JP3367155B2 - How to adjust dry mine supply - Google Patents

How to adjust dry mine supply

Info

Publication number
JP3367155B2
JP3367155B2 JP19564893A JP19564893A JP3367155B2 JP 3367155 B2 JP3367155 B2 JP 3367155B2 JP 19564893 A JP19564893 A JP 19564893A JP 19564893 A JP19564893 A JP 19564893A JP 3367155 B2 JP3367155 B2 JP 3367155B2
Authority
JP
Japan
Prior art keywords
dry ore
amount
relay
bottle
smelting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19564893A
Other languages
Japanese (ja)
Other versions
JPH0748633A (en
Inventor
伸正 家守
起由 本道
優 竹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP19564893A priority Critical patent/JP3367155B2/en
Publication of JPH0748633A publication Critical patent/JPH0748633A/en
Application granted granted Critical
Publication of JP3367155B2 publication Critical patent/JP3367155B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非鉄金属製錬炉に用い
る熔錬炉への原料の供給方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for supplying raw materials to a smelting furnace used in a non-ferrous metal smelting furnace.

【0002】[0002]

【従来の技術】硫化精鉱を用いる非鉄金属製錬法に自熔
製錬法や熔池製錬法がある。自熔製錬法は自溶炉の反応
塔の頂部に設けられた精鉱バーナーより反応塔内に硫化
精鉱、フラックス、煙灰等の粉状の製錬原料と反応用気
体とを吹き込むことにより、また熔池製錬法は炉内に溜
められた熔体中に前記粉状原料と反応用気体とを吹き込
むことにより有価金属をカワとして濃縮し、他の成分を
カラミとして分離しようとするものである。
2. Description of the Related Art Non-ferrous metal smelting methods using sulfide concentrates include a self-smelting method and a molten pool smelting method. The flash smelting method involves blowing powdery smelting raw materials such as sulfide concentrate, flux, and smoke ash and a reaction gas into the reaction tower from a concentrate burner provided at the top of the reaction tower of the flash smelting furnace. In addition, the molten metal refining method attempts to concentrate valuable metal as a kawa and separate other components as a kami by blowing the powdery raw material and the reaction gas into the molten metal stored in the furnace. Is.

【0003】ところで、この硫化精鉱は乾燥した状態で
多量に貯鉱すると、該硫化精鉱中に存在する硫化鉄など
が自然燃焼し硫化精鉱(以下単に「精鉱」と示す。)が
燃焼する危険がある。そしてこの精鉱中の硫化鉄などを
初め銅やイオウなどの含有量は精鉱の産地毎、いわゆる
銘柄毎に異なっている。このため、精鉱の自然燃焼を防
止するために一定の高さ以下となるように、かつ湿った
状態で銘柄毎に区分けして貯鉱場に貯鉱するのが常であ
る。
By the way, when a large amount of this sulfide concentrate is stored in a dry state, iron sulfide and the like present in the sulfide concentrate spontaneously combust and a sulfide concentrate (hereinafter simply referred to as "concentrate") is produced. Risk of burning. The content of iron sulfide, etc. in the concentrate, as well as copper, sulfur, etc., differs depending on the place of production of the concentrate, that is, the so-called brand. For this reason, in order to prevent the natural combustion of the concentrate, it is common to store the minerals in a storage area in a damp state so as to be below a certain height and sorted by brand.

【0004】このように貯鉱されている精鉱を自熔炉に
供給し効率よく、かつ生産性良く処理するためには、供
給する前に各種の銘柄の精鉱を調合して銅とイオウとケ
イ酸等のカラミ成分との品位を調節し、乾燥することが
必要となる。このため、複数の貯鉱ビンを設け、貯鉱場
よりベルトコンベアを用いて銘柄毎に精鉱とケイ酸鉱な
どのフラックス成分とを所定の貯鉱ビンに供給して貯鉱
した後、あるいは貯鉱ビンに供給しつつ、貯鉱ビン下部
より各銘柄の精鉱などを各銘柄毎に指定された割合で切
り出し、乾燥設備に供給している。そして、乾燥して得
たこの調合された精鉱やケイ酸鉱などの混合物(以下単
に「乾鉱」と示す。)を比較的小さな貯鉱ビン(以下
「中継ビン」と示す。)に仮溜めし、中継ビンより連続
的に自熔炉に供給している。
In order to supply the concentrate thus stored to the flash smelting furnace and process it efficiently and with high productivity, concentrates of various brands are blended before supply with copper and sulfur. It is necessary to adjust the quality with the kalamy component such as silicic acid and dry. For this reason, after providing a plurality of storage bins and using a belt conveyor from the storage field to supply concentrates and flux components such as silicate ore to the predetermined storage bins for storage, or While supplying to the storage bins, concentrates of each brand are cut out from the bottom of the storage bin at a specified ratio for each brand and supplied to the drying equipment. Then, the mixture of the prepared concentrate or silicate ore (hereinafter simply referred to as "dry ore") obtained by drying is provisionally placed in a relatively small storage bottle (hereinafter referred to as "relay bottle"). It is stored and continuously supplied from the relay bottle to the flash furnace.

【0005】自熔炉では、中継ビン下部よりコンベアな
どで切り出した乾鉱を切り出しコンベアの端部より反応
塔頂部に設けられた精鉱バーナーに供給し、精鉱シュー
ト内を自由落下させて反応塔内に乾鉱を供給し、精鉱バ
ーナーのウインドボックスより反応用気体を吹き込み、
反応塔内で製錬反応が完結するようにしている。この
際、乾鉱と反応用気体との割合は物量バランスと熱バラ
ンスとを考慮して計算し、設定値としている。
In the flash smelting furnace, dry ore cut from a lower part of a relay bottle by a conveyor is supplied to a concentrate burner provided at the top of the reaction tower from the end of the conveyor, and the free fall in the concentrate chute is carried out to the reaction tower. Supply dry ore into the inside, blow the reaction gas from the wind box of the concentrate burner,
The smelting reaction is completed in the reaction tower. At this time, the ratio between the dry ore and the reaction gas is set considering the physical quantity balance and the heat balance.

【0006】操業に際しては、乾鉱や反応用気体の実供
給量を上記設定値に精度良く維持することが重要であ
る。というは、例えば一定の反応用気体量に対して供給
する乾鉱が多すぎると得られるカワのカワ品位や、カワ
やカラミの熔体温度が低下し、カワやカラミ、特にカラ
ミの粘度が高くなり、炉外への排出が困難となり操業上
重大な支障を来すことになるからである。また、逆に供
給する乾鉱の量が少なすぎると、カワ品位と熔体温度と
が上昇しすぎ、炉壁の熔損を招くことになるからであ
る。このため、実際の乾鉱供給量や反応用気体量とそれ
らの設定値との差を精度良く検出し、中継ビンより精鉱
バーナーへの乾鉱供給量やウインドボックスへの反応用
気体の供給量を調整することは操業上極めて重要な管理
項目となっている。
In operation, it is important to maintain the actual supply amount of dry ore and reaction gas at the above-mentioned set value with high accuracy. For example, if the amount of dry ore supplied to a certain amount of gas for reaction is too high, the quality of the obtained Kawa, the melt temperature of the Kawa and Karami will decrease, and the viscosity of Kawa and Karami, especially Karami will be high. Therefore, it becomes difficult to discharge it outside the furnace, which causes a serious trouble in operation. On the contrary, if the amount of dry ore supplied is too small, the quality of the river and the temperature of the molten metal will rise excessively, which will cause melting of the furnace wall. Therefore, the difference between the actual dry ore supply amount and reaction gas amount and their set values can be accurately detected, and the dry bottle supply amount from the relay bottle to the concentrate burner and the reaction gas supply to the wind box. Adjusting the amount is a very important control item in operation.

【0007】反応用気体は流量計や流量調節計なども比
較的良好な環境下に設置でき、かつ反応用気体自体もフ
ィルターを通して清浄にするため精度よく管理すること
が可能である。しかし、乾鉱の供給量は、例えば切り出
しコンベアの端部と精鉱シュートとの間に衝撃板を設
け、乾鉱が自由落下する途中でこの衝撃板に与える衝撃
の大きさから供給量を求めるなどの方法によらざるを得
ず、衝撃板への乾鉱などの付着状態により大きな誤差を
含む恐れが高いものとなっている。このため、衝撃板に
より得られた値の信頼性は低く、実際には炉況を監視し
つつ最適な炉況を維持するように乾鉱供給量を調節し、
衝撃板より得られた測定値を無視せざるを得ない場合も
あった。
The reaction gas can be installed in a relatively good environment such as a flow meter and a flow rate controller, and the reaction gas itself can be managed accurately because it is cleaned through a filter. However, the supply amount of dry ore is determined, for example, by providing an impact plate between the end of the slicing conveyor and the concentrate chute, and determining the amount of impact on the impact plate during the free fall of the dry ore. There is no choice but to use such a method, and there is a high possibility that a large error will occur due to the state of adhesion of dry ore etc. to the impact plate. Therefore, the reliability of the value obtained by the impact plate is low, and in fact, the dry ore supply amount is adjusted so as to maintain the optimum furnace condition while monitoring the reactor condition,
In some cases, the measured values obtained from the impact plate have to be ignored.

【0008】近年、省力化、省資源化、低コスト化の要
求が強くなり、この一貫として在来の製錬炉を用いて処
理量を大幅に増加させる試みがなされ、実施化されてき
ている。このような要求を確実にかつ安定的に満たす操
業を実現するためには上記した乾鉱の実供給量と設定値
との差はより大きな問題とされるようになった。すなわ
ち、従来の炉況を監視しつつ実乾鉱供給量と設定値との
差を読みとり実乾鉱供給量を調節して最適な炉況を維持
するような操業方法を装置限界に近い状況の操業に適用
しても操業の安定化は望み難いからである。そして、こ
の問題を解決し得る実乾鉱供給量の高精度な測定方法が
検討されてきているが、未だ十分な方法は提案されてい
ない。
In recent years, demands for labor saving, resource saving, and cost reduction have become strong, and as a result of this, attempts have been made to significantly increase the treatment amount by using a conventional smelting furnace, and have been implemented. . In order to surely and stably meet such requirements, the above-mentioned difference between the actual supply amount of dry ore and the set value has become a serious problem. That is, while monitoring the conventional furnace condition, the difference between the actual dry ore supply amount and the set value is read to adjust the actual dry ore supply amount to maintain the optimum furnace condition and the operating method is close to the equipment limit. Even if it is applied to the operation, it is difficult to expect the operation to be stabilized. Then, a highly accurate method of measuring the actual dry ore supply amount that can solve this problem has been studied, but a sufficient method has not been proposed yet.

【0009】[0009]

【発明が解決しようとする課題】本発明は上記状況に鑑
みてなされたものであり、より精度の高い乾鉱の供給量
の調整方法の提供を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and an object thereof is to provide a more accurate method of adjusting the supply amount of dry ore.

【0010】[0010]

【課題を解決するための手段】上記課題を解決する本発
明の方法は、貯鉱ビンより未乾燥の製錬原料を切り出
し、この製錬原料を乾燥設備で乾燥し、得た乾鉱を中継
ビンに供給した後、あるいは供給しつつ中継ビンより乾
鉱を製錬炉に連続的に供給する供給設備において、所望
の一定時間間隔t(単位 分)で中継ビン内の乾鉱量を
測定し、この測定値an(単位 トン)を記憶させ、測定
回数をmとしたとき、n回目の測定値anとm回前の測
定値an-mとを用いて数4、数5、数6を用いて原料供
給量MC(ドライトン/時)を計算し、得た計算値に基
づき中継ビンより製錬炉への供給速度を修正し、以後測
定の都度数4、数5、数6を用いて原料供給量を計算
し、得た計算値に基づき中継ビンより製錬炉への乾鉱の
供給速度を都度調整するものであり、好ましくは修正係
数kを0.8とするものである。
According to the method of the present invention for solving the above problems, an undried smelting raw material is cut out from a storage bottle, the smelting raw material is dried in a drying facility, and the obtained dry ore is relayed. The amount of dry ore in the relay bottle is measured at a desired constant time interval t (unit: minutes) in a supply facility that continuously or simultaneously supplies the dry ore to the smelting furnace from the relay bottle. , The measured value a n (unit ton) is stored, and when the number of measurements is m, the measured value a n of the nth time and the measured value a nm of m times before are used to calculate the numerical formula 4, the mathematical formula 5, and the mathematical formula 6. The raw material supply rate M C (dry ton / hour) is calculated by using, and the feed rate from the relay bottle to the smelting furnace is corrected based on the calculated value. The amount of raw material supplied is calculated by using the calculated value, and the feed rate of dry ore from the relay bottle to the smelting furnace is adjusted each time based on the calculated value. Therefore, the correction coefficient k is preferably 0.8.

【0011】[0011]

【数4】C=an−1×k+a(1−k)## EQU4 ## C n = a n-1 × k + a n (1-k)

【数5】 Cn−m=an−m−1×k+an−m(1−k)## EQU00005 ## C.sub.n-m = a.sub.n-m- 1.times.k + a.sub.n-m (1-k)

【数6】 ここにおいて、kは中継ビン内での乾鉱の荷崩れによる
影響を補正するための修正係数であり0≦k<1の値を
取る。C、Cn−mはそれぞれ修正後の中継ビン内の
乾鉱量であり、bは乾鉱の湿潤ベースでの水分率(%)
であり、Cmtは時間mtの間に貯鉱ビンより乾燥設備
に供給された未乾燥の製錬原料量(トン)であり、dは
未乾燥の製錬原料の湿潤ベースでの水分率(%)であ
る。なお、上記b及びdにおける湿潤ベースでの水分率
(%)とは、総量(乾燥量+水分量)に対する水分量の
割合を意味する。
[Equation 6] Here, k is a correction coefficient for correcting the influence of the load collapse of the dry ore in the relay bin, and takes a value of 0 ≦ k <1. C n and C n-m are the dry ore amounts in the relay bottle after correction, and b is the water content (%) on a wet basis of the dry ore.
Where C mt is the amount of undried smelting raw material (tons) supplied to the drying equipment from the storage bottle during the time mt, and d is the moisture content of the undried smelting raw material on a wet basis ( %). The moisture content on a wet basis in b and d above
(%) Is the amount of water relative to the total amount (dry amount + water amount)
Means a percentage.

【0012】[0012]

【作用】本発明の方法において、一定時間間隔tで中継
ビン内の乾鉱量を測定し、時間mtの間に熔錬炉に供給
された乾鉱の量の移動平均を用いて、周期tで供給速度
を調整するのは、中継ビン内の乾鉱の荷崩れなどに起因
する測定値の変動の供給量に与える影響を最小限に止め
るためである。tやmは用いる中継ビンの大きさや形
状、そして製錬炉内のカワやカラミの滞留時間を考慮し
て定めることが必要である。よって、本発明の方法を適
用するに際してはこれらの諸元に基づき予めtとmとを
定めておくことが必要である。
In the method of the present invention, the amount of dry ore in the relay bottle is measured at a constant time interval t, and the period t is calculated by using the moving average of the amount of dry ore supplied to the smelting furnace during the time mt. The reason for adjusting the supply rate at is to minimize the effect of fluctuations in the measured values on the supply amount due to the collapse of the dry ore load in the relay bottle. It is necessary to determine t and m in consideration of the size and shape of the relay bottle to be used, and the residence time of kawa and kalami in the smelting furnace. Therefore, when applying the method of the present invention, it is necessary to determine t and m in advance based on these specifications.

【0013】例えば、tはいくら長くても製錬炉内のカ
ラミのかなりの部分が入れ替わる前に制御可能である時
間としなければならない。1例を示せば、内寸で幅6
m、長さ20m、有効容積50m3の熔体溜をもつ製錬炉で1
800トン/日の精鉱処理量で操業を行う場合、tは5
分、mは12とすると最適である。
[0013] For example, t must be a time that is controllable before a significant portion of the karami in the smelting furnace is replaced, however long. To give an example, the inner size is 6
m with a length of 20 m and an effective volume of 50 m 3 with a smelting furnace 1
When operating at a concentrate throughput of 800 tons / day, t is 5
Minutes and m are optimally set to 12.

【0014】本発明の方法の基礎となる数式において、
修正係数kを用いているが、これは中継ビン内の乾鉱の
荷崩れによる影響をより良く補正するための係数であ
る。無論前記したようにtとmとは中継ビン内の乾鉱の
荷崩れに起因する測定値の変動を最小限に止めるように
選定するが、この乾鉱の荷崩れは比較的緩慢に発生する
場合もあり、かつ極めて急激に発生する場合もある。本
発明では計算対象の測定時の測定値とその直前の測定値
とに重みをつけて両者の平均値を求め、これを基礎に上
記数6により計算することによりこのような不確定の要
因による影響をより小さくしようとする。よって、kの
値は0≦k<1の範囲の値を取ることになり、かつその
値は専ら中継ビンの構造と中継ビン内の乾鉱量の測定方
法に依存することになる。通常の場合、kは0として支
障はないが、より好ましくはkの最適値を事前に求めて
おくことが望ましい。
In the formula underlying the method of the invention:
Although the correction coefficient k is used, this is a coefficient for better correcting the influence of the collapse of dry mine load in the relay bin. Of course, as described above, t and m are selected so as to minimize the fluctuation of the measured value due to the collapse of the dry ore load in the relay bottle, but this dry ore load collapse occurs relatively slowly. In some cases, it may occur very rapidly. In the present invention, the measured value at the time of the measurement of the calculation target and the measured value immediately before that are weighted to obtain the average value of both, and the calculation is performed based on the average value, and the calculation is performed by the above-mentioned equation 6. Try to make the impact smaller. Therefore, the value of k takes a value in the range of 0 ≦ k <1, and the value depends exclusively on the structure of the relay bin and the method of measuring the amount of dry ore in the relay bin. In the normal case, k is set to 0 and there is no problem, but more preferably, it is desirable to obtain the optimum value of k in advance.

【0015】中継ビン内の乾鉱量を測定する方法とし
て、サウジング式、超音波式、マイクロ波式、X線式な
どの各種のレベル計を用いることができ、また当然のこ
とながら重量式も適用できる。また、中継ビンより精鉱
シュート内への乾鉱の供給方法は、定量供給可能な装置
を用いるものであれば支障はなく、例えばスクリューコ
ンベアやベルトコンベアを用いても良く、ロータリーバ
ルブを用いても良い。
As a method for measuring the amount of dry ore in the relay bottle, various level meters such as a souding type, an ultrasonic type, a microwave type and an X-ray type can be used. Applicable. Further, the method of supplying dry ore into the concentrate chute from the relay bottle is not a problem as long as it uses a device capable of quantitative supply, for example, a screw conveyor or a belt conveyor may be used, and a rotary valve may be used. Is also good.

【0016】[0016]

【実施例】次に本発明の実施例について述べる。EXAMPLES Next, examples of the present invention will be described.

【0017】(実施例)内寸で幅6m、長さ20m、有効
容積50m3の熔体溜をもち、直径6m、高さ6.5mの反応
塔を持ち、反応塔の頂部に4つの精鉱バーナーが設けら
れ、該精鉱バーナーのそれぞれに乾鉱を供給する切り出
しコンベアを備えた乾鉱を100トン貯蔵できる中継ビン
に乾燥炉より乾鉱を供給しつつ切り出しコンベアにより
乾鉱を中継ビンより精鉱バーナーに供給しつつ以下の条
件で試験操業を行った。
(Embodiment) In the inner dimension, a width of 6 m, a length of 20 m, an effective volume of 50 m 3, a molten metal reservoir, a diameter of 6 m, and a height of 6.5 m are provided, and four concentrates are provided at the top of the reaction column. A burner is provided, and each of the concentrate burners is provided with a cutting conveyor that supplies the dry ore to the relay bin capable of storing 100 tons of dry ore. The test operation was performed under the following conditions while supplying it to the concentrate burner.

【0018】乾鉱供給量 90 トン/時 補助燃料(重油) 300 リッター/時 送風量 33000 Nm3/時 酸素富化率 43 % 目標カワ品位 62 % カラミ中Fe/SiO2 1.05Dry ore supply 90 tons / hour Auxiliary fuel (heavy oil) 300 liters / hour Blast rate 33000 Nm 3 / hour Oxygen enrichment 43% Target Kawa quality 62% Fe / SiO 2 1.05 in Karami

【0019】最初、従来通りの衝撃板を用いた測定方法
で乾鉱の供給量を測定し、これに基づき、かつ炉況を監
視しつつ3日間の操業を行った(従来例)。この間カワ
品位とカワ温度とカラミ温度とを27回測定した。その結
果、平均カワ品位は62.19%、標準偏差1.38%であり、
平均カワ温度は1227.9℃、標準偏差は14.5℃であり、平
均カラミ温度は1237.9℃、標準偏差は15.6℃であった。
平均カワ品位は目標カワ品位に近いものの標準偏差は大
きかった。標準偏差が大きいことは平均カワ温度につい
ても、平均カラミ温度についても同様であった。この標
準偏差は炉況の安定状態を示す指標であり、標準偏差が
大きいことは好ましいことではない。
First, the supply amount of dry ore was measured by the conventional measuring method using an impact plate, and based on this, the operation was carried out for 3 days while monitoring the furnace condition (conventional example). During this time, the Kawa quality, Kawa temperature and Karami temperature were measured 27 times. As a result, the average Kawa grade was 62.19% with a standard deviation of 1.38%,
The average Kawa temperature was 1227.9 ° C, the standard deviation was 14.5 ° C, the average Karami temperature was 1237.9 ° C, and the standard deviation was 15.6 ° C.
Although the average kawa quality was close to the target kawa quality, the standard deviation was large. The large standard deviation was the same for the average Kawa temperature and the average Karami temperature. This standard deviation is an index showing the stable state of the furnace condition, and a large standard deviation is not preferable.

【0020】次に、乾鉱の精鉱シュートへの供給量の調
整をtを5分とし、mを12としてkを0とし、本発明
の方法に従い乾鉱の供給量を調整しつつ3日間の試験操
業を行った(実施例1)。なお、中継ビン内の乾鉱量の
測定は株式会社松島機械研究所製のサウジングレベル計
を用いた。乾鉱の湿潤ベースでの水分率bは、乾燥設備
での管理目標値を使用した。また、未乾燥の製錬原料の
湿潤ベースでの水分率dは、原料銘柄ごとに事前に測定
した湿潤ベースでの水分率に基づいて、使用した各原料
銘柄を調合した後の未乾燥の製錬原料について調合割合
から推定した値を使用した。
Next, the supply amount of the dry ore to the concentrate chute is adjusted to 5 minutes, the m is set to 12 and the k is set to 0, and the dry ore supply amount is adjusted for 3 days according to the method of the present invention. The test operation was performed (Example 1). The amount of dry ore in the relay bottle was measured by using a souding level meter manufactured by Matsushima Kiken Co., Ltd. Moisture content b of the dry ore is based on the drying equipment
The management target value in was used. In addition, smelting raw materials
Moisture content d on a wet basis is measured in advance for each raw material brand
Each raw material used, based on moisture content on a wet basis
Mixing ratio of undried smelting raw materials after mixing brands
The value estimated from was used.

【0021】この間カワ品位とカワ温度とカラミ温度と
を26回測定した。その結果、平均カワ品位は61.87%、
標準偏差0.91%であり、平均カワ温度は1226.4℃、標準
偏差は9.2℃であり、平均カラミ温度は1233.3℃、標準
偏差は10.1℃であった。平均カワ品位は目標カワ品位に
近く、標準偏差は小さくなった。また、カワ温度とカラ
ミ温度の標準偏差も小さくなり、より良い炉況が得られ
ていることが分かった。よって、本発明の方法を採用す
れば衝撃板による乾鉱供給量調節の不具合は解消できる
ことが分かる。
During this period, the quality of the Kawa, the temperature of the Kawa and the temperature of the Karami were measured 26 times. As a result, the average Kawa grade is 61.87%,
The standard deviation was 0.91%, the average Kawa temperature was 1226.4 ° C, the standard deviation was 9.2 ° C, the average Karami temperature was 1233.3 ° C, and the standard deviation was 10.1 ° C. The average kawa quality was close to the target kawa quality, and the standard deviation became smaller. Moreover, the standard deviation of the Kawa temperature and the Karami temperature became smaller, and it was found that a better furnace condition was obtained. Therefore, it can be understood that the problem of adjusting the dry ore supply amount by the impact plate can be solved by adopting the method of the present invention.

【0022】次いでkを0.8として前記と同様の試験操
業を約3日間続けた(実施例2)。
Then, a test operation similar to the above was continued for about 3 days with k set to 0.8 (Example 2).

【0023】この間カワ品位とカワ温度とカラミ温度と
を23回測定した。その結果、平均カワ品位は62.21%、
標準偏差0.74%であり、平均カワ温度は1232.1℃、標準
偏差は7.3℃であり、平均カラミ温度は1233.8℃、標準
偏差は8.5℃であった。平均カワ品位は目標カワ品位に
近く、標準偏差はさらに小さくなった。これはkを0.8
とすることにより中継ビン内の乾鉱の存在状況のバラツ
キに起因する測定値の誤差の修正が可能となり、中継ビ
ン内の荷崩れ等に寄る測定値の急激な変化の影響も最小
限に抑えることが可能であることを示している。
During this period, the quality of the Kawa, the temperature of the Kawa and the temperature of the Karami were measured 23 times. As a result, the average Kawa grade is 62.21%,
The standard deviation was 0.74%, the average Kawa temperature was 1232.1 ° C, the standard deviation was 7.3 ° C, the average Karami temperature was 1233.8 ° C, and the standard deviation was 8.5 ° C. The average kawa quality was close to the target kawa quality, and the standard deviation was even smaller. This is k 0.8
By doing so, it is possible to correct the error in the measured value due to the variation in the presence of dry ore in the relay bin, and minimize the effect of sudden changes in the measured value due to load collapse in the relay bin. Shows that it is possible.

【0024】[0024]

【発明の効果】本発明の方法によれば、中継ビン内の荷
崩れ等の影響を受けることなく乾鉱の供給が可能であ
り、この結果カワ品位、カワ温度、カラミ温度のバラツ
キを抑えて炉況を安定させることが可能である。
EFFECTS OF THE INVENTION According to the method of the present invention, dry ore can be supplied without being affected by load collapse in the relay bottle, and as a result, variations in the quality of the river, the temperature of the river, and the temperature of the kelami can be suppressed. It is possible to stabilize the furnace conditions.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22B 1/00 C22B 15/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) C22B 1/00 C22B 15/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 貯鉱ビンより未乾燥の製錬原料を切り
出し、この製錬原料を乾燥設備で乾燥し、得た乾鉱を中
継ビンに供給した後、あるいは供給しつつ中継ビンより
乾鉱を製錬炉に連続的に供給する供給設備において、所
望の一定時間間隔t(単位 分)で中継ビン内の乾鉱量
を測定し、この測定値an(単位 トン)を記憶させ、測
定回数をmとしたとき、n回目の測定値anとm回前の
測定値an-mとを用いて数1、数2、数3を用いて原料
供給量MC(ドライトン/時)を計算し、得た計算値に
基づき中継ビンより製錬炉への供給速度を修正し、以後
測定の都度数1、数2、数3を用いて原料供給量を計算
し、得た計算値に基づき中継ビンより製錬炉への乾鉱の
供給速度を都度修正することを特徴とする製錬炉への乾
鉱供給量の調整方法。 【数1】Cn=an-1×k+an(1−k) 【数2】Cn-m=an-m-1×k+an-m(1−k) 【数3】 ここにおいて、kは中継ビン内の乾鉱の荷崩れにより影
響を補正するための修正係数であり0≦k<1の値を取
る。Cn、Cn-mはそれぞれ補正後の中継ビン内の乾鉱量
であり、bは乾鉱の湿潤ベースでの水分率(%)であ
り、Cmtは時間mtの間に貯鉱ビンより乾燥設備に供給
された未乾燥の製錬原料量(トン)であり、dは未乾燥
の製錬原料の湿潤ベースでの水分率(%)である。
1. An undried smelting raw material is cut out from a storage bin, and the smelting raw material is dried in a drying facility, and the obtained dry ore is supplied to a relay bottle, or while being supplied, the dry ore from the relay bottle. the in continuously feeding supply equipment to the smelting furnace, to measure the dry ore weight in relaying bottle at desired fixed time intervals t (in minutes), to store the measured value a n (units tons), measured when the number of times was defined as m, the number 1 by using the measured values a nm before n th measurement values a n and m times, number 2, calculates the material supply amount M C (Drayton / hr) using a number 3 Then, the feed rate from the relay bottle to the smelting furnace is corrected based on the obtained calculated value, and the raw material supply amount is calculated by using the number 1, the number 2, and the number 3 each time after the measurement, and based on the calculated value. A method for adjusting the amount of dry ore supplied to a smelting furnace, characterized in that the rate of supply of dry ore from a relay bottle to the smelting furnace is corrected each time. ## EQU1 ## C n = a n-1 × k + a n (1-k) ## EQU2 ## C nm = a nm -1 × k + a nm (1-k) ## EQU3 ## Here, k is a correction coefficient for correcting the influence of the collapse of the dry ore load in the relay bin, and takes a value of 0 ≦ k <1. C n and C nm are the amounts of dry ore in the relay bin after correction, b is the moisture content (%) on a wet basis of dry ore, and C mt is the amount of dry ore from the storage bin during the time mt. It is the amount of undried smelting raw material supplied to the facility (ton), and d is the moisture content (%) on a wet basis of the undried smelting raw material.
【請求項2】 kが0.8であることを特徴とする請求
項1記載の製錬炉への乾鉱供給量の調整方法。
2. The method for adjusting the amount of dry ore supplied to a smelting furnace according to claim 1, wherein k is 0.8.
JP19564893A 1993-08-06 1993-08-06 How to adjust dry mine supply Expired - Lifetime JP3367155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19564893A JP3367155B2 (en) 1993-08-06 1993-08-06 How to adjust dry mine supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19564893A JP3367155B2 (en) 1993-08-06 1993-08-06 How to adjust dry mine supply

Publications (2)

Publication Number Publication Date
JPH0748633A JPH0748633A (en) 1995-02-21
JP3367155B2 true JP3367155B2 (en) 2003-01-14

Family

ID=16344674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19564893A Expired - Lifetime JP3367155B2 (en) 1993-08-06 1993-08-06 How to adjust dry mine supply

Country Status (1)

Country Link
JP (1) JP3367155B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7167573B2 (en) * 2018-09-14 2022-11-09 住友金属鉱山株式会社 Supply amount control method

Also Published As

Publication number Publication date
JPH0748633A (en) 1995-02-21

Similar Documents

Publication Publication Date Title
CN103695639B (en) Sinter basicity inflation method
CN107130105A (en) A kind of method and its proportioner used for improving sinter basicity coefficient of stabilization
CA1226481A (en) Process and apparatus for blowing carbon dust into an industrial furnace
JPH0410014B2 (en)
US6137294A (en) Prediction of bulk density of particulates with a correlation based on moisture content
JP3367155B2 (en) How to adjust dry mine supply
CN109554992B (en) Automatic adjusting method for cold material bin
DE4443053A1 (en) Method and device for continuous, gravimetric metering and mass flow determination of flowable goods
CN106957953A (en) Automatic system and control method with addition of red soil in a kind of sinter mixture
KR20220066146A (en) How to operate a blast furnace
US4400206A (en) Process for estimating particle size segregation of burden layer in blast furnace top
DE19739712A1 (en) Method and device for continuous, gravimetric dosing
CN104446036B (en) A kind of method for improving road cement contents of ground slag
CN210287394U (en) Device for quantitatively judging whether blast furnace slag iron is discharged completely
US4050924A (en) Process of controlling Fe++ content of sintered iron ore
JPH0987757A (en) Operation of flash smelting furnace
SU580015A1 (en) Method of automatic control of a screening process
SU1018989A1 (en) Method and apparatus for controlling cooling of material
JP2018178165A (en) Blast furnace operation method
US4356031A (en) Apparatus and method for controlling the recycle char circuit in a direct reduction process
SU1126605A1 (en) Method for controlling blast furnace smelting
RU2017826C1 (en) Method of blast furnace operation regulation
DE3418455A1 (en) Method and apparatus for injecting fine granular solids into a metal melt
SU1624708A1 (en) Method for controlling preparation of calcium carbide
SU1041556A1 (en) Method for loading coal charge into chamber coking ovens

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071108

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131108

Year of fee payment: 11

EXPY Cancellation because of completion of term