JP3362315B2 - Method for producing ultrafine wire of austenitic stainless steel and ultrafine wire - Google Patents

Method for producing ultrafine wire of austenitic stainless steel and ultrafine wire

Info

Publication number
JP3362315B2
JP3362315B2 JP04736092A JP4736092A JP3362315B2 JP 3362315 B2 JP3362315 B2 JP 3362315B2 JP 04736092 A JP04736092 A JP 04736092A JP 4736092 A JP4736092 A JP 4736092A JP 3362315 B2 JP3362315 B2 JP 3362315B2
Authority
JP
Japan
Prior art keywords
steel
wire
heat treatment
stainless steel
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04736092A
Other languages
Japanese (ja)
Other versions
JPH05247596A (en
Inventor
亘 村田
淳 中塚
純 荒木
秀彦 住友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12772959&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3362315(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP04736092A priority Critical patent/JP3362315B2/en
Publication of JPH05247596A publication Critical patent/JPH05247596A/en
Application granted granted Critical
Publication of JP3362315B2 publication Critical patent/JP3362315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Metal Extraction Processes (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はオーステナイト系ステン
レス鋼極細線の製造方法および同極細線に関し、特に、
線径が500μm以下において高強度でへたり性に優
れ、かつ良好な加工性の要求される部材や部品、例えば
通信機器、コンピューター関連機器、精密電子機器、事
務機器あるいは電気機器等の線ばねやミニロープ等に好
適なオーステナイト系ステンレス鋼極細線の製造方法お
よび同極細線に関する。
FIELD OF THE INVENTION The present invention relates to an austenitic stainless steel.
Relates to the production method and the same ultra-fine line of less steel fine wire, in particular,
When the wire diameter is 500 μm or less, it has high strength and excellent sag property, and members and parts that require good workability, such as wire springs for communication equipment, computer-related equipment, precision electronic equipment, office equipment or electric equipment, etc. A method for manufacturing austenitic stainless steel ultrafine wire suitable for mini ropes, etc.
And the same ultrafine wire .

【0002】[0002]

【従来の技術】近年、機器の軽量・小型化が展開される
中で、極細線の線径は必然的に細くなってきており、よ
り細くまで伸線加工が可能なこと、加えて部品性能の点
からは高強度で耐へたり性の高いことが要求されてきて
いる。一方、製品成形の点からは曲げやねじり等の加工
が施されることが多く、高強度極細線の加工性の確保も
重要な要求特性である。
2. Description of the Related Art In recent years, as the weight and downsizing of equipment have been developed, the diameter of ultrafine wire is inevitably becoming thinner. From this point of view, high strength and high sag resistance are required. On the other hand, from the standpoint of product molding, bending and twisting are often performed, and ensuring the workability of high-strength ultrafine wires is also an important required characteristic.

【0003】従来、上記部材用のステンレス鋼極細線は
汎用のSUS301あるいはSUS304等のオーステ
ナイト系ステンレス鋼が用いられていたが、上述の厳し
い要求に応じきれなくなってきており、基本成分と共に
酸化物系非金属介在物を調整したもの(例えば、特開昭
62−290848号公報)が提案されている。ところ
が、酸化物系非金属介在物の組成調整は原料配合あるい
は操業条件に敏感に影響されるため極めて細かい管理技
術を必要とする。結果的に品質不安定をきたす欠点があ
り、広く使用されるには至ってなく、伸線加工性が良好
で品質のより安定したオーステナイト系ステンレス鋼極
細線の開発が強く望まれている。
Conventionally, general-purpose austenitic stainless steel such as SUS301 or SUS304 has been used for the stainless steel ultrafine wire for the above-mentioned members, but it has become difficult to meet the above-mentioned strict requirements, and oxide-based materials together with the basic components have been used. A non-metallic inclusion is proposed (for example, JP-A-62-290848). However, adjustment of the composition of the oxide-based non-metallic inclusions is sensitive to the composition of raw materials or the operating conditions, and therefore requires an extremely fine control technique. As a result, there is a drawback of causing quality instability, and it has not been widely used. Therefore, development of an austenitic stainless steel ultrafine wire having good wire drawability and more stable quality is strongly desired.

【0004】[0004]

【発明が解決しようとする課題】本発明は業界の強い要
望に応じるべく、従来のオーステナイト系ステンレス鋼
極細線の問題点に鑑み、本発明者が鋭意研究を重ねた結
果、化学組成を適正に調整して材質ならびに非金属介在
物組成の制御と伸線後の適切な熱処理の組合せによって
従来の課題を全て解決し得ることを明らかにし、本発明
に至ったものである。その目的とするところは、極細線
への伸線加工性が良好で、製品の成形性も優れ、さらに
製品性能においては高強度で耐へたり性の極めて良好な
オーステナイト系ステンレス鋼極細線の製造方法および
同極細線を提供するものである。
DISCLOSURE OF THE INVENTION In order to meet the strong demands of the industry, the present invention has been made by the present inventors as a result of earnest studies in view of the problems of conventional austenitic stainless steel ultrafine wires, and as a result, the chemical composition was properly adjusted. It was clarified that all the conventional problems can be solved by adjusting and controlling the materials and the composition of non-metallic inclusions and an appropriate heat treatment after wire drawing, and the present invention has been completed. And has as its object a good drawability to fine wire, formability of products excellent, yet the production of very good austenitic stainless steel fine wire of sag resistance at high intensity in product performance Method and
The same ultrafine wire is provided.

【0005】[0005]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記のとおりである。
The subject matter of the present invention is as follows.

【0006】(1)重量%で、C:0.05〜0.15%、 S≦0.005%、 Al≦0.005%、N:0.02〜0.10%、 O≦0.005% を含有し、かつSとAl量の関係が(1)式を満足する
成分に調整し、鋼中の非金属介在物組成を総量で1wt
%以上のSを含有するオキシサルファイドを形成させた
オーステナイト系ステンレス鋼を線材圧延し、続いて焼
鈍・伸線加工を繰り返して極細線を製造し、続いて加熱
処理する際に、前記加熱処理前の伸線加工を減面率50
%以上施し、続いて加熱処理を100℃以上、600℃
以下の温度で、かつ(2)式で表されるk値が6.5以
、13.5以下を満足する条件で30秒以下の短時間
施すことを特徴とするオーステナイト系ステンレス鋼極
細線の製造方法。
(1) In weight%, C: 0.05 to 0.15%, S ≦ 0.005%, Al ≦ 0.005%, N: 0.02 to 0.10%, O ≦ 0. The content of non-metallic inclusions in steel is adjusted to 1 wt% by adjusting the content of S to Al to satisfy the formula (1).
% Of S or more oxysulfide formed austenitic stainless steel is rolled into a wire rod, followed by annealing / drawing to produce ultrafine wire, followed by heat treatment, before the heat treatment. Area reduction of wire drawing of 50
% Or more, followed by heat treatment 100 ° C or more, 600 ° C
The method is performed at the following temperature and for a short time of 30 seconds or less under the condition that the k value represented by the formula (2) satisfies 6.5 or more and 13.5 or less. And a method for producing an austenitic stainless steel ultrafine wire.

【0007】 〔S〕≧〔Al〕/2 …(1) ここで、〔S〕 ;鋼中のS量(wt%) 〔Al〕;鋼中のAl量(wt%) k=T×(logt+20)×10-3 …(2) ここで、k;加熱係数 T;加熱温度(K) t;加熱時間(Hr)[S] ≧ [Al] / 2 (1) Here, [S]; S content in steel (wt%) [Al]; Al content in steel (wt%) k = T × ( logt + 20) × 10 −3 (2) where k: heating coefficient T; heating temperature (K) t; heating time (Hr)

【0008】(2)重量%で、 C:0.05〜0.15%、 Si:0.2〜3%、 Mn:0.2〜3%、 S≦0.005%、 Ni:6.5〜12%、 Cr:16〜20%、 Al0.005%、 N:0.02〜0.10%、 O≦0.005% を含有し、かつSとAl量の関係が(1)式を満足する
成分に調整し、鋼中の非金属介在物組成が総量で1wt
%以上のSを含有するオキシサルファイドを形成させた
オーステナイト系ステンレス鋼を線材圧延し、続いて焼
鈍・伸線加工を繰り返して極細線を製造し、続いて加熱
処理を施す際に、前記加熱処理前の伸線加工を減面率
0%以上施し、続いて加熱処理を100℃以上、600
℃以下の温度で、かつ(2)式で表されるk値が6.5
以上、13.5以下を満足する条件で30秒以下の短時
施すことを特徴とするオーステナイト系ステンレス鋼
極細線の製造方法。
(2) By weight%, C: 0.05 to 0.15%, Si: 0.2 to 3%, Mn: 0.2 to 3%, S ≦ 0.005%, Ni: 6. 5 to 12%, Cr: 16 to 20%, Al 0.005%, N: 0.02 to 0.10%, O ≤ 0.005%, and the relationship between S and Al content is (1 ) The composition is adjusted to satisfy the formula, and the total composition of non-metallic inclusions in steel is 1 wt.
% Of S or more oxysulfide formed austenitic stainless steel is rolled into a wire rod, followed by annealing / drawing to produce ultrafine wires, followed by heat treatment when the heat treatment is performed. Area reduction of the previous wire drawing process is 5
0% or more, followed by heat treatment at 100 ℃ or more, 600
At a temperature of ℃ or less, and the k value represented by the formula (2) is 6.5.
Short time of 30 seconds or less under the condition that 13.5 or less is satisfied
A method for producing an austenitic stainless steel ultrafine wire, which is characterized by being applied for a period of time .

【0009】 〔S〕≧〔Al〕/2 …(1) ここで、〔S〕 ;鋼中のS量(wt%) 〔Al〕;鋼中のAl量(wt%) k=T×(logt+20)×10-3 …(2) ここで、k;加熱係数 T;加熱温度(K) t;加熱時間(Hr)[S] ≧ [Al] / 2 (1) where [S]; S content in steel (wt%) [Al]; Al content in steel (wt%) k = T × ( logt + 20) × 10 −3 (2) where k: heating coefficient T; heating temperature (K) t; heating time (Hr)

【0010】(3)重量%で、 C:0.05〜0.15%、 Si:0.2〜3%、 Mn:0.2〜3%、 S≦0.005%、 Ni:6.5〜12%、 Cr:16〜20%、 Al0.005%、 N:0.02〜0.10%、 O≦0.005% を含有し、かつSとAl量の関係が(1)式を満足し、
鋼中の非金属介在物組成が総量で1wt%以上のSを含
有するオキシサルファイドから成り、ばね限界値が70
kgf/mm2 以上であることを特徴とするオーステナ
イト系ステンレス鋼極細線。
(3) In weight%, C: 0.05 to 0.15%, Si: 0.2 to 3%, Mn: 0.2 to 3%, S ≦ 0.005%, Ni: 6. 5 to 12%, Cr: 16 to 20%, Al 0.005%, N: 0.02 to 0.10%, O ≤ 0.005%, and the relationship between S and Al content is (1 ) Satisfies the formula,
The composition of non-metallic inclusions in steel is oxysulfide containing 1 wt% or more of S in total, and the spring limit value is 70.
An austenitic stainless steel ultrafine wire characterized by having a weight of at least kgf / mm 2 .

【0011】 〔S〕≧〔Al〕/2 …(1) ここで、〔S〕 ;鋼中のS量(wt%) 〔Al〕;鋼中のAl量(wt%)[0011]     [S] ≧ [Al] / 2 (1) Here, [S]; S content in steel (wt%) [Al]; Al content in steel (wt%)

【0012】すなわち、本発明者らはオーステナイト系
ステンレス鋼極細線の加工性、成形性あるいは機械的性
質等に及ぼす影響因子について詳細な研究を重ねた結
果、加工性および成形性には非金属介在物の影響が、一
方、機械的性質(耐へたり性、強度)には鋼質と熱処理
の影響が大きいことを明らかにした。この知見をもと
に、非金属介在物についてはその量を極力低減した上
で、さらに加工中に微細・分散化すべく組成の制御が有
効であり、このためにはAl、O、S量の調整が重要で
あること、一方、耐へたり性には伸線加工率を適正範囲
に調整した上で適正な加熱処理を施すことが有効である
ことを明らかにし、これらの基本要素技術を種々組み合
わせることによって本発明に至ったものである。
That is, the inventors of the present invention have made detailed studies on the influential factors that affect the workability, formability, mechanical properties, etc. of austenitic stainless steel ultrafine wires. On the other hand, it was clarified that the mechanical properties (deterioration resistance, strength) of steel are greatly influenced by the quality of steel and heat treatment. Based on this finding, it is effective to reduce the amount of non-metallic inclusions as much as possible and then control the composition in order to make them finer and more dispersed during processing. It is clarified that adjustment is important, and that it is effective to set the wire drawing rate within an appropriate range and then perform appropriate heat treatment for sag resistance. The present invention has been achieved by combining them.

【0013】[0013]

【作用】本発明に関わる、オーステナイト系ステンレス
鋼極細線の作用について述べる。 (1)高加工性、高成形性 強度の伸線加工を可能にし、高強度化したステンレス鋼
極細線の成形性を良好ならしめるためには破壊起点とな
る硬質系非金属介在物の低減が必須である。
The function of the austenitic stainless steel ultrafine wire according to the present invention will be described. (1) High workability and high formability In order to enable wire drawing with high strength and to improve the formability of stainless steel extra fine wire with high strength, it is necessary to reduce the hard non-metallic inclusions that are the starting points of fracture. Required.

【0014】従来、硬質系非金属介在物の有害性を低減
する方法として、極低酸素化による酸化物系非金属介在
物の量の低減やAl量を低くしてアルミナ(Al
2 3 )系酸化物を低減する方法あるいは酸化物系介在
物組成を低融点のSiO2 −MnO−Al2 3 系に組
成制御する方法等が試みられている。本発明者らは非金
属介在物の生成挙動あるいは加工時の変形挙動について
詳細な研究を重ねた結果、極低酸素化すると極低Alで
あるにも関わらず硬質の酸化物が残存し、加工割れの起
点になることが判った。これは酸化物中のAl2 3
度に依存しており、従来から言われている酸化物系介在
物の組成制御が容易でないことを物語っている。すなわ
ち、酸化物系介在物を低融点のSiO2 −MnO−Al
2 3 系に制御することは、合金成分(Al、Si、M
nとO)のバランスあるいは精錬条件(温度、時間、ス
ラグ組成等)の細かい管理が必要であることや低融点化
したところでその温度は1200℃程度であることから
現実的には品質の安定性に欠け、工業的に製造するには
問題の多いことが判った。
Conventionally, as a method for reducing the harmfulness of hard non-metallic inclusions, the amount of oxide non-metallic inclusions has been reduced by ultra-low oxygen, and the amount of Al has been reduced to reduce the amount of alumina (Al).
Attempts have been made to reduce the amount of 2 O 3 ) -based oxides, or to control the composition of oxide-based inclusions to a low-melting-point SiO 2 —MnO—Al 2 O 3 system. The present inventors have conducted detailed studies on the generation behavior of non-metallic inclusions or the deformation behavior during processing, and as a result, when the oxygen content is extremely low, a hard oxide remains despite the extremely low Al content. It turned out to be the starting point of the crack. This depends on the concentration of Al 2 O 3 in the oxide, which indicates that it is not easy to control the composition of oxide inclusions, which has been conventionally said. That is, oxide-based inclusions are converted to low melting point SiO 2 --MnO--Al
Controlling to 2 O 3 system is to control alloy components (Al, Si, M
n and O) balance or refining conditions (temperature, time, slag composition, etc.) need to be controlled in detail, and the temperature is about 1200 ° C when the melting point is lowered, so the quality is practically stable. It was found that there are many problems in industrial production.

【0015】そこで、さらに鋭意検討を重ねた結果、非
金属介在物を酸化物中にSを含有させたオキシサルファ
イドに形態制御すれば熱間圧延で容易に延伸し、その後
の伸線加工で微細に分断するため破壊の起点とならない
こと、またオキシサルファイドへの形態制御が合金成分
(S、AlおよびO)の調整のみで可能であることを見
出し、本発明に至った。
Therefore, as a result of further intensive studies, if the morphology of the non-metallic inclusions is controlled to oxysulfide containing S in the oxide, it can be easily drawn by hot rolling and then finely drawn by wire drawing. The present invention has been completed by finding that it does not become a starting point of fracture because it is divided into two parts, and that the morphology of oxysulfide can be controlled only by adjusting the alloy components (S, Al and O).

【0016】(2)耐へたり性および高強度化 耐へたり性は伸線加工によって蓄積された歪みを開放す
ることで向上する。本発明者らは100℃以上、600
℃以下の低温かつ30秒以下の短時間加熱処理(表2及
び表3参照)によって強度が上昇すると共に耐へたり性
(ばね限界値)が向上することを見出した。一方、ステ
ンレス鋼極細線をばねとして使用する場合には高強度化
と高靱性化が重要な課題であり、本発明ではこれらの点
についても考慮するものである。
(2) Sag resistance and high strength Sag resistance is improved by releasing the strain accumulated by wire drawing. The present inventors have a temperature of 100 ° C. or higher , 600
Low temperature below ℃ and short time heat treatment below 30 seconds (Table 2 and
And Table 3) , the strength is increased and the sag resistance (spring limit value) is improved. On the other hand, when using a stainless steel ultrafine wire as a spring, high strength and high toughness are important subjects, and the present invention also takes these points into consideration.

【0017】すなわち、高強度高靱性化は侵入型元素で
あるC、Nの固溶強化による作用と強度の伸線加工によ
って蓄積された転位を有効に利用する伸線加工後の加熱
処理による歪み時効硬化の重畳効果によるものである。
ここで、固溶硬化作用の強いC、Nを多量に合金化する
ことで強度は上昇するが、一方でC、Nの多量添加は靱
性の劣化をきたすため、その適正値の選択が重要であ
る。また固溶強化度と靱性の劣化度がCとNとでは異な
るため強度と靱性のバランスから最適C量とN量が存在
する。
That is, high strength and high toughness are caused by the action of solid solution strengthening of C and N which are interstitial elements and strain caused by heat treatment after wire drawing, which effectively utilizes dislocations accumulated by wire drawing of strength. This is due to the overlapping effect of age hardening.
Here, the strength is increased by alloying a large amount of C and N having a strong solid solution hardening action, but on the other hand, addition of a large amount of C and N causes deterioration of toughness. Therefore, it is important to select an appropriate value thereof. is there. Further, since the degree of solid solution strengthening and the degree of deterioration of toughness are different between C and N, optimal C and N contents exist from the balance of strength and toughness.

【0018】なお、ステンレス鋼線材を伸線加工後40
0〜500℃で10〜30分低温焼鈍する、いわゆるブ
ルーイング処理が一般的に知られているが、本発明者ら
減面率50%以上の強度の伸線加工を施せば100℃
以上、600℃以下の低温で表2、表3に示すように3
0秒以下の短時間加熱処理を行うのみで充分な歪み時効
(ばね限界値の顕著な向上)が図れることを見出したも
ので、本発明における伸線加工後の加熱処理は非金属
介在物の組成制御、CおよびNの適正配合によってもた
らされる強度の伸線加工性の確保とともに、発明の構成
上重要な要件であり、従来のブルーイング処理とは本質
的に異なる。
It should be noted that after the stainless steel wire rod is drawn 40
A so-called bluing treatment, in which low-temperature annealing is performed at 0 to 500 ° C for 10 to 30 minutes, is generally known. However, the present inventors provide 100 ° C if wire drawing with a strength of 50% or more is applied.
As described above, at a low temperature of 600 ° C. or less, as shown in Tables 2 and 3, 3
Sufficient strain aging only by heat treatment for a short time of 0 seconds or less
It has been found that (the spring limit value is remarkably improved) , and the heat treatment after the wire drawing in the present invention is performed by controlling the composition of the non-metallic inclusions and appropriately increasing the strength of C and N. This is an important requirement for the construction of the invention as well as ensuring the line workability, and is essentially different from the conventional bluing treatment.

【0019】次に、本発明のオーステナイト系ステンレ
ス鋼極細線の製造方法および同極細線において、組成成
分割合および加熱処理条件の数値限定した理由について
述べる。 (1)C Cは鋼に侵入型に固溶して強化する作用があり、本発明
鋼においては最も有効かつ必要元素である。その含有量
が0.05wt%未満ではこの効果は少なく、また、
0.15wt%を超えて過剰に含有するとCr炭化物が
粒界に析出して延性の低下をきたし、伸線性および成形
性を劣化すると共に、耐食性を低下する。よって、Cは
0.05〜0.15wt%とした。
Next, the reasons for limiting the numerical values of the composition component ratios and the heat treatment conditions in the method for producing an austenitic stainless steel ultrafine wire and the same ultrafine wire of the present invention will be described. (1) C C has an action of interstitial solid solution in steel to strengthen it, and is the most effective and necessary element in the steel of the present invention. If the content is less than 0.05 wt%, this effect is small, and
If the content exceeds 0.15 wt% and is excessive, Cr carbide precipitates at the grain boundaries to lower the ductility, deteriorating the wire drawability and formability, and lowering the corrosion resistance. Therefore, C is set to 0.05 to 0.15 wt%.

【0020】(2)Si Siは脱酸剤として添加し、積極的に酸化物系非金属介
在物の低減を図ると共に、Al2 3 主体の非金属介在
物の生成を制御するために含有する。すなわち、本発明
におけるベースとなる非金属介在物組成を調整するもの
であり、含有量が0.2wt%未満では非金属介在物組
成はAl2 3 主体のものとなり効果が少ない。しか
し、3wt%を超えて過剰に含有するとδ−フェライト
相を生成し易くなり熱間圧延性を低下する。よって、S
iの含有量は0.2〜3wt%とした。
(2) Si Si is added as a deoxidizing agent and is contained for the purpose of actively reducing oxide-based non-metallic inclusions and controlling the formation of Al 2 O 3 -based non-metallic inclusions. To do. That is, the composition of the non-metallic inclusions that is the base in the present invention is adjusted. If the content is less than 0.2 wt%, the composition of the non-metallic inclusions is mainly Al 2 O 3 and the effect is small. However, if it is contained excessively in excess of 3 wt %, a δ-ferrite phase is likely to be formed and the hot rolling property is deteriorated. Therefore, S
The content of i was 0.2 to 3 wt%.

【0021】(3)Mn MnはSと結合してMnSを、またOと結合してMnO
を生成し、本発明におけるオキシサルファイドを生成す
るための重要な元素であり、この効果を発揮するために
は0.2wt%以上は必要である。しかし、多量に含有
されると有効なオキシサルファイドの形成が困難とな
り、耐食性の劣化、靱性の低下をきたすため上限は3w
t%とした。よって、Mnの含有量は0.2〜3wt%
とした。
(3) Mn Mn combines with S to form MnS, and combines with O to form MnO.
And is an important element for producing oxysulfide in the present invention, and 0.2 wt% or more is necessary to exert this effect. However, if contained in a large amount, it becomes difficult to form an effective oxysulfide, which deteriorates corrosion resistance and toughness, so the upper limit is 3 w.
It was set to t%. Therefore, the Mn content is 0.2 to 3 wt%
And

【0022】(4)S Sは熱間加工においては延伸し、その後の冷間加工で分
断する、いわゆる可塑性を有するオキシサルファイドを
形成するために、本発明においては重要な元素である。
しかし、過剰に含有すると熱間加工性が劣化すると共に
製品の耐食性も低下する。よって、Sの上限は0.00
5wt%とした。
(4) S S is an important element in the present invention in order to form an oxysulfide having so-called plasticity, which is stretched in hot working and divided in subsequent cold working.
However, if it is contained excessively, the hot workability deteriorates and the corrosion resistance of the product also deteriorates. Therefore, the upper limit of S is 0.00
It was set to 5 wt%.

【0023】ここで、オキシサルファイドを形成するた
めには適正なS量が必要である。本発明者らは、非金属
介在物の変形挙動について種々の研究を行い、図2に示
すように非金属介在物中のS量がAl量と密接な関係に
あることを知見した。図2は、0.07wt%C、0.
50wt%Si、1.2wt%Mn、0.020wt%
P、0.003wt%S、8.7wt%Ni、18.7
5wt%Cr、0.038wt%N、0.0008wt
%Oを基本成分とし、SとAl量のバランスを変化させ
た9種類のオーステナイト系ステンレス鋼線材(6mm
φ)を製造し、さらに2mmφまで伸線加工して非金属
介在物の挙動を調査した結果である。ここで、非金属介
在物の組成分析は主として6mmφの線材で行い、さら
に、一部のものについては2mmφの線にて行った。ま
た、非金属介在物の大きさについては2mmφの線にて
行った。
Here, a proper amount of S is required to form oxysulfide. The present inventors have conducted various studies on the deformation behavior of non-metallic inclusions and found that the S content in non-metallic inclusions is closely related to the Al content, as shown in FIG. FIG. 2 shows 0.07 wt% C, 0.
50 wt% Si, 1.2 wt% Mn, 0.020 wt%
P, 0.003 wt% S, 8.7 wt% Ni, 18.7
5 wt% Cr, 0.038 wt% N, 0.0008 wt
9 kinds of austenitic stainless steel wire rods with 6% as a basic component and varying the balance of S and Al amount (6 mm
φ) was manufactured, and further drawn to 2 mmφ, and the behavior of non-metallic inclusions was investigated. Here, the composition analysis of the non-metallic inclusions was performed mainly with a wire rod having a diameter of 6 mm, and for some of them, a wire having a diameter of 2 mm was used. The size of the non-metallic inclusion was determined by a 2 mmφ line.

【0024】この結果、熱間加工および/あるいは冷間
加工(伸線加工)中に延伸・分断する非金属介在物組成
はAl2 3 濃度が低く、かつSを1wt%以上含有
(本発明におけるオキシサルファイド)している。O量
を0.0050wt%以下にし、Al量を0.0050
wt%以下にすると、この傾向ならびに効果が顕著であ
る。
As a result, the composition of the non-metallic inclusions stretched and divided during hot working and / or cold working (wire drawing) has a low Al 2 O 3 concentration and contains 1 wt% or more of S (the present invention). In oxysulfide). O amount to 0.0050 wt% or less and Al amount to 0.0050
If it is less than wt%, this tendency and the effect are remarkable.

【0025】従って、非金属介在物を微細・分散化して
加工性に無害なものにするためにはオキシサルファイド
の形成が必須であり、有効なオキシサルファイドの形成
には次式によって表せるS量の確保が重要である。 〔S〕≧〔Al〕/2 …(1) すなわち、(1)式を満足するとによって、非金属介在
物中のS濃度は1wt%以上になり、非金属介在物は可
塑性を有するオキシサルファイドとなる。
Therefore, formation of oxysulfide is indispensable in order to make non-metallic inclusions fine and dispersed and harmless to workability. For effective formation of oxysulfide, the amount of S represented by the following formula can be used. Securing is important. [S] ≧ [Al] / 2 (1) That is, by satisfying the expression (1), the S concentration in the non-metallic inclusion becomes 1 wt% or more, and the non-metallic inclusion is oxysulfide having plasticity. Become.

【0026】(5)Ni Niはオーステナイト系ステンレス鋼の基本成分で、常
温で安定してオーステナイト相を得るためには極めて有
効な元素である。また、鋼の靱性を確保して伸線加工性
および成形性を確保するためにも重要な元素であり、こ
れらの効果を有効に発揮するためには6.5wt%以上
は必要である。一方、12wt%を超えるNiの含有は
強度の低下をきたすのみである。よって、Niの含有量
は6.5〜12wt%とした。
(5) Ni Ni is a basic component of austenitic stainless steel and is an extremely effective element for stably obtaining an austenitic phase at room temperature. It is also an important element for ensuring the toughness of steel and wire drawing workability and formability, and 6.5 wt% or more is necessary to effectively exhibit these effects. On the other hand, the content of Ni in excess of 12 wt% only lowers the strength. Therefore, the content of Ni is set to 6.5 to 12 wt%.

【0027】(6)Cr CrはNi量との適正バランスにおいて安定してオース
テナイト相を得、良好な耐食性を確保するための基本成
分である。また、本発明鋼においては鋼の強度ならびに
ヤング率を向上する。含有量が16wt%未満では上記
の効果が少なく、20wt%を超えるCrの含有はδフ
ェライトを生成し、熱間加工性の低下をきたし、圧延後
の製品疵を多発する。よって、Crの含有量は16〜2
0wt%とした。
(6) Cr Cr is a basic component for stably obtaining an austenite phase in a proper balance with the amount of Ni and ensuring good corrosion resistance. Further, the steel of the present invention improves the strength and Young's modulus of the steel. If the content is less than 16 wt%, the above effect is small, and if the content of Cr exceeds 20 wt%, δ ferrite is formed, the hot workability is deteriorated, and product defects after rolling frequently occur. Therefore, the Cr content is 16 to 2
It was set to 0 wt%.

【0028】(7)Al Alは脱酸剤として添加される。すなわち、Alによる
適正な脱酸を行わないと硬質のCr2 3 、SiO2
SiO2 −MnOあるいはこれら複合酸化物を形成し、
加工性の低下をきたす。従って、本発明におけるオキシ
サルファイドの基本酸化物となるSiO2 −MnO−A
2 3 系酸化物の形成のために適正量が必要である。
しかし、過剰に含有することは硬質のAl2 3 主体の
酸化物を形成し逆効果となり好ましくない。よって、上
記作用を有効ならしめる適正なAl量として0.005
wt%以下とした。
(7) Al Al is added as a deoxidizing agent. That is, if proper deoxidation with Al is not performed, hard Cr 2 O 3 , SiO 2 ,
SiO 2 —MnO or a composite oxide of these is formed,
It causes deterioration of workability. Therefore, the basic oxide of oxysulfide in the present invention is SiO 2 —MnO—A.
A proper amount is necessary for the formation of the l 2 O 3 -based oxide.
However, excessive addition is not preferable because it forms a hard Al 2 O 3 -based oxide and has an adverse effect. Therefore, as an appropriate amount of Al to make the above effect effective, 0.005
It was set to be wt% or less.

【0029】(8)N NはCと同様オーステナイト生成元素であり、かつ鋼中
に侵入型固溶効果としてオーステナイト相を強力に強化
するために本発明における重要な元素であるが、N含有
量が0.02wt%未満では上記作用に所望の効果が得
られない。一方、0.10wt%を超えて過剰に含有す
ると靱性あるいは延性が極端に低下し、極細線への伸線
加工が困難になると共に製品の成形性にも問題が生じ
る。よって、N含有量は0.02〜0.10wt%とし
た。
(8) N N is an austenite-forming element similar to C, and is an important element in the present invention for strongly strengthening the austenite phase as an interstitial solid solution effect in steel. Is less than 0.02 wt%, the desired effect cannot be obtained. On the other hand, if the content exceeds 0.10 wt% and is excessive, the toughness or ductility is extremely reduced, and it becomes difficult to perform drawing work on ultrafine wires and a problem occurs in product formability. Therefore, the N content is set to 0.02 to 0.10 wt%.

【0030】(9)O Oは酸化物系介在物を形成するため低いほど好ましい。
しかし、極端に低減することは製鋼コストの面から不利
である。一方、本発明におけるオキシサルファイドの安
定形成のためにはO量の上限は0.0050wt%であ
る。よって、Oの含有量は0.0050wt%以下とし
た。
(9) O 2 O is preferable because it forms oxide inclusions.
However, the extreme reduction is disadvantageous in terms of steel manufacturing cost. On the other hand, the upper limit of the amount of O is 0.0050 wt% for stable formation of oxysulfide in the present invention. Therefore, the content of O is set to 0.0050 wt% or less.

【0031】次に、本発明において耐へたり性を向上す
るための重要な要件である伸線加工後の加熱処理条件を
限定した理由について詳述する。耐へたり性は一般的に
は塑性変形歪み量あるいはばね限界値で表される。すな
わち、ばね限界値で言えば、この値が高いほど耐へたり
性が良く、ばね等の性能が高いことになる。
Next, the reason for limiting the heat treatment conditions after wire drawing, which is an important requirement for improving the sag resistance in the present invention, will be described in detail. The sag resistance is generally represented by a plastic deformation strain amount or a spring limit value. That is, in terms of the spring limit value, the higher this value, the better the sag resistance and the higher the performance of the spring and the like.

【0032】そこで、本発明の化学成分の一例である、
0.08wt%C、0.52wt%Si、0.85wt
%Mn、0.020wt%P、0.003wt%S、
8.7wt%Ni、18.90wt%Cr、0.002
0wt%Al、0.0010wt%O、0.052wt
%Nおよび残部が不可避的不純物からなるオーステナイ
ト系ステンレス鋼を溶製・鋳造し、線材圧延用の150
mm□のビレットを製造して次の実験を行った。
Therefore, one example of the chemical component of the present invention is
0.08wt% C, 0.52wt% Si, 0.85wt
% Mn, 0.020 wt% P, 0.003 wt% S,
8.7 wt% Ni, 18.90 wt% Cr, 0.002
0 wt% Al, 0.0010 wt% O, 0.052 wt
150% for wire rod rolling by melting and casting austenitic stainless steel with% N and the balance unavoidable impurities
The following experiment was conducted after manufacturing a billet of mm □.

【0033】すなわち、該ビレットを1200℃で加熱
した後、熱間圧延して直径6mmの線材とした。次い
で、酸洗・デスケール処理した後、直径2mmまで伸線
加工を行い、引続き光輝焼鈍、伸線加工を施して直径1
50μmφの極細線とした。該極細線を種々の温度、時
間で加熱処理してばね限界値を測定した。この結果を図
3に示した。図中のkは加熱温度と加熱時間のファクタ
ーであり、(2)式で表した。
That is, the billet was heated at 1200 ° C. and then hot rolled to obtain a wire rod having a diameter of 6 mm. Then, after pickling and descaling, wire drawing is performed up to a diameter of 2 mm, followed by bright annealing and wire drawing to obtain a diameter of 1 mm.
An ultrafine wire of 50 μmφ was used. The ultrafine wire was heat-treated at various temperatures and times to measure the spring limit value. The result is shown in FIG. In the figure, k is a factor of the heating temperature and the heating time and is expressed by the equation (2).

【0034】 k=T×(logt+20)×10-3 …(2) ここで、k;加熱係数 T;加熱温度(K)、t;加熱時間(Hr)K = T × (logt + 20) × 10 −3 (2) where k: heating coefficient T; heating temperature (K), t; heating time (Hr)

【0035】図3から明らかなように、加熱処理条件の
k値を高くすることによりばね限界値は向上する。この
効果はk値が6.5以上で顕著であることが判る。上述
の結果、耐へたり性の観点から、(2)式で示されるk
値は6.5以上とした。ところで、k値は加熱の温度と
時間のファクターであり、温度が低いと長時間を必要と
する。工業的に安定して生産可能な時間として、下限は
100℃とした。一方、高温ほど短時間で目的は達成可
能であるが、600℃を超えると軟化傾向があり、また
スケールの生成や炭化物の析出が起こり、靱性が低下す
る。よって、加熱温度は100〜600℃とした。
As is apparent from FIG. 3, the spring limit value is improved by increasing the k value of the heat treatment condition. It can be seen that this effect is remarkable when the k value is 6.5 or more. As a result of the above, from the viewpoint of sag resistance, k expressed by the equation (2)
The value was set to 6.5 or more. By the way, the k value is a factor of heating temperature and time, and if the temperature is low, it requires a long time. The lower limit was set to 100 ° C. as the industrially stable production time. On the other hand, the higher the temperature, the shorter time the purpose can be achieved, but if the temperature exceeds 600 ° C., there is a tendency to soften, scale formation and carbide precipitation occur, and toughness decreases. Therefore, the heating temperature is set to 100 to 600 ° C.

【0036】図1には高いばね限界値を得るための加熱
処理前の伸線加工減面率の影響を示した。この図から明
らかなように加熱処理前の伸線加工減面率が50%以上
であれば所要のばね限界値が得られることが判る。よっ
て、工業的生産性を考慮して加熱処理前の伸線加工減面
率は50%以上に限定した。一方、加熱係数kが13.
5を超えると軟化焼鈍域となり、表2のNo.34に示
すように、ばね限界値が低下するので、k値の上限を1
3.5とした。なお、加熱処理雰囲気は大気でも還元性
あるいは非酸化性のいずれでもこの効果は発揮される
が、設備、生産性の点からは大気処理が好ましい。しか
し処理条件によっては表面酸化により変色することがあ
る。一方、窒素雰囲気の場合は窒化によって高強度化・
高ばね限界値が得られるため有効であるが、処理条件に
よっては靱性が低下することがある。よって、加熱処理
雰囲気については生産規模、設備等によって選択される
べきであり、特に限定しない。
FIG. 1 shows the influence of the area reduction ratio of the wire drawing process before the heat treatment for obtaining a high spring limit value. As is clear from this figure, if the wire drawing area reduction ratio before heat treatment is 50% or more, the required spring limit value can be obtained. Therefore, in consideration of industrial productivity, the area reduction ratio of the wire drawing process before the heat treatment is limited to 50% or more. On the other hand, the heating coefficient k is 13.
If it exceeds 5, it becomes a softening annealing region, and No. Shown in 34
As the spring limit value decreases, the upper limit of the k value is set to 1
It was set to 3.5. This effect is exhibited whether the heat treatment atmosphere is air, reducing or non-oxidizing, but air treatment is preferable from the viewpoint of equipment and productivity. However, depending on the processing conditions, the surface may be discolored due to oxidation. On the other hand, in a nitrogen atmosphere, nitriding enhances strength.
This is effective because a high spring limit value can be obtained, but the toughness may decrease depending on the processing conditions. Therefore, the heat treatment atmosphere should be selected according to the production scale, equipment, etc., and is not particularly limited.

【0037】[0037]

【実施例】本発明に関わる耐へたり性に優れた高強度高
靱性オーステナイト系ステンレス鋼極細線の特徴を実施
例をもって説明する。表1に示す化学成分を有するオー
ステナイト系ステンレス鋼を真空溶解炉で溶製し、これ
を造塊して得られた鋼塊を1200℃で加熱・熱間圧延
して直径6mmφの線材とした。得られた線材を酸洗・
焼鈍後、伸線加工を施して2mmφの中間線とした後、
脱脂処理し、光輝焼鈍を行い、引続き伸線加工を施して
線径150μmφの極細線を製造し、この150μmφ
の極細線を各種の条件で加熱処理した後、各種の機械的
性質(ばね限界値、引張強さ、伸び、曲げ加工性等)を
調査した。なお、ここで、非金属介在物の評価はエネル
ギー分散型分析装置と画像解析装置で評価した。また、
伸線性の評価は2mmφから150μmφまでの伸線加
工における断線の有無で行った。
EXAMPLES The features of the high-strength, high-toughness austenitic stainless steel ultrafine wire according to the present invention, which is excellent in sag resistance, will be described with reference to examples. Austenitic stainless steel having the chemical composition shown in Table 1 was melted in a vacuum melting furnace, and the steel ingot obtained by ingot casting was heated and hot-rolled at 1200 ° C. to obtain a wire rod having a diameter of 6 mmφ. Pickling the obtained wire rod
After annealing, after drawing wire to make 2mmφ intermediate wire,
Degreasing, bright annealing, and subsequent wire drawing are performed to produce ultrafine wires with a wire diameter of 150 μmφ.
After heat treatment of the ultrafine wire under various conditions, various mechanical properties (spring limit value, tensile strength, elongation, bending workability, etc.) were investigated. Here, the evaluation of the non-metallic inclusions was performed using an energy dispersive analyzer and an image analyzer. Also,
The evaluation of the wire drawability was carried out by the presence or absence of disconnection in the wire drawing from 2 mmφ to 150 μmφ.

【0038】表1は、まず非金属介在物と伸線加工性の
関係をみた実施例である。表1に示す材料番号1〜7が
本発明鋼であり、番号8、9および10は比較鋼であ
る。本発明鋼は化学成分のいずれも調整されているため
2mmφの中間線で観察される非金属介在物は微細であ
り、従って良好な伸線加工性を有している。これに対し
て、番号8鋼はAl量が0.006wt%と極めて多量
に含有されているため、硬質のAl2 3 系酸化物に起
因する大型の介在物が残存しており、番号9鋼はS量が
低いためにオキシサルファイドは形成されず、硬質の複
合酸化物が残存している。また、番号10鋼は過剰Oの
ため多量の酸化物が残存し、個数も多い。このため番号
8〜10鋼はいずれも伸線加工にて断線している。
Table 1 is an example in which the relationship between non-metallic inclusions and wire drawability was first observed. Material numbers 1 to 7 shown in Table 1 are steels of the present invention, and numbers 8, 9 and 10 are comparative steels. Since all of the chemical components of the steel of the present invention are adjusted, the non-metallic inclusions observed in the 2 mmφ intermediate wire are fine, and therefore have good wire drawability. On the other hand, since the No. 8 steel contains an extremely large amount of Al of 0.006 wt%, large inclusions due to the hard Al 2 O 3 based oxide remain, and Oxysulfide is not formed in the steel because the S content is low, and the hard composite oxide remains. Further, since the No. 10 steel has an excessive amount of O, a large amount of oxide remains and the number is large. Therefore, all of the steel Nos. 8 to 10 are broken by wire drawing.

【0039】表2は伸線加工減面率を一定(99.4
%)として、耐へたり性(ばね限界値)と加熱処理の関
係をみたものであり、このうち番号21〜29鋼が本発
明鋼であり、30〜34鋼が比較鋼である。伸線加工
率を50%以上として、k値が6.5以上、13.5
以下になるような加熱処理を行った本発明鋼はいずれも
ばね限界値が70kgf/mm2 以上である。これは、
従来のものと比べて飛躍的に高いものである。これに対
して、加熱処理が施されていないかあるいは加熱処理が
不十分(k値が6.5未満)であるとばね限界値は低
く、また加熱処理温度が650℃を超えて高い(番号3
4鋼)と軟化してばね限界値は低下することが判る。以
上の実施例から本発明鋼の耐へたり性が極めて良好なこ
とが明瞭である。
Table 2 shows that the wire drawing area reduction rate is constant (99.4).
%) Shows the relationship between the sag resistance (spring limit value) and the heat treatment. Among them, the steels Nos. 21 to 29 are the steels of the present invention, and the steels 30 to 34 are the comparative steels. Reduction of wire drawing
When the surface ratio is 50% or more, the k value is 6.5 or more , 13.5.
All of the steels of the present invention which have been heat-treated as described below have a spring limit value of 70 kgf / mm 2 or more. this is,
It is significantly higher than the conventional one. On the other hand, if the heat treatment is not performed or the heat treatment is insufficient (k value is less than 6.5), the spring limit value is low, and the heat treatment temperature is higher than 650 ° C (high number). Three
4 steel) and the spring limit value decreases. From the above examples, it is clear that the steel of the present invention has extremely good sag resistance.

【0040】表3はばね限界値と伸線加工減面率の関係
を示す実施例である。番号35〜38鋼が伸線加工減面
率50%以上の本発明鋼であり、番号39および40鋼
が比較鋼である。番号35および36鋼は伸線加工減面
率が60%および70.3%であるためにばね限界値は
70kgf/mm2 を超えている。これに対して、番号
39鋼はk値が8.1と高いにも拘わらず、伸線加工
率が45.7%と低いためばね限界値は低い。
Table 3 is an example showing the relationship between the spring limit value and the area reduction ratio of wire drawing. Steel Nos. 35 to 38 are steels of the present invention having a wire drawing reduction ratio of 50% or more, and Steels Nos. 39 and 40 are comparative steels. The Nos. 35 and 36 steels have wire drawing area reductions of 60% and 70.3%, so that the spring limit value exceeds 70 kgf / mm 2 . On the other hand, although the No. 39 steel has a high k value of 8.1, it has a reduced wire drawing work.
Since the surface ratio is as low as 45.7%, the spring limit value is low.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【発明の効果】以上説明した如く、本発明によれば既存
の溶解・精錬技術にて容易に、安定して高強度で、かつ
加工性の良好なオーステナイト系ステンレス鋼極細線が
製造可能であり、その上、製品においては耐へたり性が
抜群に高く、成形加工性にも優れており、ばね用極細線
をはじめ、精密機器用部材として好適なオーステナイト
系ステンレス鋼極細線を提供できるものであり、産業上
極めて大きな効果をもたらすものである。
As described above, according to the present invention, it is possible to easily produce austenitic stainless steel extra fine wire which is stable, has high strength and good workability by the existing melting and refining technology. In addition, the product has outstanding sag resistance and excellent molding processability, and can provide austenitic stainless steel extra fine wires suitable as members for precision equipment, including extra fine wires for springs. There is one that results in a very large effect on the industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】伸線加工減面率と加熱処理後のばね限界値の関
係を示す図である。
FIG. 1 is a diagram showing a relationship between a wire drawing area reduction rate and a spring limit value after heat treatment.

【図2】鋼中のAl量とS量の関係から良好なオキシサ
ルファイドを得る領域を示す図である。
FIG. 2 is a diagram showing a region where a good oxysulfide is obtained from the relationship between the amount of Al and the amount of S in steel.

【図3】加熱係数(k)とばね限界値の関係を示す図で
ある。
FIG. 3 is a diagram showing a relationship between a heating coefficient (k) and a spring limit value.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 住友 秀彦 山口県光市大字島田3434番地 新日本製 鐵株式会社光製鐵所内 (56)参考文献 特開 昭62−290848(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/06 C21D 9/52 103 C22C 38/00 302 B21C 1/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hidehiko Sumitomo 3434 Shimada, Hikaru City, Yamaguchi Prefecture Nippon Steel Co., Ltd. Komatsu Works (56) Reference JP 62-290848 (JP, A) (58) ) Fields surveyed (Int.Cl. 7 , DB name) C21D 8/06 C21D 9/52 103 C22C 38/00 302 B21C 1/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、C:0.05〜0.15% 、 S≦0.005%、 Al≦0.005%、N:0.02〜0.10% O≦0.005% を含有し、かつSとAl量の関係が(1)式を満足する
成分に調整し、鋼中の非金属介在物組成を総量で1wt
%以上のSを含有するオキシサルファイドを形成させた
オーステナイト系ステンレス鋼を線材圧延し、続いて焼
鈍・伸線加工を繰り返して極細線を製造し、続いて加熱
処理する際に、前記加熱処理前の伸線加工を減面率50
%以上施し、続いて加熱処理を100℃以上、600℃
以下の温度で、かつ(2)式で表されるk値が6.5以
、13.5以下を満足する条件で30秒以下の短時間
施すことを特徴とするオーステナイト系ステンレス鋼極
細線の製造方法。 〔S〕≧〔Al〕/2 …(1) ここで、〔S〕 ;鋼中のS量(wt%) 〔Al〕;鋼中のAl量(wt%) k=T×(logt+20)×10-3 …(2) ここで、k;加熱係数 T;加熱温度(K) t;加熱時間(Hr)
1. By weight%, C: 0.05 to 0.15% , S ≤ 0.005%, Al ≤ 0.005%, N: 0.02 to 0.10% O ≤ 0.005% Is added and the composition of S and Al is adjusted to satisfy the formula (1), and the total composition of the non-metallic inclusions in the steel is 1 wt.
% Of S or more oxysulfide formed austenitic stainless steel is rolled into a wire rod, followed by annealing / drawing to produce ultrafine wire, followed by heat treatment, before the heat treatment. Area reduction of wire drawing of 50
% Or more, followed by heat treatment 100 ° C or more, 600 ° C
The method is performed at the following temperature and for a short time of 30 seconds or less under the condition that the k value represented by the formula (2) satisfies 6.5 or more and 13.5 or less. And a method for producing an austenitic stainless steel ultrafine wire. [S] ≧ [Al] / 2 (1) where [S]; S amount in steel (wt%) [Al]; Al amount in steel (wt%) k = T × (logt + 20) × 10 −3 (2) where k: heating coefficient T; heating temperature (K) t: heating time (Hr)
【請求項2】 重量%で、 C:0.05〜0.15%、 Si:0.2〜3%、 Mn:0.2〜3%、 S≦0.005%、 Ni:6.5〜12%、 Cr:16〜20%、 Al0.005%、 N:0.02〜0.10%、 O≦0.005% を含有し、かつSとAl量の関係が(1)式を満足する
成分に調整し、鋼中の非金属介在物組成が総量で1wt
%以上のSを含有するオキシサルファイドを形成させた
オーステナイト系ステンレス鋼を線材圧延し、続いて焼
鈍・伸線加工を繰り返して極細線を製造し、続いて加熱
処理を施す際に、前記加熱処理前の伸線加工を減面率
0%以上施し、続いて加熱処理を100℃以上、600
℃以下の温度で、かつ(2)式で表されるk値が6.5
以上、13.5以下を満足する条件で30秒以下の短時
施すことを特徴とするオーステナイト系ステンレス鋼
極細線の製造方法。 〔S〕≧〔Al〕/2 …(1) ここで、〔S〕 ;鋼中のS量(wt%) 〔Al〕;鋼中のAl量(wt%) k=T×(logt+20)×10-3 …(2) ここで、k;加熱係数 T;加熱温度(K) t;加熱時間(Hr)
2. By weight%, C: 0.05 to 0.15%, Si: 0.2 to 3%, Mn: 0.2 to 3%, S ≦ 0.005%, Ni: 6.5. ~12%, Cr: 16~20%, Al ≦ 0.005%, N: 0.02~0.10%, containing O ≦ 0.005%, and the relationship between S and Al amount (1) The composition is adjusted to satisfy the formula, and the total composition of non-metallic inclusions in steel is 1 wt.
% Of S or more oxysulfide formed austenitic stainless steel is rolled into a wire rod, followed by annealing / drawing to produce ultrafine wires, followed by heat treatment when the heat treatment is performed. Area reduction of the previous wire drawing process is 5
0% or more, followed by heat treatment at 100 ℃ or more, 600
At a temperature of ℃ or less, and the k value represented by the formula (2) is 6.5.
Short time of 30 seconds or less under the condition that 13.5 or less is satisfied
A method for producing an austenitic stainless steel ultrafine wire, which is characterized by being applied for a period of time . [S] ≧ [Al] / 2 (1) where [S]; S amount in steel (wt%) [Al]; Al amount in steel (wt%) k = T × (logt + 20) × 10 −3 (2) where k: heating coefficient T; heating temperature (K) t: heating time (Hr)
【請求項3】 重量%で、 C:0.05〜0.15%、 Si:0.2〜3%、 Mn:0.2〜3%、 S≦0.005%、 Ni:6.5〜12%、 Cr:16〜20%、 Al0.005%、 N:0.02〜0.10%、 O≦0.005% を含有し、かつSとAl量の関係が(1)式を満足し、
鋼中の非金属介在物組成が総量で1wt%以上のSを含
有するオキシサルファイドから成り、ばね限界値が70
kgf/mm2 以上であることを特徴とするオーステナ
イト系ステンレス鋼極細線。 〔S〕≧〔Al〕/2 …(1) ここで、〔S〕 ;鋼中のS量(wt%) 〔Al〕;鋼中のAl量(wt%)
3. By weight%, C: 0.05 to 0.15%, Si: 0.2 to 3%, Mn: 0.2 to 3%, S ≦ 0.005%, Ni: 6.5. ~12%, Cr: 16~20%, Al ≦ 0.005%, N: 0.02~0.10%, containing O ≦ 0.005%, and the relationship between S and Al amount (1) Satisfy the formula,
The composition of non-metallic inclusions in steel is oxysulfide containing 1 wt% or more of S in total, and the spring limit value is 70.
An austenitic stainless steel ultrafine wire characterized by having a weight of at least kgf / mm 2 . [S] ≧ [Al] / 2 (1) where [S]; S content in steel (wt%) [Al]; Al content in steel (wt%)
JP04736092A 1992-03-04 1992-03-04 Method for producing ultrafine wire of austenitic stainless steel and ultrafine wire Expired - Lifetime JP3362315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04736092A JP3362315B2 (en) 1992-03-04 1992-03-04 Method for producing ultrafine wire of austenitic stainless steel and ultrafine wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04736092A JP3362315B2 (en) 1992-03-04 1992-03-04 Method for producing ultrafine wire of austenitic stainless steel and ultrafine wire

Publications (2)

Publication Number Publication Date
JPH05247596A JPH05247596A (en) 1993-09-24
JP3362315B2 true JP3362315B2 (en) 2003-01-07

Family

ID=12772959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04736092A Expired - Lifetime JP3362315B2 (en) 1992-03-04 1992-03-04 Method for producing ultrafine wire of austenitic stainless steel and ultrafine wire

Country Status (1)

Country Link
JP (1) JP3362315B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5548982B2 (en) * 2009-12-25 2014-07-16 日本精線株式会社 Saw wire and manufacturing method thereof
CN102756176A (en) * 2011-04-29 2012-10-31 日本精线株式会社 Saw line and manufacturing method thereof
JP5721021B2 (en) * 2014-04-30 2015-05-20 日本精線株式会社 Fine metal wire for saw wire core and method for producing the same

Also Published As

Publication number Publication date
JPH05247596A (en) 1993-09-24

Similar Documents

Publication Publication Date Title
US5624504A (en) Duplex structure stainless steel having high strength and elongation and a process for producing the steel
JP4212553B2 (en) High-strength stainless steel wire with excellent twist value and rigidity and manufacturing method thereof
JP3358135B2 (en) High strength steel excellent in sulfide stress cracking resistance and method of manufacturing the same
JP2876968B2 (en) High-strength steel sheet having high ductility and method for producing the same
WO2021230244A1 (en) Austenitic stainless steel material, method for producing same, and plate spring
JP3255296B2 (en) High-strength steel for spring and method of manufacturing the same
JP3601388B2 (en) Method of manufacturing steel wire and steel for steel wire
JP3456455B2 (en) Steel wire rod, steel wire, and method for producing them
JP3362315B2 (en) Method for producing ultrafine wire of austenitic stainless steel and ultrafine wire
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP2826819B2 (en) Method for producing high-strength stainless steel with excellent workability and no welding softening
JP3001614B2 (en) Extremely soft austenitic stainless steel
JP2002146480A (en) Wire rod/steel bar having excellent cold workability, and manufacturing method
JP2885905B2 (en) High strength non-heat treated free cutting steel
JP3620099B2 (en) Method for producing Cr-Mo steel excellent in strength and toughness
JP2984887B2 (en) Bainite wire or steel wire for wire drawing and method for producing the same
JP3229107B2 (en) Manufacturing method of low yield ratio high strength steel sheet with excellent uniform elongation
JP3067892B2 (en) Manufacturing method of ferritic stainless steel sheet with excellent surface properties and deep drawability
JP4342061B2 (en) Ferritic stainless steel material for frame and manufacturing method thereof
JP3622680B2 (en) Ferritic stainless steel continuously annealed steel for mask frame of cathode ray tube and manufacturing method thereof
JP3528676B2 (en) Steel wire rod, steel wire and manufacturing method thereof
KR102523533B1 (en) Ferritic stainless steel with improved grain boundary erosion and its manufacturing method
JP3923485B2 (en) Manufacturing method of ferritic single-phase stainless steel with excellent deep drawability
JPH073327A (en) Production of metastable austenitic stainless steel sheet excellent in season cracking resistance at the time of production
EP4177368A1 (en) Austenitic stainless steel with improved deep drawability

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020910

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121025

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121025

Year of fee payment: 10