JP3363979B2 - Water treatment equipment - Google Patents
Water treatment equipmentInfo
- Publication number
- JP3363979B2 JP3363979B2 JP35332493A JP35332493A JP3363979B2 JP 3363979 B2 JP3363979 B2 JP 3363979B2 JP 35332493 A JP35332493 A JP 35332493A JP 35332493 A JP35332493 A JP 35332493A JP 3363979 B2 JP3363979 B2 JP 3363979B2
- Authority
- JP
- Japan
- Prior art keywords
- metal
- titanium oxide
- treated
- water treatment
- fine particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 19
- 229910052751 metal Inorganic materials 0.000 claims description 45
- 239000002184 metal Substances 0.000 claims description 45
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 43
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 38
- 239000007788 liquid Substances 0.000 claims description 31
- 239000010419 fine particle Substances 0.000 claims description 21
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 12
- 239000010936 titanium Substances 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 239000010955 niobium Substances 0.000 claims description 5
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 5
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 230000007547 defect Effects 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 239000012780 transparent material Substances 0.000 claims 1
- 239000002245 particle Substances 0.000 description 23
- 238000000034 method Methods 0.000 description 15
- 229910021645 metal ion Inorganic materials 0.000 description 14
- 238000011084 recovery Methods 0.000 description 14
- 238000000354 decomposition reaction Methods 0.000 description 12
- 238000005868 electrolysis reaction Methods 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 239000002351 wastewater Substances 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 8
- 150000002739 metals Chemical class 0.000 description 7
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 229910001431 copper ion Inorganic materials 0.000 description 6
- 238000011049 filling Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000010287 polarization Effects 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- 238000006386 neutralization reaction Methods 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004070 electrodeposition Methods 0.000 description 4
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 4
- 239000010970 precious metal Substances 0.000 description 4
- 229910001936 tantalum oxide Inorganic materials 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 238000004065 wastewater treatment Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 229910000484 niobium oxide Inorganic materials 0.000 description 3
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- -1 metal complex ions Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000006259 organic additive Substances 0.000 description 2
- 238000006864 oxidative decomposition reaction Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910001257 Nb alloy Inorganic materials 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910001362 Ta alloys Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- RJSRQTFBFAJJIL-UHFFFAOYSA-N niobium titanium Chemical compound [Ti].[Nb] RJSRQTFBFAJJIL-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- VSSLEOGOUUKTNN-UHFFFAOYSA-N tantalum titanium Chemical compound [Ti].[Ta] VSSLEOGOUUKTNN-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/467—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
- C02F1/4672—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/467—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
- C02F1/4676—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
- C02F1/32—Treatment of water, waste water, or sewage by irradiation with ultraviolet light
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/16—Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/10—Photocatalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Physical Water Treatments (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Electrolytic Production Of Metals (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、金属成分と有機成分を
含む被処理液を処理して金属成分を回収しかつ有機成分
を分解するための水処理装置に関し、より詳細には主と
してメッキ廃液等の有価金属と有機添加物を含む排水を
電解的に処理する排水の電解処理装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment apparatus for treating a liquid to be treated containing a metal component and an organic component to recover the metal component and decompose the organic component. The present invention relates to an electrolytic treatment device for wastewater, which electrolytically treats wastewater containing valuable metals such as the above and organic additives.
【0002】[0002]
【従来技術とその問題点】我が国における厳重な排水規
制により工場排水等は全て処理されて排水規制に合致さ
せた後に放流されている。排水処理の方法は主として中
和沈澱法であり、この方法は排水のpHを中性域から弱
アルカリ性に移行させることにより金属が水和物又は水
酸化物として沈澱させてこれを濾別し、濾液は必要に応
じて樹脂処理を行って更に高度な処理を行って排水のp
Hを規制に適合させた後に放流する方法である。2. Description of the Related Art Due to strict regulations on wastewater in Japan, factory wastewater, etc. are all treated and discharged after conforming to the wastewater regulations. The wastewater treatment method is mainly a neutralization precipitation method, and this method causes the metal to precipitate as a hydrate or hydroxide by shifting the pH of the wastewater from a neutral range to a weak alkalinity, and this is filtered off, If necessary, the filtrate is treated with resin and further advanced treatment to remove p
This is a method of releasing H after conforming to regulations.
【0003】この中和沈澱法は理論的には非常に有効で
あるが、前述のように有機添加物等の有機性のCODの
除去には必ずしも有効ではなく、別にオゾンや過酸化水
素等による酸化処理が必要となる場合が多く、この付加
工程の存在が効率的な排水処理を達成するための大きな
ネックとなっている。又前記中和沈澱法は遊離の金属イ
オンの回収には有効であるが、キレート等の有機錯体中
に存在する金属錯イオンの形態の金属イオンの回収には
不適切であり、樹脂処理、キレート分解等の付加的な工
程を必要とするという問題点もある。This neutralization precipitation method is theoretically very effective, but as described above, it is not always effective in removing organic COD such as organic additives, and it is not possible to use ozone or hydrogen peroxide. Oxidation treatment is often required, and the existence of this additional step is a major obstacle to achieving efficient wastewater treatment. Although the neutralization precipitation method is effective for recovering free metal ions, it is not suitable for recovering metal ions in the form of metal complex ions present in organic complexes such as chelates, and thus resin treatment, chelate There is also a problem that an additional step such as disassembly is required.
【0004】更に前記中和沈澱法で沈澱させた金属水酸
化物から簡単かつ安価に金属を単離し回収することは困
難であることが多く、前記中和沈澱法による金属回収は
経済的な面の問題から実際には殆ど行われていない。排
水からの金属回収を電解的に行うと目的とする金属が化
合物としてではなく単離された金属として回収され単離
工程が不要であることからも有効であることが知られて
いる。更に電解法は比較的安価に実施できることから、
電解的な金属回収を意図する数種類の廃液処理装置が市
販され実用化されている。Further, it is often difficult to easily and inexpensively isolate and recover the metal from the metal hydroxide precipitated by the neutralization precipitation method, and the metal recovery by the neutralization precipitation method is economical. Actually, it is hardly done because of the problem. It is known that the electrolytic recovery of the metal from the waste water is also effective because the target metal is recovered not as a compound but as an isolated metal and the isolation step is unnecessary. Furthermore, since the electrolysis method can be carried out relatively inexpensively,
Several types of waste liquid treatment devices intended for electrolytic metal recovery are commercially available and put into practical use.
【0005】これらの電解的金属回収装置は、金属イオ
ンの還元を有効に行うために該金属イオンが接触する陰
極の表面積を可能な限り大きくするように工夫され、該
陰極と離間した箇所に通常の陽極又は三次元的な広がり
を有する金属陽極を設置し、あるいは陰極側に炭素粒子
を充填して固定床型とし、陰極側に被処理液を流して電
解を行うようにしたものが主流となっている。このタイ
プの電解槽では通電を円滑に行うために両極間にも被処
理液を流したり、両極をイオン交換膜で分離し陽極室側
に希硫酸等の電解液を又陰極室側には被処理液を流した
りしている。これらの電解槽の陰極は基本的に単極構造
であり表面積が極めて大きくできるため金属回収には有
利であるもの、液中に含有される有機性COD等の処理
については一切考慮されていない。These electrolytic metal recovery devices are devised so that the surface area of the cathode with which the metal ions come into contact is as large as possible in order to effectively reduce the metal ions. The mainstream is that the anode or a metal anode having a three-dimensional spread is installed, or the cathode side is filled with carbon particles to form a fixed bed type, and the liquid to be treated is caused to flow to the cathode side for electrolysis. Has become. In this type of electrolytic cell, the liquid to be treated is passed between the two electrodes in order to smoothly conduct electricity, or both electrodes are separated by an ion exchange membrane and electrolytic solution such as dilute sulfuric acid is applied to the anode chamber side and the cathode chamber side is exposed. I am flowing the processing liquid. The cathode of these electrolytic cells is basically a monopolar structure and can have an extremely large surface area, which is advantageous for metal recovery, but no consideration is given to the treatment of organic COD or the like contained in the liquid.
【0006】他の電解法として、陽極と陰極の間に導電
性の炭素粒子を充填した電解槽を使用する方法が知られ
ている。この方法は、炭素粒子自身が電気抵抗による電
位差を該粒子内に有し、通電により陽極側が陰分極し陰
極側が陽分極することにより陽極及び陰極間に存在する
複数個の炭素粒子が複極構造として機能することによ
り、電圧は大きくなるが小電流で金属回収を有効に行う
ことを意図している。しかし該方法でも炭素粒子が有機
性CODの分解については全く効果を期待できないこと
から有機性CODの分解については一切考慮されず金属
回収のみが注目されていることは明らかである。更に貴
金属廃液からの貴金属回収用として炭素粒子を陰極とし
て使用し流動床型電解により貴金属回収を行う方式が提
案されているが、この方式でも貴金属回収のみが注目さ
れ、多くの廃液中に含まれる有機性CODの除去に関し
ては殆ど注目されず、該有機性CODの除去は別工程に
より行うことが当然と考えられている。As another electrolysis method, a method of using an electrolysis cell in which conductive carbon particles are filled between an anode and a cathode is known. In this method, the carbon particles themselves have a potential difference due to electric resistance within the particles, and the energization causes negative polarization on the anode side and positive polarization on the cathode side, whereby a plurality of carbon particles existing between the anode and the cathode have a bipolar structure. By functioning as, the voltage is increased, but it is intended to effectively recover the metal with a small current. However, even in this method, since carbon particles cannot be expected to exert any effect on the decomposition of organic COD, it is clear that the decomposition of organic COD is not considered at all and only metal recovery is paid attention. Furthermore, a method of recovering precious metals by fluidized bed type electrolysis using carbon particles as a cathode for recovering precious metals from precious metal waste liquid has been proposed, but even in this method, only precious metal recovery is noted, and it is included in many waste liquids. Little attention is paid to the removal of the organic COD, and it is considered that the removal of the organic COD should be performed in a separate step.
【0007】[0007]
【発明の目的】本発明は、通常金属回収を必要とする各
種排水が金属の他に放流するために分解しなければなら
ない有機成分を含有しかつ前記金属回収と前記有機成分
の分解を単一操作で行うことができれば排水処理を効率
的に行うことできることに着目して、金属の電析と有機
成分の分解を単一操作で行い得る水処理装置を提供する
ことを目的とする。OBJECTS OF THE INVENTION The present invention contains various organic wastes which normally require recovery of metals, in addition to metals, containing organic components which must be decomposed, and the metal recovery and the decomposition of the organic components are performed in a single manner. It is an object of the present invention to provide a water treatment device capable of performing metal electrodeposition and decomposition of organic components in a single operation, focusing on the fact that wastewater treatment can be performed efficiently if it can be performed by operation.
【0008】[0008]
【問題点を解決するための手段】本発明は、陽極と陰極
の間に酸化チタンを含む半導性微粒子を充填した電解槽
と光源を含んで成り、前記充填微粒子中に金属成分と有
機成分を有する被処理液を供給しかつ光を当てながら前
記電解槽の両電極間に直流電流を通電し、前記被処理液
中の金属成分を回収するとともに有機成分を分解するこ
とを特徴とする水処理装置である。The present invention comprises an electrolyzer filled with semiconductive fine particles containing titanium oxide between an anode and a cathode and a light source, wherein the filled fine particles contain a metal component and an organic component. A water characterized by supplying a liquid to be treated and applying a direct current between both electrodes of the electrolytic cell while applying light, recovering the metal components in the liquid to be treated and decomposing the organic components. It is a processing device.
【0009】以下本発明を詳細に説明する。本発明者ら
は、金属イオンの還元による電析と有機成分の分解を同
時に行い得る電極物質を各種検討し、酸化チタンが最良
の電極物質であることを見出し、本発明に至ったもので
ある。半導性酸化チタンは光を当てることにより光触媒
として水の分解を行うことが知られている。本発明者ら
はこの特性に着目し、該半導性酸化チタンを電極物質と
して通電すると電解液中の有機成分を分解することを見
出したものである。The present invention will be described in detail below. The present inventors have conducted various studies on electrode materials capable of simultaneously performing electrodeposition by reduction of metal ions and decomposition of organic components, and have found that titanium oxide is the best electrode material, resulting in the present invention. . It is known that semiconducting titanium oxide decomposes water as a photocatalyst when exposed to light. The inventors of the present invention have paid attention to this property and have found that the semiconducting titanium oxide is used as an electrode substance to apply an electric current to decompose an organic component in an electrolytic solution.
【0010】更に該酸化チタンを電解用陰極として電解
槽に設置し電解液中の金属イオンの還元用として使用し
たところ還元された金属がその表面に電析して回収され
ることも見出された。本発明では従来の炭素粒子による
金属回収と同様に酸化チタンを微粒子として電解槽の陽
極と陰極の間に充填して電解表面積を最大限とした状態
で使用する。Further, when the titanium oxide was installed in an electrolytic cell as a cathode for electrolysis and used for reducing metal ions in an electrolytic solution, it was also found that the reduced metal was electrodeposited on the surface and recovered. It was In the present invention, titanium oxide is used as fine particles to fill the space between the anode and the cathode of the electrolytic cell and used in the state where the electrolytic surface area is maximized, similarly to the conventional metal recovery using carbon particles.
【0011】両電極間に通電すると前記酸化チタンが分
極し一定の配向性でつまり前記陽極に面する部分が陰分
極し前記陰極に面する部分が陽分極するよう両電極間で
分極する。このように酸化チタンが充填された電解槽
に、金属イオンと有機成分を含有する被処理液を供給し
かつ光源から好ましくは両電極の長さ方向と平行になる
ように光を当てながら両電極間に直流電流を通電する
と、各酸化チタン粒子の陰分極部で前記金属イオンが還
元されて金属単体として析出しかつ当てられた光を触媒
として陰分極部で有機成分の還元的分解が又陽分極部で
有機成分の酸化的分解が行われ、金属回収と有機成分の
分解を同時に行うことができる。When a current is applied between both electrodes, the titanium oxide is polarized and has a certain orientation, that is, the part facing the anode is negatively polarized and the part facing the cathode is positively polarized. In this way, the liquid to be treated containing metal ions and organic components is supplied to the electrolytic cell filled with titanium oxide, and both electrodes are irradiated with light from the light source so as to be preferably parallel to the longitudinal direction of both electrodes. When a direct current is applied between the titanium oxide particles, the metal ions are reduced in the negatively polarized portion of each titanium oxide particle to be deposited as a simple metal, and the reductive decomposition of the organic component is also positively caused in the negatively polarized portion by using the applied light as a catalyst. Oxidative decomposition of the organic component is carried out in the polarization part, so that metal recovery and organic component decomposition can be carried out simultaneously.
【0012】両機能のうち金属の電析については光の影
響は殆ど見られず、これは金属電析を決定する陰分極側
の水素過電圧が殆どの金属に対して卑であり、加えられ
る光がこの過電圧に何の影響も与えないからであると考
えられる。前記両機能を有する酸化チタンは半導性であ
り大きな表面積を有することが必要であり、このような
酸化チタン微粒子は次のようにして調製することができ
る。即ち天然ルチルの100 〜300 メッシュの粉末を真空
中又は窒素中の不活性/非酸化性の雰囲気中1100℃〜15
00℃で加熱焼結することにより酸化チタン中に酸素欠陥
を形成し、つまりTiO2-x として導電性を与えて半導
性酸化物とする。あるいは天然ルチルを350 メッシュ程
度まで粉砕し又は同程度の粒径の合成ルチル粉末をその
まま又は微量のスポンジチタンとともに十分混練し還元
性又は不活性雰囲気中1100℃〜1500℃で1〜100 時間加
熱焼結を行う。なおスポンジチタンを使用する場合には
それ自身が還元剤となるので酸化性雰囲気で行っても良
い。[0012] Of the two functions, there is almost no effect of light on the electrodeposition of metals. This is because the hydrogen overvoltage on the negative polarization side that determines metal electrodeposition is base for most metals and the light applied Is considered to have no effect on this overvoltage. Titanium oxide having both of the above functions is required to be semiconducting and have a large surface area, and such titanium oxide fine particles can be prepared as follows. That is, 100 to 300 mesh powder of natural rutile is placed in vacuum or in an inert / non-oxidizing atmosphere of nitrogen at 1100 ° C to 15 ° C.
Oxygen defects are formed in titanium oxide by heating and sintering at 00 ° C., that is, TiO 2−x is given conductivity to be a semiconductive oxide. Alternatively, natural rutile is pulverized to about 350 mesh, or synthetic rutile powder of similar particle size is kneaded as it is or with a small amount of titanium sponge and heated and baked at 1100 ° C to 1500 ° C in a reducing or inert atmosphere for 1 to 100 hours. To conclude. When titanium sponge is used as a reducing agent, it may be used in an oxidizing atmosphere.
【0013】酸化チタンに半導性を与える手法はこれら
に限定されるものではなく、例えばタンタルやニオブの
ような価数の異なる金属とともに焼結させても良い。こ
の方法により半導性酸化チタンを調製するには、酸化チ
タン、酸化タンタル及び酸化ニオブを微粉末の状態で混
合しペレット状とし又必要に応じてチタンスポンジを加
えた後、前述の条件で焼結すれば良く、酸化性雰囲気で
もルチル型の半導性酸化物が得られる。このように調製
した半導性酸化チタンを十分に粉砕し、微量の発泡剤や
バインダーとともに1000℃以下で弱い焼結を行い、粒度
10〜200 メッシュ程度の多孔性粉末とする。これにより
表面積が約10倍となった半導性酸化チタン微粒子を得る
ことができる。The method of giving semiconductivity to titanium oxide is not limited to these, but may be sintered together with metals having different valences such as tantalum and niobium. To prepare semiconducting titanium oxide by this method, titanium oxide, tantalum oxide and niobium oxide are mixed in the form of fine powder to form a pellet, and if necessary, a titanium sponge is added, followed by firing under the above-mentioned conditions. It suffices if they are bonded, and a rutile type semiconductive oxide can be obtained even in an oxidizing atmosphere. The semiconducting titanium oxide prepared in this way was thoroughly crushed and weakly sintered at 1000 ° C or less with a small amount of foaming agent or binder to obtain a grain size
Use porous powder of about 10 to 200 mesh. As a result, semiconductive titanium oxide fine particles having a surface area about 10 times larger can be obtained.
【0014】この酸化チタン微粒子を間隔をおいて電解
槽内に設置された陽極及び陰極間の空間に充填する。該
微粒子はバインダーにより弱く結合しているため、一体
としてかつ任意形状で両極間に設置することができる。
使用する電解槽は特に限定されないが加えられる光を透
過させて酸化チタン微粒子全体に光を当てるために薄く
かつ透過性の良好な例えば石英ガラス製とすることが望
ましい。The titanium oxide fine particles are filled in the space between the anode and the cathode installed in the electrolytic cell with a space. Since the fine particles are weakly bound to each other by the binder, they can be installed integrally between the electrodes in an arbitrary shape.
The electrolytic cell to be used is not particularly limited, but is preferably made of, for example, quartz glass, which is thin and has good transparency, in order to transmit the applied light and illuminate the entire titanium oxide fine particles.
【0015】使用する電極は特に限定されないが、両極
とも単なる水電解ではなく有機成分の分解が起こるた
め、陽極はチタン基体に半導性酸化チタンを被覆した電
極とすることが望ましい。又陰極では殆ど有機成分の分
解は起こらないため通常のチタン電極を使用すれば良
い。しかし通常の電解より高電圧が掛かること、被処理
液中にはハロゲンイオンが存在する可能性があることを
考慮すると電極材料として破壊電圧の低いチタンではな
くチタン−タンタル合金やチタン−ニオブ合金を基材と
することが望ましい。しかしこれらは高価であるため用
途等に応じて適宜選択すれば良い。The electrode to be used is not particularly limited, but it is desirable that the anode is a titanium substrate coated with semiconducting titanium oxide because both electrodes are not simply electrolyzed by water but decomposition of organic components occurs. In addition, since the decomposition of organic components hardly occurs at the cathode, a normal titanium electrode may be used. However, considering that higher voltage is applied than normal electrolysis and that halogen ions may exist in the liquid to be treated, titanium-tantalum alloy or titanium-niobium alloy is used as the electrode material instead of titanium with low breakdown voltage. It is desirable to use it as a base material. However, since these are expensive, they may be appropriately selected according to the application.
【0016】更にチタン基材にニオブやタンタルを焼結
により含浸させて合金化したものやニオブやタンタルで
表面を形成した基材を使用できることは言うまでもな
い。このような構成から成る電解槽に当てる光は可視光
としてもよいが可視光よりエネルギーの高い紫外線を利
用することが望ましく、殆ど全ての波長領域の紫外線で
効果的な有機成分の分解を行うことができる。又両極間
に通電する電流は直流を使用するが、これは交流を使用
すると一旦陰分極部に電析した金属単体が陽分極により
再溶解してしまうからである。Needless to say, a titanium base material obtained by impregnating niobium or tantalum by sintering to form an alloy or a base material having a surface formed of niobium or tantalum can be used. The light to be applied to the electrolytic cell having such a configuration may be visible light, but it is desirable to use ultraviolet light having higher energy than visible light, and to effectively decompose organic components by ultraviolet light in almost all wavelength regions. You can Further, a direct current is used as a current to be passed between both electrodes, because when an alternating current is used, the metal simple substance once electrodeposited on the negative polarization part is redissolved by positive polarization.
【0017】対象とする被処理液も金属イオンと有機成
分を含有する限り特に限定されないが、メッキ廃液等の
通常の処理では放流可能なレベルまで有機成分の量を低
減させることが困難な廃液を対象とする際に本発明は特
に有効である。被処理液は電解槽全体に充填してバッチ
式に処理しても、電解槽を通して流通させてフロー状態
で処理しても良い。酸化チタン微粒子上に電析した金属
はこの酸化チタン微粒子を陽極として電解することによ
り酸化的に溶解して該金属イオンを含む溶液として回収
するか、酸中で溶解して金属溶液として回収する。これ
により酸化チタン微粒子は電解処理前の状態に戻り、本
発明装置による電解処理に繰り返し使用することができ
る。The target liquid to be treated is not particularly limited as long as it contains metal ions and organic components, but it is difficult to reduce the amount of organic components to a level at which it can be discharged by ordinary treatment such as plating waste liquid. The present invention is particularly effective when used as a target. The liquid to be treated may be filled in the entire electrolytic cell for batch treatment, or may be flowed through the electrolytic cell in a flow state. The metal electrodeposited on the titanium oxide fine particles is oxidatively dissolved by electrolysis using the titanium oxide fine particles as an anode to be recovered as a solution containing the metal ions, or dissolved in an acid to be recovered as a metal solution. As a result, the titanium oxide fine particles return to the state before the electrolytic treatment and can be repeatedly used for the electrolytic treatment by the apparatus of the present invention.
【0018】図1は、本発明に係わる水処理装置の一例
を示す横断平面図である。1は、石英ガラス等の光特に
紫外線透過性材料で形成された水処理用電解槽であり、
該電解槽1内の左右側壁近傍には板状陽極2及び板状陰
極3が設置されている。両電極2及び3間には、酸化チ
タン微粒子単独又は酸化チタン、酸化タンタル及び酸化
ニオブの粒子を混合して焼結した充填層4が収容されて
いる。該電解槽1の前後(図面における上下)には、1
対の紫外線ランプ5が設置され、前記電解槽1の前後の
壁面を通して前記充填層4へ紫外線を照射できるように
している。FIG. 1 is a cross-sectional plan view showing an example of the water treatment device according to the present invention. 1 is an electrolytic bath for water treatment, which is made of a light transmissive material such as quartz glass, especially an ultraviolet ray transmissive material,
A plate-shaped anode 2 and a plate-shaped cathode 3 are installed near the left and right side walls in the electrolytic cell 1. A space between the electrodes 2 and 3 accommodates a filler layer 4 which is formed by mixing titanium oxide fine particles alone or particles of titanium oxide, tantalum oxide and niobium oxide and sintering them. Before and after the electrolytic cell 1 (up and down in the drawing), 1
A pair of ultraviolet lamps 5 are installed so that the filling layer 4 can be irradiated with ultraviolet rays through the front and rear wall surfaces of the electrolytic cell 1.
【0019】この電解槽1にその底部に設置された被処
理液導入口(図示略)から銅イオン等の金属成分とメッ
キ液添加剤等の有機成分を含有する被処理液を供給しな
がら前記両極2及び3間に通電すると、被処理液が充填
層4の陰分極した部分に接触して該被処理液中の金属イ
オンが金属単体に還元されて充填層4の酸化チタン微粒
子等の表面に電析する。一方前記被処理液中の有機成分
は充填層4の陽分極した部分に接触して酸化的に分解さ
れそのまま放流できる無害成分に変換される。前記充填
層4表面に電析した金属単体は充填層4とともに電解槽
1外に取り出し、酸で処理して溶出させるか、該充填層
4を陽極として電解することにより純粋な金属イオン含
有溶液として回収し、更に前記充填層4は再度前記水処
理に使用することができる。While supplying a liquid to be treated containing a metal component such as copper ions and an organic component such as a plating liquid additive from a liquid to be treated inlet (not shown) installed at the bottom of the electrolytic bath 1, When electricity is applied between both electrodes 2 and 3, the liquid to be treated comes into contact with the negatively polarized portion of the filling layer 4 and the metal ions in the liquid to be treated are reduced to simple metals, and the surface of the titanium oxide fine particles or the like of the filling layer 4 is reduced. To deposit. On the other hand, the organic component in the liquid to be treated comes into contact with the positively polarized portion of the packed layer 4 and is oxidatively decomposed and converted into a harmless component which can be discharged as it is. The metal simple substance electrodeposited on the surface of the packed layer 4 is taken out of the electrolytic cell 1 together with the packed layer 4 and treated with an acid to elute, or a pure metal ion-containing solution is obtained by electrolyzing the packed layer 4 as an anode. After being recovered, the packed bed 4 can be reused for the water treatment.
【0020】[0020]
【実施例】次に本発明に係わる水処理装置を使用する被
処理液処理の実施例を記載するが、該実施例は本発明を
限定するものではない。EXAMPLES Next, examples of treatment of the liquid to be treated using the water treatment apparatus according to the present invention will be described, but the examples do not limit the present invention.
【0021】[0021]
【実施例1】350 メッシュ以下の粒度を有する合成ルチ
ル粉末に、金属としてその10分の1の量のチタンスポン
ジを添加し、湿式で十分に混合し、更にプレス成形しペ
レット状とし、これを1300℃で2時間、空気中で焼結し
て半導性粒子を調製した。この焼結ペレットの電気抵抗
は10-2Ωcmであった。このペレットを再度粉砕し非イ
オン性の界面活性剤とデキストリンを加えて発泡させな
がら固形化した後、900 ℃で所謂ダル焼結を行った。更
にボールミルで粉砕し40〜100 メッシュの粒状体とし
た。[Example 1] To a synthetic rutile powder having a particle size of 350 mesh or less, a titanium sponge in an amount 1/10 that of metal was added as a metal, sufficiently mixed in a wet manner, and further press-molded into a pellet form, which was Semiconducting particles were prepared by sintering in air at 1300 ° C. for 2 hours. The electric resistance of this sintered pellet was 10 -2 Ωcm. The pellets were pulverized again, and a nonionic surfactant and dextrin were added to the pellets for foaming and solidification, and so-called dull sintering was performed at 900 ° C. Further, it was pulverized with a ball mill to obtain a 40 to 100 mesh granular material.
【0022】この粒状体を、厚さ10mmの石英ガラス製
の箱型電解槽中に10cmの間隔を置いて設置された陽極
と陰極との間に充填し、奥行を10mmとし、横及び高さ
を10cmの直方体状の充填層を構成した。陽極は表面に
酸化タンタルと酸化チタンの複合酸化物を被覆したチタ
ン基体とし、陰極はチタン板とした。電解槽の両電極が
存在しない側壁(100 ×100 mm側の2方向から200 〜
400の波長を有する紫外線を紫外線ランプを使用して照
射しながら、前記電解槽に下部から、銅イオン100 pp
m、ニカワをCODとして150 ppm含有する希硫酸を
該希硫酸が前記充填層を50cm/分の速度で通過するよ
うに供給し、かつ両極間に直流電流を通電して電解を行
ったところ、電解槽から取り出された被処理液中のCO
Dは10ppm以下で、銅イオンは0.1 ppm以下であっ
た。この状態を維持したまま紫外線ランプを消灯したと
ころ、CODは20ppmまで上昇した。This granular material was filled in a box type electrolytic cell made of quartz glass having a thickness of 10 mm between an anode and a cathode placed at a distance of 10 cm, and the depth was set to 10 mm and the width and height were set. To form a 10 cm rectangular solid packed bed. The anode was a titanium substrate whose surface was coated with a complex oxide of tantalum oxide and titanium oxide, and the cathode was a titanium plate. Side wall where both electrodes of the electrolytic cell do not exist (200 ~ from 2 directions of 100 × 100 mm side)
While irradiating with ultraviolet rays having a wavelength of 400 using an ultraviolet lamp, 100 pp of copper ions were introduced into the electrolytic cell from the bottom.
m, the diluted sulfuric acid containing 150 ppm as a COD was supplied so that the diluted sulfuric acid could pass through the packed bed at a speed of 50 cm / min, and a direct current was passed between both electrodes to carry out electrolysis. CO in the liquid to be treated taken out of the electrolytic cell
D was 10 ppm or less and copper ion was 0.1 ppm or less. When the ultraviolet lamp was turned off while maintaining this state, COD increased to 20 ppm.
【0023】[0023]
【比較例1】充填層として実施例1の半導性酸化チタン
の代わりに炭素粉を使用したこと以外は実施例1と同一
条件で被処理液の処理を行ったところ、電解槽から取り
出された被処理液が黒く濁り、濾過後のCODが125 〜
140 ppmであり、かつ銅イオン含有量はは1.5 ppm
であり、銅イオン回収は殆ど同一レベルで行えるが、C
OD処理に問題が残ることが判った。Comparative Example 1 A liquid to be treated was treated under the same conditions as in Example 1 except that carbon powder was used in place of the semiconductive titanium oxide of Example 1 as a filling layer. The liquid to be treated becomes black and turbid, and the COD after filtration is 125-
140 ppm and copper ion content is 1.5 ppm
Therefore, although copper ion recovery can be performed at almost the same level, C
It was found that there was a problem with OD processing.
【0024】[0024]
【実施例2】酸化チタンにチタンスポンジを加える代わ
りに、酸化チタンにその10分の1モル量に相当する精製
タンタライト(主成分が酸化タンタルと酸化ニオブ))
粉末を加え1500℃で2時間焼結したこと以外は実施例1
と同様にして半導性微粒子を調製した。この半導性焼結
粒子を実施例1と同様に多孔質化した40〜100 メッシュ
の粒子として実施例1と同じ電解槽中の陽極及び陰極間
に充填し、更に実施例1と同一条件で電解を行ったとこ
ろ、処理後の被処理液のCODは10ppm以下、銅イオ
ンは1ppm以下であった。[Example 2] Instead of adding titanium sponge to titanium oxide, purified tantalite (main components are tantalum oxide and niobium oxide) corresponding to one tenth molar amount of titanium oxide.
Example 1 except that the powder was added and sintered at 1500 ° C. for 2 hours
Semiconductive fine particles were prepared in the same manner as in. The semiconductive sintered particles were filled as porous particles in the same manner as in Example 1 between the anode and the cathode in the same electrolytic cell as in Example 1 as 40 to 100 mesh particles, and further under the same conditions as in Example 1. When electrolysis was performed, the treated liquid after treatment had a COD of 10 ppm or less and a copper ion content of 1 ppm or less.
【0025】[0025]
【発明の効果】本発明は、陽極と陰極の間に酸化チタン
を含む半導性微粒子を充填した電解槽と光源を含んで成
り、前記充填微粒子中に金属成分と有機成分を有する被
処理液を供給しかつ光を当てながら前記電解槽の両電極
間に直流電流を通電し、前記被処理液中の金属成分を回
収するとともに有機成分を分解することを特徴とする水
処理装置である。従来の電解的排水処理用に使用される
炭素粒子は前記排水中の金属イオンの回収には有効であ
るが、多くの排水に含有される有機成分の除去には殆ど
効果を有しない。INDUSTRIAL APPLICABILITY The present invention comprises a light source and a light source in which semiconductive fine particles containing titanium oxide are filled between an anode and a cathode, and a liquid to be treated having a metal component and an organic component in the filled fine particles. The water treatment apparatus is characterized in that a direct current is applied between both electrodes of the electrolytic cell while supplying and applying light to recover the metal component in the liquid to be treated and decompose the organic component. Carbon particles used for conventional electrolytic wastewater treatment are effective in recovering metal ions in the wastewater, but have little effect in removing organic components contained in most wastewater.
【0026】本発明の水処理装置の電解槽で使用される
充填層を構成する酸化チタンを主とする微粒子は金属イ
オンの回収に有効なだけでなく、有機成分の酸化的分解
にも効果があり、光を前記充填層に当てることにより金
属回収効率は殆ど変化しないが、有機成分の分解は大幅
に促進される。本発明に係わる水処理装置により金属成
分と有機成分を含有する被処理液を処理すると、単一工
程で金属回収と有機成分分解を高い効率で同時に行うこ
とができる。充填層を構成する粒子として酸化チタンを
単独で使用する場合には、粒子構造中に酸素欠陥を生じ
させて導電性を生じさせることが望ましい。The fine particles mainly composed of titanium oxide which constitute the packed bed used in the electrolytic cell of the water treatment apparatus of the present invention are effective not only for recovering metal ions but also for oxidative decomposition of organic components. However, by irradiating the filling layer with light, the metal recovery efficiency is hardly changed, but the decomposition of the organic component is greatly accelerated. When the liquid to be treated containing the metal component and the organic component is treated by the water treatment apparatus according to the present invention, the metal recovery and the organic component decomposition can be simultaneously performed with high efficiency in a single process. When titanium oxide is used alone as the particles that form the filling layer, it is desirable to generate oxygen defects in the particle structure to generate conductivity.
【0027】又酸化チタン粒子と価数の異なる金属の酸
化物であるタンタルやニオブを混入させて焼結すること
により前記粒子に導電性を付与することができる。更に
使用する光は可視光でもよいが、可視光よりエネルギー
の高い紫外線を使用することが有機成分の分解効率を高
めるために望ましく、更に前記可視光あるいは紫外線を
有効に利用するために、前記電解槽の壁面は可視光や紫
外線を透過する材料で構成することが望ましい。The particles can be made conductive by mixing tantalum or niobium, which is an oxide of a metal having a different valence from the titanium oxide particles, and sintering the particles. The light used may be visible light, but it is desirable to use ultraviolet light having higher energy than visible light in order to enhance the decomposition efficiency of organic components, and in order to effectively utilize the visible light or ultraviolet light, the electrolytic It is desirable that the wall surface of the tank be made of a material that transmits visible light and ultraviolet rays.
【図1】本発明に係わる水処理装置の一例を示す横断平
面図。FIG. 1 is a cross-sectional plan view showing an example of a water treatment device according to the present invention.
1・・・水処理用電解槽 2・・・陽極 3・・・陰極
4・・・充填層
5・・・紫外線ランプ1 ... Electrolyzer for water treatment 2 ... Anode 3 ... Cathode 4 ... Packing layer 5 ... UV lamp
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭52−11643(JP,A) 特開 昭48−89548(JP,A) 特開 平5−155726(JP,A) 特開 昭60−187322(JP,A) 特開 昭60−118289(JP,A) 特開 昭60−118236(JP,A) 特開 平5−200387(JP,A) 特開 昭60−28884(JP,A) 特開 平4−61933(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/461 C02F 1/32 C02F 1/72 C25C 7/00 ─────────────────────────────────────────────────── --Continued from the front page (56) References JP-A-52-11643 (JP, A) JP-A-48-89548 (JP, A) JP-A-5-155726 (JP, A) JP-A-60- 187322 (JP, A) JP 60-118289 (JP, A) JP 60-118236 (JP, A) JP 5-200387 (JP, A) JP 60-28884 (JP, A) JP-A-4-61933 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 1/461 C02F 1/32 C02F 1/72 C25C 7/00
Claims (4)
性微粒子を充填した電解槽と光源を含んで成り、前記充
填微粒子中に金属成分と有機成分を有する被処理液を供
給しかつ光を当てながら前記電解槽の両電極間に直流電
流を通電し、前記被処理液中の金属成分を回収するとと
もに有機成分を分解することを特徴とする水処理装置。1. An electrolytic cell filled with semiconductive fine particles containing titanium oxide is provided between an anode and a cathode and a light source, and a liquid to be treated having a metal component and an organic component is supplied into the filled fine particles. A water treatment apparatus, characterized in that a direct current is passed between both electrodes of the electrolytic cell while shining light to recover the metal components in the liquid to be treated and decompose the organic components.
ある請求項1に記載の水処理装置。2. The water treatment apparatus according to claim 1, wherein the fine particles are titanium oxide having oxygen defects.
オブを混入させたルチル型酸化物である請求項1に記載
の水処理装置。3. The water treatment apparatus according to claim 1, wherein the fine particles are rutile type oxides in which tantalum and / or niobium are mixed in titanium.
外線透過材料から成るものである請求項1に記載の水処
理装置。4. The water treatment apparatus according to claim 1, wherein the light source is an ultraviolet lamp, and the electrolytic cell is made of an ultraviolet transparent material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35332493A JP3363979B2 (en) | 1993-12-27 | 1993-12-27 | Water treatment equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35332493A JP3363979B2 (en) | 1993-12-27 | 1993-12-27 | Water treatment equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07185555A JPH07185555A (en) | 1995-07-25 |
JP3363979B2 true JP3363979B2 (en) | 2003-01-08 |
Family
ID=18430083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35332493A Expired - Fee Related JP3363979B2 (en) | 1993-12-27 | 1993-12-27 | Water treatment equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3363979B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000039385A (en) * | 1998-12-12 | 2000-07-05 | 신현준 | Treating method of ethylene diamine tetra acetic acid |
WO2009050163A2 (en) * | 2007-10-18 | 2009-04-23 | Basf Se | Method for electrochemical sewage treatment by means of a diamond electrode and titanium dioxide |
CN104030405B (en) * | 2014-06-25 | 2015-06-10 | 中国地质大学(武汉) | Electrochemical enhanced sand filter tank arsenic removal method |
-
1993
- 1993-12-27 JP JP35332493A patent/JP3363979B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07185555A (en) | 1995-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3616356A (en) | Electrolysis in a particulate carbon packing | |
US3888756A (en) | Apparatus for treating water containing impurities | |
CN103233244A (en) | Method for extracting copper by utilizing waste browning liquid | |
KR101665619B1 (en) | Effluent Treatment Apparatus of Electrolysis Floating and floculation Method for Removal of Algae, COD, Nitrogen and Phosphorus Using Iridium Alloy Nanocatalysis Electrolysis Device | |
CN102101733B (en) | Method for treating electroplating comprehensive wastewater by scrap iron electrolysis and electrochemical technology | |
JPS5827687A (en) | Metal removing method | |
CN104496094B (en) | A kind of high-risk wastewater treatment instrument in laboratory and treatment process | |
US3846300A (en) | Water purification | |
US5326439A (en) | In-situ chromate reduction and heavy metal immobilization | |
CN113707352A (en) | Method for treating radioactive comprehensive wastewater | |
Xiang et al. | Simulated solar-light induced photoelectrocatalytic degradation of bisphenol-A using Fe3+-doped TiO2 nanotube arrays as a photoanode with simultaneous aeration | |
JP2010064045A (en) | Hybrid type water purifying apparatus and water purifying method using the same | |
CN111252963A (en) | Treatment method of high-concentration COD wastewater | |
JP3363979B2 (en) | Water treatment equipment | |
JP2007237027A (en) | Water purification method | |
CN102923829A (en) | Novel multi-layer electrochemical wastewater treatment device | |
CN106673285B (en) | A kind of recycling recoverying and utilizing method containing golden electroplating wastewater | |
US3619391A (en) | Electrochemical treatment of liquids | |
US3926753A (en) | Electrochemical removal of fluoride ion from aqueous media | |
KR102492246B1 (en) | Hybrid water treatment system for red tide removal and perchlorate control and water treatment method using the same | |
US20040104168A1 (en) | Treating method for coating material waste water | |
JPH06121978A (en) | Method for removing impurity in waste water for washing printed circuit board | |
US4248684A (en) | Electrolytic-cell and a method for electrolysis, using same | |
JPH07185556A (en) | Water treating electrolytic cell | |
JPS61204082A (en) | Cleaning up method of water contaminated with organic halogen compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |