JP3364735B2 - Bearing device for contra-rotating propeller - Google Patents

Bearing device for contra-rotating propeller

Info

Publication number
JP3364735B2
JP3364735B2 JP22274095A JP22274095A JP3364735B2 JP 3364735 B2 JP3364735 B2 JP 3364735B2 JP 22274095 A JP22274095 A JP 22274095A JP 22274095 A JP22274095 A JP 22274095A JP 3364735 B2 JP3364735 B2 JP 3364735B2
Authority
JP
Japan
Prior art keywords
bearing
shaft
oil supply
inner shaft
counter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22274095A
Other languages
Japanese (ja)
Other versions
JPH0948397A (en
Inventor
紳一 大谷
啓一 新田
正康 松田
智 慶林坊
吏史 芦田
秀樹 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Mitsui Engineering and Shipbuilding Co Ltd
JFE Engineering Corp
Sumitomo Heavy Industries Ltd
Mitsui E&S Holdings Co Ltd
Kawasaki Motors Ltd
Original Assignee
Hitachi Zosen Corp
Mitsui Engineering and Shipbuilding Co Ltd
JFE Engineering Corp
Sumitomo Heavy Industries Ltd
Kawasaki Jukogyo KK
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP22274095A priority Critical patent/JP3364735B2/en
Application filed by Hitachi Zosen Corp, Mitsui Engineering and Shipbuilding Co Ltd, JFE Engineering Corp, Sumitomo Heavy Industries Ltd, Kawasaki Jukogyo KK, Mitsui E&S Holdings Co Ltd filed Critical Hitachi Zosen Corp
Priority to DK00112763T priority patent/DK1035013T3/en
Priority to DE69529432T priority patent/DE69529432T2/en
Priority to PCT/JP1995/001761 priority patent/WO1996007832A1/en
Priority to DE69529422T priority patent/DE69529422T2/en
Priority to EP95930041A priority patent/EP0803657B1/en
Priority to ES95930041T priority patent/ES2202372T3/en
Priority to DK95930041T priority patent/DK0803657T3/en
Priority to KR1019970700181A priority patent/KR100243070B1/en
Priority to ES00112763T priority patent/ES2190919T3/en
Priority to EP00112763A priority patent/EP1035013B1/en
Publication of JPH0948397A publication Critical patent/JPH0948397A/en
Priority to US08/809,339 priority patent/US6056509A/en
Application granted granted Critical
Publication of JP3364735B2 publication Critical patent/JP3364735B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/32Other parts
    • B63H23/321Bearings or seals specially adapted for propeller shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • B63H21/386Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like for handling lubrication liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • B63H5/10Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type
    • B63H2005/106Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type with drive shafts of second or further propellers co-axially passing through hub of first propeller, e.g. counter-rotating tandem propellers with co-axial drive shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/32Other parts
    • B63H23/321Bearings or seals specially adapted for propeller shafts
    • B63H2023/323Bearings for coaxial propeller shafts, e.g. for driving propellers of the counter-rotative type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は船舶などの二重反転
プロペラを支持する二重反転プロペラ用軸受装置にかか
るもので、とくに内軸と外軸との間の軸受部分を改良し
た二重反転プロペラ用軸受装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing device for a counter-rotating propeller for supporting a counter-rotating propeller of a ship or the like, and particularly to a counter-rotating propeller having an improved bearing portion between an inner shaft and an outer shaft. The present invention relates to a propeller bearing device.

【0002】[0002]

【従来の技術】従来から、プロペラの推進エネルギーを
有効に活用するために、前方プロペラを有する外軸と、
この外軸に内嵌するとともに後方プロペラを有する内軸
とを互いに反対方向に回転駆動する二重反転プロペラが
知られている。
2. Description of the Related Art Conventionally, in order to effectively utilize the propelling energy of a propeller, an outer shaft having a front propeller,
There is known a counter rotating propeller that is fitted in the outer shaft and rotationally drives the inner shaft having a rear propeller in mutually opposite directions.

【0003】たとえば図17は、従来の二重反転プロペ
ラ1の一部切欠き側面図、図18は、図17のXVII
I−XVIII線断面図であって、二重反転プロペラ1
は、前方プロペラ2を有する外軸3と、後方プロペラ4
を有する内軸5と、外軸3および内軸5をそれぞれ反対
方向に等速回転駆動する主機関6と、を有する。
For example, FIG. 17 is a partially cutaway side view of a conventional counter-rotating propeller 1, and FIG. 18 is an XVII of FIG.
FIG. 1 is a cross-sectional view taken along the line I-XVIII, showing a contra-rotating propeller 1
Is an outer shaft 3 having a front propeller 2 and a rear propeller 4
And the main engine 6 that drives the outer shaft 3 and the inner shaft 5 to rotate in opposite directions at a constant speed.

【0004】外軸3は、これを円筒状に形成してあるも
ので、船舶本体の船尾部分7に外側軸受8および外側シ
ール9を介してこれを回転可能に設けてある。内軸5
は、この外軸3の内方に内側軸受10および内側シール
11を介して反対方向に回転可能に設けてある。
The outer shaft 3 is formed in a cylindrical shape, and is rotatably provided on the stern portion 7 of the ship body via an outer bearing 8 and an outer seal 9. Inner shaft 5
Are provided inside the outer shaft 3 so as to be rotatable in opposite directions via an inner bearing 10 and an inner seal 11.

【0005】また、外軸3、内軸5、外側軸受8および
内側軸受10部分に潤滑油を供給する潤滑油供給機構1
2を設けてある。なお、前方プロペラ2および後方プロ
ペラ4に対向してラダーホーン13および舵板14を設
けてある。
A lubricating oil supply mechanism 1 for supplying lubricating oil to the outer shaft 3, the inner shaft 5, the outer bearing 8 and the inner bearing 10 is also provided.
2 is provided. A rudder horn 13 and a rudder blade 14 are provided facing the front propeller 2 and the rear propeller 4.

【0006】こうした構成の二重反転プロペラ1におい
て、外軸3と船尾部分7との間の外側軸受8は通常の軸
受機構を採用可能であるが、とくに内軸5と外軸3との
間に介装する内側軸受10は、内方で回転する内軸5
と、外方で反転する外軸3との回転方向が互いに反対で
あるため、潤滑油供給機構12からの潤滑油による油膜
の形成によって流体滑り軸受作用を行うことに問題があ
る。
In the counter-rotating propeller 1 having such a structure, the outer bearing 8 between the outer shaft 3 and the stern portion 7 can adopt a normal bearing mechanism, but especially between the inner shaft 5 and the outer shaft 3. The inner bearing 10 installed on the inner side of the inner shaft 5 rotates inward.
Since the rotation directions of the outer shaft 3 and the outer shaft 3 which are reversed outward are opposite to each other, there is a problem in that the fluid slide bearing action is performed by forming an oil film by the lubricating oil from the lubricating oil supply mechanism 12.

【0007】つまり、図18に示すように、内軸5が時
計方向に回転し、外軸3およびこの外軸3の内周面に固
定してある滑り軸受などの内側軸受10が反時計方向に
回転する場合に、外軸3と内軸5とがほぼ等速度で回転
すると、内軸5の外周面と内側軸受10の内周面との間
の潤滑油がこの間に油膜を形成することができなくなる
という問題がある。
That is, as shown in FIG. 18, the inner shaft 5 rotates clockwise, and the outer shaft 3 and the inner bearing 10 such as a slide bearing fixed to the inner peripheral surface of the outer shaft 3 rotate counterclockwise. When the outer shaft 3 and the inner shaft 5 rotate at substantially the same speed in the case of rotating, the lubricating oil between the outer peripheral surface of the inner shaft 5 and the inner peripheral surface of the inner bearing 10 forms an oil film therebetween. There is a problem that you can not do.

【0008】そこで、内側軸受10の内面にテーパーラ
ンド部(図示せず)を設けて、動圧による負荷容量によ
り内軸5を持ち上げようとする軸受が提案されている
が、主機関6の始動時ないし低速回転時には動圧による
負荷容量が小さいため、油膜が薄くなり、軸受面におい
て内軸5および内側軸受10が金属接触して内側軸受1
0が焼け付くという問題がある。
Therefore, there is proposed a bearing in which a tapered land portion (not shown) is provided on the inner surface of the inner bearing 10 to try to lift the inner shaft 5 by the load capacity caused by the dynamic pressure. Since the load capacity due to the dynamic pressure is small at the time of low speed or low speed rotation, the oil film becomes thin, and the inner shaft 5 and the inner bearing 10 come into metal contact with each other on the bearing surface and the inner bearing 1
There is a problem that 0 burns.

【0009】こうした問題を解消するための従来の技術
として、たとえば図19に示すような、静圧軸受を基本
とした「二重反転プロペラ用船尾管軸受」(特公平5−
45479号)がある。この軸受においては、内軸5内
に油圧同芯穴15およびこの油圧同芯穴15から放射状
に延びる放射状給油孔16を形成し、また放射状給油孔
16にはオリフィス形成用のあるいは毛細管絞り用の小
穴付きネジ17をはめ込んで、内軸5と、外軸3ないし
内側軸受10との間に放射状給油孔16から内側軸受1
0に向かって高圧の油を噴出することにより、内軸5を
持ち上げようとする静圧による負荷容量を発生させ、内
軸5の片当たりなどを防止しようとしている。
As a conventional technique for solving such a problem, for example, as shown in FIG. 19, "a stern tube bearing for counter-rotating propeller" based on a hydrostatic bearing (Japanese Patent Publication No.
45479). In this bearing, a hydraulic concentric hole 15 and a radial oil supply hole 16 extending radially from the hydraulic concentric hole 15 are formed in the inner shaft 5, and the radial oil supply hole 16 is used for forming an orifice or for capillary drawing. Insert the small hole screw 17 into the inner bearing 1 from the radial oil supply hole 16 between the inner shaft 5 and the outer shaft 3 or the inner bearing 10.
By ejecting high-pressure oil toward 0, a load capacity due to static pressure that attempts to lift the inner shaft 5 is generated to prevent uneven contact of the inner shaft 5.

【0010】しかしながら、この船尾管軸受の場合に
は、外軸3の内側軸受10が真円軸受であるため、内軸
5および外軸3が等速度で互いに反転した場合、理論上
この真円軸受では潤滑油の動圧による負荷容量が発生し
ない。
However, in the case of this stern tube bearing, since the inner bearing 10 of the outer shaft 3 is a true circular bearing, when the inner shaft 5 and the outer shaft 3 are inverted at a constant speed, theoretically, this true circle is formed. The bearing does not generate load capacity due to the dynamic pressure of the lubricating oil.

【0011】したがって、内軸5と外軸3(内側軸受1
0)とがほぼ等速度で反転する高回転数比の場合に、ブ
ラックアウトや潤滑油供給機構12の給油ポンプの故障
などにより放射状給油孔16からの静圧給油が失われた
ときには、油膜が形成されず、焼付けを起こしやすいと
いう問題がある。
Therefore, the inner shaft 5 and the outer shaft 3 (the inner bearing 1
In the case of a high rotational speed ratio in which 0) and 0) are reversed at almost the same speed, when static pressure oil supply from the radial oil supply holes 16 is lost due to blackout or failure of the oil supply pump of the lubricating oil supply mechanism 12, the oil film is There is a problem that it is not formed and is prone to baking.

【0012】また、上述のように高回転数比においては
動圧による負荷容量が不足するため、放射状給油孔16
から比較的高い静圧をかけて潤滑油を供給する必要があ
り、潤滑油供給機構12が大型化するという問題があ
る。
Further, as described above, since the load capacity due to the dynamic pressure is insufficient at a high rotational speed ratio, the radial oil supply holes 16
Therefore, it is necessary to supply the lubricating oil by applying a relatively high static pressure, and there is a problem that the lubricating oil supply mechanism 12 becomes large.

【0013】[0013]

【発明が解決しようとする課題】本発明は以上のような
諸問題にかんがみなされたもので、内軸と外軸とが反対
方向にほぼ等速度で回転する等速二重反転時、あるいは
これに近い状態のときにも、とくに内側軸受に負荷容量
を与えることができる二重反転プロペラ用軸受装置を提
供することを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems. When the inner shaft and the outer shaft rotate in the opposite directions at a substantially constant speed, or at the constant speed double inversion, or An object of the present invention is to provide a contra-rotating propeller bearing device capable of giving a load capacity especially to an inner bearing even in a state close to.

【0014】また本発明は、エンジンの高回転域におい
ては、潤滑油の動圧による負荷容量のみで内軸を支え、
動圧のみでは十分な負荷容量を発生することが困難な低
回転域においては給油圧力を高くして静圧を付加するこ
とによって負荷容量を確保することができる二重反転プ
ロペラ用軸受装置を提供することを課題とする。
Further, according to the present invention, in the high engine speed range, the inner shaft is supported only by the load capacity due to the dynamic pressure of the lubricating oil,
A bearing device for counter-rotating propellers that can secure the load capacity by increasing the oil supply pressure and adding static pressure in the low rotation range where it is difficult to generate sufficient load capacity only with dynamic pressure The task is to do.

【0015】また本発明は、内側軸受の非真円形状を利
用し、低い給油圧力で十分な負荷容量を発生させること
ができる二重反転プロペラ用軸受装置を提供することを
課題とする。
It is another object of the present invention to provide a bearing device for a counter-rotating propeller, which utilizes the non-round shape of the inner bearing and can generate a sufficient load capacity at a low oil supply pressure.

【0016】また本発明は、潤滑油供給機構を大型化す
ることなく、船内電力を節約することができる二重反転
プロペラ用軸受装置を提供することを課題とする。
Another object of the present invention is to provide a bearing device for a contra-rotating propeller, which is capable of saving onboard electric power without increasing the size of the lubricating oil supply mechanism.

【0017】さらに本発明は、上述のような動圧による
負荷容量の発生性能および静圧による負荷容量発生の性
能を向上させることができる二重反転プロペラ用軸受装
置を提供することを課題とする。
A further object of the present invention is to provide a bearing device for a counter-rotating propeller capable of improving the load capacity generation performance by dynamic pressure and the load capacity generation performance by static pressure as described above. .

【0018】[0018]

【課題を解決するための手段】すなわち本発明は、内側
軸受の内周面を非真円形状にすることにより内軸との間
において動圧を発生させること、および内側軸受の非真
円形状部分を真円部により囲むことに着目したもので、
前方プロペラを有する外軸と、この外軸に内嵌して該外
軸とは反対方向に回転駆動するとともに後方プロペラを
有する内軸と、この内軸と上記外軸との間に設けた軸受
と、を有する二重反転プロペラ用軸受装置であって、上
記内軸に中央給油通路と、この中央給油通路に連通する
複数本の放射状給油孔とを形成し、これら中央給油通路
および放射状給油孔を通して該内軸から上記軸受の内周
面に潤滑油を供給し、かつこの軸受の内周面に複数の凹
凸形状部を該軸受の軸方向に沿って形成し、さらに、上
記軸受の軸方向における上記凹凸形状部の両端部に真円
部を設けたことを特徴とする二重反転プロペラ用軸受装
置である。
That is, the present invention is to generate dynamic pressure between the inner bearing and the inner shaft by making the inner peripheral surface of the inner bearing non-circular, and the non-circular shape of the inner bearing. Focusing on surrounding the part with a perfect circle,
An outer shaft having a front propeller, an inner shaft fitted in the outer shaft to be driven to rotate in a direction opposite to the outer shaft and having a rear propeller, and a bearing provided between the inner shaft and the outer shaft. And a central refueling passage and a plurality of radial refueling holes communicating with the central refueling passage, wherein the central refueling passage and the radial refueling hole are provided. Lubricating oil is supplied from the inner shaft to the inner peripheral surface of the bearing, and a plurality of uneven portions are formed on the inner peripheral surface of the bearing along the axial direction of the bearing. The bearing device for a counter-rotating propeller, characterized in that perfect circular portions are provided at both ends of the above-mentioned uneven portion.

【0019】上記凹凸形状部は、これをテーパーランド
(図3を参照)あるいは多円弧軸受面(図6を参照)と
することができる。なお、凹凸形状部の数は、放射状給
油孔の数とは無関係に、軸受使用条件によりその最適値
を選択することができる。
The concavo-convex portion can be a tapered land (see FIG. 3) or a multi-arc bearing surface (see FIG. 6). The optimum number of the uneven portions can be selected depending on the bearing operating conditions, regardless of the number of radial oil supply holes.

【0020】上記放射状給油孔は、上記軸受の軸方向に
おける中央位置から、該軸受の長さLに対してL/6〜
L/4だけ後方にこれを位置させることにより静圧給油
の効果を高めることができる(図9を参照)。
The radial oil supply hole is L / 6 to L with respect to the length L of the bearing from the central position in the axial direction of the bearing.
The effect of static pressure oiling can be enhanced by locating this L4 rearward (see FIG. 9).

【0021】上記真円部の長さは、上記軸受の長さLに
対してL/48〜24L/48の範囲、好ましくは2L
/48〜10L/48の範囲とすることによって、潤滑
油の動圧および静圧による負荷容量をさらに向上させる
ことができる(図14を参照)。
The length of the perfect circle portion is in the range of L / 48 to 24L / 48, preferably 2L, with respect to the length L of the bearing.
By setting the range of / 48 to 10 L / 48, it is possible to further improve the load capacity due to the dynamic pressure and static pressure of the lubricating oil (see FIG. 14).

【0022】本発明による二重反転プロペラ用軸受装置
においては、内軸の内部から放射状給油孔を通じて内側
軸受の表面に潤滑油を供給するとともに、この内側軸受
の内周面に複数のテーパーランドあるいは多円弧軸受面
などの凹凸形状部を形成することにより非真円形状とし
たので、内軸の内方から内側軸受方向に向かって供給さ
れる潤滑油による静圧が、内側軸受の軸方向にわたって
全体的に均一に近づく負荷容量を発生することができ
る。
In the counter rotating propeller bearing device according to the present invention, lubricating oil is supplied from the inside of the inner shaft through the radial oil supply holes to the surface of the inner bearing, and a plurality of taper lands or a plurality of tapered lands are formed on the inner peripheral surface of the inner bearing. Since the non-circular shape is formed by forming the uneven portion such as the multi-circle bearing surface, the static pressure due to the lubricating oil supplied from the inner side of the inner shaft toward the inner bearing is distributed over the inner bearing in the axial direction. It is possible to generate a load capacity that is substantially uniform.

【0023】さらに、テーパーランド部あるいは多円弧
軸受面などの凹凸形状部を形成してあるため、回転数比
によらず内軸および内側軸受の間に動圧による負荷容量
が発生し、したがって、放射状給油孔からの静圧を大き
くする必要がない。
Further, since the concavo-convex portion such as the tapered land portion or the multi-circular bearing surface is formed, the load capacity due to the dynamic pressure is generated between the inner shaft and the inner bearing irrespective of the rotation speed ratio. There is no need to increase the static pressure from the radial oil supply holes.

【0024】結果的に、ブラックアウト時などにおいて
給油が行われずに静圧による負荷容量を発生させること
ができない場合でも、あるいはプロペラが低速度の遊転
状態となった場合にも、さらには内軸と外軸とがほぼ等
速度で回転する高回転数比の場合にも、回転数比によら
ず動圧による負荷容量を発生することができるので、軸
の焼付きなどを回避して安全性を高めることが可能とな
る。
As a result, even when the load capacity cannot be generated by static pressure due to the lack of refueling at the time of blackout, or when the propeller is in a low speed idling state, Even if the shaft and outer shaft rotate at a high speed ratio where they rotate at almost the same speed, load capacity can be generated by dynamic pressure regardless of the speed ratio, so shaft seizure is avoided and safety is ensured. It is possible to improve the sex.

【0025】また、凹凸形状部の両端部に形成した真円
部により内側軸受の非真円形状を囲むように構成したの
で、凹凸形状部内の潤滑油が外部に洩れにくくなって有
効に内軸を軸支することが可能となり、負荷容量を発生
させるという動圧性能および静圧性能をさらに向上させ
ることができる。
Further, since the non-circular shape of the inner bearing is surrounded by the perfect circular portions formed at both ends of the concave-convex portion, the lubricating oil in the concave-convex portion hardly leaks to the outside effectively. Can be pivotally supported, and the dynamic pressure performance and static pressure performance of generating load capacity can be further improved.

【0026】[0026]

【発明の実施の形態】つぎに本発明の実施の形態による
二重反転プロペラ用軸受装置を図面にもとづき説明す
る。ただし、図17ないし図19と同様の部分には同一
符号を付し、その詳述はこれを省略する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, a bearing device for a counter rotating propeller according to an embodiment of the present invention will be described with reference to the drawings. However, the same parts as those in FIGS. 17 to 19 are designated by the same reference numerals, and the detailed description thereof will be omitted.

【0027】図1は、二重反転プロペラ軸系20および
その軸受装置21の断面図、図2は、図1のII−II
線断面図であって、図1に示すように、二重反転プロペ
ラ軸系20は、前方プロペラ2を有する外軸22と、後
方プロペラ4を有する内軸23とを有する。
FIG. 1 is a sectional view of the counter-rotating propeller shaft system 20 and its bearing device 21, and FIG. 2 is a line II-II in FIG.
As shown in FIG. 1, the contra-rotating propeller shaft system 20 has an outer shaft 22 having a front propeller 2 and an inner shaft 23 having a rear propeller 4 as shown in FIG. 1.

【0028】外軸22は、これを円筒状に形成してある
もので、前方プロペラ2の前方プロペラボス24および
連結部材25と一体的に、外側軸受8を介してこれを回
転可能に設けてある。
The outer shaft 22 is formed in a cylindrical shape and is rotatably provided through the outer bearing 8 integrally with the front propeller boss 24 of the front propeller 2 and the connecting member 25. is there.

【0029】内軸23は、この外軸22の内方に内側軸
受26を介して、後方プロペラ4の後方プロペラボス2
7と一体的に、外軸22とは反対方向に回転可能に設け
てある。
The inner shaft 23 is arranged inside the outer shaft 22 via an inner bearing 26, and the rear propeller boss 2 of the rear propeller 4 is engaged.
It is provided integrally with 7 so as to be rotatable in the direction opposite to the outer shaft 22.

【0030】上記内軸23および内側軸受26部分に本
発明の二重反転プロペラ用軸受装置21を設けてある。
すなわち、内軸23の中央軸方向に中央給油通路28を
形成し、ここに潤滑油供給機構12から所定圧力で潤滑
油を供給する。
The inner shaft 23 and the inner bearing 26 are provided with the counter rotating propeller bearing device 21 of the present invention.
That is, the central oil supply passage 28 is formed in the central axis direction of the inner shaft 23, and the lubricating oil is supplied from the lubricating oil supply mechanism 12 at a predetermined pressure.

【0031】図2にも示すように、中央給油通路28に
連通して内軸23の内側軸受26に対向する部分に複数
本の放射状給油孔29(図1に示すように軸方向に1列
であって、図2に示すように軸方向に直角な断面部分に
8本、すなわち一箇所の内軸23に8本の放射状給油孔
29)を形成し、内軸23の外周面と内側軸受26の内
周面との間の軸受表面に潤滑油を供給可能としてある。
As shown in FIG. 2, a plurality of radial oil supply holes 29 (one row in the axial direction as shown in FIG. 1) are provided in a portion communicating with the central oil supply passage 28 and facing the inner bearing 26 of the inner shaft 23. In addition, as shown in FIG. 2, eight radial oil supply holes 29) are formed in the cross-section portion perpendicular to the axial direction, that is, eight radial oil supply holes 29) are formed in one inner shaft 23, and the outer peripheral surface of the inner shaft 23 and the inner bearing are formed. Lubricating oil can be supplied to the bearing surface between the inner peripheral surface of 26.

【0032】この軸受表面に供給された潤滑油のうちの
一部は、内側軸受26の軸方向油路30を通り、隔離用
円筒部材31と内軸23との間の円筒通路32を通り、
隔離用円筒部材31の直径方向連通孔33、および外軸
22の排油孔34を通って、船尾部分7の排出口35か
ら潤滑油供給機構12のタンク(図示せず)へ還流す
る。
A part of the lubricating oil supplied to the bearing surface passes through the axial oil passage 30 of the inner bearing 26, the cylindrical passage 32 between the isolating cylindrical member 31 and the inner shaft 23,
The oil flows through the diametrical communication hole 33 of the isolating cylindrical member 31 and the oil drain hole 34 of the outer shaft 22 to the tank (not shown) of the lubricating oil supply mechanism 12 from the outlet 35 of the stern portion 7.

【0033】軸受表面に供給された潤滑油のうち円筒通
路32の方向に流れたものは、上述の一部の潤滑油と合
流して、円筒通路32、隔離用円筒部材31の直径方向
連通孔33、外軸22の排油孔34、船尾部分7の排出
口35から上記タンクへ還流する。
Of the lubricating oil supplied to the bearing surface, the lubricating oil flowing in the direction of the cylindrical passage 32 merges with the above-mentioned part of the lubricating oil to form a diametrical communicating hole between the cylindrical passage 32 and the isolating cylindrical member 31. 33, the oil drain hole 34 of the outer shaft 22, and the drain port 35 of the stern portion 7 flow back to the tank.

【0034】つぎに図2ないし図9を参照して本発明の
二重反転プロペラ用軸受装置21部分について説明す
る。図2に示すように二重反転プロペラ用軸受装置21
は、内側軸受26の内周面においてその軸方向に直角な
面に、曲面状テーパー面40およびランド面41を交互
に配置してなるテーパーランド42を全周にわたって
角度間隔で形成してある。
Next, the bearing device 21 portion of the counter-rotating propeller of the present invention will be described with reference to FIGS. As shown in FIG. 2, the bearing device 21 for the counter-rotating propeller
In the inner peripheral surface of the inner bearing 26, tapered lands 42 formed by alternately arranging the curved tapered surfaces 40 and the land surfaces 41 are formed on the surface perpendicular to the axial direction at equal angular intervals over the entire circumference. .

【0035】曲面状テーパー面40は、内軸23の外周
面の曲率より小さな曲率の円弧によってリセス状にこれ
を形成してある。ランド面41は、内軸23の外周面と
同心円状に、かつ真円状にこれを形成してある。
The curved tapered surface 40 is formed in a recess shape by an arc having a curvature smaller than that of the outer peripheral surface of the inner shaft 23. The land surface 41 is formed concentrically with the outer peripheral surface of the inner shaft 23 and in a perfect circular shape.

【0036】図3は、曲面状テーパー面40およびラン
ド面41をより具体的に示す断面図であって、内側軸受
26の中心から任意の半径R1の円周上において等中心
角に分割する点(図では八箇所)を中心としてさらに半
径R2で円を描くことにより内側軸受26の内周面にラ
ンド面41を残しつつ曲面状テーパー面40を形成す
る。
FIG. 3 is a cross-sectional view showing the curved tapered surface 40 and the land surface 41 more specifically, and dividing points at equal center angles on the circumference of an arbitrary radius R1 from the center of the inner bearing 26. By further forming a circle with a radius R2 around (in the figure, eight locations), a curved tapered surface 40 is formed on the inner peripheral surface of the inner bearing 26 while leaving the land surface 41.

【0037】半径R1、R2を任意に選択かつ組み合わ
せることにより、所定の形状および深さを有する曲面状
テーパー面40および所定長さのランド面41を得るこ
とができる。
By arbitrarily selecting and combining the radii R1 and R2, it is possible to obtain the curved taper surface 40 having a predetermined shape and depth and the land surface 41 having a predetermined length.

【0038】内軸23の半径をR、内軸23の外周面と
内側軸受26の内周面との間の間隙(半径すきま)をC
とすれば、曲面状テーパー面40の最大深さHは、R1
+R2−(R+C)となる。
The radius of the inner shaft 23 is R, and the gap (radial clearance) between the outer peripheral surface of the inner shaft 23 and the inner peripheral surface of the inner bearing 26 is C.
Then, the maximum depth H of the curved tapered surface 40 is R1.
It becomes + R2- (R + C).

【0039】曲面状テーパー面40の最大深さHは、軸
受パッド数すなわちテーパーランド42の数や運転条件
などで若干変更することがあるが、1.0〜3.0×内
側軸受26の径/10000程度である。
The maximum depth H of the curved tapered surface 40 may vary slightly depending on the number of bearing pads, that is, the number of tapered lands 42, operating conditions, etc., but is 1.0 to 3.0 × diameter of the inner bearing 26. It is about / 10,000.

【0040】図4は、内側軸受26の当該内周面の展開
図であり、テーパーランド42の曲面状テーパー面40
およびランド面41を交互に形成している。ただし、テ
ーパーランド42の軸方向両端部側(図4中左右側)に
は、ランド面41と同一周面上に、円周ひとまわりに、
所定長さの周方向の真円部(ランド面)として、半径が
(R+C)程度の、後方側ランド面41B(図4中左
側)および前方側ランド面41F(図4中右側)を形成
してある。
FIG. 4 is a development view of the inner peripheral surface of the inner bearing 26, showing the curved tapered surface 40 of the tapered land 42.
And land surfaces 41 are alternately formed. However, on both axial end portions (left and right sides in FIG. 4) of the tapered land 42, on the same circumferential surface as the land surface 41, around the circumference,
A rear side land surface 41B (left side in FIG. 4) and a front side land surface 41F (right side in FIG. 4) having a radius of about (R + C) are formed as a circular portion (land surface) in the circumferential direction of a predetermined length. There is.

【0041】すなわち、内側軸受26の内周面におい
て、曲面状テーパー面40は、円周方向の一対のランド
面41、ならびに軸方向の後方側ランド面41Bおよび
前方側ランド面41Fによりその全周部分を囲まれた状
態となっている。
That is, on the inner peripheral surface of the inner bearing 26, the curved tapered surface 40 is formed by the pair of circumferential land surfaces 41 and the axial rear side land surface 41B and front side land surface 41F. It is in a state of being surrounded by parts.

【0042】なお、図5は、図4と対比のために後方側
ランド面41Bおよび前方側ランド面41Fを形成して
いない状態のテーパーランド42を示す(全面テーパー
ランドとした)内側軸受26の内周面の展開図である。
For comparison with FIG. 4, FIG. 5 shows the tapered land 42 in which the rear land surface 41B and the front land surface 41F are not formed (the entire surface is a tapered land) of the inner bearing 26. It is a development view of an inner peripheral surface.

【0043】図6は、内側軸受26の内周面における非
真円形状の他の例を示す図3と同様の断面図であって、
テーパーランド42と同様の非真円形状を形成する構成
が図3の場合と若干異なる。内側軸受26の内周面を等
分(たとえば八等分)するとともに、これら隣合う等分
点の間において当該内周面に凹部を形成する。
FIG. 6 is a sectional view similar to FIG. 3, showing another example of the non-round shape on the inner peripheral surface of the inner bearing 26.
The configuration for forming the non-round shape similar to the taper land 42 is slightly different from the case of FIG. The inner peripheral surface of the inner bearing 26 is equally divided (e.g., into eight equal parts), and a recess is formed in the inner peripheral surface between these adjacent equal points.

【0044】すなわち、内軸23の中心から任意の半径
R1の円周上において等中心角に分割する点(図では八
箇所)のうち互いに隣り合う二点を中心としてさらに半
径R3でふたつの円を描きこれらの円弧が上記内周面と
交差するとともに互いに隣合う等分点の間において、テ
ーパーランド42に相当する多円弧軸受面43(凹部)
を所定の深さおよび形状に形成する。半径R1、R3を
任意に選択かつ組み合わせることにより、所定の形状お
よび深さを有する多円弧軸受面43を得ることができ
る。
That is, of the points (eight locations in the figure) divided into equal central angles on the circumference of an arbitrary radius R1 from the center of the inner shaft 23, two circles having a radius R3 with two adjacent points as centers are further circled. A multi-arc bearing surface 43 (recess) corresponding to the taper land 42 is formed between the equal points where these arcs intersect the inner peripheral surface and are adjacent to each other.
To a predetermined depth and shape. By arbitrarily selecting and combining the radii R1 and R3, it is possible to obtain the multi-arc bearing surface 43 having a predetermined shape and depth.

【0045】図7は、内側軸受26の当該内周面の展開
図であり、多円弧軸受面43を周方向に形成している。
ただし、多円弧軸受面43の軸方向両端部側(図7中左
右側)には、図4と同様に、ランド面41と同一周面上
に、円周ひとまわりに、所定長さの周方向の真円部(ラ
ンド面)として、半径が(R+C)程度の後方側ランド
面41B(図7中左側)および前方側ランド面41F
(図7中右側)を形成してある。
FIG. 7 is a development view of the inner peripheral surface of the inner bearing 26, in which a multi-arc bearing surface 43 is formed in the circumferential direction.
However, on both sides of the multi-circular bearing surface 43 in the axial direction (on the left and right sides in FIG. 7), as in FIG. 4, on the same circumferential surface as the land surface 41, a circumference of a circle, a circumference of a predetermined length. As a true circle portion (land surface) in the direction, a rear land surface 41B (left side in FIG. 7) and a front land surface 41F having a radius of about (R + C).
(Right side in FIG. 7) is formed.

【0046】すなわち、内側軸受26の内周面におい
て、多円弧軸受面43は、軸方向の後方側ランド面41
Bおよび前方側ランド面41Fによりその軸方向におけ
る左右端部を囲まれた状態となっている。
That is, on the inner peripheral surface of the inner bearing 26, the multi-circle bearing surface 43 is the rear land surface 41 in the axial direction.
The left and right ends in the axial direction are surrounded by B and the front side land surface 41F.

【0047】なお、図8は、図7と対比のために後方側
ランド面41Bおよび前方側ランド面41Fを形成して
いない状態の多円弧軸受面43を示す(全面多円弧軸受
面とした)内側軸受26の内周面の展開図である。
For comparison with FIG. 7, FIG. 8 shows the multi-circular bearing surface 43 in a state where the rear side land surface 41B and the front side land surface 41F are not formed (the whole surface is a multi-circular bearing surface). FIG. 6 is a development view of an inner peripheral surface of an inner bearing 26.

【0048】図4および図7に示した、内側軸受26の
内周方向における上述の後方側ランド面41Bおよび前
方側ランド面41Fの合計長さT(内側軸受26の軸方
向)としては、潤滑油による動圧性能および静圧性能を
向上させることを考慮し、内側軸受26の軸方向の長さ
Lに対して、2L/48〜10L/48の範囲が適当で
ある(図14にもとづき後述する)。
As the total length T (the axial direction of the inner bearing 26) of the above-mentioned rear land surface 41B and front land surface 41F in the inner circumferential direction of the inner bearing 26 shown in FIG. 4 and FIG. In consideration of improving dynamic pressure performance and static pressure performance by oil, the range of 2L / 48 to 10L / 48 is appropriate for the axial length L of the inner bearing 26 (described later based on FIG. 14). To).

【0049】図9は、二重反転プロペラ用軸受装置21
部分の断面図、図10は図9のX−X線断面図であっ
て、放射状給油孔29の形成位置つまり給油断面の最適
位置は、プロペラ(後方プロペラ4)の重量および内軸
23の径にもよるが、一般的には、内側軸受26の中央
位置から、L/6〜L/4だけ後方(図9中左方向)に
すると、静圧給油の効果が高くなる。
FIG. 9 shows a bearing device 21 for a contra-rotating propeller.
10 is a sectional view taken along line XX of FIG. 9, and the formation position of the radial oil supply holes 29, that is, the optimum position of the oil supply cross section is determined by the weight of the propeller (rear propeller 4) and the diameter of the inner shaft 23. Although it depends on the above, generally, when it is moved backward by L / 6 to L / 4 from the center position of the inner bearing 26 (leftward in FIG. 9), the effect of static pressure oil supply is enhanced.

【0050】なお図11は、内軸23および内側軸受2
6の端部を示す要部断面図であり、内側軸受26の端部
において内軸23との相対傾斜角度が大きい場合には、
局部的なあたりが大きくなるので、内側軸受26の端部
にラッパ状の傾斜部26Aを加工することにより、この
相対傾斜状態を緩和することができる。
FIG. 11 shows the inner shaft 23 and the inner bearing 2.
6 is an essential part cross-sectional view showing an end portion of No. 6, and when the relative inclination angle with the inner shaft 23 at the end portion of the inner bearing 26 is large,
Since the local hit becomes large, by processing the trumpet-like inclined portion 26A at the end of the inner bearing 26, this relative inclined state can be alleviated.

【0051】図12は、内軸23の回転数に対する最小
油膜厚さ(負荷容量)の関係を示すグラフであって、内
軸23および内側軸受26が高速度で回転している場合
には、動圧による負荷容量が十分に発生するため、必要
な油膜の厚さを得ることができ、潤滑油の温度上昇が許
容される限界まで給油圧力を下げることができる。なお
図において、「最大回転数」とは、連続最大出力回転
数、いわば定格出力時の回転数である。
FIG. 12 is a graph showing the relationship between the rotational speed of the inner shaft 23 and the minimum oil film thickness (load capacity). When the inner shaft 23 and the inner bearing 26 rotate at a high speed, Since sufficient load capacity is generated by dynamic pressure, the required oil film thickness can be obtained, and the oil supply pressure can be reduced to the limit at which the temperature rise of the lubricating oil is allowed. In the figure, the "maximum rotation speed" is the continuous maximum output rotation speed, that is, the rotation speed at the rated output.

【0052】また、動圧による負荷容量が不足する低回
転域で運転されるときには、静圧による負荷容量を増加
するように制御する。
Further, when the engine is operated in a low rotation range where the load capacity due to dynamic pressure is insufficient, the load capacity due to static pressure is controlled to increase.

【0053】ただし、潤滑油供給機構12の給油ポンプ
(図示せず)が「ON/OFF」される回転数付近で長
い時間運転すると、海象(海上の気象条件)により回転
数がわずかに変動するたびに絶えず給油ポンプを「ON
/OFF」することになるので、図12に示すように、
軸回転数が上昇時はA−B−C−D−Eの経路を通って
軸回転数下降時はE−D−F−B−Aのようなヒステリ
シスを描く運転制御を行うことにより、一度給油ポンプ
を「ON」としたら多少回転数が上昇しても「OFF」
としないように設計する。
However, if the oil supply pump (not shown) of the lubricating oil supply mechanism 12 is operated for a long time in the vicinity of the rotation speed at which it is "ON / OFF", the rotation speed slightly fluctuates due to sea conditions (sea weather conditions). Always turn on the refueling pump "ON"
/ OFF ”, so as shown in FIG.
When the shaft speed rises, it passes through the path of A-B-C-D-E, and when the shaft speed falls, it carries out operation control that draws hysteresis like E-D-F-B-A. If the oil pump is turned "ON", it will be "OFF" even if the rotation speed increases a little.
Design not to.

【0054】図13は、回転数比、(外軸回転数/内軸
回転数)×100に対する最小油膜厚さ(負荷容量)の
関係を示すグラフである。従来例として図19に示した
ような内軸および外軸3がともに真円の場合、互いに
反転する内軸および外軸3がそれぞれ潤滑油を運び込
む作用が相殺されるため、互いに全くの等速度で反転し
た場合には、負荷容量はゼロとなる。
FIG. 13 is a graph showing the relationship of the minimum oil film thickness (load capacity) with respect to the rotation speed ratio, ( outer shaft rotation speed / inner shaft rotation speed) × 100. When both the inner shaft 5 and the outer shaft 3 are perfect circles as shown in FIG. 19 as a conventional example, the action of the lubricating oil carried by the inner shaft 5 and the outer shaft 3 which are reversed to each other is offset, so that the inner shaft 5 and the outer shaft 3 are completely opposite to each other. When it is reversed at a constant speed, the load capacity becomes zero.

【0055】しかしながら本発明のように、内側軸受2
6にテーパーランド42あるいは多円弧軸受面43のよ
うな凹凸部ないし非真円形状部を複数個形成することに
より、内軸23および外軸22の回転方向が反対であっ
ても内軸23と内側軸受26との間における新たな隙間
によって、軸回転にともなう動圧による負荷容量を新た
に発生させることができる。
However, as in the present invention, the inner bearing 2
By forming a plurality of uneven portions or non-round portions such as the tapered land 42 or the multi-circular bearing surface 43 on the shaft 6, even if the inner shaft 23 and the outer shaft 22 rotate in opposite directions, Due to the new gap between the inner bearing 26 and the inner bearing 26, it is possible to newly generate a load capacity due to the dynamic pressure accompanying the shaft rotation.

【0056】したがって図13に点線で図示のように、
回転数比が低い領域では真円軸受の方が動圧による負荷
容量が高いが、二重反転プロペラ軸系20においてプロ
ペラ推進効率の高くなる高回転数比の領域ではテーパー
ランド42あるいは多円弧軸受面43を形成した内側軸
受26の方が動圧による負荷容量が高くなることがわか
る。
Therefore, as shown by the dotted line in FIG.
In a region where the rotational speed ratio is low, the true circular bearing has a higher load capacity due to dynamic pressure, but in the region where the rotational speed is high and the propeller propulsion efficiency of the counter-rotating propeller shaft system 20 is high, the tapered land 42 or the multi-arc bearing is used. It can be seen that the inner bearing 26 having the surface 43 has a higher load capacity due to dynamic pressure.

【0057】なお、図5および図8に示した後方側ラン
ド面41Bおよび前方側ランド面41Fを形成しない場
合(図中実線)より、図4および図7のように後方側ラ
ンド面41Bおよび前方側ランド面41Fを形成した本
発明の場合の方が最小油膜厚さを多く形成することがで
きる。
It should be noted that the rear land surface 41B and the front land surface 41B and the front land surface 41F shown in FIGS. 5 and 8 are not formed (solid line in the figure), as shown in FIGS. 4 and 7. In the case of the present invention in which the side land surface 41F is formed, the minimum oil film thickness can be increased.

【0058】すなわち、テーパーランド42(図4)あ
るいは多円弧軸受面43(図7)などの凹凸形状部が、
後方側ランド面41Bおよび前方側ランド面41Fによ
り内側軸受26の軸方向を閉塞された状態であるため、
潤滑油はこの凹凸形状部内に有効に溜められ、動圧およ
び静圧による負荷容量の発生効率が向上することとな
る。
That is, the uneven portion such as the tapered land 42 (FIG. 4) or the multi-arc bearing surface 43 (FIG. 7) is
Since the axial direction of the inner bearing 26 is blocked by the rear land surface 41B and the front land surface 41F,
Lubricating oil is effectively stored in the uneven portion, and the efficiency of generating load capacity due to dynamic pressure and static pressure is improved.

【0059】図14は、後方側ランド面41Bおよび前
方側ランド面41Fの長さ(合計長さT)に対する油膜
厚さの関係を示すグラフであって、動圧のみによる負荷
容量の場合に、油膜厚さの最大値が現れる範囲は、内側
軸受26の軸方向の長さLに対して、合計長さTがL/
48〜8L/48の範囲である。また静圧を加えた場合
には、油膜厚さの最大値が現れる範囲は、合計長さTが
4L/48〜24L/48の範囲である。したがって、
好ましい範囲としては、L/48(動圧のみの場合の最
小値に対応する長さ)〜24L/48(静圧を加えた場
合の最大値に対応する長さ)とすることができる。
FIG. 14 is a graph showing the relationship between the oil film thickness and the length of the rear land surface 41B and the front land surface 41F (total length T). In the range where the maximum value of the oil film thickness appears, the total length T is L / L with respect to the axial length L of the inner bearing 26.
The range is 48 to 8 L / 48. Further, when static pressure is applied, the range in which the maximum value of the oil film thickness appears is the range in which the total length T is 4 L / 48 to 24 L / 48. Therefore,
A preferable range is L / 48 (the length corresponding to the minimum value when only the dynamic pressure is applied) to 24 L / 48 (the length corresponding to the maximum value when the static pressure is applied).

【0060】ただし図示のように、動圧のみになった場
合には、油膜厚さが薄くなり、また最大値を外れた場合
にはさらに薄くなってしまう。したがって、後方側ラン
ド面41Bおよび前方側ランド面41Fの合計長さTの
さらに好ましい範囲としては、通常であれば、動圧のみ
と静圧を加えたときの中間値を取って、2.5L/48
〜16L/48とすることができるが、動圧のみになっ
た場合であっても、ある程度の油膜厚さを確保するため
に、上記範囲のうち、動圧側の影響度を大きくして考慮
すると、さらに好ましい範囲は、2L/48〜10L/
48とすることができる。
However, as shown in the figure, when only the dynamic pressure is applied, the oil film thickness becomes thin, and when it deviates from the maximum value, it becomes even thinner. Therefore, as a more preferable range of the total length T of the rear land surface 41B and the front land surface 41F, normally, an intermediate value when only the dynamic pressure and the static pressure are applied is set to 2.5 L. / 48
Although it can be set to ˜16 L / 48, in order to secure a certain oil film thickness even when only the dynamic pressure is obtained, considering the influence degree on the dynamic pressure side in the above range to be large, The more preferable range is 2 L / 48 to 10 L /
It can be 48.

【0061】つぎに図15および図16にもとづき、静
圧による負荷容量および潤滑油の給油圧について説明す
る。図15は、図2ないし図3と同様の、ただし内軸2
3が内側軸受26に対して若干偏心した場合の断面図、
図16は、回転数比に対する油膜厚さの関係を示すグラ
フであって動圧および静圧による負荷容量を示す。
Next, the load capacity due to static pressure and the hydraulic pressure of lubricating oil will be described with reference to FIGS. 15 is similar to FIGS. 2 to 3, but with the inner shaft 2
3 is a sectional view of the inner bearing 26 slightly eccentric,
FIG. 16 is a graph showing the relationship between the rotational speed ratio and the oil film thickness, and shows the load capacity due to dynamic pressure and static pressure.

【0062】図15に示すように、潤滑油の供給圧PS
に対して内側軸受26の圧力はオリフィス形成用の、あ
るいは毛細管形成用の小穴付きネジ17を通り内軸23
の下面でP1、内軸23の上面でP2に低下する。
As shown in FIG. 15, the lubricating oil supply pressure PS
On the other hand, the pressure of the inner bearing 26 passes through the small hole screw 17 for forming the orifice or for forming the capillary tube, and the inner shaft 23
On the lower surface of the inner shaft 23 and P2 on the upper surface of the inner shaft 23.

【0063】内軸23の外周面と内側軸受26のランド
面41部分の内周面との間の間隔を下面でH1、上面で
H2とすると、内軸23と内側軸受26の中心がそれぞ
れ一致するときにはH1=H2となり、小穴付きネジ1
7による絞りと軸受隙間の絞りの抵抗とが同等となって
P1=P2となるため負荷容量はゼロとなる。
When the distance between the outer peripheral surface of the inner shaft 23 and the inner peripheral surface of the land surface 41 portion of the inner bearing 26 is H1 on the lower surface and H2 on the upper surface, the centers of the inner shaft 23 and the inner bearing 26 coincide with each other. When doing, H1 = H2 and screw with small hole 1
The resistance of the throttle by 7 and the resistance of the throttle in the bearing gap become equal and P1 = P2, so the load capacity becomes zero.

【0064】また内軸23が偏心して偏心距離eだけ図
中下方に沈むと、H1<H2、かつP2<P1となり、
この差圧(P1−P2)によって負荷容量が発生する。
When the inner shaft 23 is eccentric and sinks downward in the figure by the eccentric distance e, H1 <H2 and P2 <P1 are satisfied,
A load capacity is generated by this differential pressure (P1-P2).

【0065】図16に示すように、本発明におけるテー
パーランド42あるいは多円弧軸受面43のような非真
円形状を有する内軸23の方が動圧による負荷容量が高
いために、より低い給油圧で同等の負荷容量を得ること
ができ、図19に示した真円軸受に比較して給油圧力を
下げることができる。
As shown in FIG. 16, the inner shaft 23 having a non-round shape such as the tapered land 42 or the multi-circular bearing surface 43 in the present invention has a higher load capacity due to dynamic pressure, and therefore a lower feed rate. An equivalent load capacity can be obtained by hydraulic pressure, and the oil supply pressure can be reduced as compared with the perfect circular bearing shown in FIG.

【0066】[0066]

【発明の効果】以上のように本発明によれば、内側軸受
の内周面に非真円形状のテーパーランドあるいは多円弧
軸受面と、さらにたとえば後方側ランド面および前方側
ランド面などの真円部とを形成したので、動圧による負
荷容量を積極的にかつ有効に発生させることが可能とな
るとともに、給油圧力もこれを低く抑えることができ
る。
As described above, according to the present invention, a taper land or a multi-arc bearing surface having a non-round shape is provided on the inner peripheral surface of the inner bearing, and further, for example, a rear land surface and a front land surface. Since the circular portion is formed, the load capacity due to the dynamic pressure can be positively and effectively generated, and the oil supply pressure can be suppressed to be low.

【0067】したがって、潤滑油供給機構からの静圧給
油が不要あるいは低圧ですむため、船内電力を節約する
ことができる。
Therefore, the static pressure oil supply from the lubricating oil supply mechanism is unnecessary or low pressure is required, so that the electric power onboard the ship can be saved.

【0068】また、ブラックアウト時などにおいて静圧
給油が行われず、また前方プロペラおよび後方プロペラ
が低速度の遊転状態となった場合にも、回転数比によら
ず動圧による負荷容量を発生することができるので、真
円軸受構造の場合よりも耐焼き付け性を向上させて安全
性を向上させることができる。
Also, when static pressure oil supply is not performed at the time of blackout and the front and rear propellers are in a low speed idling state, load capacity is generated by dynamic pressure regardless of the rotation speed ratio. Therefore, it is possible to improve the seizure resistance and the safety as compared with the case of the perfect circular bearing structure.

【0069】[0069]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態による二重反転プロペラ用
軸受装置21を装備した二重反転プロペラ軸系20の断
面図である。
FIG. 1 is a sectional view of a counter-rotating propeller shaft system 20 equipped with a counter-rotating propeller bearing device 21 according to an embodiment of the present invention.

【図2】同、図1のII−II線断面図である。FIG. 2 is a sectional view taken along line II-II of FIG.

【図3】同、曲面状テーパー面40およびランド面41
(テーパーランド42)をより具体的に示す断面図であ
る。
[FIG. 3] Similarly, a curved tapered surface 40 and a land surface 41
It is sectional drawing which shows the (taper land 42) more concretely.

【図4】同、内側軸受26の内周面におけるテーパーラ
ンド42の展開図である。
FIG. 4 is a development view of a tapered land 42 on the inner peripheral surface of the inner bearing 26 of the same.

【図5】同、後方側ランド面41Bおよび前方側ランド
面41Fを形成しない場合の内側軸受26の内周面の展
開図である。
FIG. 5 is a development view of the inner peripheral surface of the inner bearing 26 when the rear land surface 41B and the front land surface 41F are not formed.

【図6】同、内側軸受26の内周面における非真円形状
の他の例(多円弧軸受面43)を示す図3と同様の断面
図である。
FIG. 6 is a sectional view similar to FIG. 3, showing another example (multi-circle bearing surface 43) of a non-round shape on the inner peripheral surface of the inner bearing 26.

【図7】同、内側軸受26の内周面における多円弧軸受
面43の展開図である。
FIG. 7 is a development view of a multi-circle bearing surface 43 on the inner peripheral surface of the inner bearing 26.

【図8】同、後方側ランド面41Bおよび前方側ランド
面41Fを形成しない場合の内側軸受26の内周面の展
開図である。
FIG. 8 is a development view of the inner peripheral surface of the inner bearing 26 when the rear land surface 41B and the front land surface 41F are not formed.

【図9】同、二重反転プロペラ用軸受装置21部分の断
面図である。
FIG. 9 is a sectional view of a bearing device 21 portion for a counter-rotating propeller of the same.

【図10】同、図9のX−X線断面図である。10 is a sectional view taken along line XX of FIG.

【図11】同、内軸23および内側軸受26の端部を示
す要部断面図である。
FIG. 11 is a sectional view of relevant parts showing the ends of the inner shaft 23 and the inner bearing 26 of the same.

【図12】同、内軸23の回転数に対する最小油膜厚さ
(負荷容量)の関係を示すグラフである。
FIG. 12 is a graph showing the relationship between the minimum oil film thickness (load capacity) and the rotation speed of the inner shaft 23.

【図13】同、回転数比に対する最小油膜厚さの関係を
示すグラフである。
FIG. 13 is a graph showing a relationship between a minimum oil film thickness and a rotation speed ratio.

【図14】同、後方側ランド面41Bおよび前方側ラン
ド面41Fの合計長さT)に対する油膜厚さの関係を示
すグラフである。
FIG. 14 is a graph showing the relationship between the oil film thickness and the total length T) of the rear land surface 41B and the front land surface 41F.

【図15】同、図2ないし図3と同様の、ただし内軸2
3が内側軸受26に対して若干偏心した場合の断面図で
ある。
FIG. 15 is the same as FIG. 2 to FIG. 3, except for the inner shaft 2;
3 is a cross-sectional view when 3 is slightly eccentric with respect to the inner bearing 26. FIG.

【図16】同、回転数比に対する油膜厚さの関係を示す
グラフである。
FIG. 16 is a graph showing the relationship between the oil film thickness and the rotation speed ratio.

【図17】従来の二重反転プロペラ1の一部切欠き側面
図である。
FIG. 17 is a partially cutaway side view of a conventional counter-rotating propeller 1.

【図18】同、図17のXVIII−XVIII線断面
図である。
FIG. 18 is a sectional view taken along line XVIII-XVIII of FIG.

【図19】従来の静圧真円軸受を基本とした二重反転プ
ロペラ用船尾管軸受の要部断面図である。
FIG. 19 is a sectional view of essential parts of a conventional stern tube bearing for a counter-rotating propeller based on a static pressure true circular bearing.

【符号の説明】[Explanation of symbols]

1 二重反転プロペラ(図17) 2 前方プロペラ 3 外軸 4 後方プロペラ 5 内軸 6 主機関 7 船舶本体の船尾部分 8 外側軸受 9 外側シール 10 内側軸受 11 内側シール 12 潤滑油供給機構 13 ラダーホーン 14 舵板 15 油圧同芯穴 16 放射状給油孔 17 オリフィス形成用の小穴付きネジ 20 二重反転プロペラ軸系(図1) 21 二重反転プロペラ用軸受装置(図1) 22 外軸 23 内軸 24 前方プロペラボス 25 外軸22の連結部材 26 内側軸受 26A 内側軸受26のラッパ状の傾斜部 27 後方プロペラボス 28 中央給油通路 29 放射状給油孔 30 内側軸受26の軸方向油路 31 隔離用円筒部材 32 円筒通路 33 隔離用円筒部材31の直径方向連通孔 34 外軸22の排油孔 35 船尾部分7の排出口 40 曲面状テーパー面 41 ランド面 41B 後方側ランド面(周方向の真円部)(図4、図
7) 41F 前方側ランド面(周方向の真円部)(図4、図
7) 42 テーパーランド(曲面状テーパー面40およびラ
ンド面41)(凹凸形状部)(図2、図3) 43 多円弧軸受面(凹凸形状部)(図6、図7) C 内軸23の外周面と内側軸受26の内周面との間の
間隙(半径すきま) H 曲面状テーパー面40の深さ R 内軸23の半径 R1 曲面状テーパー面40を形成するための内軸23
の中心からの任意の半径 R2 曲面状テーパー面40を形成するための半径R1
の円周上の点からの任意の半径 R3 多円弧軸受面43を形成するための半径R1の円
周上の点からの任意の半径 L 内側軸受26の軸方向の長さ T 後方側ランド面41Bおよび前方側ランド面41F
の合計長さ PS 潤滑油の供給圧 P1 内軸23の下面での圧力 P2 内軸23の上面での圧力 H1 内軸23の外周面と内側軸受26のランド面41
部分の内周面との間の下面での間隔 H2 内軸23の外周面と内側軸受26のランド面41
部分の内周面との間の上面での間隔 e 内軸23が内側軸受26に対して偏心した偏心距離
1 Double reversal propeller (Fig. 17) 2 Front propeller 3 Outer shaft 4 Rear propeller 5 Inner shaft 6 Main engine 7 Stern part of ship body 8 Outer bearing 9 Outer seal 10 Inner bearing 11 Inner seal 12 Lubricating oil supply mechanism 13 Rudder horn 14 rudder plate 15 hydraulic concentric hole 16 radial oil supply hole 17 screw with small hole for orifice formation 20 counter-rotating propeller shaft system (Fig. 1) 21 counter-rotating propeller bearing device (Fig. 1) 22 outer shaft 23 inner shaft 24 Front propeller boss 25 Connecting member 26 of outer shaft 22 Inner bearing 26A Trumpet-shaped inclined portion 27 of inner bearing 26 Rear propeller boss 28 Central oil supply passage 29 Radial oil supply hole 30 Axial oil passage 31 of inner bearing 26 Cylindrical member 32 for isolation Cylindrical passage 33 Diameter communication hole 34 of separating cylindrical member 31 Oil drain hole 35 of outer shaft 22 Discharge port 40 of stern portion 7 Curved tapered surface 41 41B Rear land surface (circular circumferential true circle portion) (FIGS. 4 and 7) 41F Front side land surface (circular circumferential true circle portion) (FIGS. 4 and 7) 42 Tapered land (curved surface tapered surface) 40 and land surface 41) (concavo-convex portion) (Figs. 2 and 3) 43 multi-arc bearing surface (concavo-convex portion) (Figs. 6 and 7) C Outer peripheral surface of inner shaft 23 and inner peripheral surface of inner bearing 26 Gap (radial clearance) H with depth of the curved tapered surface 40 R radius of the inner shaft 23 R1 inner shaft 23 for forming the curved tapered surface 40
Radius R2 from center of radius R1 for forming curved tapered surface 40
Radius R3 from a point on the circumference of R3 Arbitrary radius from a point on the circumference of radius R1 to form the multi-circle bearing surface 43 L Axial length of the inner bearing 26 Rear land surface 41B and front land surface 41F
Total pressure PS of lubricating oil P1 pressure P2 on the lower surface of the inner shaft 23 pressure H1 on the upper surface of the inner shaft 23 outer peripheral surface of the inner shaft 23 and land surface 41 of the inner bearing 26
Distance H2 on the lower surface between the inner peripheral surface of the portion and the outer peripheral surface of the inner shaft 23 and the land surface 41 of the inner bearing 26
Eccentric distance that the inner shaft 23 is eccentric with respect to the inner bearing 26

───────────────────────────────────────────────────── フロントページの続き (73)特許権者 000005119 日立造船株式会社 大阪府大阪市住之江区南港北1丁目7番 89号 (73)特許権者 000005902 三井造船株式会社 東京都中央区築地5丁目6番4号 (72)発明者 大谷 紳一 兵庫県神戸市中央区東川崎町三丁目1番 1号 川崎重工業株式会社 神戸工場内 (72)発明者 新田 啓一 神奈川県横須賀市夏島町19番地 住友重 機械工業株式会社 追浜造船所内 (72)発明者 松田 正康 神奈川県横須賀市夏島町19番地 住友重 機械工業株式会社 追浜造船所内 (72)発明者 慶林坊 智 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 芦田 吏史 大阪府大阪市此花区西九条5丁目3番28 号 日立造船株式会社内 (72)発明者 渋谷 秀樹 千葉県市原市八幡海岸通1番地 三井造 船株式会社 千葉事業所内 (56)参考文献 特開 昭61−236921(JP,A) 特開 平7−69292(JP,A) 特公 平5−45479(JP,B2) 特公 昭47−37919(JP,B1) 特公 昭46−6926(JP,B1) 特公 昭48−4500(JP,B1) (58)調査した分野(Int.Cl.7,DB名) B63H 23/32 B63H 5/10 ─────────────────────────────────────────────────── ─── Continuation of the front page (73) Patent holder 000005119 Hitachi Zosen Corporation 1-89 Minami Kohoku, Suminoe-ku, Osaka-shi, Osaka (73) Patent holder 000005902 Mitsui Engineering & Shipbuilding Co., Ltd. 5 Tsukiji, Chuo-ku, Tokyo 6-4 (72) Inventor Shinichi Otani 3-1-1 Higashikawasaki-cho, Chuo-ku, Kobe City, Hyogo Prefecture Kawasaki Heavy Industries, Ltd. Inside the Kobe Factory (72) Inventor Keiichi Nitta 19 Natsushima-cho, Yokosuka-shi, Kanagawa Sumitomo Heavy Industries Machinery Industry Co., Ltd. Oppama Shipyard (72) Inventor Masayasu Matsuda 19 Natsushima-cho, Yokosuka City, Kanagawa Sumitomo Heavy Industries Co., Ltd. Oppama Shipyard (72) Inventor Satoshi Keirinbo 1-2-2 Marunouchi, Chiyoda-ku, Tokyo No. Nippon Steel Tube Co., Ltd. (72) Inventor, Mr. Kaoru Ashida No. 5-3-8 Nishikujo, Konohana-ku, Osaka City, Osaka Prefecture Hitachi Shipbuilding Co., Ltd. ( 72) Inventor Hideki Shibuya 1 Yawata Kaigan Dori, Ichihara City, Chiba Mitsui Engineering & Shipbuilding Co., Ltd., Chiba Works (56) Reference JP 61-236921 (JP, A) JP 7-69292 (JP, A) Japanese Patent Publication 5-45479 (JP, B2) Japanese Patent Publication 47-37919 (JP, B1) Japanese Publication 46-6926 (JP, B1) Japanese Publication 48-4500 (JP, B1) (58) Fields investigated (Int.Cl. 7 , DB name) B63H 23/32 B63H 5/10

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 前方プロペラを有する外軸と、 この外軸に内嵌して該外軸とは反対方向に回転駆動する
とともに後方プロペラを有する内軸と、 この内軸と前記外軸との間に設けた軸受と、を有する二
重反転プロペラ用軸受装置であって、 前記内軸に中央給油通路と、この中央給油通路に連通す
る複数本の放射状給油孔とを形成し、これら中央給油通
路および放射状給油孔を通して該内軸から前記軸受の内
周面に潤滑油を供給し、かつこの軸受の内周面に複数の
凹凸形状部を該軸受の軸方向に沿って該内周面の全周に
わたって等角度間隔で形成し、 さらに、前記軸受の軸方向における前記凹凸形状部の両
端部に真円部を設けて、 この真円部に挟まれた前記内軸と前記凹凸形状部との間
における前記潤滑油により前記軸受の前記内周面で発生
する負荷容量が該軸受の軸方向にわたって均一になるよ
うにした ことを特徴とする二重反転プロペラ用軸受装
置。
1. An outer shaft having a front propeller, an inner shaft fitted in the outer shaft to be rotationally driven in a direction opposite to the outer shaft and having a rear propeller, and the inner shaft and the outer shaft. A bearing device for a counter-rotating propeller having a bearing provided therebetween, wherein a central oil supply passage and a plurality of radial oil supply holes communicating with the central oil supply passage are formed in the inner shaft. Lubricating oil is supplied from the inner shaft to the inner peripheral surface of the bearing through the passage and the radial oil supply hole, and a plurality of uneven portions are formed on the inner peripheral surface of the bearing along the axial direction of the bearing. Formed at equal angular intervals over the entire circumference, and further, by providing a true circle portion at both ends of the uneven portion in the axial direction of the bearing, the inner shaft and the uneven portion sandwiched by the true circle portion Between
Generated on the inner peripheral surface of the bearing due to the lubricating oil in
Load capacity is uniform over the axial direction of the bearing
This is a bearing device for counter-rotating propellers.
【請求項2】 前記凹凸形状部は、これをテーパーラ
ンドあるいは多円弧軸受面としたことを特徴とする請求
項1記載の二重反転プロペラ用軸受装置。
2. The bearing device for a counter-rotating propeller according to claim 1, wherein the uneven portion has a tapered land or a multi-arc bearing surface.
【請求項3】 前記放射状給油孔は、前記軸受の軸方
向における中央位置から、該軸受の長さLに対してL/
6〜L/4だけ後方にこれを位置させたことを特徴とす
る請求項1記載の二重反転プロペラ用軸受装置。
3. The radial oil supply hole is L / L relative to a length L of the bearing from a central position in the axial direction of the bearing.
The bearing device for a counter-rotating propeller according to claim 1, wherein the bearing device is located rearward by 6 to L / 4.
【請求項4】 前記真円部の長さは、前記軸受の長さ
Lに対してL/48〜24L/48の範囲、好ましくは
2L/48〜10L/48の範囲としたことを特徴とす
る請求項1記載の二重反転プロペラ用軸受装置。
4. The length of the perfect circle portion is set in a range of L / 48 to 24L / 48, preferably in a range of 2L / 48 to 10L / 48 with respect to a length L of the bearing. The bearing device for a counter-rotating propeller according to claim 1.
JP22274095A 1994-09-08 1995-08-09 Bearing device for contra-rotating propeller Expired - Fee Related JP3364735B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP22274095A JP3364735B2 (en) 1995-08-09 1995-08-09 Bearing device for contra-rotating propeller
KR1019970700181A KR100243070B1 (en) 1994-09-08 1995-09-04 Inversion bearing for double inversion propeller
PCT/JP1995/001761 WO1996007832A1 (en) 1994-09-08 1995-09-04 Reversing bearing device for double reversing propeller
DE69529422T DE69529422T2 (en) 1994-09-08 1995-09-04 REVERSIBLE BEARING DEVICE FOR REVERSIBLE DOUBLE SCREW
EP95930041A EP0803657B1 (en) 1994-09-08 1995-09-04 Reversing bearing device for double reversing propeller
ES95930041T ES2202372T3 (en) 1994-09-08 1995-09-04 DRIVE-ROTARY BEARING FOR DRIVE AGAINST-ROTARY.
DK00112763T DK1035013T3 (en) 1994-09-08 1995-09-04 Opposite rotating bearing device for opposite rotating screw
DE69529432T DE69529432T2 (en) 1994-09-08 1995-09-04 Counter-rotating bearing for counter-rotating propellers
ES00112763T ES2190919T3 (en) 1994-09-08 1995-09-04 DRIVE-ROTARY BEARING FOR DRIVE AGAINST-ROTARY.
EP00112763A EP1035013B1 (en) 1994-09-08 1995-09-04 Contra-rotating bearing device for contra-rotating propeller
DK95930041T DK0803657T3 (en) 1994-09-08 1995-09-04 Reversible bearing for reversible double screw
US08/809,339 US6056509A (en) 1994-09-08 1997-03-06 Contra-rotating bearing device for contra-rotating propeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22274095A JP3364735B2 (en) 1995-08-09 1995-08-09 Bearing device for contra-rotating propeller

Publications (2)

Publication Number Publication Date
JPH0948397A JPH0948397A (en) 1997-02-18
JP3364735B2 true JP3364735B2 (en) 2003-01-08

Family

ID=16787166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22274095A Expired - Fee Related JP3364735B2 (en) 1994-09-08 1995-08-09 Bearing device for contra-rotating propeller

Country Status (1)

Country Link
JP (1) JP3364735B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112049857B (en) * 2020-09-04 2023-03-21 宁波富利金科智能科技股份有限公司 Transmission connecting rod structure

Also Published As

Publication number Publication date
JPH0948397A (en) 1997-02-18

Similar Documents

Publication Publication Date Title
WO1996007832A1 (en) Reversing bearing device for double reversing propeller
US4801243A (en) Adjustable diameter screw propeller
CN1114544C (en) Improved fluid displacing blade
JP2010528918A (en) Ship&#39;s rudder horn support type counter-rotating propulsion device
JP3364735B2 (en) Bearing device for contra-rotating propeller
JPH04501834A (en) Regulation system for ship propulsion systems
EP0221536B1 (en) Stern tube bearing system of contra-rotating propeller
JP3004475B2 (en) Bearing structure of contra-rotating propeller device
JP3498269B2 (en) Bearing device for contra-rotating propeller
JP3432303B2 (en) Reversing bearing for contra-rotating propeller
JP2724627B2 (en) Steering mechanism of ship propulsion system
JPH0891293A (en) Bearing device for contra-rotating propeller
JPH0891294A (en) Bearing device for contra-rotating propeller
KR20200093853A (en) Rotating blade structure and fluid machinery or ship including the same and method for constructing the same
US1055588A (en) Hydraulic turbine.
US9981729B2 (en) Outboard motor
EP2722269B1 (en) Propulsion device for ship and ship having same
US8038492B2 (en) Underwater propulsion apparatus performance enhancement device and associated methods
US11691708B2 (en) Fluid machine
EP2045184B1 (en) Propeller in a nacelle for a ship
JPH0710086A (en) Stern bearing for contra-rotating propeller
JPS62110595A (en) Stern tube bearing for double reversal propeller
JPH0442235Y2 (en)
US495727A (en) Ship s propeller
JPS6116680B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021001

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101101

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111101

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111101

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121101

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131101

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131101

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees