JP3368624B2 - Substrate for semiconductor device - Google Patents

Substrate for semiconductor device

Info

Publication number
JP3368624B2
JP3368624B2 JP19211893A JP19211893A JP3368624B2 JP 3368624 B2 JP3368624 B2 JP 3368624B2 JP 19211893 A JP19211893 A JP 19211893A JP 19211893 A JP19211893 A JP 19211893A JP 3368624 B2 JP3368624 B2 JP 3368624B2
Authority
JP
Japan
Prior art keywords
diamond
substrate
dielectric
sample
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19211893A
Other languages
Japanese (ja)
Other versions
JPH0745748A (en
Inventor
喜之 山本
貴浩 今井
直治 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP19211893A priority Critical patent/JP3368624B2/en
Publication of JPH0745748A publication Critical patent/JPH0745748A/en
Application granted granted Critical
Publication of JP3368624B2 publication Critical patent/JP3368624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子やコンプレ
ッサーなどを実装する際に用いられる、極めて高い放熱
性を有するダイヤモンド放熱基板および多層配線基板に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diamond heat dissipation board and a multi-layer wiring board having extremely high heat dissipation, which are used when mounting a semiconductor device, a compressor and the like.

【0002】[0002]

【従来の技術】半導体素子を実装するパッケージなどに
対する放熱特性は、実装される素子の高性能化に伴う発
熱量の増大で、ますます要求される特性が厳しくなって
きている。これに対して、パッケージの熱抵抗を低下さ
せる手法として、例えばより高熱伝導性の材料を採用す
ることや、強制空冷や強制水冷等による対流熱伝達性の
改善などがこれまで行われてきている。
2. Description of the Related Art Regarding the heat radiation characteristics for a package or the like on which a semiconductor element is mounted, the required characteristics are becoming more and more stringent due to an increase in the amount of heat generated due to higher performance of the mounted element. On the other hand, as a method of lowering the thermal resistance of the package, for example, a material having higher thermal conductivity is adopted, and convection heat transfer is improved by forced air cooling or forced water cooling. .

【0003】[0003]

【発明が解決しようとする課題】パッケージなどの熱抵
抗を低減する手法のうち、高熱伝導性材料を用いる方法
に関しては、最も熱伝導率の大きいダイヤモンドを用い
ると最も熱抵抗を小さくすることができる。気相合成法
によるダイヤモンドは比較的大面積のものが得られるこ
とから、基板材料として用いることができる。しかし、
現在用いられている基板材料(アルミナ、ポリイミド
等)と比較して、その製造コストが高いことが大きな問
題となっている。特に、ダイヤモンド上に直接高周波用
の配線回路を配置する場合には、基板となるダイヤモン
ドの誘電率、誘電損失がともに低くなければならないと
され、このような特性をもつダイヤモンドはきわめて高
純度のものに限られ、さらにその製造コストが高くなる
という問題があった。
Among the methods for reducing the thermal resistance of packages and the like, regarding the method of using a high thermal conductive material, the thermal resistance can be minimized by using diamond having the highest thermal conductivity. . Since diamond having a relatively large area can be obtained by the vapor phase synthesis method, it can be used as a substrate material. But,
The high production cost of the substrate materials (alumina, polyimide, etc.) currently used is a big problem. In particular, when arranging a high-frequency wiring circuit directly on diamond, it is said that both the dielectric constant and the dielectric loss of the substrate diamond must be low, and diamond with such characteristics is of extremely high purity. However, there is a problem that the manufacturing cost thereof is further increased.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者らは、
ダイヤモンド基板材料の製造コスト低減を目的に検討を
重ねてきた。製造コスト低減にはダイヤモンド成長速度
を大きくすることが有効であるが、このことは得られる
ダイヤモンドの結晶性の悪化などを引き起こし、ひいて
は誘電特性の悪化をもたらす。このダイヤモンドの結晶
性、誘電特性の悪化と、製造コストおよび放熱特性の評
価を詳細に実施し、基板に要求される特性と比較、検討
した。成長速度の大きな条件で、ダイヤモンドを気相合
成し、誘電率、誘電損失の劣るダイヤモンドを合成して
も、その熱伝導率は一定の水準を保つことが可能であ
り、高周波回路の配線をダイヤモンド上に配置せず、誘
電特性の優れているポリイミド膜などを介して配して
も、このような低コストを半導体実装用基板として供す
ることが経済的に最も有利であることを見いだした。
Therefore, the present inventors have
We have conducted repeated studies to reduce the manufacturing cost of diamond substrate materials. Increasing the diamond growth rate is effective for reducing the manufacturing cost, but this causes deterioration of the crystallinity of the obtained diamond, which in turn causes deterioration of the dielectric properties. The deterioration of the crystallinity and dielectric properties of the diamond and the evaluation of the manufacturing cost and the heat dissipation properties were carried out in detail, and the properties required for the substrate were compared and examined. Even if diamond is vapor-phase synthesized under conditions of high growth rate to synthesize diamond with poor dielectric constant and dielectric loss, its thermal conductivity can be maintained at a constant level. It has been found that it is economically most advantageous to provide such a low cost as a semiconductor mounting substrate even if it is not disposed on the upper side but is disposed via a polyimide film having excellent dielectric properties.

【0005】[0005]

【作用】以下に本発明の具体的な内容について示す。気
相合成法により得られるダイヤモンドにおいては、その
成長方法と要求されるダイヤモンドの特性によって適切
な合成条件が存在し、低誘電率、低誘電損失であるダイ
ヤモンドの場合、その成長速度は5μm/hr未満であ
ることが多い。そのため、この条件で半導体素子搭載な
どに供するための厚さ数百μmの基板を製造するには約
100hr以上の合成時間を要する。成長速度をさらに
大きくする条件も存在するが、その際、得られるダイヤ
モンドは結晶の乱れ等が大きくなり、非ダイヤモンド成
分の成長がおこる。これに伴い、その誘電特性も悪化す
る。
The concrete contents of the present invention will be described below. Appropriate synthesis conditions exist for the diamond obtained by the vapor phase synthesis method depending on the growth method and the required characteristics of the diamond. In the case of diamond having a low dielectric constant and low dielectric loss, the growth rate is 5 μm / hr. Often less than. Therefore, in order to manufacture a substrate having a thickness of several hundreds of μm for use in mounting a semiconductor element under these conditions, a synthesis time of about 100 hours or more is required. There is also a condition for further increasing the growth rate, but in that case, crystal disorder or the like becomes large in the obtained diamond, and the growth of the non-diamond component occurs. Along with this, the dielectric characteristics also deteriorate.

【0006】誘電特性に関しては、高速処理をおこなう
半導体素子を実装する際、配線における遅延を引き起こ
す要因となるのでその比誘電率、誘電損失は小さい方が
望ましい。純粋なダイヤモンドは比誘電率5.7、誘電
損失は0.001以下である。しかし例えば、気相合成
法のうち、熱フィラメントCVD法を用いて、原料ガス
をメタン1%−水素とした条件で成長させたダイヤモン
ドは、100MHzにおける比誘電率5.9、誘電損失
は0.002であったが、成長速度は0.8μm/hr
であった。一方、これに対してメタン濃度を5%の条件
で成長させたダイヤモンドは、100MHzにおける比
誘電率6.6、誘電損失0.04であったが、その成長
速度は10μm/hrであった。後者のダイヤモンドに
おいても、熱伝導率は12W/cm・Kと、実用に十分
であり、また製造コストも前者の3分の1以下であっ
た。このように製造コスト低減のため成長速度を上昇さ
せると、誘電特性が劣化するので、信号伝達速度に対す
る要求の厳しい高周波用素子に関しては、配線を別の誘
電特性の優れた絶縁体上に配置したり、配線密度を低下
させて対応することが望ましい。
Regarding the dielectric characteristics, it is desirable that the relative permittivity and the dielectric loss thereof are small, because it becomes a factor that causes a delay in wiring when mounting a semiconductor element which performs high-speed processing. Pure diamond has a relative dielectric constant of 5.7 and a dielectric loss of 0.001 or less. However, for example, in the vapor phase synthesis method, diamond grown by using the hot filament CVD method under the condition that the source gas is methane 1% -hydrogen has a relative dielectric constant of 5.9 at 100 MHz and a dielectric loss of 0. 002, but the growth rate is 0.8 μm / hr
Met. On the other hand, diamond grown at a methane concentration of 5% had a relative dielectric constant of 6.6 and a dielectric loss of 0.04 at 100 MHz, but its growth rate was 10 μm / hr. Also in the latter diamond, the thermal conductivity was 12 W / cm · K, which was sufficient for practical use, and the manufacturing cost was 1/3 or less of the former. When the growth rate is increased in order to reduce the manufacturing cost, the dielectric characteristics deteriorate.Therefore, for high-frequency devices that have high signal transmission speed requirements, place the wiring on another insulator with excellent dielectric characteristics. Alternatively, it is desirable to reduce the wiring density to deal with the problem.

【0007】このように、製造コスト低減のために比較
的誘電特性の劣化したダイヤモンドでは、その結晶性も
低下している。ダイヤモンドの結晶性の評価法には、ラ
マン分光分析法が広く用いられており、結晶性の指標と
しては、ダイヤモンド炭素(X)と非ダイヤモンド炭素
(Y)のピーク比(Y/X)、あるいはダイヤモンド炭
素のピークの半値巾をあげることができる。ダイヤモン
ド成長に適切な成長条件のもとで成長した気相合成ダイ
ヤモンドは、ピーク比(Y/X)が0.10以下、半値
巾は5cm-1以下である。しかし、成長速度が大きくな
る条件で成長させると、結晶性の乱れ等が生じ、ラマン
分光分析のピーク比(Y/X)が0.15以上、あるい
は半値巾が7cm-1以上となる。ただし、ピーク比(Y
/X)が0.60以上、または半値巾15cm-1以上の
ダイヤモンドは、熱伝導率が10W/cm・K以下とな
り、好ましくない。
As described above, the crystallinity of diamond, which has relatively deteriorated dielectric properties in order to reduce the manufacturing cost, is also deteriorated. Raman spectroscopy is widely used to evaluate the crystallinity of diamond. As an index of crystallinity, the peak ratio (Y / X) of diamond carbon (X) and non-diamond carbon (Y), or The full width at half maximum of the peak of diamond carbon can be increased. The vapor phase synthetic diamond grown under the growth conditions suitable for diamond growth has a peak ratio (Y / X) of 0.10 or less and a half value width of 5 cm -1 or less. However, when grown under the condition that the growth rate is high, the crystallinity is disturbed, and the peak ratio (Y / X) of Raman spectroscopic analysis is 0.15 or more, or the half value width is 7 cm -1 or more. However, the peak ratio (Y
/ X) is 0.60 or more, or the half-value width of 15 cm -1 or more, the diamond has a thermal conductivity of 10 W / cm · K or less, which is not preferable.

【0008】このように製造コスト削減のために、誘電
特性の劣化さらには結晶性の悪化が生じても、その熱伝
導率は依然大きく(10W/cm・K以上)することが
可能であり、この場合十分に放熱性は確保できる。成長
時間を大幅に短縮しても放熱特性の優位性を損なわずに
ダイヤモンド基板を作製することができ、かつ製造コス
トを大幅に削減できることがわかった。具体的には、そ
の成長速度が2〜4倍あるいはそれ以上である5μm/
hr以上の速度が得られ、大きな熱伝導率を確保でき、
かつ製造コストを低減させることができる。ダイヤモン
ドを絶縁層とする多層基板を作製する際に、比較的配線
間隔の広くなる下層部分や、高速処理を要求されない基
板に本発明による誘電特性の比較的悪いダイヤ層を用い
ることが可能である。
As described above, in order to reduce the manufacturing cost, even if the dielectric property is deteriorated or the crystallinity is deteriorated, the thermal conductivity can still be large (10 W / cm · K or more), In this case, sufficient heat dissipation can be secured. It was found that even if the growth time is greatly shortened, the diamond substrate can be manufactured without impairing the superiority of heat dissipation characteristics, and the manufacturing cost can be significantly reduced. Specifically, the growth rate is 2 to 4 times or more, or 5 μm /
A speed of more than hr can be obtained, a large thermal conductivity can be secured,
Moreover, the manufacturing cost can be reduced. When manufacturing a multi-layer substrate having diamond as an insulating layer, it is possible to use a diamond layer having relatively poor dielectric properties according to the present invention for a lower layer portion having a relatively wide wiring interval or a substrate that does not require high-speed processing. .

【0009】本発明におけるダイヤモンド基板は、その
内部あるいは表面に低周波用電源、接地用配線を有する
こともできるが、その内部あるいは表面に回路を持たな
い単なるヒ−トシンクとしても有効である。本発明の特
性を有するダイヤモンドは、公知のいずれの気相合成法
によっても製造することができるが、製造コストの低減
という意味から熱フィラメントCVD法、アーク放電プ
ラズマジェットCVD法、マイクロ波プラズマCVD法
が好ましい。
The diamond substrate of the present invention may have a low-frequency power source and a grounding wire inside or on the surface thereof, but is also effective as a simple heat sink having no circuit inside or on the surface thereof. The diamond having the characteristics of the present invention can be produced by any known vapor phase synthesis method, but from the viewpoint of reducing the production cost, the hot filament CVD method, the arc discharge plasma jet CVD method, the microwave plasma CVD method. Is preferred.

【0010】[0010]

【実施例】(実施例1) 熱フィラメントCVD法によ
り、多結晶Si基板(25×25×5mm)上に、ダイ
ヤモンドを300μm成長した。合成条件はメタン−6
%を含む高純度水素を原料ガスとして供給し、全圧は7
0Torr、基板温度は850℃であった。成膜時間は
40hrであり、成長速度は7.5μm/hrであった
(試料A)。一方、比較例として、合成条件を、メタン
2%−水素、全圧は30Torr、基板温度は900℃
に変更して、ダイヤモンドを200μm成長させた。成
膜時間は100hrであり、成膜速度は2.0μm/h
rであった(試料B)。
EXAMPLES Example 1 Diamond was grown to 300 μm on a polycrystalline Si substrate (25 × 25 × 5 mm) by the hot filament CVD method. Synthesis conditions are methane-6
% High-purity hydrogen is supplied as the source gas, and the total pressure is 7
The substrate temperature was 0 Torr and 850 ° C. The film formation time was 40 hours and the growth rate was 7.5 μm / hr (Sample A). On the other hand, as a comparative example, the synthesis conditions are methane 2% -hydrogen, total pressure 30 Torr, substrate temperature 900 ° C.
And diamond was grown to 200 μm. The film formation time is 100 hours, and the film formation rate is 2.0 μm / h.
r (Sample B).

【0011】こののち、これらを反応容器からとりだ
し、KrFエキシマレーザーを5J/cm-2の出力密度
になるように集光し、ダイヤモンド成長表面を2回スキ
ャンさせ、表面平坦化加工を行った。加工後、クロム混
酸中でSi基板を溶解し、ダイヤモンド自立膜を得た。
これらの膜の熱伝導率を測定したところ試料Aは11.
5W/cm・K、試料Bは16W/cm・Kであった。
また、ラマン分光分析の結果、そのダイヤモンド炭素の
ピーク(X)と、非ダイヤモンド炭素のピーク(Y)の
比(Y/X)は試料Aについては0.35、試料Bにつ
いては0.06であり、ダイヤモンド炭素のピークの半
値巾は試料Aについては8.2cm-1、試料Bについて
は4.6cm-1であった(図1)。
After that, these were taken out from the reaction vessel, a KrF excimer laser was focused so as to have an output density of 5 J / cm −2 , and the diamond growth surface was scanned twice to perform surface flattening processing. After processing, the Si substrate was dissolved in chromium mixed acid to obtain a diamond freestanding film.
When the thermal conductivity of these films was measured, Sample A was 11.
It was 5 W / cm · K and Sample B was 16 W / cm · K.
As a result of Raman spectroscopic analysis, the ratio (Y / X) of the peak (X) of diamond carbon and the peak (Y) of non-diamond carbon was 0.35 for sample A and 0.06 for sample B. There, half width of the peak of diamond carbon for samples a 8.2 cm -1, for samples B was 4.6 cm -1 (Figure 1).

【0012】平坦化した表面に、金属WをRFスパッタ
で0.3μm蒸着した。通常のリソグラフィー技術で誘
電特性測定用回路を形成し、誘電率、誘電損失を100
MHzにおいて測定したところ比誘電率は試料Aについ
ては6.4、試料Bについては5.8であり、誘電損失
は試料Aについては0.03、試料Bについては0.0
008であった。また、直流での体積抵抗率を測定した
ところ、A,Bいずれも109Ωcm以上であった。こ
のように、成長速度を4倍にし、結晶性(ラマン分光分
析のピーク比、半値巾)、誘電特性が悪化しても熱伝導
率を10W/cm・K以上に確保できた。
Metal W was deposited on the flattened surface by RF sputtering to a thickness of 0.3 μm. A dielectric property measurement circuit is formed by ordinary lithography technology, and the dielectric constant and dielectric loss are set to 100.
When measured at MHz, the relative permittivity is 6.4 for sample A and 5.8 for sample B, and the dielectric loss is 0.03 for sample A and 0.0 for sample B.
It was 008. Further, when the volume resistivity at direct current was measured, both A and B were 10 9 Ωcm or more. As described above, the growth rate was quadrupled, and the thermal conductivity could be secured at 10 W / cmK or more even if the crystallinity (peak ratio of Raman spectroscopic analysis, full width at half maximum) and the dielectric properties were deteriorated.

【0013】(実施例2) 多結晶Si基板(25×2
5×5mm)上に、熱フィラメントCVD法により表1
に示すような条件でダイヤモンドを成長させた(試料C
〜E)。これらの試料について、実施例1に示したよう
な処理を施し、ラマン分光分析、および誘電特性測定、
熱伝導率測定を行った結果も表1に示した。試料Dに示
したように、ラマン分光分析のピーク比、半値巾、ある
いは誘電特性が悪い場合でも熱伝導率を高いまま維持す
ることが可能である。また、あまり成長速度を上げすぎ
ると熱伝導率を高いまま維持することができない(試料
E)。
Example 2 Polycrystalline Si substrate (25 × 2)
5 × 5 mm) by the hot filament CVD method.
Diamond was grown under the conditions as shown in (Sample C
~ E). These samples were subjected to the treatment as shown in Example 1, Raman spectroscopic analysis, and dielectric property measurement,
The results of thermal conductivity measurement are also shown in Table 1. As shown in the sample D, the thermal conductivity can be maintained high even when the peak ratio, the half width, or the dielectric property of Raman spectroscopic analysis is bad. Also, if the growth rate is increased too much, the thermal conductivity cannot be maintained high (Sample E).

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【発明の効果】このように、本発明により提供される半
導体装置用基板を用いることにより、低い製造コストで
かつ高い放熱性を持った基板を得ることができる。この
基板の低コスト化により、高放熱性を持った基板の汎用
機器、携帯機器の分野の電子機器への応用が進み、ひい
てはこれらの機器の高性能化、小型化、低価格化に寄与
する。
As described above, by using the semiconductor device substrate provided by the present invention, it is possible to obtain a substrate having a high heat dissipation property at a low manufacturing cost. Due to the cost reduction of this board, the application of the board with high heat dissipation to general-purpose equipment and electronic equipment in the field of portable equipment will be advanced, which will contribute to higher performance, smaller size and lower cost of these equipment. .

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で製作した試料のラマン分光分析の結
果を示す図である。
FIG. 1 is a diagram showing a result of Raman spectroscopic analysis of a sample manufactured in Example 1.

【符号の説明】[Explanation of symbols]

A:試料Aのラマン分光分析 B:試料Bのラマン分光分析 A: Raman spectroscopic analysis of sample A B: Raman spectroscopic analysis of sample B

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−154650(JP,A) 特開 昭63−288975(JP,A) 特開 平2−23639(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 23/12 - 23/15 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-62-154650 (JP, A) JP-A-63-288975 (JP, A) JP-A-2-23639 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01L 23/12-23/15

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体装置を実装する基板であって、少
なくとも気相合成ダイヤモンド層を有し、かつ該ダイヤ
モンド層の熱伝導率が10W/cm・K以上、100M
Hzにおける比誘電率が6以上、誘電損失が0.01以
上であるような半導体素子実装用基板。
1. A substrate on which a semiconductor device is mounted, which has at least a vapor-phase synthetic diamond layer, and the diamond layer has a thermal conductivity of 10 W / cm · K or more and 100 M.
A semiconductor element mounting substrate having a relative permittivity of 6 or more and a dielectric loss of 0.01 or more at Hz.
【請求項2】 半導体装置を実装する基板であって、少
なくとも気相合成ダイヤモンド層を有し、かつ該ダイヤ
モンド層のラマン分光分析によるダイヤモンド炭素
(X)と非ダイヤモンド炭素(Y)のピーク比(Y/
X)が0.15以上であるような請求項1に記載の半導
体素子実装用基板。
2. A substrate on which a semiconductor device is mounted, which has at least a vapor phase synthetic diamond layer, and the peak ratio of diamond carbon (X) and non-diamond carbon (Y) by Raman spectroscopic analysis of the diamond layer ( Y /
The semiconductor element mounting substrate according to claim 1, wherein X) is 0.15 or more.
【請求項3】 半導体装置を実装する基板であって、少
なくとも気相合成ダイヤモンド層を有し、かつ該ダイヤ
モンド層のラマン分光分析によるダイヤモンド炭素のピ
ークの半値巾が7cm-1以上であるような請求項1に記
載の半導体素子実装用基板。
3. A substrate on which a semiconductor device is mounted, which has at least a vapor phase synthetic diamond layer, and a half value width of a peak of diamond carbon by Raman spectroscopic analysis of the diamond layer is 7 cm −1 or more. The semiconductor element mounting substrate according to claim 1.
JP19211893A 1993-08-03 1993-08-03 Substrate for semiconductor device Expired - Fee Related JP3368624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19211893A JP3368624B2 (en) 1993-08-03 1993-08-03 Substrate for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19211893A JP3368624B2 (en) 1993-08-03 1993-08-03 Substrate for semiconductor device

Publications (2)

Publication Number Publication Date
JPH0745748A JPH0745748A (en) 1995-02-14
JP3368624B2 true JP3368624B2 (en) 2003-01-20

Family

ID=16285974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19211893A Expired - Fee Related JP3368624B2 (en) 1993-08-03 1993-08-03 Substrate for semiconductor device

Country Status (1)

Country Link
JP (1) JP3368624B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6416865B1 (en) 1998-10-30 2002-07-09 Sumitomo Electric Industries, Ltd. Hard carbon film and surface acoustic-wave substrate
US6605352B1 (en) * 2000-01-06 2003-08-12 Saint-Gobain Ceramics & Plastics, Inc. Corrosion and erosion resistant thin film diamond coating and applications therefor
JP5738674B2 (en) 2011-05-25 2015-06-24 コベルコ建機株式会社 Swivel work machine
GB2497671B (en) * 2011-12-16 2016-06-22 Element Six Tech Ltd Large area optical quality synthetic polycrystalline diamond window
GB201121640D0 (en) 2011-12-16 2012-01-25 Element Six Ltd Large area optical synthetic polycrystalline diamond window
WO2013087797A1 (en) 2011-12-16 2013-06-20 Element Six Limited Large area optical quality synthetic polycrystalline diamond window

Also Published As

Publication number Publication date
JPH0745748A (en) 1995-02-14

Similar Documents

Publication Publication Date Title
US5525815A (en) Diamond film structure with high thermal conductivity
JP3136307B2 (en) Diamond mounting substrate for electronic applications
JP2603257B2 (en) Diamond multilayer thin film
US8470400B2 (en) Graphene synthesis by chemical vapor deposition
Kipshidze et al. Controlled growth of GaN nanowires by pulsed metalorganic chemical vapor deposition
US6162412A (en) Chemical vapor deposition method of high quality diamond
EP1154476A1 (en) Substrate, semiconductor device, element-mounted device and preparation of substrate
EP0617147A2 (en) Diamond crystal forming method
Li et al. Laser‐induced chemical vapor deposition of AlN films
US5479875A (en) Formation of highly oriented diamond film
JP3368624B2 (en) Substrate for semiconductor device
JP4294140B2 (en) Diamond thin film modification method, diamond thin film modification and thin film formation method, and diamond thin film processing method
EP1391926A1 (en) Heat sink and its manufacturing method
EP0632499A2 (en) Substrate for semiconductor device
US8465719B2 (en) Silicon carbide substrate, semiconductor device, wiring substrate, and silicon carbide manufacturing method
JP3549227B2 (en) Highly oriented diamond thin film
Sodtke et al. The influence of the template growth method on the properties of a-axis oriented YBa2Cu3O7− δ thin films
Iribarren et al. Optical and structural evidence of the grain-boundary influence on the disorder of polycrystalline CdTe films
JPH06199508A (en) Crystalline sialon having wurtzite type structure and method for synthesizing the same
Fujii et al. Effect of crystalline quality of diamond film to the propagation loss of surface acoustic wave devices
JPH08231297A (en) Production of diamond with high thermal conductivity
KR20220013887A (en) Semiconductor interconnect, electrode for semiconductor device, and method of preparing multielement compound thin film
JPH0513616A (en) High thermal conductive insulating substrate and its manufacture
El-ladan et al. Development of AlNB alloy in (Al/AlN/B) stacking sequence using RF reactive sputtering towards thermal management application
JPH0223639A (en) Diamond multilayer circuit substrate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees