JP3367213B2 - Magnet generator - Google Patents

Magnet generator

Info

Publication number
JP3367213B2
JP3367213B2 JP19674194A JP19674194A JP3367213B2 JP 3367213 B2 JP3367213 B2 JP 3367213B2 JP 19674194 A JP19674194 A JP 19674194A JP 19674194 A JP19674194 A JP 19674194A JP 3367213 B2 JP3367213 B2 JP 3367213B2
Authority
JP
Japan
Prior art keywords
rotor
coil winding
pole
magnetic pole
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19674194A
Other languages
Japanese (ja)
Other versions
JPH0865978A (en
Inventor
芳美 橋本
高広 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusan Denki Co Ltd
Original Assignee
Kokusan Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusan Denki Co Ltd filed Critical Kokusan Denki Co Ltd
Priority to JP19674194A priority Critical patent/JP3367213B2/en
Publication of JPH0865978A publication Critical patent/JPH0865978A/en
Application granted granted Critical
Publication of JP3367213B2 publication Critical patent/JP3367213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の点火や点
灯,充電等の電源として用いられる磁石発電機に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnet generator used as a power source for ignition, lighting and charging of an internal combustion engine.

【0002】[0002]

【従来の技術】内燃機関等に取り付けられて、機関の点
火用の電源や点灯あるいはバッテリ充電用の電源等とし
て用いられている磁石発電機は、小形高出力化が要求さ
れている。そのため、この種の磁石発電機としては、電
機子鉄心が環状の継鉄部から放射方向に突出した複数の
コイル巻装部を有する突極形の磁石発電機が多く用いら
れている。
2. Description of the Related Art Magnetogenerators mounted on an internal combustion engine or the like and used as a power source for ignition or lighting of the engine or a power source for charging a battery are required to have a small size and high output. Therefore, as this type of magnet generator, a salient pole type magnet generator having an armature core having a plurality of coil winding portions radially protruding from an annular yoke portion is often used.

【0003】図7は4極構成の場合の従来のこの種の磁
石発電機の例を示したもので、この磁石発電機は、ほぼ
カップ状に形成された回転子ヨーク7の周壁部の内周に
複数の永久磁石8ないし11を等角度間隔で配列して、
周方向に交互に異なる極性の回転子磁極が並ぶように永
久磁石8ないし11を着磁した磁石回転子1と、環状の
継鉄部12から放射方向に突出した複数のコイル巻装部
13ないし16のそれぞれの先端に極片部17´ないし
20´を形成した電機子鉄心2と、各コイル巻装部13
ないし16にそれぞれ巻回された電機子コイル3ないし
6とにより構成されている。極片部17´ないし20´
の先端に形成された磁極面は、回転子磁極の円筒面状の
内周面に所定のギャップを介して対向させられており、
各回転子磁極の極弧角αは電機子鉄心の各極片部の先端
の極弧角β以上に設定されている。電機子コイル3は、
例えばコンデンサ放電式点火装置の点火エネルギー蓄積
用コンデンサを充電するエキサイタコイルとして用いら
れ、電機子コイル4ないし6は、例えば点灯用の発電コ
イルやバッテリ充電用の発電コイルとして用いられる。
FIG. 7 shows an example of a conventional magneto-generator of this type having a four-pole structure. This magneto-generator has a substantially cup-shaped inner wall of a rotor yoke 7. Arrange a plurality of permanent magnets 8 to 11 around the circumference at equal angular intervals,
A magnet rotor 1 in which permanent magnets 8 to 11 are magnetized so that rotor magnetic poles having different polarities are alternately arranged in the circumferential direction, and a plurality of coil winding portions 13 to 13 radially protruding from an annular yoke portion 12. An armature core 2 in which pole piece portions 17 'to 20' are formed at the respective tips of 16 and coil winding portions 13
Nos. 16 to 16 and armature coils 3 to 6 respectively wound around them. Pole pieces 17 'to 20'
The magnetic pole surface formed at the tip of is opposed to the cylindrical inner peripheral surface of the rotor magnetic pole through a predetermined gap,
The pole arc angle α of each rotor magnetic pole is set to be equal to or larger than the pole arc angle β of the tip of each pole piece of the armature core. The armature coil 3 is
For example, it is used as an exciter coil for charging the ignition energy storage capacitor of the capacitor discharge type ignition device, and the armature coils 4 to 6 are used as, for example, a power generation coil for lighting or a power generation coil for charging a battery.

【0004】上記の磁石発電機において、磁石回転子1
が回転すると、各コイル巻装部を通る磁束、例えばコイ
ル巻装部13を通る磁束φ´は、回転角度θの変化に伴
って図3(A)に破線で示す曲線のように変化し、この
磁束変化によりコイル巻装部13に巻回された電機子コ
イル3に図3(B)に破線で示したような波形の電圧V
´が誘起する。この発電機においてコイル巻装部13を
通る磁束φ´が最大磁束(有効磁束)φm ´となるの
は、図8に示すようにコイル巻装部13の先端に形成さ
れた極片部17´の磁極面の周方向の中央部が回転子磁
極の周方向の中央部に一致したときであり、このとき極
片部17´の磁極面の全体と回転子磁極との間のギャッ
プ(空隙)を介して永久磁石からの磁束がコイル巻装部
13に流れる。また、電機子コイル3の誘起電圧V´
は、通常、コイル巻装部13に流れる磁束の方向が一方
から他方へと変化する位置付近で最大になる(図3参
照)。他のコイル巻装部14ないし16についても上記
と同様である。
In the above magnet generator, the magnet rotor 1
When is rotated, the magnetic flux passing through each coil winding portion, for example, the magnetic flux φ ′ passing through the coil winding portion 13, changes as the curve of the broken line in FIG. Due to this change in magnetic flux, the voltage V of the waveform as shown by the broken line in FIG. 3B is applied to the armature coil 3 wound around the coil winding portion 13.
'Is induced. In this generator, the magnetic flux φ'passing through the coil winding portion 13 becomes the maximum magnetic flux (effective magnetic flux) φm 'as shown in FIG. 8, which is the pole piece portion 17' formed at the tip of the coil winding portion 13. When the center portion of the magnetic pole surface in the circumferential direction coincides with the center portion of the rotor magnetic pole in the circumferential direction, at this time, a gap (gap) between the entire magnetic pole surface of the pole piece portion 17 'and the rotor magnetic pole. The magnetic flux from the permanent magnet flows through the coil winding portion 13 via the. In addition, the induced voltage V ′ of the armature coil 3
Usually becomes maximum near the position where the direction of the magnetic flux flowing in the coil winding portion 13 changes from one to the other (see FIG. 3). The same applies to the other coil winding portions 14 to 16.

【0005】[0005]

【発明が解決しようとする課題】電機子コイルが巻回さ
れた電機子鉄心のコイル巻装部を通る磁束が交番する
と、該コイル巻装部が鉄損によって発熱する。そのため
電機子コイルの銅損による発熱と相まって該電機子コイ
ルの温度上昇の原因となる。特に、電機子コイルがコン
デンサ放電式点火装置の点火電源として用いられるエキ
サイタコイルのように、細い銅線を用いて多数回巻かれ
るコイルである場合には、その自己発熱が大きいため、
これに鉄損による発熱が加わってコイルの温度上昇が著
しくなり、コイルの信頼性が低下したり、耐熱性の高い
高価なコイル導体を用いる必要が生じたりする。
When the magnetic flux passing through the coil winding portion of the armature core around which the armature coil is wound alternates, the coil winding portion generates heat due to iron loss. Therefore, the heat generation due to the copper loss of the armature coil causes the temperature rise of the armature coil. In particular, when the armature coil is a coil wound many times using a thin copper wire, such as an exciter coil used as an ignition power source of a capacitor discharge type ignition device, its self-heating is large,
In addition to this, heat generation due to iron loss causes the temperature of the coil to rise significantly, which lowers the reliability of the coil and requires the use of an expensive coil conductor having high heat resistance.

【0006】鉄心に生ずる鉄損はヒシテリシス損とうず
電流損とからなり、鉄心を通る磁束の最大磁束密度をβ
p 、磁束の交番周波数をf、鉄心の1枚の板厚をt、鉄
心材料により定まるヒシテリシス損及びうず電流損の定
数をσh 及びσe とすると、鉄心の単位重量当りの鉄損
Wi は一般に次式で与えられる。
The iron loss generated in the iron core is composed of hysteresis loss and eddy current loss, and the maximum magnetic flux density of the magnetic flux passing through the iron core is β
If p is the alternating frequency of the magnetic flux, t is the thickness of one of the iron cores, and the hysteresis loss and eddy current loss constants determined by the iron core material are σh and σe, the iron loss Wi per unit weight of the iron core is Given by the formula.

【0007】 Wi =σh ・f・βp 2 +σe ・t2 ・f2 ・βp 2 ここでσh ,σe ,t及びfを一定とすると、鉄損Wi
は最大磁束密度βp の2乗に比例することになる。
Wi = σh · f · βp 2 + σe · t 2 · f 2 · βp 2 Here, if σh, σe, t and f are constant, the iron loss Wi
Is proportional to the square of the maximum magnetic flux density β p.

【0008】従来の磁石発電機では、小形高出力化に伴
って電機子鉄心のコイル巻装部の最大磁束(有効磁束)
φm ´の値が大きくなり、最大磁束密度が大きくなるた
め、鉄損も大きくなって電機子コイルの温度上昇が大き
くなるという問題があった。コイル巻装部に磁束を与え
る永久磁石の出力を小さくしたり、コイル巻装部の磁束
通路の断面積を小さくしたりすれば、有効磁束を低下さ
せて鉄損を減少させることができるが、このようにした
場合には電機子コイルに誘起する電圧も低下してしま
う。
In the conventional magneto-generator, the maximum magnetic flux (effective magnetic flux) of the coil winding portion of the armature core is increased with the increase in size and output.
Since the value of φ m ′ becomes large and the maximum magnetic flux density becomes large, iron loss also becomes large and the temperature rise of the armature coil becomes large. If the output of a permanent magnet that gives a magnetic flux to the coil winding portion is reduced, or if the cross-sectional area of the magnetic flux path of the coil winding portion is reduced, the effective magnetic flux can be reduced and iron loss can be reduced. In this case, the voltage induced in the armature coil also drops.

【0009】本発明の目的は、電機子コイルの誘起電圧
の大きさを低下させることなく、コイル巻装部の最大磁
束を減少させて、鉄損に起因する電機子コイルの温度上
昇を抑制することができるようにした磁石発電機を提供
することにある。
An object of the present invention is to reduce the maximum magnetic flux of the coil winding portion without reducing the magnitude of the induced voltage of the armature coil and suppress the temperature rise of the armature coil due to iron loss. It is to provide a magnet generator capable of performing.

【0010】[0010]

【課題を解決するための手段】本発明は、回転子ヨーク
と該回転子ヨークに取り付けられた永久磁石とからなっ
ていて周方向に交互に異なる極性の回転子磁極が並ぶよ
うに永久磁石が着磁された磁石回転子と、環状の継鉄部
と該継鉄部から放射方向に突出した複数のコイル巻装部
と該複数のコイル巻装部のそれぞれの先端に形成された
極片部とを有する電機子鉄心と、この電機子鉄心のコイ
ル巻装部に巻回された電機子コイルとを備えていて、電
機子鉄心の各極片部の先端に形成された磁極面が回転子
磁極の円筒面状の内周面に所定のギャップを介して対向
させられている磁石発電機に係わるものである。
SUMMARY OF THE INVENTION According to the present invention, a permanent magnet comprises a rotor yoke and permanent magnets attached to the rotor yoke, and the permanent magnets are arranged such that rotor magnetic poles of different polarities are alternately arranged in the circumferential direction. A magnetized magnet rotor, an annular yoke portion, a plurality of coil winding portions projecting radially from the yoke portion, and pole piece portions formed at the respective tips of the plurality of coil winding portions. And an armature coil wound around a coil winding portion of the armature core, wherein the magnetic pole surface formed at the tip of each pole piece of the armature core is a rotor. The present invention relates to a magneto-generator that faces a cylindrical inner surface of a magnetic pole with a predetermined gap.

【0011】本発明においては、回転子磁極の極弧角を
電機子鉄心の極片部の先端の極弧角以上に設定し、電機
子鉄心の各極片部の先端の磁極面の周方向の中央部に凹
部を形成して、各極片部の先端の磁極面の各周方向端部
と凹部の各周方向端部との間の部分を、磁石回転子の磁
極部の内周面に沿うように円筒面状に形成した。
In the present invention, the pole arc angle of the rotor magnetic pole is set to be equal to or greater than the pole arc angle of the tip of the pole piece portion of the armature core, and the magnetic pole surface at the tip of each pole piece portion of the armature core is circumferentially oriented. A recess is formed in the center of the magnetic pole, and the portion between the circumferential end of the magnetic pole surface at the tip of each pole piece and the circumferential end of the recess is defined as the inner circumferential surface of the magnetic pole of the magnet rotor. It was formed into a cylindrical surface so as to extend along.

【0012】本発明においてはまた、電機子鉄心の各極
片部の先端の磁極面の周方向の中央部に凹部を形成する
代りに、各極片部の先端の磁極面の周方向の中央部に平
坦面を形成するようにしてもよい。この場合も、各極片
部の先端の磁極面の周方向端部と平坦面の各周方向端部
との間の部分を磁石回転子の磁極部の内周面に沿うよう
に円筒面状に形成する。
In the present invention, instead of forming a recess in the circumferential center of the magnetic pole surface at the tip of each pole piece of the armature core, the circumferential center of the magnetic pole surface at the tip of each pole piece is formed. You may make it form a flat surface in a part. In this case as well, the portion between the circumferential end of the magnetic pole surface at the tip of each pole piece and each circumferential end of the flat surface is shaped like a cylindrical surface along the inner circumferential surface of the magnetic pole portion of the magnet rotor. To form.

【0013】[0013]

【作用】電機子鉄心の各コイル巻装部を通る磁束は、電
機子鉄心の各極片部の先端の磁極面の周方向の中央と回
転子磁極の周方向の中央部とが径方向に沿う直線上で対
向した状態になったときに最大となるが、上記のように
電機子鉄心の各極片部の先端の磁極面の周方向の中央部
に凹部を形成するか、または平坦面を形成しておくと、
回転子磁極の円筒面状の内周面と所定のギャップを介し
て対向する各極片部の磁極面の円筒面状の部分の面積
(空隙面積)は、極片部の磁極面に凹部や平坦面を形成
しない場合に比べて小さくなる。従ってコイル巻装部の
最大磁束も小さくなり、電機子鉄心の鉄損が小さくな
る。また、電機子コイルに誘起する電圧の大きさは、電
機子鉄心の各極片部の磁極面の周方向の中央部が隣接す
る回転子磁極の間の中央位置を通過する時(この時コイ
ル巻装部を通る磁束の方向は一方から他方へ交番する)
に最大となるが、この時コイル巻装部の磁束の時間的変
化の大きさは極片部の磁極面の周方向の中央部に形成さ
れた凹部や平坦面の有無によっては影響を受けない。
The magnetic flux passing through each coil winding portion of the armature core is radially distributed between the circumferential center of the magnetic pole surface at the tip of each pole piece of the armature core and the circumferential center of the rotor magnetic pole. It becomes the maximum when it is in a state of facing on a straight line along it, but as described above, a recess is formed in the center part in the circumferential direction of the magnetic pole surface at the tip of each pole piece part of the armature core, or a flat surface Is formed,
The area (cavity area) of the cylindrical surface portion of the magnetic pole surface of each pole piece portion that opposes the cylindrical inner peripheral surface of the rotor magnetic pole through a predetermined gap is equal to the concave portion of the magnetic pole surface of the pole piece portion. It is smaller than when a flat surface is not formed. Therefore, the maximum magnetic flux of the coil winding portion is also small, and the iron loss of the armature core is small. Also, the magnitude of the voltage induced in the armature coil depends on when the central portion in the circumferential direction of the magnetic pole surface of each pole piece of the armature core passes through the central position between adjacent rotor magnetic poles ( The direction of the magnetic flux passing through the winding part alternates from one to the other)
However, the magnitude of the change over time in the magnetic flux of the coil winding portion is not affected by the presence or absence of a recess or flat surface formed in the circumferential center of the pole face of the pole piece. .

【0014】従って電機子コイルの誘起電圧の大きさを
低下させることなく、コイル巻装部の最大磁束を減少さ
せて鉄損の低減を図ることができ、電機子コイルの温度
上昇を抑制することができる。
Therefore, it is possible to reduce the maximum magnetic flux of the coil winding portion to reduce the iron loss without reducing the magnitude of the induced voltage of the armature coil, and suppress the temperature rise of the armature coil. You can

【0015】[0015]

【実施例】図1は内燃機関に取付けられる4極構造の磁
石発電機に本発明を適用した実施例を示したものであ
る。同図において1は磁石回転子、2は電機子鉄心、3
ないし6は電機子鉄心2に巻装された電機子コイルであ
り、電機子鉄心2と電機子コイル3ないし6とにより磁
石発電機の固定子が構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment in which the present invention is applied to a four-pole structure magnet generator installed in an internal combustion engine. In the figure, 1 is a magnet rotor, 2 is an armature core, 3
Reference numerals 6 to 6 are armature coils wound around the armature core 2, and the armature core 2 and the armature coils 3 to 6 constitute a stator of the magneto-generator.

【0016】磁石回転子1は、鉄等の強磁性材料からな
るほぼカップ状の回転子ヨーク(フライホイール)7
と、該ヨークの周壁部7aの内周に等角度間隔で取付け
られた円弧状の永久磁石8ないし11とからなってい
る。これらの永久磁石は、ヨークの周方向に交互に異な
る極性の回転子磁極8aないし11aが並ぶように着磁
(径方向着磁)されている。
The magnet rotor 1 comprises a substantially cup-shaped rotor yoke (flywheel) 7 made of a ferromagnetic material such as iron.
And arc-shaped permanent magnets 8 to 11 mounted on the inner circumference of the peripheral wall portion 7a of the yoke at equal angular intervals. These permanent magnets are magnetized (radially magnetized) so that rotor magnetic poles 8a to 11a having different polarities are alternately arranged in the circumferential direction of the yoke.

【0017】回転子磁極8aないし11aは全て等しい
極弧角αを有していて、それぞれの内周面が円筒面状を
呈するように形成されている。回転子ヨーク7の底壁部
7bの中央部には図示しないボスが設けられ、該ボスが
図示しない内燃機関の回転軸に嵌着されて磁石回転子1
が内燃機関に取り付けられる。
The rotor magnetic poles 8a to 11a all have the same polar arc angle α, and each inner peripheral surface is formed to have a cylindrical surface shape. A boss (not shown) is provided in the central portion of the bottom wall portion 7b of the rotor yoke 7, and the boss is fitted to the rotation shaft of the internal combustion engine (not shown) so that the magnet rotor 1
Is attached to the internal combustion engine.

【0018】電機子鉄心2は所定の形状に打ち抜かれた
鉄心片を積層したものからなっている。本実施例で用い
る鉄心2は、環状の継鉄部12と、該継鉄部から等角度
間隔で放射方向に突出した複数(本実施例では4個)の
コイル巻装部13,14,15及び16と、コイル巻装
部13,14,15及び16の先端にそれぞれ形成され
た極片部17,18,19及び20とを有している。各
極片部の先端の極弧角をβとすると、回転子磁極の極弧
角αは電機子鉄心の極片部の極弧角β以上に設定されて
いる。
The armature core 2 is formed by stacking core pieces punched into a predetermined shape. The iron core 2 used in this embodiment includes an annular yoke portion 12 and a plurality (four in this embodiment) of coil winding portions 13, 14 and 15 protruding radially from the yoke portion at equal angular intervals. And 16, and pole piece parts 17, 18, 19 and 20 formed at the tips of the coil winding parts 13, 14, 15 and 16, respectively. When the polar arc angle at the tip of each pole piece is β, the pole arc angle α of the rotor magnetic pole is set to be equal to or larger than the pole arc angle β of the pole piece of the armature core.

【0019】電機子鉄心の極片部17ないし20のそれ
ぞれの先端の磁極面の周方向の中央部には、それぞれ角
溝状の(断面コの字状の)凹部17a,18a,19a
及び20aが形成されている。極片部17ないし20の
それぞれの先端の磁極面の周方向端部と凹部17aない
し20aのそれぞれの周方向端部との間の部分の磁極面
(17b,17c),(18b,18c),(19b,
19c)及び(20b,20c)は、磁石回転子の回転
子磁極8aないし11aの円筒面状の内周面に所定のギ
ャップを介して沿うように円筒面状に形成されている。
In the central portion in the circumferential direction of the magnetic pole surface at the tip of each of the pole piece portions 17 to 20 of the armature core, concave portions 17a, 18a, 19a each having a groove shape (having a U-shaped cross section) are formed.
And 20a are formed. Magnetic pole surfaces (17b, 17c), (18b, 18c) at portions between the circumferential end portions of the magnetic pole surfaces at the tips of the pole piece portions 17 to 20 and the circumferential end portions of the concave portions 17a to 20a, (19b,
19c) and (20b, 20c) are formed in a cylindrical surface shape along a cylindrical inner peripheral surface of the rotor magnetic poles 8a to 11a of the magnet rotor via a predetermined gap.

【0020】電機子鉄心2は、その継鉄部12の内周を
インロー部12bとして、該インロー部12bに内燃機
関のクランクケース等の取付部に設けられたインロー部
を嵌合させることにより位置決めされ、継鉄部12に設
けられた4個の貫通孔12a,12a…にそれぞれ挿入
された取付ねじが取付部側に設けられたねじ孔に螺入さ
れて固定される。
The armature core 2 is positioned by fitting the inner periphery of the yoke portion 12 as a spigot portion 12b and fitting a spigot portion provided on a mounting portion such as a crankcase of an internal combustion engine to the spigot portion 12b. The mounting screws respectively inserted into the four through holes 12a provided in the yoke portion 12 are screwed into the screw holes provided on the mounting portion side to be fixed.

【0021】電機子コイル3ないし6は、それぞれ電機
子鉄心のコイル巻装部13ないし16に巻回されてい
て、これらの電機子コイルは例えば電機子コイル3が内
燃機関用点火装置を駆動する点火電源用のエキサイタコ
イルとして用いられている。
The armature coils 3 to 6 are respectively wound around the coil winding portions 13 to 16 of the armature core, and for example, the armature coils 3 drive the ignition device for an internal combustion engine. It is used as an exciter coil for ignition power sources.

【0022】上記の構成の磁石発電機において磁石回転
子1が回転すると、電機子鉄心の各極片部の円筒面状の
磁極面と磁石回転子の各回転子磁極の円筒面状の内周面
との間の対向面積の変化及び電機子鉄心の各極片部に対
向する回転子磁極の極性の変化により、電機子鉄心の各
コイル巻装部13ないし16を通る磁束は、磁石回転子
1の1回転につきそれぞれ複数(本実施例では2)サイ
クルの変化をする。この磁束変化により、各電機子コイ
ル3ないし6にそれぞれ電圧が誘起する。
When the magnet rotor 1 rotates in the magneto-generator having the above structure, the cylindrical magnetic pole surface of each pole piece of the armature core and the cylindrical inner circumference of each rotor magnetic pole of the magnet rotor. The magnetic flux passing through the coil winding portions 13 to 16 of the armature core changes due to the change of the facing area between the surfaces and the polarity of the rotor magnetic poles facing the pole pieces of the armature core. A plurality of (2 in this embodiment) cycles are changed per one rotation. Due to this change in magnetic flux, a voltage is induced in each of the armature coils 3 to 6.

【0023】図2(A)ないし(C)は、電機子鉄心の
コイル巻装部13を通る磁束φが磁石回転子1の回転角
度位置θによって変化する様子を示したものであり、図
3(A)はコイル3と鎖交する磁束φの波形を示したも
のである。コイル巻装部13の先端の極片部17の周方
向の中央と、磁石回転子の隣接する永久磁石、例えば磁
石8と9の間の部分の周方向の中央部とが一致する状態
をθ=0とすると、この状態のときコイル巻装部13を
通る磁束は零となる(図3A参照)。この状態から磁石
回転子1が図示の矢印方向に回転して、θ=θ1 で図2
(A)に示すように、回転子磁極8aの回転方向の前端
が極片部17の磁極面17cの凹部17a側の端部に達
して、円筒面状の磁極面17cの全面が回転子磁極8a
の前端側の部分に対向する状態では、該磁極面17cと
回転磁極8aとが対向する部分の空隙を介してコイル巻
装部13に磁束φ1 (図3A参照)が流れる。θ=0か
らθ=θ1 迄の間は、コイル巻装部13を通る磁束は極
片部に凹部17aを有しない従来例の磁石発電機の場合
とほぼ同様である。磁石回転子1が更に回転して、θ=
θ2 (=45°)で図2(B)に示すように、極片部1
7の周方向の中央と回転子磁極8aの周方向の中央とが
一致する状態では、極片部17の磁極面17b及び17
cの両方の全面が回転子磁極8aと対向する。この状態
のときコイル巻装部13を通る磁束は最高値(有効磁
束)φm となる。このとき凹部17aを介して流れる磁
束はわずかな漏洩磁束のみであるので、有効磁束φm の
大きさは、凹部17aを有しない従来例の磁石発電機の
場合の有効磁束φm ´に比べて小さくなる(図3A参
照)。磁石回転子が図示の矢印方向に更に回転して、θ
=θ3 で図2(C)に示すように、回転子磁極8aの回
転方向の後端が極片部17の磁極面17bの凹部17a
側の端部に達して、円筒面状の磁極面17bの全面が回
転子磁極8aの後端側の部分に対向する状態では、該磁
極面17bと回転子磁極8aとが対向する部分の空隙を
介してコイル巻装部13には磁束φ1 とほぼ等しい大き
さの磁束φ3 (図3A参照)が流れる。θ=θ3 からθ
=θ4 (=90°)までの間は、コイル巻装部13を通
る磁束は極片部17に凹部17aを有しない従来例の磁
石発電機の場合とほぼ同様である。
FIGS. 2A to 2C show how the magnetic flux φ passing through the coil winding portion 13 of the armature core changes depending on the rotation angle position θ of the magnet rotor 1, and FIG. (A) shows the waveform of the magnetic flux φ interlinking with the coil 3. The state where the circumferential center of the pole piece portion 17 at the tip of the coil winding portion 13 and the circumferential center portion of the adjacent permanent magnet of the magnet rotor, for example, the portion between the magnets 8 and 9 coincide with each other is θ. When = 0, the magnetic flux passing through the coil winding portion 13 is zero in this state (see FIG. 3A). From this state, the magnet rotor 1 rotates in the direction of the arrow shown in FIG.
As shown in (A), the front end of the rotor magnetic pole 8a in the rotating direction reaches the end of the pole piece portion 17c on the concave portion 17a side of the magnetic pole surface 17c, and the entire surface of the cylindrical magnetic pole surface 17c becomes the rotor magnetic pole. 8a
In a state where the magnetic pole surface 17c and the rotating magnetic pole 8a face each other, a magnetic flux φ1 (see FIG. 3A) flows through the coil winding portion 13 in a state where the magnetic pole surface 17c and the rotating magnetic pole 8a face each other. From θ = 0 to θ = θ1, the magnetic flux passing through the coil winding portion 13 is almost the same as in the conventional magnet generator having no recess 17a in the pole piece portion. The magnet rotor 1 further rotates and θ =
At θ 2 (= 45 °), as shown in FIG.
In the state where the center in the circumferential direction of 7 and the center in the circumferential direction of the rotor magnetic pole 8a coincide with each other, the magnetic pole surfaces 17b and 17 of the pole piece portion 17 are provided.
Both surfaces of c face the rotor magnetic pole 8a. In this state, the magnetic flux passing through the coil winding portion 13 has the maximum value (effective magnetic flux) φm. At this time, since the magnetic flux flowing through the recess 17a is only a slight leakage flux, the magnitude of the effective magnetic flux φm is smaller than the effective magnetic flux φm ′ in the case of the conventional magneto-generator having no recess 17a. (See Figure 3A). The magnet rotor further rotates in the direction of the arrow shown,
2C, the rear end of the rotor magnetic pole 8a in the rotational direction is the recess 17a of the magnetic pole surface 17b of the pole piece portion 17 as shown in FIG. 2C.
When reaching the end on the side and the entire surface of the cylindrical magnetic pole surface 17b faces the rear end portion of the rotor magnetic pole 8a, the gap between the magnetic pole surface 17b and the rotor magnetic pole 8a faces. A magnetic flux φ3 (see FIG. 3A) having substantially the same magnitude as the magnetic flux φ1 flows through the coil winding portion 13 via the. θ = θ3 to θ
Up to .theta.4 (= 90.degree.), The magnetic flux passing through the coil winding portion 13 is almost the same as in the conventional magnet generator in which the pole piece portion 17 does not have the recess 17a.

【0024】磁石回転子1の回転角度θ=90°〜18
0°の範囲では、コイル巻装部13を通る磁束は上記θ
=0°〜90°の場合に対して磁束の方向が反転した状
態で同様に変化をし、さらにθ=180°〜270°の
範囲では上記θ=0°〜180°の場合と同様の変化が
生じる。従って、磁石回転子1が1回転する間にコイル
巻装部13を通る磁束φは図3(A)に示したように2
サイクルの変化をする。
Rotation angle of magnet rotor 1 θ = 90 ° -18
In the range of 0 °, the magnetic flux passing through the coil winding portion 13 is θ
= 0 ° to 90 °, the same change occurs in the state where the magnetic flux direction is reversed. Further, in the range of θ = 180 ° to 270 °, the same change as in the case of θ = 0 ° to 180 °. Occurs. Therefore, the magnetic flux φ passing through the coil winding portion 13 during one rotation of the magnet rotor 1 is 2 as shown in FIG.
Make a cycle change.

【0025】図3(B)はコイル巻装部13に巻回され
た電機子コイル3に誘起する電圧波形を示したもので、
同図において実線で示す波形Vは本実施例の場合を示
し、また破線で示す波形V´はコイル巻装部13の先端
に形成された極片部に凹部17aを有しない従来例の磁
石発電機の場合を示している。コイル巻装部13を通る
磁束の時間的変化が最も大きいθ=0°,90°,18
0°及び270°の付近では、前述のようにコイル巻装
部13を通る磁束が従来例の発電機のそれとほぼ等しい
ため、本実施例の発電機の電機子コイル3に誘起する電
圧の最大値は従来例の発電機により得られる電圧の最大
値にほぼ等しくなる。
FIG. 3B shows a voltage waveform induced in the armature coil 3 wound around the coil winding portion 13.
In the same figure, the waveform V shown by the solid line shows the case of this embodiment, and the waveform V'shown by the broken line shows the magnet power generation of the conventional example in which the pole piece portion formed at the tip of the coil winding portion 13 does not have the concave portion 17a. The case of the machine is shown. Θ = 0 °, 90 °, 18 where the time change of the magnetic flux passing through the coil winding portion 13 is the largest.
In the vicinity of 0 ° and 270 °, since the magnetic flux passing through the coil winding portion 13 is almost equal to that of the conventional generator, as described above, the maximum voltage induced in the armature coil 3 of the generator of this embodiment is maximum. The value is almost equal to the maximum value of the voltage obtained by the conventional generator.

【0026】上記のように、本実施例によれば、電機子
鉄心のコイル巻装部に巻回した電機子コイルに誘起する
電圧の大きさを殆ど低下させることなく、コイル巻装部
を流れる有効磁束の大きさを小さくしてコイル巻装部で
生じる鉄損を減少させ、電機子コイルの温度上昇を抑制
することができる。
As described above, according to this embodiment, the voltage flowing through the coil winding portion of the armature core flows through the coil winding portion without substantially reducing the magnitude of the voltage induced in the armature coil wound around the coil winding portion. It is possible to reduce the magnitude of the effective magnetic flux, reduce the iron loss generated in the coil winding portion, and suppress the temperature rise of the armature coil.

【0027】図4は、電機子コイルをコンデンサ放電式
点火装置の点火エネルギー蓄積用コンデンサを充電する
ために用いた場合について、点火エネルギー蓄積用コン
デンサの充電電圧Vc と回転速度との関係を測定した実
験結果を示したもので、同図に実線で示した曲線は本実
施例の場合を示し、破線で示した曲線は従来例の場合を
示している。図4から明らかなように、中速以下の回転
域では本実施例による場合の方が充電電圧Vc が僅かに
低いが、エキサイタコイルの温度上昇が一般に高くなる
高速域では、本実施例による場合も従来例による場合も
充電電圧Vc が同等になっている。
FIG. 4 shows the relationship between the charging voltage Vc of the ignition energy storage capacitor and the rotation speed when the armature coil is used to charge the ignition energy storage capacitor of the capacitor discharge ignition device. The experimental results are shown. In the figure, the curve shown by the solid line shows the case of this embodiment, and the curve shown by the broken line shows the case of the conventional example. As is apparent from FIG. 4, the charging voltage Vc is slightly lower in the case of the present embodiment in the rotation range of medium speed or lower, but in the high speed range where the temperature rise of the exciter coil is generally high, Also in the case of the conventional example, the charging voltage Vc is the same.

【0028】上記の実施例では、電機子鉄心の各極片部
の先端の磁極面の中央部に設ける凹部を角溝(断面がコ
の字形を呈する溝)状に形成したが、この凹部は例えば
図5に示したように、断面が円弧状を呈する溝17a´
としてもよい。
In the above-mentioned embodiment, the concave portion provided in the central portion of the magnetic pole surface at the tip of each pole piece portion of the armature core is formed in the shape of a square groove (a groove having a U-shaped cross section). For example, as shown in FIG. 5, the groove 17 a ′ having a circular cross section.
May be

【0029】また上記の実施例では、電機子鉄心の各極
片部の先端の磁極面の中央部に凹部を形成したが、凹部
を設ける代りに平坦面を形成しても本発明の目的を達成
できる。
In the above embodiment, the recess is formed in the center of the magnetic pole surface at the tip of each pole piece of the armature iron core. However, even if a flat surface is formed instead of forming the recess, the object of the present invention is achieved. Can be achieved.

【0030】図6は極片部17の先端の磁極面に平坦部
を形成した実施例を示したもので、この例では、極片部
17の先端の磁極面の周方向の中央部に径方向に対して
直角をなす平坦面17a″が形成され、極片部17の先
端の磁極面の周方向端部と平坦面17a″の周方向端部
との間の部分17b及び17cは、磁石回転子の磁極部
(例えば8a)の内周面に沿うように円筒面状に形成さ
れている。この場合にも、電機子鉄心のコイル巻装部を
通る磁束の最大値は、平坦面を形成しない場合に比べて
小さくなり、しかも、コイル巻装部を通る磁束の方向が
一方から他方に交番する際に生じる磁束変化の大きさ
は、平坦面を形成した場合も形成しない場合もほぼ同じ
であるので、コイル巻装部に巻回された電機子コイルの
誘起電圧の最大値を低下させることなく、鉄損を少なく
して温度上昇を抑制することができる。
FIG. 6 shows an embodiment in which a flat portion is formed on the magnetic pole surface at the tip of the pole piece portion 17. In this example, a diameter is formed in the circumferential center portion of the magnetic pole surface at the tip of the pole piece portion 17. A flat surface 17a ″ that is perpendicular to the direction is formed, and portions 17b and 17c between the circumferential end of the magnetic pole surface at the tip of the pole piece portion 17 and the circumferential end of the flat surface 17a ″ are magnets. It is formed into a cylindrical surface along the inner peripheral surface of the magnetic pole portion (for example, 8a) of the rotor. Also in this case, the maximum value of the magnetic flux passing through the coil winding portion of the armature core is smaller than that when the flat surface is not formed, and moreover, the direction of the magnetic flux passing through the coil winding portion is alternating from one to the other. The magnitude of the magnetic flux change that occurs when the coil is wound is almost the same whether a flat surface is formed or not, so reduce the maximum value of the induced voltage of the armature coil wound around the coil winding section. In addition, the iron loss can be reduced and the temperature rise can be suppressed.

【0031】上記の実施例では、4極の磁石発電機を例
にとったが、2極あるいは6極以上の極数を有する磁石
発電機についても本発明を適用できるのは勿論である。
また上記の実施例では、各永久磁石の内周の磁極面その
ものを回転子磁極としているが、各永久磁石の内周面に
それぞれ磁性材料からなる極片を取り付けて、該極片の
円筒面状の内周面を回転子磁極とするようにしてもよ
い。
In the above embodiments, the four-pole magnet generator is taken as an example, but the present invention can be applied to a magnet generator having two or six or more poles.
In the above embodiment, the magnetic pole surface of the inner circumference of each permanent magnet itself is used as the rotor magnetic pole, but pole pieces made of a magnetic material are attached to the inner circumferential surface of each permanent magnet, and the cylindrical surface of the pole piece is attached. The inner peripheral surface may be used as the rotor magnetic pole.

【0032】[0032]

【発明の効果】以上のように、本発明によれば、電機子
鉄心の各極片部の先端の磁極面の周方向の中央部に凹部
あるいは平坦面を形成して、コイル巻装部に巻回された
電機子コイルに鎖交する磁束変化の大きさをほとんで低
下させることなくコイル巻装部の磁束の最大値(有効磁
束)を低下させるようにしたので、電機子コイルの誘起
電圧を殆ど低下させることなく、電機子鉄心の鉄損を低
減させて電機子コイルの温度上昇を抑制することができ
る。従って電機子コイルの信頼性を向上させることがで
き、また電機子コイルに耐熱性の低い銅線を使用するこ
とが可能となって磁石発電機を安価に構成できる利点が
ある。
As described above, according to the present invention, a concave portion or a flat surface is formed in the circumferential central portion of the magnetic pole surface at the tip of each pole piece portion of the armature core to form a coil winding portion. Since the maximum value of the magnetic flux (effective magnetic flux) in the coil winding part is reduced without reducing the magnitude of the change in the magnetic flux that interlinks the wound armature coil, the induced voltage in the armature coil is reduced. It is possible to reduce the iron loss of the armature core and suppress an increase in the temperature of the armature coil, with almost no decrease in temperature. Therefore, there is an advantage that the reliability of the armature coil can be improved, and a copper wire having low heat resistance can be used for the armature coil, and the magnet generator can be constructed at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示した正面図である。FIG. 1 is a front view showing an embodiment of the present invention.

【図2】(A)ないし(C)はそれぞれ図1の実施例に
ついて磁石回転子の異なる回転位置における磁束の流れ
を示した説明図である。
2A to 2C are explanatory views showing the flow of magnetic flux at different rotational positions of the magnet rotor in the embodiment of FIG. 1, respectively.

【図3】電機子鉄心のコイル巻装部の磁束波形と電機子
コイルの誘起電圧波形とを、図1の実施例の場合と従来
例の場合とについて示した波形図である。
FIG. 3 is a waveform diagram showing a magnetic flux waveform of a coil winding portion of an armature core and an induced voltage waveform of an armature coil in the example of FIG. 1 and the conventional example.

【図4】点火エネルギー蓄積用コンデンサの充電電圧特
性を、図1の実施例の場合と従来例の場合とについて示
した線図である。
FIG. 4 is a diagram showing the charging voltage characteristics of the ignition energy storage capacitor in the case of the embodiment of FIG. 1 and in the case of the conventional example.

【図5】本発明の他の実施例の要部を示した正面図であ
る。
FIG. 5 is a front view showing a main part of another embodiment of the present invention.

【図6】本発明の更に他の実施例の要部を示した正面図
である。
FIG. 6 is a front view showing a main part of still another embodiment of the present invention.

【図7】従来例を示した正面図である。FIG. 7 is a front view showing a conventional example.

【図8】図7の状態におけるコイル巻装部の磁束の流れ
を示した説明図である。
8 is an explanatory diagram showing the flow of magnetic flux in the coil winding portion in the state of FIG. 7.

【符号の説明】[Explanation of symbols]

1 磁石回転子 2 電機子鉄心 3〜6 電機子コイル 7 回転子ヨーク 8〜11 永久磁石 8a〜11a 回転子磁極 12 継鉄部 13〜16 コイル巻装部 17〜20 極片部 17a〜20a 凹部 17a´ 凹部 17a″ 平坦面 1 magnet rotor 2 Armature iron core 3-6 Armature coil 7 rotor yoke 8-11 Permanent magnet 8a to 11a rotor magnetic poles 12 Yoke 13 to 16 coil winding section 17 to 20 pole pieces 17a to 20a Recess 17a 'recess 17a ″ flat surface

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02K 21/22 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H02K 21/22

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 回転子ヨークと該回転子ヨークに取り付
けられた永久磁石とからなっていて周方向に交互に異な
る極性の回転子磁極が複数個等角度間隔で並ぶように前
記永久磁石が着磁された磁石回転子と、環状の継鉄部と
該継鉄部から等角度間隔で放射方向に突出した複数のコ
イル巻装部と該複数のコイル巻装部のそれぞれの先端に
形成された極片部とを有する電機子鉄心と、前記電機子
鉄心のコイル巻装部に巻回された電機子コイルとを備
え、前記電機子鉄心の各極片部の先端に形成された磁極
面が前記回転子磁極の円筒面状の内周面に所定のギャッ
プを介して対向させられ、前記回転子磁極の極弧角は前
記電機子鉄心の極片部の先端の極弧角以上に設定されて
いて、前記電機子鉄心の各コイル巻装部の先端の極片部
の磁極面の周方向の中央部が隣接する回転子磁極間の中
央位置を通過する際に各コイル巻装部を通る磁束の方向
が交番するように構成されている磁石発電機において、 前記電機子鉄心の各極片部の先端の磁極面の周方向の中
央部に凹部が形成され、 前記電機子鉄心の各極片部の先端の磁極面の各周方向端
部と前記凹部の各周方向端部との間の部分は前記磁石回
転子の磁極部の内周面に沿うように円筒面状に形成さ
前記コイル巻装部を流れる磁束の方向が交番する際に前
記コイル巻装部を流れる磁束に生じる変化が、前記磁極
面の周方向の中央部に凹部が設けられていない場合とほ
ぼ同じになるように構成されていること、 を特徴とする磁石発電機。
1. A permanent magnet is attached to a rotor yoke and permanent magnets attached to the rotor yoke so that a plurality of rotor magnetic poles of different polarities are alternately arranged in the circumferential direction at equal angular intervals. A magnetized magnet rotor, a ring-shaped yoke portion, a plurality of coil winding portions protruding in the radial direction from the yoke portion at equal angular intervals, and formed at the tips of the coil winding portions, respectively. An armature core having a pole piece portion, and an armature coil wound around a coil winding portion of the armature core, wherein a magnetic pole surface formed at a tip of each pole piece portion of the armature core The rotor magnetic pole is opposed to the cylindrical inner peripheral surface of the rotor magnetic pole through a predetermined gap, and the polar arc angle of the rotor magnetic pole is
The armature core is set to a pole arc angle of the tip of the pole piece or more
And a pole piece portion at the tip of each coil winding portion of the armature core
The center of the magnetic pole surface in the circumferential direction is between the adjacent rotor magnetic poles.
Direction of magnetic flux passing through each coil winding part when passing through the center position
In the magneto-generator configured to alternate, a recess is formed in the central portion in the circumferential direction of the magnetic pole surface at the tip of each pole piece portion of the armature core, and each pole piece portion of the armature core is formed. The portion between each circumferential end of the magnetic pole surface at the tip and each circumferential end of the recess is formed into a cylindrical surface along the inner circumferential surface of the magnetic pole portion of the magnet rotor, and the coil winding is formed . Before the direction of the magnetic flux flowing through the
The change that occurs in the magnetic flux flowing through the coil winding part is
In the case where no recess is provided in the center of the surface in the circumferential direction,
A magnet generator characterized in that they are configured to be substantially the same .
【請求項2】 回転子ヨークと該回転子ヨークに取り付
けられた永久磁石とからなっていて周方向に交互に異な
る極性の回転子磁極が複数個等角度間隔で並ぶように
記永久磁石が着磁された磁石回転子と、環状の継鉄部と
該継鉄部から放射方向に突出した複数のコイル巻装部と
該複数のコイル巻装部のそれぞれの先端に形成された極
片部とを有する電機子鉄心と、前記電機子鉄心のコイル
巻装部に巻回された電機子コイルとを備え、前記電機子
鉄心の各磁極片の先端に形成された磁極面が前記回転子
磁極の円筒面状の内周面に所定のギャップを介して対向
させられ、前記回転子磁極の極弧角は前記電機子鉄心の
極片部の先端の極弧角以上に設定されていて、前記電機
子鉄心の各コイル巻装部の先端の極片部の磁極面の周方
向の中央部が隣接する回転子磁極間の中央位置を通過す
る際に各コイル巻装部を通る磁束の方向が交番するよう
に構成されている磁石発電機において、 前記電機子鉄心の各極片部の先端の磁極面の周方向の中
央部に平坦面が形成され、 各極片部の先端の磁極面の各周方向端部と前記平坦面の
各周方向端部との間の部分は前記磁石回転子の磁極部の
内周面に沿うように円筒面状に形成され 前記コイル巻装部を流れる磁束の方向が交番する際に前
記コイル巻装部を流れる磁束に生じる変化が、前記磁極
面の周方向の中央部に平坦面が設けられていない場合と
ほぼ同じになるように構成されていること、 を特徴とする磁石発電機。
2. A plurality of rotor magnetic poles, which are composed of a rotor yoke and permanent magnets attached to the rotor yoke, and which have different polarities alternately in the circumferential direction, are arranged in front at equal angular intervals. A permanent magnet is magnetized, a magnet rotor, a ring-shaped yoke portion, a plurality of coil winding portions radially projecting from the yoke portion, and a plurality of coil winding portions formed at the tips of the coil winding portions. An armature core having a pole piece portion and an armature coil wound around a coil winding portion of the armature core, and a magnetic pole surface formed at a tip of each magnetic pole piece of the armature core. The rotor magnetic pole is opposed to the cylindrical inner peripheral surface of the rotor magnetic pole through a predetermined gap, and the polar arc angle of the rotor magnetic pole is equal to that of the armature core.
It is set to be equal to or greater than the polar arc angle of the tip of the pole piece,
Circumferential direction of the pole face of the pole piece at the tip of each coil winding part of the child core
The central part of the direction passes through the central position between the adjacent rotor magnetic poles.
So that the direction of the magnetic flux passing through each coil winding part alternates
In the magnet generator configured as described above, a flat surface is formed in the central portion in the circumferential direction of the magnetic pole surface at the tip of each pole piece portion of the armature core, and in each circumferential direction of the magnetic pole surface at the tip of each pole piece portion. portion between each circumferential end of the the end flat surface is formed in a cylindrical surface shape along the inner circumferential surface of the magnetic pole portion of the magnet rotor, the direction of the magnetic flux flowing through the coil winding portion Before the police box
The change that occurs in the magnetic flux flowing through the coil winding part is
When there is no flat surface in the center of the surface in the circumferential direction,
A magnet generator characterized in that they are configured to be substantially the same .
【請求項3】 回転子ヨーク(7)と該回転子ヨーク
(7)に等角度間隔で取り付けられた4個の円弧状の永
久磁石(8ないし11)とからなっていて、前記ヨーク
の周方向に交互に異なる極性の回転子磁極(8aないし
11a)が並ぶように前記4個の永久磁石が着磁された
4極の磁石回転子と、環状の継鉄部(12)と該継鉄部
から等角度間隔で放射方向に突出した4個のコイル巻装
部(13ないし16)と該4個のコイル巻装部のそれぞ
れの先端に形成された極片部(17ないし20)とを有
する電機子鉄心2と、前記電機子鉄心の4個のコイル巻
装部(13ないし16)にそれぞれ巻回された電機子コ
イル(3ないし6)とを備え、前記電機子鉄心の各極片
部の先端に形成された磁極面が前記回転子磁極の円筒面
状の内周面に所定のギャップを介して対向させられ
記磁石回転子の各回転子磁極の極弧角αは前記電機子鉄
心の各極片部の先端の極弧角β以上に設定されていて、
前記電機子鉄心の各コイル巻装部の先端の極片部の磁極
面の周方向の中央部と隣接する回転子磁極間の中央部と
が一致したときに各コイル巻装部を通る磁束が零になる
ように構成されている磁石発電機において、 前記電機子鉄心の4個の極片部の先端の磁極面の周方向
の中央部にそれぞれ凹部(17aないし20a)が形成
され、 前記電機子鉄心の各極片部の先端の磁極面の各周方向端
部と前記凹部の各周方 向端部との間の部分は前記磁石回
転子の磁極部の内周面に沿うように円筒面状に形成さ
れ、 前記コイル巻装部を流れる磁束の方向が交番する際に前
記コイル巻装部を流れる磁束に生じる変化が、前記磁極
面の周方向の中央部に凹部が設けられていない場合とほ
ぼ同じになるように構成されていること、 を特徴とする磁石発電機。
3. A rotor yoke (7) and said rotor yoke.
Four arc-shaped permanent magnets attached to (7) at equal angular intervals.
The yoke consists of permanent magnets (8 to 11)
Rotor magnetic poles (8a or
11a) were magnetized so that the four permanent magnets were aligned.
4-pole magnet rotor, annular yoke portion (12) and the yoke portion
4 coil windings projecting in radial direction at equal angular intervals from
Section (13 to 16) and each of the four coil winding sections
The pole piece (17 to 20) formed at the tip of the
Armature core 2 and four coil windings of the armature core
Armature coil wound on each mounting part (13 to 16)
(3 to 6) and each pole piece of the armature core
The magnetic pole surface formed at the tip of the portion is the cylindrical surface of the rotor magnetic pole.
The Jo of the inner peripheral surface is made to face through a predetermined gap, before
The polar arc angle α of each rotor magnetic pole of the magnet rotor is the armature iron
It is set to a polar arc angle β or more at the tip of each pole piece of the heart,
The magnetic pole of the pole piece at the tip of each coil winding portion of the armature core
The center of the surface in the circumferential direction and the center between the adjacent rotor magnetic poles
The magnetic flux passing through each coil winding becomes zero when
In the magneto-generator configured as described above, the magnetic pole surfaces at the tips of the four pole piece portions of the armature core are circumferentially arranged.
Recesses (17a to 20a) are formed in the central part of
And each circumferential end of the magnetic pole surface at the tip of each pole piece of the armature core.
Portion between each circumferential Direction end parts and the recess the magnet times
A cylindrical surface is formed along the inner peripheral surface of the magnetic pole of the trochanter.
Is, before the time the direction of the magnetic flux flowing through the coil winding portions alternates
The change that occurs in the magnetic flux flowing through the coil winding part is
In the case where no recess is provided in the center of the surface in the circumferential direction,
A magnet generator characterized in that they are configured to be substantially the same .
【請求項4】 回転子ヨーク(7)と該回転子ヨーク
(7)に等角度間隔で取り付けられた4個の円弧状の永
久磁石(8ないし11)とからなっていて、前記ヨーク
の周方向に交互に異なる極性の回転子磁極(8aないし
11a)が並ぶように前記4個の永久磁石が着磁された
4極の磁石回転子と、環状の継鉄部12と該継鉄部から
等角度間隔で放射方向に突出した4個のコイル巻装部
(13ないし16)と該4個のコイル巻装部のそれぞれ
の先端に形成された極片部(17ないし20)とを有す
る電機子鉄心2と、前記電機子鉄心の4個のコイル巻装
部(13ないし16)にそれぞれ巻回された電機子コイ
ル(3ないし6)とを備え、前記電機子鉄心の各極片部
の先端に形成された磁極面が前記回転子磁極の円筒面状
の内周面に所定のギャップを介して対向させられ前記
磁石回転子の各回転子磁極の極弧角αは前記電機子鉄心
の各極片部の先端の極弧角β以上に設定されていて、前
記電機子鉄心の各コイル巻装部の先端の極片部の磁極面
の周方向の中央部と隣接する回転子磁極間の中央部とが
一致したときに各コイル巻装部を通る磁束が零になるよ
うに構成されている磁石発電機において、 前記電機子鉄心の4個の極片部(17ないし20)のそ
れぞれの先端の磁極面の周方向の中央部に平坦面が形成
され、 前記電機子鉄心の各極片部の先端の磁極面の各周方向端
部と前記平坦面の各周方向端部との間の部分は前記磁石
回転子の磁極部の内周面に沿うように円筒面状に形成さ
れ、 前記コイル巻装部を流れる磁束の方向が交番する際に前
記コイル巻装部を流れる磁束に生じる変化が、前記磁極
面の周方向の中央部に平坦面が設けられていない場合と
ほぼ同じになるように構成されていること、 を特徴とする磁石発電機。
4. A rotor yoke (7) and said rotor yoke.
Four arc-shaped permanent magnets attached to (7) at equal angular intervals.
The yoke consists of permanent magnets (8 to 11)
Rotor magnetic poles (8a or
11a) were magnetized so that the four permanent magnets were aligned.
From a 4-pole magnet rotor, an annular yoke section 12 and the yoke section
Four coil winding parts protruding in the radial direction at equal angular intervals
(13 to 16) and each of the four coil winding parts
A pole piece (17 to 20) formed at the tip of
Armature core 2 and four coil windings of the armature core
Armature carp wound on each part (13 to 16)
(3 to 6), and each pole piece of the armature core
The magnetic pole surface formed at the tip of the rotor is a cylindrical surface of the rotor magnetic pole.
The inner peripheral surface is made to face via a predetermined gap, the
The polar arc angle α of each rotor magnetic pole of the magnet rotor is the armature iron core.
Is set to be equal to or greater than the polar arc angle β at the tip of each pole piece of
Magnetic pole face of the pole piece at the tip of each coil winding part of the armature core
Between the center of the rotor in the circumferential direction and the center between the adjacent rotor magnetic poles
When they match, the magnetic flux passing through each coil winding becomes zero.
In the magneto-generator configured as described above, the four pole piece parts (17 to 20) of the armature core are aligned.
A flat surface is formed at the center of the magnetic pole surface at the tip in the circumferential direction.
And each circumferential end of the magnetic pole surface at the tip of each pole piece of the armature core.
The portion between the end portion and each circumferential end of the flat surface is the magnet.
A cylindrical surface is formed along the inner peripheral surface of the rotor magnetic pole.
Is, before the time the direction of the magnetic flux flowing through the coil winding portions alternates
The change that occurs in the magnetic flux flowing through the coil winding part is
When there is no flat surface in the center of the surface in the circumferential direction,
A magnet generator characterized in that they are configured to be substantially the same .
JP19674194A 1994-08-22 1994-08-22 Magnet generator Expired - Fee Related JP3367213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19674194A JP3367213B2 (en) 1994-08-22 1994-08-22 Magnet generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19674194A JP3367213B2 (en) 1994-08-22 1994-08-22 Magnet generator

Publications (2)

Publication Number Publication Date
JPH0865978A JPH0865978A (en) 1996-03-08
JP3367213B2 true JP3367213B2 (en) 2003-01-14

Family

ID=16362837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19674194A Expired - Fee Related JP3367213B2 (en) 1994-08-22 1994-08-22 Magnet generator

Country Status (1)

Country Link
JP (1) JP3367213B2 (en)

Also Published As

Publication number Publication date
JPH0865978A (en) 1996-03-08

Similar Documents

Publication Publication Date Title
JP2695332B2 (en) Permanent magnet field type rotor
US5097167A (en) Rotary electric machine coil assemblies
US6313558B1 (en) Electric rotary machine having concentrated winding stator
US5536987A (en) Alternating current generator for a motor vehicle
US20060097599A1 (en) Permanent magnet type three-phase ac generator
JPH09172760A (en) Magnet generator
JPS6366152B2 (en)
JPS6185045A (en) Ac generator for vehicle
JP3267763B2 (en) Magnet generator
JP4082445B2 (en) Electronically switched two-phase reluctance machine
JP2008043124A (en) Magnet generator
JPH04255451A (en) Ac generator for vehicle
JP3367213B2 (en) Magnet generator
JPH0556615A (en) Ac generator
JP2850644B2 (en) Inductor type alternator
US20030227231A1 (en) Doubly-excited brushless alternator
JP3785861B2 (en) Outer rotor type engine generator
JP2003204661A (en) Rotating-electric machine
JPH1028344A (en) Motor
JP3011994U (en) Brushless self-excited generator
JP7141249B2 (en) Rotating electric machine
JPH10196503A (en) Capacitor discharge type internal combustion engine igniter
JP3334580B2 (en) Ignition device for internal combustion engine
JPH0628945Y2 (en) Permanent magnet type motor
JP2606201B2 (en) Magnet generator for internal combustion engine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021008

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071108

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees