して
リアルタイムで超低周波の振動音の低減を図ることがで
き、しかもその低減効果が高い超低周波振動音防止装置
を提供することにある。 【0007】本発明の超低周波振動音防止装置は、モー
タ等の駆動源で駆動されて振動音を発生する振動篩機等
の振動機器に対して併置され、同じくモータ等の駆動源
で駆動されてほぼ同等の振動音を発生する付加振動装置
と、これら振動機器及び付加振動装置の振動をそれぞれ
電気信号A・Bとして検出する第1及び第2の振動セン
サと、これら振動センサからの電気信号A・Bの超低周
波分だけを抽出するローパスフィルタと、その抽出され
た超低周波の両信号A・Bの周波数fA ・fBの差Δf
を算出する周波数差演算手段と、その周波数差Δfに応
じた制御量ΔCを求める第1の制御量演算手段と、上記
電気信号Aの位相に対する上記電気信号Bの位相差ΔP
を算出する位相差演算手段と、その位相差ΔPに応じた
制御量ΔDを求める第2の制御量演算手段と、上記付加
振動装置の駆動源の回転数を上記制御量ΔCに従って制
御した後、上記ΔDに従って制御する回転数制御手段と
を備えてなる。 【0008】そして、前記周波数差演算手段と前記第1
の制御量演算手段による処理では、周波数差Δfが0で
あるか否か判定して、0でないときは、周波数差Δfに
応じた制御量ΔCを算出した後、この制御量ΔCに従い
前記回転数制御手段にて付加制御装置の駆動源を制御
し、その制御後、両信号A・Bの周波数差Δfを再び算
出して、周波数差Δfが0になるまで同じ処理を繰り返
す。また、前記位相差演算手段と前記第2の制御量演算
手段による処理では、位相差ΔPが180°であるか否
か判定し、180°でなければ、周波数差Δfの正負に
従い信号Bの周波数を一定の周波数+f0 又は−f0 だ
けずらしておいてから、(ΔP−180°)に応じた制
御量ΔDを算出して、この制御量ΔDに従い前記回転数
制御手段にて付加制御装置の駆動源の回転数を制御し、
その制御後、両信号A・Bの位相差ΔPを再び算出し
て、位相差ΔPが180°になるまで同じ処理を繰り返
す。 【0009】 【作用】今、振動機器から発生する振動音を図7におい
て単純化して正弦波として表すと、この振動音Faに対
して、それと逆位相(位相差が180°)の同じ周波数
で同じ振幅の別の振動音Fbを付加すれば、これら振動
音Fa・Fbは互いに打ち消し合う。 【0010】本発明はこのような原理に基づき、振動音
防止対象の振動機器に対して、それと同等の振動音を発
生する付加振動装置を併置し、該付加振動装置を一種の
ダイポール音源として作用させる。そして、そのダイポ
ール音源となる付加振動装置の振動が、振動機器の振動
パターンの変動に時々刻々に対応できるように、これら
振動機器と付加振動装置の振動を電気信号として検出
し、その超低周波分だけを抽出して位相差を求め、それ
が常に逆位相(180°)となるように付加振動装置の
駆動源を自動制御する。例えば、その駆動源がモータで
ある場合には、モータの回転数を制御する。また、振動
機器の振動の周波数と付加振動装置の振動の周波数とが
ずれたならば、後者の振動を前者の振動に一致させるべ
く同様に制御する。 【0011】 【実施例】以下、本発明の一実施例を図面に基づき詳細
に説明する。図1に泥水シールド工事で使用される振動
篩機に対して適用した例を示す。作業現場の作業建屋1
の地下室2内において、防振台3上に、振動音の発生を
防止しようとする対象の振動篩機4が設置されている場
合、該振動篩機4と実質的に同じ構造の振動篩機を付加
振動装置5として防振台3上に併置する。 【0012】図2は本発明による振動音防止装置の概要
構成を示す。振動篩機4及び付加振動装置5に公知の振
動センサ6・7がそれぞれ取り付けられ、これら振動篩
機4及び付加振動装置5の振動は、それぞれの振動セン
サ6・7によりアナログ電気信号として検出される。
今、その検出されたアナログ電気信号をそれぞれA・B
とすると、これら信号A・Bは波形整形部8で波形整形
され、入力部9でアナログ/デジタル変換された後、C
PUを含む演算制御部10へ入力される。振動センサ6
・7は、振動篩機4及び付加振動装置5の機械的振動を
直接又は間接的に電気信号として検出できればよく、そ
の検出方式の如何は問わない。 【0013】演算制御部10に入力された信号A・Bは
その周波数及び位相をデジタル量にして比較され、該演
算制御部10において、信号Aに対する信号Bの周波数
差及び位相差に応じた制御量が算出される。そして、そ
の制御量は、制御信号出力部11よりアナログ電気信号
にして付加振動装置5へ出力され、該付加振動装置5が
自動制御、つまり振動篩機4の振動音と相殺するような
振動音を発生するように制御される。 【0014】図3は、本発明による超低周波振動音防止
装置を図2より具体的に示したブロック図である。振動
篩機4及び付加振動装置5は、それぞれモータ12・1
3の回転により篩網(図示せず)を振動させる。振動篩
機4は材料を現実に篩網で篩分けるように使用される
が、付加振動装置5は、上記のように構造は振動篩機4
と同じであっても、それと同等の振動音を発生する一種
のダイポール音源として使用し、篩いの目的には使用し
ない。モータ12・13は、それぞれインバータ14・
15により回転数を任意に制御できるようになってい
る。なお、付加振動装置5は専用のものを使用しても良
い。また、振動篩機4及び付加振動装置5はモータ12
・13以外の駆動源で振動をする構造のものであっても
構わない。 【0015】振動篩機4の振動センサ6及び付加振動装
置5の振動センサ7からのアナログ電気信号は、増幅器
16・17によりそれぞれ増幅された後、ローパスフィ
ルタ18により超低周波分(上記のように20Hz以
下)だけ抽出される。そして、これら両信号A・Bは、
A/Dコンバータ19によりそれぞれデジタル信号に変
換されてコンピュータ20へ入力される。 【0016】コンピュータ20は、入力した信号A・B
をデジタル処理してそれらの周波数、周波数差及び位相
差を求め、信号Aの周波数に対して信号Bの周波数に差
があるときはその差に応じた制御量(デジタル量)C、
また位相差があるときはその差に応じた制御量(デジタ
ル量)Dを出力する。その出力された制御量C・Dは、
D/Aコンバータ21によりアナログ電圧信号に変換さ
れて付加振動装置5のインバータ15に入力され、モー
タ7の回転数が自動制御される。 【0017】図4から図6にコンピュータ20において
行われる演算及び制御処理の流れを示す。図4はメイン
ルーチンで、これがスタートとすると、先ずステップ5
0において超低周波の上記信号Aの周波数fA と信号B
の周波数fB を求め、その求めた周波数fA とfB とが
一致しているか否かステップ51で判定する。不一致で
あれば、ステップ52で図5の周波数同調サブルーチン
の処理を行った後、ステップ53で図6の位相同調サブ
ルーチンの処理を行う。fA とfB とが一致していれ
ば、周波数同調サブルーチンを経ずに位相同調サブルー
チンの処理を行う。この後、ステップ54で停止指令が
あるか否か判定し、停止指令がなければステップ50・
51・52・53の処理、又は50・51・53の処理
を一定の周期で繰り返す。 【0018】図5の周波数同調サブルーチンでは、ステ
ップ60で信号Aの周波数fA と信号Bの周波数fB と
の差Δfを算出し、ステップ61でその差Δfが0であ
るか否か、つまり信号Aの周波数fA に対して信号Bの
周波数fB が一致しているか否かを判定する。不一致の
ときは、ステップ62でΔfに応じた制御量ΔCを算出
した後、ステップ63においてこの制御量ΔCに従って
付加制御装置5のモータ13の回転数を制御する。その
制御後、ステップ60に戻って両信号A・Bの周波数差
Δfを再び算出し、Δfが0になれば処理を終える。 【0019】図6の位相同調サブルーチンでは、ステッ
プ70で信号Aに対する信号Bの位相差ΔPを算出し、
ステップ71でその差ΔPが180°、つまり逆位相で
あるか否か判定する。逆位相でなければ、ステップ72
でΔfの正負に従い信号Bの周波数を一定の周波数+f
0 又は−f0 だけずらしておいてから、ステップ73で
(ΔP−180°)に応じた制御量ΔDを算出し、ステ
ップ74においてこの制御量ΔDに従って付加制御装置
5のモータ13の回転数を制御する。その制御後、ステ
ップ70に戻って両信号A・Bの位相差ΔPを再び算出
し、ΔPが180°になれば処理を終える。 【0020】振動篩機4と付加振動装置5との間で上記
のように周波数同調及び位相同調が成立するように、付
加制御装置5のモータ13の回転数を時々刻々に制御す
れば、振動篩4の振動音と付加振動装置5の振動音とは
常に相殺する関係となり、超低周波音による弊害を防止
できる。実験によれば、振動篩機4から発生している超
低周波音が14Hzのとき、図1において作業建屋1内
において約15dB、屋外で約5〜10dBの低減効果
があり、周辺家屋における建具等のガタツキが大幅に軽
減された。図8は、本発明方法を実施した場合と実施し
ない場合の音圧を測定点を変えて測定した実測データを
示す。 【0021】 【発明の効果】本発明によれば、振動音防止対象の振動
機器に対して、それと同等の振動音を発生する付加振動
装置を併置し、該付加振動装置を一種のダイポール音源
として作用させて振動機器の超低周波の振動音と相殺さ
せるため、振動機器の振動パターンが変動しても、その
変動に時々刻々に対応してリアルタイムで振動音の低減
を図ることができ、しかもその低減効果が高く、かつ経
済的に超低周波音の発生を防止できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for preventing an ultra-low frequency vibration sound generated from a vibration device such as a vibrating sieve used in muddy water shield construction or the like. . 2. Description of the Related Art Vibrating sifters used in muddy water shield construction and the like vibrate a sieve at a constant frequency to sifte materials, and a sufficient amount of material is placed on the sieve. In this state, it is the same as one large solid plate vibrating, the stroke of the vibration reaches several millimeters, and the generated vibration sound is a very low frequency sound of 20 Hz or less. Such an ultra-low frequency sound causes discomfort to residents in the vicinity of the work site, and causes adverse effects such as rattling of fittings such as windows and doors. In particular, in muddy water shield construction, a plurality of vibrating sieves are often operated simultaneously, so that a plurality of vibration sounds are superimposed to generate a beat, which has a great adverse effect. Conventionally, as a countermeasure against noise against the very low frequency sound as described above, as shown in FIGS. 9 and 10, the entire vibrating sieve is covered with a robust soundproof cover a, and opposite phases generated above and below the sieve net b. A method of reducing the transmission of the extremely low frequency sound to the outside of the soundproof cover a by making the sound pressures cancel each other, or a vibration sieve as described in Japanese Utility Model Publication No. 3-23341. A method has been proposed in which a large opening is provided in the back plate of the machine to reduce the generation of vibration noise. However, the method of covering with a soundproof cover has the following problems. Since the soundproof cover itself must have a structure having sufficient strength so as not to be vibrated by the vibration itself of the vibrating sieve and the sound pressure, the equipment becomes large-scale. Since a conveyor entrance for supplying and discharging the material to and from the vibrating sieve is required, it is often difficult to completely cover with a soundproof cover. The soundproof cover obstructs maintenance of the vibrating screen machine and monitoring of the screen state. In the method of providing an opening in the back plate of a vibrating sieve, it is difficult to uniformly reduce the generation of vibration noise with respect to fluctuations in vibration patterns (period, phase, amplitude, etc.) due to machine operating conditions. However, there is a problem that a sufficient reduction effect cannot be expected, and the mechanical strength of the vibrating sieve becomes weak. Accordingly, an object of the present invention is to enable real-time reduction of ultra-low frequency vibration sound in response to the fluctuation even if the vibration pattern of the vibration device fluctuates. It is an object of the present invention to provide an extremely low frequency vibration sound preventing device having a high effect. [0007] The ultra-low frequency vibration sound preventing apparatus of the present invention is provided in parallel with a vibration device such as a vibrating sieve that is driven by a driving source such as a motor to generate vibration noise, and is also driven by a driving source such as a motor. Additional vibration devices that generate substantially the same vibration sound, first and second vibration sensors that detect the vibrations of these vibration devices and the additional vibration devices as electric signals A and B, respectively, and an electric signal from these vibration sensors. A low-pass filter that extracts only the very low frequency components of the signals A and B, and the difference Δf between the frequencies fA and fB of the extracted very low frequency signals A and B.
, A first control amount calculating means for obtaining a control amount ΔC corresponding to the frequency difference Δf, and a phase difference ΔP of the electric signal B with respect to the phase of the electric signal A.
, A second control amount calculating means for obtaining a control amount ΔD corresponding to the phase difference ΔP, and controlling the rotation speed of the drive source of the additional vibration device according to the control amount ΔC. Rotation speed control means for controlling according to ΔD. Then, the frequency difference calculating means and the first
In the processing by the control amount calculating means, it is determined whether or not the frequency difference Δf is 0, and if not, a control amount ΔC is calculated in accordance with the frequency difference Δf. The control means controls the drive source of the additional control device. After the control, the frequency difference Δf between the two signals A and B is calculated again, and the same processing is repeated until the frequency difference Δf becomes zero. In the processing by the phase difference calculating means and the second control amount calculating means, it is determined whether or not the phase difference ΔP is 180 °, and if not, the frequency of the signal B is changed according to the sign of the frequency difference Δf. Is shifted by a fixed frequency + f0 or -f0, a control amount ΔD corresponding to (ΔP−180 °) is calculated, and the rotation speed control means drives the drive source of the additional control device according to the control amount ΔD. Control the rotation speed of
After the control, the phase difference ΔP between the two signals A and B is calculated again, and the same processing is repeated until the phase difference ΔP becomes 180 °. Now, when the vibration sound generated from the vibration device is simplified as shown in FIG. 7 and represented as a sine wave, the vibration sound Fa has a phase opposite to that of the vibration sound Fa (the phase difference is 180 °) at the same frequency. If another vibration sound Fb having the same amplitude is added, these vibration sounds Fa and Fb cancel each other. According to the present invention, based on such a principle, an additional vibration device that generates a vibration sound equivalent to the vibration device to be subjected to vibration sound prevention is provided in parallel, and the additional vibration device acts as a kind of dipole sound source. Let it. Then, the vibration of the vibration device and the additional vibration device is detected as an electric signal so that the vibration of the vibration device serving as the dipole sound source can respond to the fluctuation of the vibration pattern of the vibration device every moment. The drive source of the additional vibration device is automatically controlled so that only the component is extracted to obtain the phase difference, and the phase difference is always in the opposite phase (180 °). For example, when the driving source is a motor, the number of rotations of the motor is controlled. Further, if the frequency of the vibration of the vibration device and the frequency of the vibration of the additional vibration device deviate, the same control is performed so that the latter vibration matches the former vibration. An embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows an example in which the present invention is applied to a vibrating sieve used in muddy water shield construction. Work building 1 at the work site
In the basement 2, a vibration sieving machine 4 whose vibration noise is to be prevented is installed on the vibration isolating table 3, and the vibration sieving machine having substantially the same structure as the vibration sieving machine 4 is provided. On the vibration isolator 3 as the additional vibration device 5. FIG. 2 shows a schematic configuration of a vibration sound preventing apparatus according to the present invention. Known vibration sensors 6 and 7 are attached to the vibrating sieve 4 and the additional vibrating device 5, respectively. Vibrations of the vibrating sieve 4 and the additional vibrating device 5 are detected as analog electric signals by the respective vibration sensors 6 and 7. You.
Now, the detected analog electric signals are respectively A and B
Then, these signals A and B are subjected to waveform shaping by the waveform shaping unit 8 and analog / digital conversion by the input unit 9 and then C
The data is input to the arithmetic control unit 10 including the PU. Vibration sensor 6
No. 7 only needs to be able to directly or indirectly detect the mechanical vibration of the vibrating screen 4 and the additional vibrating device 5 as an electric signal, and the detection method is not limited. The signals A and B input to the arithmetic and control unit 10 are compared in terms of their frequencies and phases by using digital amounts, and the arithmetic and control unit 10 controls the signals A and B according to the frequency difference and the phase difference of the signal B with respect to the signal A. The amount is calculated. The control amount is output as an analog electric signal from the control signal output unit 11 to the additional vibrating device 5, and the additional vibrating device 5 is automatically controlled, that is, the vibrating sound cancels the vibrating sound of the vibrating sieve 4. Is controlled to occur. FIG. 3 is a block diagram more specifically showing the ultra-low frequency vibration sound preventing apparatus according to the present invention than FIG. The vibrating sieving machine 4 and the additional vibrating device 5 each include a motor 12.1
The rotation of 3 vibrates the sieve screen (not shown). The vibrating sieve 4 is used to actually sieve the material through a sieve screen.
Even if it is the same as above, it is used as a kind of dipole sound source that generates the same vibration sound and not used for sieving purposes. Motors 12 and 13 are connected to inverters 14 and
The number of rotations 15 can be controlled arbitrarily. Note that the additional vibration device 5 may be a dedicated one. Further, the vibrating sieve 4 and the additional vibrating device 5 include a motor 12
A structure that vibrates with a drive source other than 13 may be used. The analog electric signals from the vibration sensor 6 of the vibration sieving machine 4 and the vibration sensor 7 of the additional vibration device 5 are respectively amplified by amplifiers 16 and 17 and then, by a low-pass filter 18, to a very low frequency component (as described above). 20 Hz or less). And these two signals A and B are
The signals are converted into digital signals by the A / D converter 19 and input to the computer 20. The computer 20 receives the input signals A and B
Is digitally processed to determine their frequency, frequency difference and phase difference. If there is a difference between the frequency of the signal A and the frequency of the signal B, a control amount (digital amount) C according to the difference,
When there is a phase difference, a control amount (digital amount) D corresponding to the difference is output. The output control amounts C and D are
The signal is converted into an analog voltage signal by the D / A converter 21 and input to the inverter 15 of the additional vibration device 5 to automatically control the rotation speed of the motor 7. FIGS. 4 to 6 show the flow of arithmetic and control processing performed in the computer 20. FIG. FIG. 4 shows a main routine. When this is started, first, at step 5
0, the frequency fA of the very low frequency signal A and the signal B
Is determined in step 51 to determine whether the determined frequencies fA and fB match. If they do not match, the process of the frequency tuning subroutine of FIG. 5 is performed at step 52, and then the process of the phase tuning subroutine of FIG. 6 is performed at step 53. If fA and fB match, the process of the phase tuning subroutine is performed without passing through the frequency tuning subroutine. Thereafter, it is determined in step 54 whether or not there is a stop command.
The processing of 51, 52, 53 or the processing of 50, 51, 53 is repeated at a fixed cycle. In the frequency tuning subroutine of FIG. 5, the difference Δf between the frequency fA of the signal A and the frequency fB of the signal B is calculated in step 60, and in step 61, it is determined whether or not the difference Δf is 0, that is, the signal A It is determined whether the frequency fB of the signal B matches the frequency fA of the signal B. If they do not match, a control amount ΔC corresponding to Δf is calculated in step 62, and then in step 63, the rotation speed of the motor 13 of the additional control device 5 is controlled according to the control amount ΔC. After the control, the process returns to step 60, where the frequency difference Δf between the two signals A and B is calculated again. If Δf becomes 0, the process is terminated. In the phase tuning subroutine shown in FIG. 6, a phase difference .DELTA.P of the signal B with respect to the signal A is calculated in step 70,
In step 71, it is determined whether or not the difference ΔP is 180 °, that is, whether or not the phases are in opposite phases. If not, step 72
And the frequency of the signal B is set to a constant frequency + f according to the sign of Δf.
After shifting by 0 or -f0, a control amount .DELTA.D corresponding to (.DELTA.P-180.degree.) Is calculated in step 73, and the rotational speed of the motor 13 of the additional control device 5 is controlled in step 74 according to the control amount .DELTA.D. I do. After the control, the process returns to step 70, where the phase difference ΔP between the two signals A and B is calculated again. When ΔP becomes 180 °, the process ends. If the rotation speed of the motor 13 of the additional control device 5 is controlled every moment so that the frequency tuning and the phase tuning are established between the vibrating sieve 4 and the additional vibrating device 5 as described above, The vibration sound of the sieve 4 and the vibration sound of the additional vibration device 5 always cancel each other, so that it is possible to prevent the adverse effects due to the extremely low frequency sound. According to the experiment, when the very low frequency sound generated from the vibrating sieve 4 is 14 Hz, there is a reduction effect of about 15 dB in the work building 1 and about 5 to 10 dB outdoors in FIG. The rattling of etc. has been greatly reduced. FIG. 8 shows actual measurement data obtained by measuring the sound pressure at different measurement points when the method of the present invention is performed and when it is not performed. According to the present invention, an additional vibration device for generating a vibration sound equivalent to the vibration device to be subjected to vibration sound prevention is provided along with the vibration device, and the additional vibration device is used as a kind of dipole sound source. When the vibration pattern of the vibration device fluctuates, it is possible to reduce the vibration sound in real time, even if the vibration pattern of the vibration device fluctuates. The reduction effect is high, and the generation of extremely low frequency sound can be economically prevented.

【図面の簡単な説明】 【図1】本発明による装置を泥水シールド工事における
振動篩機に対して適用した実施例の設置図である。 【図2】本発明による超低周波振動音防止装置の概要構
成図である。 【図3】同装置のブロック図である。 【図4】同装置のコンピュータにおいて行われる演算及
び制御処理のメインルーチンのフローチャートである。 【図5】周波数同調サブルーチンのフローチャートであ
る。 【図6】位相同調サブルーチンのフローチャートであ
る。 【図7】逆位相の振動音を付加することにより騒音が低
減されることを説明する波形図である。 【図8】本発明の装置を適用した場合と適用しない場合
の音圧を測定点を変えて測定した実測データを示す線グ
ラフである。 【図9】振動篩機全体を防音カバーで覆って防音する従
来例の概要構成図で、篩網が上方へ振動した場合を示
す。 【図10】上記篩網が下方へ振動した場合の図9と同様
の図である。 【符号の説明】 4 振動篩機 5 付加振動装置 6・7 振動センサ 8 波形整形部 9 入力部 10 演算制御部 11 制御信号出力部 12・13 モータ 14・15 インバータ 16・17 増幅器 18 ローパスフィルタ 19 A/Dコンバータ 20 コンピュータ 21 D/Aコンバータ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an installation diagram of an embodiment in which an apparatus according to the present invention is applied to a vibrating sieve in muddy water shield construction. FIG. 2 is a schematic configuration diagram of an ultra-low frequency vibration sound preventing device according to the present invention. FIG. 3 is a block diagram of the same device. FIG. 4 is a flowchart of a main routine of calculation and control processing performed in a computer of the same device. FIG. 5 is a flowchart of a frequency tuning subroutine. FIG. 6 is a flowchart of a phase tuning subroutine. FIG. 7 is a waveform diagram for explaining that noise is reduced by adding a vibration sound having an opposite phase. FIG. 8 is a line graph showing actual measurement data obtained by measuring sound pressures at different measurement points when the apparatus of the present invention is applied and when it is not applied. FIG. 9 is a schematic configuration diagram of a conventional example in which the entire vibrating sieve is covered with a soundproof cover to prevent sound, and shows a case where a sieve mesh vibrates upward. FIG. 10 is a view similar to FIG. 9 when the sieve mesh vibrates downward. [Description of Signs] 4 Vibration sieve 5 Additional vibration device 6/7 Vibration sensor 8 Waveform shaping unit 9 Input unit 10 Operation control unit 11 Control signal output unit 12/13 Motor 14/15 Inverter 16/17 Amplifier 18 Low pass filter 19 A / D converter 20 Computer 21 D / A converter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石田 保明 東京都千代田区三番町2番地 飛島建設 株式会社内 (56)参考文献 特開 昭59−65636(JP,A) 特開 昭59−69548(JP,A) 特公 昭54−28901(JP,B1) (58)調査した分野(Int.Cl.7,DB名) G10K 11/178 B07B 1/46 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yasuaki Ishida 2 Tobanjima Construction, Sanbancho, Chiyoda-ku, Tokyo (56) References JP-A-59-65636 (JP, A) JP-A-59-69548 (JP, A) Japanese Patent Publication No. 54-28901 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) G10K 11/178 B07B 1/46

Claims (1)

(57)【特許請求の範囲】 【請求項1】モータ等の駆動源で駆動されて振動音を発
生する振動篩機等の振動機器に対して併置され、同じく
モータ等の駆動源で駆動されてほぼ同等の振動音を発生
する付加振動装置と、 これら振動機器及び付加振動装置の振動をそれぞれ電気
信号A・Bとして検出する第1及び第2の振動センサ
と、 これら振動センサからの電気信号A・Bの超低周波分だ
けを抽出するローパスフィルタと、 その抽出された超低周波の両信号A・Bの周波数fA ・
fB の差Δfを算出する周波数差演算手段と、 その周波数差Δfに応じた制御量ΔCを求める第1の制
御量演算手段と、 上記電気信号Aの位相に対する上記電気信号Bの位相差
ΔPを算出する位相差演算手段と、 その位相差ΔPに応じた制御量ΔDを求める第2の制御
量演算手段と、 上記付加振動装置の駆動源の回転数を上記制御量ΔCに
従って制御した後、上記ΔDに従って制御する回転数制
御手段とを備え、 前記周波数差演算手段と前記第1の制御量演算手段によ
る処理では、周波数差Δfが0であるか否か判定して、
0でないときは、周波数差Δfに応じた制御量ΔCを算
出した後、この制御量ΔCに従い前記回転数制御手段に
て付加制御装置の駆動源を制御し、その制御後、両信号
A・Bの周波数差Δfを再び算出して、周波数差Δfが
0になるまで同じ処理を繰り返し、 前記位相差演算手段と前記第2の制御量演算手段による
処理では、位相差ΔPが180°であるか否か判定し、
180°でなければ、周波数差Δfの正負に従い信号B
の周波数を一定の周波数+f0 又は−f0 だけずらして
おいてから、(ΔP−180°)に応じた制御量ΔDを
算出して、この制御量ΔDに従い前記回転数制御手段に
て付加制御装置の駆動源の回転数を制御し、その制御
後、両信号A・Bの位相差ΔPを再び算出して、位相差
ΔPが180°になるまで同じ処理を繰り返す、 ことを特徴とする、振動機器における超低周波振動音防
止装置。
(57) [Claims 1] A vibration source such as a vibrating sieve which is driven by a drive source such as a motor to generate a vibration sound is juxtaposed, and is also driven by a drive source such as a motor. Additional vibration devices that generate substantially the same vibration sound, first and second vibration sensors that detect the vibrations of these vibration devices and additional vibration devices as electric signals A and B, respectively, and electric signals from these vibration sensors. A low-pass filter that extracts only the very low frequency components of A and B, and the frequency fA of both the extracted very low frequency signals A and B.
frequency difference calculating means for calculating a difference Δf of fB, first control amount calculating means for obtaining a control amount ΔC corresponding to the frequency difference Δf, and a phase difference ΔP of the electric signal B with respect to the phase of the electric signal A. Phase difference calculating means for calculating; second control amount calculating means for obtaining a control amount ΔD corresponding to the phase difference ΔP; and controlling the rotation speed of the drive source of the additional vibration device according to the control amount ΔC. A rotation speed control means for controlling according to ΔD. In the processing by the frequency difference calculation means and the first control amount calculation means, it is determined whether or not the frequency difference Δf is 0,
If it is not 0, a control amount ΔC corresponding to the frequency difference Δf is calculated, and then the drive source of the additional control device is controlled by the rotation speed control means according to the control amount ΔC. Is calculated again, and the same processing is repeated until the frequency difference Δf becomes 0. In the processing by the phase difference calculating means and the second control amount calculating means, whether the phase difference ΔP is 180 ° Judge whether or not
If it is not 180 °, the signal B depends on the sign of the frequency difference Δf.
Is shifted by a fixed frequency + f0 or -f0, a control amount ΔD corresponding to (ΔP−180 °) is calculated, and according to the control amount ΔD, the rotation speed control means controls the additional control device. Controlling the number of rotations of the drive source, calculating the phase difference ΔP between the two signals A and B again after the control, and repeating the same processing until the phase difference ΔP becomes 180 °. Ultra-low frequency vibration noise prevention device.
JP01842192A 1992-01-08 1992-01-08 Ultra-low frequency vibration noise prevention device for vibration equipment Expired - Fee Related JP3371209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01842192A JP3371209B2 (en) 1992-01-08 1992-01-08 Ultra-low frequency vibration noise prevention device for vibration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01842192A JP3371209B2 (en) 1992-01-08 1992-01-08 Ultra-low frequency vibration noise prevention device for vibration equipment

Publications (2)

Publication Number Publication Date
JPH05188978A JPH05188978A (en) 1993-07-30
JP3371209B2 true JP3371209B2 (en) 2003-01-27

Family

ID=11971191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01842192A Expired - Fee Related JP3371209B2 (en) 1992-01-08 1992-01-08 Ultra-low frequency vibration noise prevention device for vibration equipment

Country Status (1)

Country Link
JP (1) JP3371209B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014202121A (en) * 2013-04-04 2014-10-27 株式会社Ihi Noise reduction device
KR20190063170A (en) * 2017-11-29 2019-06-07 금오공과대학교 산학협력단 Active damper for canceling vibration of manufacturing equipments

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2644159B2 (en) * 1993-01-22 1997-08-25 鹿島建設株式会社 Low frequency air vibration reduction device for vibration sieve
EP0766288A3 (en) * 1995-09-28 1998-06-10 Siemens Aktiengesellschaft Device and method for treating semiconductor elements
JP4924022B2 (en) * 2006-12-27 2012-04-25 Jfeスチール株式会社 Vibrating sieve monitoring method and vibrating sieve
JP6088327B2 (en) * 2013-04-04 2017-03-01 株式会社Ihi Low-frequency sound reduction device using a vibration sieve
JP6245730B2 (en) * 2013-05-14 2017-12-13 株式会社Ihi Noise reduction device and noise reduction method
JPWO2023276370A1 (en) * 2021-06-30 2023-01-05

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175747U (en) * 1982-05-18 1983-11-24 亀川 誠 Anti-slip device for materials in drawers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014202121A (en) * 2013-04-04 2014-10-27 株式会社Ihi Noise reduction device
KR20190063170A (en) * 2017-11-29 2019-06-07 금오공과대학교 산학협력단 Active damper for canceling vibration of manufacturing equipments
KR102009089B1 (en) 2017-11-29 2019-08-13 금오공과대학교 산학협력단 Active damper for canceling vibration of manufacturing equipments

Also Published As

Publication number Publication date
JPH05188978A (en) 1993-07-30

Similar Documents

Publication Publication Date Title
US7706547B2 (en) System and method for noise cancellation
JP3371209B2 (en) Ultra-low frequency vibration noise prevention device for vibration equipment
US5410607A (en) Method and apparatus for reducing noise radiated from a complex vibrating surface
JP2001208655A (en) Failure diagnostic method and its apparatus
CN107100898A (en) Fan noise reduction method and system and application electronic device thereof
JP6245730B2 (en) Noise reduction device and noise reduction method
US4616352A (en) Vibrator seismic source having distortion limiting control system
JP2925540B1 (en) Noise reduction system for machinery
JP2778843B2 (en) Active damping device
JP3325157B2 (en) Ultra low frequency sound reduction device for vibration sieve
JP3235858B2 (en) Control device for resonance type electromagnetic vibrator
JP3515986B2 (en) Noise reduction device for multiple machinery
JPH0798263A (en) Vibration control method of vibration-response-characteristic tester of mechanical vibration system and vibration-response-characteristic tester using method thereof
JPH09230943A (en) Damping device for vibration generation source having repeating vibration period
JP2900351B2 (en) Sediment separation equipment
JPS6447481A (en) Vibration apparatus
JP3047710B2 (en) Sediment separation equipment
JPH06221083A (en) Low frequency aerial vibration reducing device for vibrating screen
JP3047713B2 (en) Sediment separation equipment
JP2000250637A (en) Active control method for ground low frequency vibration
JP3022100B2 (en) Sediment separation equipment
JP2950455B2 (en) How to separate particulate matter
JPH06159483A (en) Gear transmission
JP3063185B2 (en) Test apparatus for installation equipment and method for calculating vibration of support structure
SU1216695A1 (en) Arrangement for article vibration testing

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees