JP3362446B2 - Electrode for wing processing of integrated impeller - Google Patents

Electrode for wing processing of integrated impeller

Info

Publication number
JP3362446B2
JP3362446B2 JP11498393A JP11498393A JP3362446B2 JP 3362446 B2 JP3362446 B2 JP 3362446B2 JP 11498393 A JP11498393 A JP 11498393A JP 11498393 A JP11498393 A JP 11498393A JP 3362446 B2 JP3362446 B2 JP 3362446B2
Authority
JP
Japan
Prior art keywords
wing
electrode
forming
blade
electrode portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11498393A
Other languages
Japanese (ja)
Other versions
JPH06320346A (en
Inventor
茂 沢田
光敏 渡辺
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP11498393A priority Critical patent/JP3362446B2/en
Publication of JPH06320346A publication Critical patent/JPH06320346A/en
Application granted granted Critical
Publication of JP3362446B2 publication Critical patent/JP3362446B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は一体型翼車の翼部加工用
電極に関するものである。 【0002】 【従来の技術】近年、航空機用ガスタービンエンジンの
高性能化に伴い、ガスタービンエンジンのコンプレッサ
に用いられる翼車(ロータディスク)の軽量化を図り、
翼並びに車板の翼根部を応力集中から守るために、翼と
車板を一体的に構成した一体型翼車が用いられている。 【0003】上記一体型翼車を切削加工を行うことなく
効率よく製作する一手段として、特開平1−22282
0号公報に電解加工法による一体型翼車の加工法が開示
されている。 【0004】以下、図5及び図6により、上記公報に開
示されている翼部加工用電極ついて説明する。 【0005】1は形成すべき翼部の背面と略同形状の翼
背部形成曲面2を有する翼背部形成用電極部、3は形成
すべき翼部の腹面と略同形状の翼腹部形成曲面4を有す
る翼腹部形成用電極部であり、翼背部形成用電極部1、
翼腹部形成用電極部3の基端部は、該翼背部形成用電極
部1、翼腹部形成用電極部3を電解加工装置に装着する
ための電極支持体5,6に取り付けられている。 【0006】一方の電極支持体6の反電極B側端部に
は、翼背部形成用曲面2と翼腹部形成用曲面4を対向さ
せた際に、他方の電極支持体5へ向って突出する突出部
8が設けられ、また、他方の電極支持体5の反電極側端
部には、前記突出部8が嵌合可能な切欠部7が形成され
ている。 【0007】9,10は翼背部形成用曲面2と翼腹部形
成用曲面4を対向させた際に、電極支持体5,6の互い
に対向する面に設けられた電極先端A側へ向って延びる
導液溝、11,12は電極支持体5,6の反電極B側端
面から前記導液溝9,10へ貫通するように穿設された
導液孔、13,14は前記導液孔11,12に接続され
た給液管である(図5参照)。 【0008】更に、前記電極支持体5の一面には導液板
15が、電極支持体6の一面及び各電極1,3の翼前縁
側端部に当接するように、また、電極支持体6の他面に
は導液板16が、電極支持体5の他面及び各電極部1,
3の翼後縁側端部に当接するように取り付けられてい
て、導液板15,16、翼背部形成用電極部1、翼腹部
形成用電極部3により翼を形成するための電極先端A側
が開口した電解液流路18を、また、導液板15,1
6、電極支持体5,6により前記電解液流路18へ連通
する電解液流路17を形成している(図6参照)。 【0009】上述した構成を有する翼部加工用電極を用
いて一体型翼車の成形加工を行う際には、Y軸上に対向
配置され且つ互いに近接離反可能な一対の側面ラムと、
X軸上に配置され且つY軸に対して近接離反可能でX軸
を中心に回動可能な正面ラムを有する電解加工装置を用
い、前記側面ラムの一方に翼背部形成用電極部1を、側
面ラムの他方に翼腹部形成用電極部3を、翼背部形成曲
面2と翼腹部形成曲面4が対向するように取り付け、更
に、一体型翼車の材料である金属部材19を前記正面ラ
ムに取り付ける。 【0010】次いで、翼背部形成用電極部1と翼腹部形
成用電極部3を所定の間隔に保ち、金属部材19が+極
に、各電極部1,3が−極になるように金属部材19と
電極部1,3の間に電圧を印荷するとともに、給液管1
3,14へ電解液を供給して導液孔11,12、導液溝
9,10及び電解液流路17を介して電解液流路18の
電極先端A側の開口より電解液を外部へ流出させ、金属
部材19を各電極1,3部の先端部へ近接させると、金
属部材19の表層部が電気分解され電解加工が行われ、
更に、電極部1,3を互いに近接させるとともに、電極
部1,3に対して金属部材19を近接させながらX軸を
中心に所定の角度まで回動させると、金属部材19に略
翼背部形成曲面2と翼腹部形成曲面4に合致した背面と
腹面を有する翼部20が形成される。 【0011】 【発明が解決しようとする課題】ところが、電解液流路
18を流通する電解液により、翼背部形成用電極部1と
翼腹部形成用電極部3が振動して形成すべき翼部20を
所定の形状に形成することができなかったり、また、導
液板15,16が振動することにより該導液板15,1
6と電極部1,3の間に間隙が形成され、電解液の一部
が前記間隙から外部へ漏洩し、一体型翼車を電解加工に
より効率よく形成することができない場合があった。 【0012】一方、各電極部1,3及び導液板15,1
6の振動を防止するために、電極部1,3の厚さ及び導
液板15,16の厚さを厚くして強度向上を図ることが
考えられるが、電極部1,3の厚さは形成すべき一体型
翼車の隣接する翼部20間の寸法により決定されてしま
うので、一体型翼の翼部20間の寸法が小さい場合に
は、電極部1,3の厚さを増大することができなかっ
た。 【0013】本発明は上述した実情に鑑みなしたもの
で、各電極部の振動を防止することが可能な一体型翼車
の翼部加工用電極を提供することを目的としている。 【0014】 【課題を解決するための手段】本発明の一体型翼車の翼
部加工用電極は、形成すべき翼の背面と略同形状の翼背
部形成曲面を一面に有する電極部の巾方向の両縁に、
該電極部の先端から基端までの全長にわたって、形成す
べき翼の先端側から基端側へ延びる突設部を設けた翼背
部形成用電極部と、形成すべき翼の腹面と略同形状の翼
腹部形成曲面を一面に有する電極部の巾方向の両縁に、
当該電極部の先端から基端までの全長にわたって、形成
すべき翼の先端側から基端側へ延びる突設部を設けた翼
腹部形成用電極部とを備え、前記翼背部形成用電極部と
翼腹部形成用電極部を対峙させた際に、両電極部の突設
部がその全長にわたり相互に接して翼背部形成曲面と翼
腹部形成面の間に前記翼の先端側から基端側へ延びる
流路が形成され且つ両電極部の対峙間隔を変化せしめ得
るように構成したものである。 【0015】 【作用】本発明の一体型翼車の翼部加工用電極では、翼
背部形成用電極部、翼腹部形成用電極部は、突設部を設
けることにより強度が高くなっているので、翼背部形成
曲面と翼腹部形成曲面、並びに突設部により囲まれる流
路に電解液を流通させても、前記両電極部が振動するこ
とがない。 【0016】 【実施例】以下本発明の実施例を図面を参照しつつ説明
する。 【0017】図1から図4は本発明の一体型翼車の翼部
加工用電極の一実施例を示すもので、21は形成すべき
翼の背面と略同形状の翼背部形成曲面22を一面に有す
る電極部25の両端に、突設部26,27を設けた翼背
部形成用電極部、23は形成すべき翼の腹面と略同形状
の翼腹部形成曲面24を一面に有する電極部28の両端
他端に、突設部29,30を設けた翼腹部形成用電極部
である。 【0018】前記翼背部形成用電極部21と翼腹部形成
用電極部23を対峙させると、両電極部21,23の翼
背部形成曲面22と翼腹部形成曲面24、並びに突設部
26,27,29,30により囲まれた電解液流路31
が形成されるようになっており、また、両電極部21,
23の翼背部形成曲面22と翼腹部形成曲面24を互い
に近接離反させることができるようになっている。 【0019】更に、32,33は翼背部形成用電極部2
1、翼腹部形成用電極部23の基端部に形成された電極
基部である。 【0020】上述した構成を有する翼部加工用電極を用
いて一体型翼車の成形加工を行う際には、前述した電解
加工装置の一方の側面ラムに翼背部形成用電極部21の
電極基部32を、他方の側面ラムに翼腹部形成用電極部
23の電極基部33を、翼背部形成曲面22と翼腹部形
成曲面24が対向するように取り付ける。 【0021】この状態で、翼背部形成曲面22と翼腹部
形成曲面24、並びに突設部26,27,29,30に
より囲まれた流路31に、電解液を電極基部32,33
側から電極部21,23の先端へ向って流通させたとす
ると、前記翼背部形成用電極部21、翼腹部形成用電極
部23は突設部26,27,29,30を設けることに
より強度が高くなっているので、前記両電極部21,2
3が電解液の流通によって振動することがない。 【0022】よって、上述した翼背部形成用電極部2
1、翼腹部形成用電極部23を有する翼部加工用電極に
より一体型翼車の電解加工を行えば、形成すべき翼部を
所定の形状に形成することができ、また、両電極部2
1,23の振動による間隙が形成されないので、電解液
の漏洩が発生せず、一体型翼車を電解加工により効率よ
く形成することができる。 【0023】更に、前記両電極部21,23の厚さを厚
くして強度向上を図らなくてもよいので、形成すべき一
体型翼の翼部間の寸法が小さい場合でも、上述した構成
を有する翼部加工用電極を用いることができる。 【0024】なお、本発明の一体型翼車の翼部架構用電
極は、上述の実施例にのみ限定されるものではなく、本
発明の要旨を逸脱しない範囲内において種々変更を加え
得ることは勿論である。 【0025】 【発明の効果】上記した本発明の一体型翼車の翼部加工
用電極によれば、下記のような種々の優れた効果を奏し
得る。 【0026】(1)翼背部形成用電極部、翼腹部形成用
電極部に突出部を設けているので、強度が高くなり、電
解液の流通による電極部に振動を回避でき、翼部を所定
の形状に形成することができる。 【0027】(2)相互に接する両電極部の突設部によ
って流路から外部への電解液の漏洩が抑止され、加工対
象の金属部材と両電極部の形成曲面との間の空隙に、充
分な流量の電解液を供給できるので、一体型翼車を電解
加工により効率よく形成することが可能なり、これに加
えて、間隔が変化し得る両形成曲面に翼の先端側から基
端側へ延びる流路を形成させるで、金属部材と両形成曲
面の間隔が狭まって、両形成曲面の転写精度が向上し、
高精度の翼前縁形状及び後縁形状を得ることができる。 【0028】(3)前記両電極部の厚さを厚くして強度
向上を図らなくてもよいので、形成すべき一体型翼の翼
部間の寸法が小さい場合でも対応することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for machining a wing portion of an integrated impeller. [0002] In recent years, as the performance of gas turbine engines for aircraft has been improved, the weight of impellers (rotor disks) used for compressors of gas turbine engines has been reduced.
In order to protect the wings and the blade roots of the vehicle plate from stress concentration, an integrated impeller integrally formed with the wings and the vehicle plate is used. As one means for efficiently manufacturing the above-mentioned integral impeller without cutting, Japanese Patent Application Laid-Open No. 1-222282 is known.
No. 0 discloses a method of machining an integrated impeller by electrolytic machining. [0004] The wing processing electrode disclosed in the above publication will be described below with reference to FIGS. 5 and 6. [0005] 1 is a wing back portion forming electrode portion having a wing back portion forming curved surface 2 having substantially the same shape as the back surface of the wing portion to be formed. 3 is a wing abdomen forming curved surface 4 having substantially the same shape as the abdominal surface of the wing portion to be formed. A wing abdomen forming electrode portion having a wing back portion forming electrode portion 1,
The base end of the wing abdomen forming electrode portion 3 is attached to electrode supports 5 and 6 for mounting the wing abdomen forming electrode portion 1 and the wing abdomen forming electrode portion 3 to an electrolytic processing apparatus. When the curved surface 2 for forming the back of the wing and the curved surface 4 for forming the abdomen of the wing are opposed to the end of one electrode support 6 on the side opposite to the electrode B, it projects toward the other electrode support 5. A protruding portion 8 is provided, and a cutout 7 into which the protruding portion 8 can be fitted is formed at the opposite electrode side end of the other electrode support 5. When the curved surface 2 for forming the back of the wing and the curved surface 4 for forming the abdomen of the wing are opposed to each other, reference numerals 9 and 10 extend toward the tip A of the electrode provided on the opposed surfaces of the electrode supports 5 and 6. The liquid guide grooves 11 and 12 are liquid guide holes formed so as to penetrate from the end surfaces of the electrode supports 5 and 6 on the side opposite to the electrode B to the liquid guide grooves 9 and 10, and 13 and 14 are the liquid guide holes 11. , 12 (see FIG. 5). Further, a liquid guide plate 15 is provided on one surface of the electrode support 5 so as to be in contact with one surface of the electrode support 6 and the leading edge side end of each of the electrodes 1 and 3. A liquid guide plate 16 is provided on the other surface of the electrode support 5 and the other electrode portions 1 and 2.
The electrode tip A for forming a wing by the liquid guide plates 15 and 16, the wing back-forming electrode portion 1, and the wing abdomen forming electrode portion 3 is attached so as to abut on the trailing edge side end of the wing 3. The opened electrolyte flow path 18 is connected to the liquid guide plates 15, 1.
6. Electrolyte flow paths 17 communicating with the electrolyte flow paths 18 are formed by the electrode supports 5 and 6 (see FIG. 6). [0009] When forming an integral impeller using the wing processing electrode having the above-described configuration, a pair of side rams that are arranged on the Y axis so as to be opposed to each other and that can approach and separate from each other are provided;
Using an electrolytic processing apparatus having a front ram arranged on the X axis and capable of moving toward and away from the Y axis and rotatable about the X axis, an electrode portion 1 for forming a blade back portion is provided on one of the side rams. An electrode portion 3 for forming a blade abdomen is attached to the other of the side rams so that the curved surface 2 for forming the back of the wing and the curved surface 4 for forming the wing abdomen face each other. Further, a metal member 19, which is a material of an integrated impeller, is attached to the front ram. Attach. Next, the electrode portion 1 for forming the blade back portion and the electrode portion 3 for forming the blade abdomen are maintained at a predetermined interval, and the metal member 19 is set to the positive pole and the metal members 1 and 3 are set to the negative pole. 19 and a voltage is applied between the electrode parts 1 and 3 and the liquid supply pipe 1
The electrolytic solution is supplied to the electrodes 3 and 14 and the electrolytic solution is supplied to the outside through the liquid guide holes 11 and 12, the liquid guide grooves 9 and 10, and the electrolyte channel 18 through the opening on the electrode tip A side of the electrolyte channel 18. When the metal member 19 is caused to flow out and brought close to the tips of the electrodes 1 and 3, the surface layer of the metal member 19 is electrolyzed and electrolytic processing is performed.
Further, when the electrodes 1 and 3 are brought close to each other and the metal member 19 is rotated to a predetermined angle around the X axis while the metal member 19 is brought close to the electrodes 1 and 3, a substantially wing-back portion is formed on the metal member 19. A wing portion 20 having a back surface and an abdominal surface that matches the curved surface 2 and the wing abdomen forming curved surface 4 is formed. However, the wing portion to be formed by vibrating the wing back portion forming electrode portion 1 and the wing abdomen portion forming electrode portion 3 by the electrolyte flowing through the electrolyte solution flow path 18. 20 cannot be formed in a predetermined shape, or the liquid guide plates 15, 16 vibrate, so that the liquid guide plates 15, 1 are vibrated.
In some cases, a gap is formed between the electrode 6 and the electrode portions 1 and 3, and a part of the electrolyte leaks from the gap to the outside, so that the integrated impeller cannot be formed efficiently by electrolytic processing. On the other hand, each of the electrode portions 1, 3 and the liquid guide plates 15, 1
In order to prevent the vibration of 6, the thickness of the electrode portions 1 and 3 and the thickness of the liquid guide plates 15 and 16 may be increased to improve the strength. The thickness of the electrode portions 1 and 3 is increased when the size between the wing portions 20 of the integrated wing is small because it is determined by the size between adjacent wing portions 20 of the integrated wing wheel to be formed. I couldn't do that. The present invention has been made in view of the above circumstances, and has as its object to provide an electrode for processing a wing portion of an integrated impeller, which can prevent vibration of each electrode portion. According to the present invention, there is provided an electrode for machining a wing portion of an integrated impeller, wherein the width of the electrode portion having a curved surface on the entire surface thereof having substantially the same shape as the back surface of the wing to be formed is provided. to both edges of the direction, those
An electrode portion for forming a wing back portion provided with a protruding portion extending from the tip end side to the base end side of the wing to be formed over the entire length from the tip end to the base end of the electrode portion, and substantially the same shape as the abdominal surface of the wing to be formed On both edges in the width direction of the electrode portion having the wing abdomen forming curved surface on one surface,
An electrode portion for forming a wing abdomen provided with a protruding portion extending from the distal end side to the proximal end side of the wing to be formed over the entire length from the distal end to the proximal end of the electrode portion, and the wing back portion forming electrode portion; when it was confronted wings abdominal forming electrode portions, projecting portions of both electrode portion proximal side from the distal end side of the blade between the blade back portion forming curved surface with blade abdominoplasty songs surfaces in contact with each other over its entire length Are formed so as to be able to change the facing distance between the two electrode portions. In the electrode for processing a wing portion of the integrated impeller according to the present invention, the strength of the electrode portion for forming the wing back portion and the electrode portion for forming the wing abdominal portion is increased by providing a protruding portion. Even when the electrolyte flows through the curved surface formed by the back surface of the blade, the curved surface of the blade abdomen, and the protruding portion, the two electrode portions do not vibrate. Embodiments of the present invention will be described below with reference to the drawings. FIGS. 1 to 4 show an embodiment of an electrode for processing a wing portion of an integral impeller according to the present invention. Reference numeral 21 denotes a wing-back forming surface 22 having substantially the same shape as the back surface of the wing to be formed. An electrode portion for forming a blade back portion provided with projecting portions 26 and 27 at both ends of an electrode portion 25 on one surface, and an electrode portion 23 having a curved surface 24 for forming a blade abdominal portion having substantially the same shape as the abdominal surface of the blade to be formed. An electrode portion for forming a blade abdomen provided with protruding portions 29 and 30 at the other ends of both ends of 28. When the wing back portion forming electrode portion 21 and the wing abdomen portion forming electrode portion 23 face each other, the wing back portion forming curved surface 22, the wing belly portion forming curved surface 24, and the projecting portions 26, 27 of both the electrode portions 21, 23. , 29 and 30 surrounded by electrolyte channel 31
Are formed, and both electrode portions 21,
The wing back portion forming curved surface 23 and the wing abdominal portion forming curved surface 24 can be moved closer to and away from each other. Further, 32 and 33 are electrode portions 2 for forming the back of the blade.
1. An electrode base formed at the base end of the wing abdomen forming electrode section 23. When forming an integral impeller using the wing processing electrode having the above-described configuration, the electrode base of the wing back forming electrode section 21 is provided on one side ram of the aforementioned electrolytic processing apparatus. 32 is attached to the other side ram with the electrode base 33 of the wing abdomen forming electrode portion 23 such that the wing back forming surface 22 and the wing abdominal forming surface 24 face each other. In this state, the electrolytic solution is supplied to the electrode bases 32 and 33 in the flow path 31 surrounded by the curved surface 22 and the curved surface 24 and the protruding portions 26, 27, 29 and 30.
Assuming that the air flows from the sides toward the tips of the electrode portions 21 and 23, the electrode portions 21 for forming the blade back portion and the electrode portions 23 for forming the blade abdomen are provided with protruding portions 26, 27, 29, and 30 to increase the strength. The height of the two electrode portions 21 and
3 does not vibrate due to the flow of the electrolytic solution. Therefore, the above-mentioned electrode portion 2 for forming the back of the blade
1. If electrolytic processing of the integrated impeller is performed using the wing processing electrode having the wing abdomen forming electrode portion 23, the wing to be formed can be formed in a predetermined shape.
Since no gap is formed due to the vibrations of 1 and 23, leakage of the electrolyte does not occur, and the integrated impeller can be efficiently formed by electrolytic processing. Further, since it is not necessary to increase the thickness of the two electrode portions 21 and 23 to improve the strength, the above-described configuration can be used even when the dimension between the wing portions of the integral wing to be formed is small. Can be used. The electrode for the wing frame of the integrated impeller according to the present invention is not limited to the above-described embodiment.
It goes without saying that various changes can be made without departing from the spirit of the invention . According to the electrode for processing a wing portion of an integrated impeller of the present invention, various excellent effects as described below can be obtained. (1) Since the protruding portions are provided on the wing back portion forming electrode portion and the wing abdomen portion forming electrode portion , the strength is increased, and
Vibration can be avoided in the electrode part due to the flow of the lysate, and the wing part can be formed in a predetermined shape. (2) Due to the projecting portions of both electrode portions that are in contact with each other
This prevents leakage of the electrolyte from the flow path to the outside,
Fill the gap between the metal member of the elephant and the curved surface of both electrodes.
Can be supplied to the electrolytic solution of the minute flow rate, it can be efficiently formed by electrochemical machining integral impeller, pressurized to
In addition, the two curved surfaces that can change the interval are
By forming a flow path extending to the end side, both the metal member and the
The distance between the surfaces is reduced, and the transfer accuracy of both formed curved surfaces is improved,
A highly accurate blade leading edge shape and trailing edge shape can be obtained. (3) Since it is not necessary to increase the thickness of the two electrode portions to improve the strength, it is possible to cope with the case where the dimension between the wing portions of the integral wing to be formed is small.

【図面の簡単な説明】 【図1】本発明の一体型翼車の翼部加工用電極の一実施
例において、翼背部形成用電極部と翼腹部形成用電極部
を嵌合させた状態を電極先端部側から見た斜視図であ
る。 【図2】本発明の一体型翼車の翼部加工用電極の一実施
例において、翼背部形成用電極部と翼腹部形成用電極部
を嵌合させた状態を電極基端部側から見た斜視図であ
る。 【図3】本発明の一体型翼車の翼部加工用電極の一実施
例において、翼背部形成用電極部と翼腹部形成用電極部
を電極先端部側から見た斜視図である。 【図4】本発明の一体型翼車の翼部加工用電極の一実施
例において、翼背部形成用電極部と翼腹部形成用電極部
を電極基端部側から見た斜視図である。 【図5】従来の一体型翼車の翼部加工用電極の一例の斜
視図である。 【図6】従来の一体型翼車の翼部加工用電極の一例の斜
視図である。 【符号の説明】 21 翼背部形成用電極部 22 翼背部形成曲面 23 翼腹部形成用電極部 24 翼腹部形成曲面 25,28 電極部端面 26,27,29,30 突設部 31 電解液流路(流路)
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing an embodiment of an electrode for forming a wing portion of an integrated impeller according to the present invention, in which a wing back portion forming electrode portion and a wing abdomen portion forming electrode portion are fitted to each other. It is the perspective view seen from the electrode tip side. FIG. 2 is a view showing a state in which an electrode portion for forming a wing back portion and an electrode portion for forming a wing abdomen portion are fitted from an electrode base end side in an embodiment of an electrode for processing a wing portion of an integrated impeller according to the present invention. FIG. FIG. 3 is a perspective view of an electrode portion for forming a wing back portion and an electrode portion for forming a wing abdomen viewed from the electrode tip side in one embodiment of the wing portion processing electrode of the integrated type impeller of the present invention. FIG. 4 is a perspective view of an electrode portion for forming a wing back portion and an electrode portion for forming a wing abdomen portion viewed from the electrode base end side in the embodiment of the wing portion processing electrode of the integrated impeller according to the present invention. FIG. 5 is a perspective view of an example of a wing portion processing electrode of a conventional integrated impeller. FIG. 6 is a perspective view of an example of a wing processing electrode of a conventional integrated impeller. DESCRIPTION OF SYMBOLS 21 Blade Back Forming Electrode 22 Blade Back Forming Curved Surface 23 Blade Ventral Forming Electrode 24 Blade Wing Forming Surface 25, 28 Electrode End Surfaces 26, 27, 29, 30 Protrusion 31 Electrolyte Flow Path (Flow path)

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B23H 9/10 B23H 3/04 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) B23H 9/10 B23H 3/04

Claims (1)

(57)【特許請求の範囲】 【請求項1】 形成すべき翼の背面と略同形状の翼背部
形成曲面を一面に有する電極部の巾方向の両縁に、当該
電極部の先端から基端までの全長にわたって、形成すべ
き翼の先端側から基端側へ延びる突設部を設けた翼背部
形成用電極部と、形成すべき翼の腹面と略同形状の翼腹
部形成曲面を一面に有する電極部の巾方向の両縁に、
該電極部の先端から基端までの全長にわたって、形成す
べき翼の先端側から基端側へ延びる突設部を設けた翼腹
部形成用電極部とを備え、前記翼背部形成用電極部と翼
腹部形成用電極部を対峙させた際に、両電極部の突設部
がその全長にわたり相互に接して翼背部形成曲面と翼腹
部形成面の間に前記翼の先端側から基端側へ延びる流
路が形成され且つ両電極部の対峙間隔を変化せしめ得る
ように構成したことを特徴とする一体型翼車の翼部加工
用電極。
(57) to the Claims 1 Both edges of the width direction of the electrode portion having the rear and one side of the blade back portion forming a curved surface of substantially the same shape of the blade to be formed, the
Over the entire length from the tip end to the base end of the electrode portion, a wing back portion forming electrode portion provided with a protruding portion extending from the tip end side to the base end side of the wing to be formed, and has substantially the same shape as the abdominal surface of the wing to be formed. both edges of the width direction of the electrode portion having on one surface a blade abdominoplasty curved, those
A wing abdomen forming electrode portion provided with a protruding portion extending from the tip side to the base end of the wing to be formed over the entire length from the tip end to the base end of the electrode portion; when it was confronted wings abdominal forming electrode portions, projecting portions of both electrode portion proximal side from the distal end side of the blade between the blade back portion forming curved surface with blade abdominoplasty songs surfaces in contact with each other over its entire length Characterized in that a flow path extending to the wing portion is formed and the facing distance between the two electrode portions can be changed.
JP11498393A 1993-05-17 1993-05-17 Electrode for wing processing of integrated impeller Expired - Lifetime JP3362446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11498393A JP3362446B2 (en) 1993-05-17 1993-05-17 Electrode for wing processing of integrated impeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11498393A JP3362446B2 (en) 1993-05-17 1993-05-17 Electrode for wing processing of integrated impeller

Publications (2)

Publication Number Publication Date
JPH06320346A JPH06320346A (en) 1994-11-22
JP3362446B2 true JP3362446B2 (en) 2003-01-07

Family

ID=14651452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11498393A Expired - Lifetime JP3362446B2 (en) 1993-05-17 1993-05-17 Electrode for wing processing of integrated impeller

Country Status (1)

Country Link
JP (1) JP3362446B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103752965A (en) * 2014-01-13 2014-04-30 南京航空航天大学 Electrochemical machining tool and electrochemical machining method with linear feeding and rotary feeding combination for blisk

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0304321D0 (en) 2003-02-26 2003-04-02 Bladon Jets Ltd Fans and turbines
GB0420022D0 (en) 2004-09-09 2004-10-13 Bladon Jets Ltd Fans and turbines
CN112191962B (en) * 2020-09-29 2022-07-08 中国航发动力股份有限公司 Electrolytic machining process method of open type blisk
GB2601550A (en) * 2020-12-04 2022-06-08 Texture Jet Ltd A nozzle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103752965A (en) * 2014-01-13 2014-04-30 南京航空航天大学 Electrochemical machining tool and electrochemical machining method with linear feeding and rotary feeding combination for blisk

Also Published As

Publication number Publication date
JPH06320346A (en) 1994-11-22

Similar Documents

Publication Publication Date Title
JP4636746B2 (en) Method and apparatus for reducing circumferential rim stress in a rotor assembly
JP2004225701A (en) Turbine blade
EP0875665A3 (en) Gas turbine vane with a cooled inner shroud
EP1462607A1 (en) Vane wheel for radial turbine
JP3362446B2 (en) Electrode for wing processing of integrated impeller
EP0916811A3 (en) Ribbed turbine blade tip
EP1057970A3 (en) Impingement cooled airfoil tip
CA2051506A1 (en) Apparatus of stationary blade for axial flow turbine, and axial flow turbine
JPH09511042A (en) Cooled turbine blades
JPS61279800A (en) Fan
JPH11200804A (en) Moving blade of gas turbine
JP3631189B2 (en) Tool for holding turbine blades
US6547645B2 (en) Method and backer inserts for blocking backwall water jet strikes
TW504435B (en) Method to remove a sealing piece
JP2004278537A (en) Turbine nozzle having angel wing seal land, and associated welding method
JP2613560B2 (en) Film cooled structure
JPH0726904A (en) Blade tip structure of rotating machine
JPH11257082A (en) Nozzle vane shape of variable capacity turbo charger
JP2000126647A (en) Electrostatic precipitator
JPH11213939A (en) Spatter cathode
JPH09151703A (en) Air-cooled blade for gas turbine
JPH10131704A (en) Radial turbine impeller
JP4606156B2 (en) Die head
JP2971461B1 (en) Electric dust collector and discharge electrode for dust collector
JPH11247612A (en) Tip thinning of rotor blade

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071025

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071025

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121025

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131025

Year of fee payment: 11

EXPY Cancellation because of completion of term