JP3358177B2 - Optical distance measuring device - Google Patents

Optical distance measuring device

Info

Publication number
JP3358177B2
JP3358177B2 JP2000097156A JP2000097156A JP3358177B2 JP 3358177 B2 JP3358177 B2 JP 3358177B2 JP 2000097156 A JP2000097156 A JP 2000097156A JP 2000097156 A JP2000097156 A JP 2000097156A JP 3358177 B2 JP3358177 B2 JP 3358177B2
Authority
JP
Japan
Prior art keywords
station
measurement
time
pulse
stations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000097156A
Other languages
Japanese (ja)
Other versions
JP2001281348A (en
Inventor
孝雄 江口
Original Assignee
独立行政法人防災科学技術研究所
孝雄 江口
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人防災科学技術研究所, 孝雄 江口 filed Critical 独立行政法人防災科学技術研究所
Priority to JP2000097156A priority Critical patent/JP3358177B2/en
Publication of JP2001281348A publication Critical patent/JP2001281348A/en
Application granted granted Critical
Publication of JP3358177B2 publication Critical patent/JP3358177B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、海底や、湖底等の
領域に観測局を敷設するとともに、水温等の変動に基づ
く光の伝播速度の変動を補正した基線間における対向局
間の設置距離Lを求める演算式に基づいて、対向局間に
歪み量が発生したか否かを識別する光学式測距装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an installation distance between opposing stations between base lines in which an observation station is laid on an area such as the sea bottom or a lake bottom, and a fluctuation in light propagation speed based on a fluctuation in water temperature or the like is corrected. The present invention relates to an optical distance measuring apparatus that determines whether or not a distortion amount has occurred between opposing stations based on an arithmetic expression for calculating L.

【0002】[0002]

【従来の技術】海底の2箇所に超音波測距計を設置し、
両者間の超音波の伝播時間の変化から基線の伸縮を検出
し、地震発生のメカニズムの研究資料にせんとする超音
波測距測定方式では、超音波の伝播速度が塩分濃度や水
温変化等の影響を受けて変動する等の理由があるため、
mm程度の精度で安定した測定結果を得るのが困難であ
り、このため、本出願人等は、超音波に代えてレーザ光
を用い、正確な伝播時間の測定の行える光学式測距装置
を既に出願して特許を得ている(特許第2906232
号)。
2. Description of the Related Art Ultrasonic rangefinders are installed at two places on the sea floor,
In the ultrasonic distance measurement method, which detects the expansion and contraction of the baseline from the change in the propagation time of the ultrasonic wave between the two, and uses it in the research data on the mechanism of earthquake occurrence, the ultrasonic wave propagation speed is affected by changes in the salt concentration, water temperature, etc. Because there are reasons such as fluctuation due to influence,
It is difficult to obtain a stable measurement result with an accuracy of about mm. For this reason, the present applicants have developed an optical distance measuring device that can accurately measure the propagation time using laser light instead of ultrasonic waves. We have already filed an application and obtained a patent (Japanese Patent No. 2906232)
issue).

【0003】この光学式測距装置よりなり、海底に敷設
した測線を概念的に示す図25を参照すると、光学式測
距装置を構成するレーザ光送信局903aと、多数の中
継局903b・・・と、最終段の受信局903nとが、
例えば、30m間隔にて海底Eの成るべく水平な海底面
を選んで配列されている。そして、光送信局903aの
図示しないレーザ光源から発生される光パルスM1 を、
送光窓905aから次段の中継局903bの受光窓90
5bに送光し、この送光パルスM2 を図示しない次段の
中継器に伝播し、このようにして最終段の受信局903
nの受光窓905bに受光させる。送信局903a、中
継局903b、・・・、及び最終局903nにて三角プ
リズムで分岐した各光パルスM1 ・・・Mn を光電変換
したパルスPを、ケーブル902を介して地上観測局9
01に送信し、送信局903aから最終段受信局903
n迄の配設基線のレーザ光伝播時間Tt を測定し、前回
測定した伝播時間T0 と対比して基線の伸縮の有無を判
別している。
[0003] Referring to FIG. 25, which conceptually shows a measuring line laid on the seabed, which comprises this optical distance measuring device, a laser beam transmitting station 903a and a number of relay stations 903b which constitute the optical distance measuring device. And the last-stage receiving station 903n
For example, as far as possible, the sea bottom E is selected and arranged at intervals of 30 m. Then, an optical pulse M 1 generated from a laser light source (not shown) of the optical transmitting station 903a is
From the light transmitting window 905a to the light receiving window 90 of the next relay station 903b
And sending to 5b, it propagates the sending pulse M 2 to the next repeater (not shown), the receiving station 903 of the last stage this way
The light is received by the light receiving window 905b of n. Transmitting station 903a, the relay station 903b, · · ·, and a pulse P obtained by photoelectrically converting the optical pulse M 1 ··· M n branched triangular prism at the final station 903N, ground observation station 9 via the cable 902
01 to the last receiving station 903 from the transmitting station 903a.
measuring the distribution設基line laser light propagation time T t of up to n, it is to determine if it has an expansion and contraction of the base line as opposed to the propagation time T 0 the previously measured.

【0004】このように構成した光学式測距装置よりな
る2組の測線910、911を、図26(A)に示すよ
うに、断層909を跨いで直交、又は斜行させて個別に
配設し、測線910、911で収集した2方向の観測デ
ータを伝送ケーブル907、908を経由し、搬送ケー
ブル919にて地上局に搬送する。あるいは、図26
(B)に示すように、断層909を跨いで、光学式測距
装置の2組の測線912、913を共に直交させて海底
に一度に配設し、各測線912、913で収集した2方
向の観測データを伝送ケーブル915、916を介し、
搬送ケーブル919にて地上局に搬送する。
As shown in FIG. 26A, two sets of measuring lines 910 and 911 composed of the optical distance measuring device constructed as described above are individually arranged so as to cross at right angles or obliquely across a tomogram 909. Then, the observation data in two directions collected by the measurement lines 910 and 911 is transmitted to the ground station by the transmission cable 919 via the transmission cables 907 and 908. Alternatively, FIG.
As shown in (B), two sets of measuring lines 912 and 913 of the optical distance measuring device are arranged on the seabed at right angles to each other across the tomography 909, and two directions collected by each measuring line 912 and 913 are shown. Of the observation data via transmission cables 915 and 916,
It is transported to the ground station by the transport cable 919.

【0005】[0005]

【発明が解決しようとする課題】上記の光学式測距装置
においても、超音波程ではないが、光の水中伝播速度が
屈折率nや、水温等のパラメータの変動に応じて変化す
るため、基線間の光パルスの伝播時間が変動を受けた値
を示すこととなる。よって、前回測定した基準伝播時間
の測定時の屈折率や、水温等の液体のパラメータと、次
回測定時の屈折率や、水温等の液体のパラメータとが等
しくない場合には、基線間に変動が実際に存在しない場
合であっても、基線間に変動が発生したと誤認識し、正
確な観測を行ない得ないという問題がある他、基線間の
伝播時間だけを観測する方式であるため、光学式測距装
置の敷設位置における水圧等の周囲の海水の物理的状態
を認識し得ないという問題がある。
In the above-mentioned optical distance measuring apparatus, the propagation speed of light in water is not as high as that of ultrasonic waves, but changes according to changes in parameters such as the refractive index n and the water temperature. This indicates a value in which the propagation time of the light pulse between the base lines has changed. Therefore, if the parameter of the liquid such as the refractive index or the water temperature at the time of the measurement of the reference propagation time measured last time is not equal to the parameter of the liquid such as the refractive index or the water temperature at the next measurement, the fluctuation between the baselines will occur. Even if does not actually exist, there is a problem that it is erroneously recognized that the fluctuation has occurred between the baselines, and it is not possible to perform accurate observation, and because it is a method of observing only the propagation time between the baselines, There is a problem that it is not possible to recognize the physical state of the surrounding seawater such as the water pressure at the installation position of the optical distance measuring device.

【0006】さらに、光学的に独立した2組の測線を上
記のように直交配設する方式では、交叉角度を変更した
り、又は、測線距離を伸長させても、観測領域はせいぜ
い2組の測線配設方向及びその伸長距離範囲に制限さ
れ、測線からさらに多方向にわたる一層広い観測領域か
らの測定データを入手し得ないという問題がある。
Furthermore, in the system in which two sets of optically independent measuring lines are arranged orthogonally as described above, even if the crossing angle is changed or the measuring line distance is extended, the observation area is at most two sets. There is a problem in that the measurement data is limited from the direction in which the survey line is provided and the range of the extension of the survey line, and measurement data from a wider observation area in more directions from the survey line cannot be obtained.

【0007】そこで、請求項1の発明は、上記課題に鑑
みてなされたもので、その目的とするところは、屈折率
の変動に基づく液中の光パルス伝播速度の変動の影響を
受けずに基準値測定時に測定した基線間の対向局間の真
の設置距離Lと基準値測定時から所定時間経過した後の
測定時の対向局間の真の設置距離Lとの差の結果に基づ
いて対向局間における水底歪みの発生の有無を識別し、
そして、この対向局間の真の設置距離の差と、対向局間
の真の設置距離の平均値との比の結果に基づいて歪み量
を求め得る光学式測距装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has as its object to eliminate the influence of fluctuations in the light pulse propagation speed in a liquid due to fluctuations in the refractive index. Based on the result of the difference between the true installation distance L between the opposing stations between the baseline measured at the time of the reference value measurement and the true installation distance L between the opposing stations at the time of measurement after a predetermined time has elapsed from the time of the reference value measurement. Identify the presence or absence of water bottom distortion between opposing stations,
An object of the present invention is to provide an optical distance measuring apparatus capable of obtaining a distortion amount based on a result of a ratio of a difference between the true installation distances between the opposite stations and an average value of the true installation distances between the opposite stations. .

【0008】請求項2の発明は、補正前の対向局間の設
置距離Lの見掛け上の変動を補正するための短時間平均
補正量として、「上記対向局の何れか一方の局における
複数のパラメータgの各短時間平均補正量<g>」を加
算したもの、又は「対向局の各局における複数のパラメ
ータgの各短時間平均補正量<g>を加算して対向局数
2で除算した平均値」で示すときは、<δL´(パラメ
ータ)>と表して用いる光学式測距装置を提供すること
にある。
According to a second aspect of the present invention, a short-time average correction amount for correcting an apparent fluctuation of the installation distance L between the opposite stations before the correction is defined as a plurality of short-time average correction amounts. The sum of the respective short-term average correction amounts <g> of the parameter g, or the sum of the respective short-time average correction amounts <g> of the plurality of parameters g at each station of the opposing station is added and divided by the number of opposing stations 2. When an “average value” is used, an optical distance measuring apparatus used as <δL ′ (parameter)> is provided.

【0009】請求項3の発明は、測線の先頭の送信局か
ら中継局を経由して終端の受信局に送光する基準量測定
時τ1に測定したレーザ光の伝播時間と、所定時間経過
後τ2に測定した伝播時間とを照合し、測線全体が一様
な温度変動を受けても、その影響を受けずに断層の発生
の有無を検知する新規な温度補正方式を用いた光学式測
距装置を提供することにある。
A third aspect of the present invention provides a method for transmitting a laser beam from a transmission station at the head of a measurement line to a reception station at the end via a relay station, the propagation time of the laser beam measured at the time τ 1, Optical distance measurement using a new temperature correction method that checks the propagation time measured at τ2 and detects whether or not a fault has occurred even if the entire measurement line receives uniform temperature fluctuations. It is to provide a device.

【0010】請求項4の発明は、測線に設けた往路用光
学系の他に、復路用光学系を並列配設することで、光パ
ルス伝播方向の順方向、及び逆方向の計測データを得る
ことで、計測精度を向上する光学式測距装置を提供する
ことにある。
According to a fourth aspect of the present invention, forward and backward measurement data in the light pulse propagation direction are obtained by arranging a return optical system in parallel to the forward optical system provided on the measurement line. Accordingly, an object of the present invention is to provide an optical distance measuring device that improves measurement accuracy.

【0011】請求項5の発明は、測線を平行敷設するこ
とで、水底面に面的拡がりを持たせた観測網を敷設する
ことが出来る光学式測距装置を提供し、また、請求項6
の発明は、測線の伝送光パルスを光学的に多方向に分
岐、送光することで多方向に向けての測線の敷設を可能
にし、これにより、水底における測定網の敷設領域を拡
大形成し、従来よりも広い観測網から測定データを得る
ことを可能にする光学式測距装置を提供することにあ
る。
According to a fifth aspect of the present invention, there is provided an optical distance measuring apparatus capable of laying an observation network having a surface spread on the water bottom by laying the measuring lines in parallel.
The invention of the present invention optically branches the transmission light pulse of the measuring line in multiple directions, and enables the laying of the measuring line in multiple directions by transmitting the light, thereby enlarging and forming the laying area of the measurement network on the water bottom. It is another object of the present invention to provide an optical distance measuring apparatus which enables measurement data to be obtained from a wider observation network.

【0012】請求項7の発明は、水底における多数の三
角形の頂点形成位置に観測局を敷設し、各観測局は、隣
接する局からの光伝播パルスを受光し、さらに、隣接局
に対し光伝播パルスを送光することにより相互に光結合
することで、水底歪みの有無を各観測局間毎に識別可能
とするとともに、より一層広い観測網を形成し得る光学
式測距装置を提供することにある。
According to a seventh aspect of the present invention, an observation station is laid at a position where a number of triangle vertices are formed on the water floor, each observation station receives a light propagation pulse from an adjacent station, and further transmits an optical signal to the adjacent station. Provided is an optical distance measuring device that enables the presence or absence of water floor distortion to be identified for each observation station by transmitting light and transmitting a propagation pulse to each other, and that can form a wider observation network. It is in.

【0013】請求項8の発明は、対向設置された局同士
から出力される各分岐パルスを1組とし、この1組の分
岐パルスの時間幅ΔTを周波数が異なる複数のクロック
信号により計数し、それぞれの計数結果を総合すること
により正確な測定結果求める光学式測距装置を提供する
ことにある。
According to the present invention, each branch pulse output from the stations installed opposite to each other is set as one set, and the time width ΔT of the set of branch pulses is counted by a plurality of clock signals having different frequencies. An object of the present invention is to provide an optical distance measuring device for obtaining an accurate measurement result by integrating the respective counting results.

【0014】請求項9の発明は、測線を構成する各局間
に介在する水温がそれぞれ相違する場合であっても、水
温相違の影響を受けずに、基準値測定時に求めた、対向
2局間に介在する水中を透過する一方の分岐パルス光の
光路長、及び対向2局間に介在する分布型光ファイバー
温度計の光ファイバー路を伝播する他方の分岐パルス光
の光路長の差と、基準値測定時から所定時間経過した後
の測定時に求めたの両光路長の差との対比結果に基づい
て、断層の出現の有無、あるいは、断層の伸縮、地殻変
動の有無を正確に判別することができる光学式測距装置
を提供する事にある。
According to a ninth aspect of the present invention, even when the water temperatures interposed between the stations constituting the measurement line are different from each other, the water temperature difference between the two opposing stations obtained at the time of the reference value measurement is not affected by the water temperature difference. The difference between the optical path length of one of the branched pulse lights that penetrates the water and the optical path length of the other branched pulse light that propagates through the optical fiber path of the distributed optical fiber thermometer between the two opposing stations, and the reference value measurement Based on the result of comparison with the difference between the two optical path lengths obtained at the time of measurement after a lapse of a predetermined time from the time, it is possible to accurately determine the presence or absence of a fault, or the presence or absence of the expansion and contraction of the fault, the presence or absence of crustal deformation. An object of the present invention is to provide an optical distance measuring device.

【0015】[0015]

【課題を解決するための手段】そこで請求項1の発明
は、水底の断層を介在させて、光パルスを送光する送信
局と、該光パルスを受光して次段の局に送光する中継局
と、中継局からの光パルスを受光する最終段の受信局と
を所定間隔毎に対向配設してなる測線を設け、送信局か
ら中継局を経由し受信局に伝播される伝播用光パルスか
ら各局毎に観測用の光パルスを分岐し、その光電変換パ
ルスの列と、各局毎に設けたセンサにより検出した各局
設置周囲の水の屈折率、塩分濃度、水温、水圧、流速、
及び流向の検出データとを伝送ケーブルを介して地上局
に伝送し、光電変換パルス列を取り込み、基準値測定時
1 及びこの基準値測定時から所定時間経過した後の測
定時t2 において、対向配設された局同士の光電変換パ
ルスを1組とし、求めた1組毎の対向局間片道のパルス
伝播時間幅ΔT及び検出データに基づいて水底基盤にお
ける対向局間の水平歪みの発生の有無を識別するデータ
処理装置を備える光学式測距装置であって、上記データ
処理装置は、測定時t1 及び測定時t2 において、対向
局間の設置距離Lに対し見掛け上の変動を与える屈折
率、塩分濃度、水温、水圧、流速、及び流向の各パラメ
ータgをそれぞれN回反復検出し、下記演算式(2)
に、下記演算式(1)により求めた測定時t1 及び測定
時t2 における対向局間の水中の光パルスの伝播速度v
と対向局間のパルス伝播時間幅ΔTとを代入して測定時
1 及び測定時t2 における補正前の対向局間設置距離
Lを求め、下記演算式(3)に基づいて、対向局の何れ
か一方の局における任意の1つのパラメータgのN回の
反復検出値の加算値をNで除算して算出した測定時t1
及び測定時t2 における各短時間平均補正量<g>を<
δL(パラメータ)>と表し、下記演算式(3´)に示
す上記<δL(パラメータ)>を測定時t1 及び測定時
2 における補正前の対向局間の設置距離Lの見掛け上
の変動を補正するための短時間平均補正量とみなして用
い、下記演算式(4)により、測定時t1における補正
前の対向局間設置距離L(j) と短時間平均補正量<δL
(パラメータ)>t1との和に基づいて補正後の真の対向
局間設置距離Lを求め、下記演算式(4´)により、測
定時t2 における補正前の対向局間設置距離L(j) と短
時間平均補正量<δL(パラメータ)>t2との和に基づ
いて補正後の真の対向局間設置距離Lを求め、下記演算
式(5A)、又は(5B)に示す上記(測定時t2 にお
ける補正後の真の対向局間設置距離Lt2)の値から(測
定時t1 における補正後の真の対向局間設置距離Lt1
の値の差の結果に基づいて対向局間における歪みの発生
の有無を識別し、そして、下記演算式(5A)に基づい
て、上記(測定時t2 における補正後の真の対向局間設
置距離Lt2の値、及び測定時t1 における補正後の真の
対向局間設置距離Lt1の値の差)と、上記(測定時t1
及びt2における補正後の真の対向局間設置距離Lt1
びLt2の平均値)との比から、又は下記演算式(5B)
に基づいて、上記(測定時t2 における補正後の真の対
向局間設置距離Lt2の値、及び測定時t1 における補正
後の真の対向局間設置距離Lt1の値の差)と、上記(測
定時t1 における補正後の真の対向局間設置距離L t1
との比から対向局間に発生する歪み量〔ε(i、i+
1)〕t1 t2を求めるよう構成したことを特徴とする。 演算式(1):v=C0 /n、ここで、nは測定時t1
及びt2 における各局の水の実測屈折率、C0 は真空中
の光速度(3×108 m/s)、vは測定時t1及びt
2 における対向局間の光パルスの伝播速度を示す、 演算式(2):v×ΔT=L、ここで、ΔTは対向局間
の光パルスの片道伝播時間幅を示す、 ここで、<g>は各パラメータgのN回測定の平均値、
即ち、各パラメータgの短時間平均補正量、<δL(パ
ラメータ)>は補正前の対向局間の設置距離Lの見掛け
上の変動を補正するための短時間平均補正量、i、(i
+1)はi番目、(i+1)番目の局、δg(j) 及びδ
(j) はN回の反復検出のうちj回目の測定量を示す、 演算式(4):測定時t1 における補正後の真の対向局
間設置距離L=〔Lt1 C(i、i+1)〕=(測定時t
1 における補正前の対向局間設置距離〔L(j) (i、i
+1);t=t1 〕)+(測定時t1 における短時間平
均補正量<δL(パラメータ)>t1)、 演算式(4´):測定時t2 における補正後の真の対向
局間設置距離L=〔Lt2 C (i、i+1)〕=(測定時
2 における補正前の対向局間設置距離〔L(j)(i、
i+1);t=t2 〕)+(測定時t2 における短時間
平均補正量<δL(パラメータ)>t2)、 演算式(5A):〔ε(i、i+1)〕t1 t2≡{(測定
時t2 における補正後の真の対向局間設置距離〔Lt2 C
(i、i+1)〕)−(測定時t1 における補正後の真
の対向局間設置距離〔Lt1 C (i、i+1)〕)}/
0.5×{(測定時t1 における補正後の真の対向局間
設置距離〔Lt1 C (i、i+1)〕)+(測定時t2
おける補正後の真の対向局間設置距離〔Lt2 C (i、i
+1)〕)}、 演算式(5B):〔ε(i、i+1)〕t1 t2≡{(測定
時t2 における補正後の真の対向局間設置距離〔Lt2 C
(i、i+1)〕)−(測定時t1 における補正後の真
の対向局間設置距離〔Lt1 C (i、i+1)〕)}/
(測定時t1 における補正後の真の対向局間設置距離
〔Lt1 C (i、i+1)〕)。
Therefore, the invention of claim 1 is provided.
Is a transmission that transmits a light pulse through a fault at the bottom of the water
Station and a relay station that receives the light pulse and transmits the light pulse to the next station.
And the last receiving station that receives the light pulse from the relay station.
Are provided opposite to each other at predetermined intervals, and
From the propagation optical pulse propagated to the receiving station via the relay station
The optical pulse for observation is branched for each station from the
Luss row and each station detected by the sensor provided for each station
The refractive index of water around the installation, salinity, water temperature, water pressure, flow velocity,
And ground direction data via the transmission cable
At the time of reference value measurement
t1And measurement after a lapse of a predetermined time from the measurement of this reference value.
Regular time tTwoAt the photoelectric conversion
One set of pulses, one-way pulses between the opposing stations for each set obtained
Based on the propagation time width ΔT and the detected data,
For identifying the occurrence of horizontal distortion between opposing stations
An optical distance measuring device having a processing device, wherein the data
The processing device performs the measurement t1And measurement time tTwoAt the opposite
Refraction that gives an apparent variation to the installation distance L between stations
Rate, salinity, water temperature, water pressure, flow velocity, and flow direction parameters.
Data g is repeatedly detected N times, and the following equation (2) is used.
The measurement time t obtained by the following equation (1)1And measurement
Time tTwoVelocity of light pulse in water between opposite stations
At the time of measurement by substituting the pulse propagation time width ΔT between
t1And measurement time tTwoDistance between opposing stations before correction
L is calculated, and based on the following arithmetic expression (3),
N times of any one parameter g in one station
Measurement time t calculated by dividing the sum of repeated detection values by N1
And measurement time tTwoThe short-time average correction amount <g> in <
δL (parameter)> and is represented by the following arithmetic expression (3 ′).
When the above <δL (parameter)> is measured t1And during measurement
tTwoOf installation distance L between opposing stations before correction in
As a short-term average correction amount for correcting fluctuations in
According to the following equation (4), t1Correction in
Previous installation distance L between opposing stations(j)And short-time average correction amount <δL
(Parameter)>t1True opposition after correction based on the sum of
The installation distance L between stations is obtained, and measured by the following arithmetic expression (4 ′).
Regular time tTwoInstallation distance L before correction in(j)And short
Time average correction amount <δL (parameter)>t2Based on the sum of
To obtain the true installation distance L between the opposing stations after correction, and calculate
The above (measurement time t) shown in the formula (5A) or (5B)TwoIn
Distance L between corrected opposing stations after correctiont2) From the value
Regular time t1Corrected inter-station distance L after correction int1)
Of distortion between opposing stations based on the result of the difference
Is identified, and based on the following equation (5A)
And the above (at the time of measurement tTwoTrue inter-station setup after correction in
Distance Lt2And the time of measurement t1True after correction in
Installation distance L between opposing stationst1) And the above (at the time of measurement t1
And tTwoCorrected inter-station distance L after correction int1Passing
And Lt2From the average value) or the following arithmetic expression (5B)
Based on the above (at the time of measurement tTwoTrue pair after correction in
Installation distance L between stationst2And the time of measurement t1Correction in
True installation distance L between opposite stationst1Value) and the above (measurement
Regular time t1Corrected inter-station distance L after correction in t1)
And the amount of distortion [ε (i, i +
1)]t1 t2Is obtained. Operational expression (1): v = C0/ N, where n is the measurement time t1
And tTwoMeasured refractive index of water of each station at C0Is in a vacuum
Light speed (3 × 108m / s) and v is t at the time of measurement1And t
TwoEquation (2): v × ΔT = L, where ΔT is the distance between the opposing stations.
Indicates the one-way propagation time width of the light pulse ofHere, <g> is an average value of N measurements of each parameter g,
That is, the short-time average correction amount of each parameter g, <δL (parameter
Parameter)> indicates the apparent installation distance L between opposing stations before correction
Short-term average correction amount for correcting the above fluctuation, i, (i
+1) is the i-th station, the (i + 1) -th station, δg(j)And δ
L(j)Indicates the j-th measured amount of N repeated detections. Equation (4): Measurement time t1True opposite station at
Installation distance L = [Lt1 C(I, i + 1)] = (measurement time t
1In the opposite station before correction [L(j)(I, i
+1); t = t1]) + (At the time of measurement t)1Short time flat in
Average correction amount <δL (parameter)>t1), Equation (4 '): t during measurementTwoTrue opposition after correction at
Station installation distance L = [Lt2 C(I, i + 1)] = (at the time of measurement
tTwoIn the opposite station before correction [L(j)(I,
i + 1); t = tTwo]) + (At the time of measurement t)TwoShort time in
Average correction amount <δL (parameter)>t2), Equation (5A): [ε (i, i + 1)]t1 t2≡ {(Measure
Time tTwoOf the true installation distance between opposing stations [Lt2 C
(I, i + 1)])-(at the time of measurement t1True after correction in
Installation distance [Lt1 C(I, i + 1)])} /
0.5 × {(at measurement t1Between true opposing stations after correction at
Installation distance [Lt1 C(I, i + 1)]) + (measurement tTwoTo
Corrected distance between opposing stations after correction [Lt2 C(I, i
+1)])}, Equation (5B): [ε (i, i + 1)]t1 t2≡ {(Measure
Time tTwoOf the true installation distance between opposing stations [Lt2 C
(I, i + 1)])-(at the time of measurement t1True after correction in
Installation distance [Lt1 C(I, i + 1)])} /
(At the time of measurement1Corrected distance between opposing stations after correction
[Lt1 C(I, i + 1)]).

【0016】請求項2の発明は、上記<δL(パラメー
タ)>が、上記測定時t1 及び測定時t2 における補正
前の対向局間の設置距離Lの見掛け上の変動を補正する
ための短時間平均補正量として、上記対向局の何れか一
方の局における任意の複数のパラメータgの各短時間平
均補正量<g>を加算するとき、又は対向局の各局にお
ける任意の複数のパラメータgの各短時間平均補正量<
g>を加算して対向局数2で除算した平均値で示すとき
は、<δL´(パラメータ)>として表し、下記演算式
(4A)により、測定時t1 における補正前の対向局間
設置距離L(j)と短時間平均補正量<δL´(パラメー
タ)>t1 との和に基づいて測定時t1における補正後
の真の対向局間設置距離Lを求め、下記演算式(4B)
により、測定時t2 における補正前の対向局間設置距離
(j) と短時間平均補正量<δL´(パラメータ)>
t2 との和に基づいて測定時t2 における補正後の真の
対向局間設置距離Lを求め、下記演算式(5A)、又は
(5B)に示す(測定時t2における補正後の真の対向
局間設置距離Lt2)の値から(測定時t1 における補正
後の真の対向局間設置距離Lt1)の値の差の結果に基づ
いて対向局間における歪みの発生の有無を識別し、そし
て、下記演算式(5A)に基づいて、(測定時t2 にお
ける補正後の真の対向局間設置距離Lt2の値、及び測定
時t1 における補正後の真の対向局間設置距離Lt1の値
の差)と、上記(測定時t1 及びt2 における補正後の
真の対向局間設置距離Lt1及びLt2の平均値)との比か
ら、又は下記演算式(5B)に基づいて、(測定時t2
における補正後の真の対向局間設置距離Lt2の値、及び
測定時t1 における補正後の真の対向局間設置距離Lt1
の値の差)と、(測定時t1 における補正後の真の対向
局間設置距離Lt1)との比から対向局間に発生する歪み
量〔ε(i、i+1)〕t1 t2を求める事を特徴とする。 演算式(4A):測定時t1 における補正後の真の対向
局間設置距離L=〔Lt1 C (i、i+1)〕=(測定時
1 における補正前の対向局間設置距離〔L(j)(i、
i+1);t=t1 〕)+(測定時t1 における短時間
平均補正量<δL´(パラメータ)>t1)、 演算式(4B):測定時t2 における補正後の真の対向
局間設置距離L=〔Lt2 C (i、i+1)〕=(測定時
2 における補正前の対向局間設置距離〔L(j)(i、
i+1);t=t2 〕)+(測定時t2 における短時間
平均補正量<δL´(パラメータ)>t2)、 演算式(5A):〔ε(i、i+1)〕t1 t2≡{(測定
時t2 における補正後の真の対向局間設置距離〔Lt2 C
(i、i+1)〕)−(測定時t1 における補正後の真
の対向局間設置距離〔Lt1 C (i、i+1)〕)}/
0.5×{(測定時t1 における補正後の真の対向局間
設置距離〔Lt1 C (i、i+1)〕)+(測定時t2
おける補正後の真の対向局間設置距離〔Lt2 C (i、i
+1)〕)}、 演算式(5B):〔ε(i、i+1)〕t1 t2≡{(測定
時t2 における補正後の真の対向局間設置距離〔Lt2 C
(i、i+1)〕)−(測定時t1 における補正後の真
の対向局間設置距離〔Lt1 C (i、i+1)〕)}/
(測定時t1 における補正後の真の対向局間設置距離
〔Lt1 C (i、i+1)〕)。
The invention of claim 2 is characterized in that the above-mentioned <δL (parameter
T)> is the time t1And measurement time tTwoCorrection in
Correct the apparent fluctuation of the installation distance L between the previous opposing stations
Any one of the above opposing stations as the short-time average correction amount for
Of each of the plurality of parameters g at each station
When adding the average correction amount <g> or when adding
Short-term average correction amount of arbitrary parameters g <
When the average value is obtained by adding g> and dividing by the number of opposing stations 2
Is represented as <δL ′ (parameter)>,
According to (4A), measurement time t1Between opposing stations before correction
Installation distance L(j)And short-time average correction amount <δL '(parameter
Ta)>t1At the time of measurement based on the sum of1After correction in
Is calculated as the true inter-station distance L, and the following equation (4B)
The measurement time tTwoDistance between opposing stations before correction
L(j)And short-time average correction amount <δL '(parameter)>
t2At the time of measurement based on the sum ofTwoTrue after correction in
The installation distance L between the opposing stations is obtained, and the following arithmetic expression (5A) or
(5B) (at the time of measurement tTwoTrue opposition after correction at
Station installation distance Lt2) Value (measurement time t1Correction in
True installation distance L between opposite stationst1) Based on the result of the difference
To identify whether or not distortion has occurred between opposing stations, and
Then, based on the following equation (5A),TwoIn
Distance L between corrected opposing stations after correctiont2Value and measurement
Time t1Corrected inter-station distance L after correction int1The value of the
Difference) and the above (at the time of measurement t)1And tTwoAfter correction in
True distance L between opposing stationst1And Lt2Average)
Or based on the following equation (5B):Two
Corrected inter-station distance L after correction int2The value of and
Measurement time t1Corrected inter-station distance L after correction int1
(Difference in the value of1True opposition after correction at
Station installation distance Lt1) And distortion generated between opposite stations
Quantity [ε (i, i + 1)]t1 t2It is characterized by seeking. Equation (4A): t at the time of measurement1True opposition after correction at
Station installation distance L = [Lt1 C(I, i + 1)] = (at the time of measurement
t1In the opposite station before correction [L(j)(I,
i + 1); t = t1]) + (At the time of measurement t)1Short time in
Average correction amount <δL '(parameter)>t1), Equation (4B): t during measurementTwoTrue opposition after correction at
Station installation distance L = [Lt2 C(I, i + 1)] = (at the time of measurement
tTwoIn the opposite station before correction [L(j)(I,
i + 1); t = tTwo]) + (At the time of measurement t)TwoShort time in
Average correction amount <δL '(parameter)>t2), Equation (5A): [ε (i, i + 1)]t1 t2≡ {(Measure
Time tTwoOf the true installation distance between opposing stations [Lt2 C
(I, i + 1)])-(at the time of measurement t1True after correction in
Installation distance [Lt1 C(I, i + 1)])} /
0.5 × {(at measurement t1Between true opposing stations after correction at
Installation distance [Lt1 C(I, i + 1)]) + (measurement tTwoTo
Corrected distance between opposing stations after correction [Lt2 C(I, i
+1)])}, Equation (5B): [ε (i, i + 1)]t1 t2≡ {(Measure
Time tTwoOf the true installation distance between opposing stations [Lt2 C
(I, i + 1)])-(at the time of measurement t1True after correction in
Installation distance [Lt1 C(I, i + 1)])} /
(At the time of measurement1Corrected distance between opposing stations after correction
[Lt1 C(I, i + 1)]).

【0017】請求項3の発明は、水底の断層を介在させ
て、光パルスを送光する送信局と、光パルスを受光して
次段の局に送光する中継局と、中継局からの光パルスを
受光する最終段の受信局とを所定間隔毎に対向配設して
なる測線を設け、送信局から中継局を経由し受信局に送
光される伝播用光パルスから各局毎に観測用の光パルス
を分岐し、その光電変換パルス列を伝送ケーブルを介し
て地上局に伝送し、基準量測定時τ1 において、光電変
換パルス列を取り込み、対向配設された局同士の分岐パ
ルスを1組とし、その1組毎の対向局間片道のパルス伝
播時間幅ΔTを求め、加算して測線の伝播時間Tを基準
伝播時間として求め、基準伝播時間Tと基準量測定時τ
1 の後の測定時τ2 に求めた伝播時間Tとを対比し、そ
の差異の有無から水底基盤における水平歪みの変化の有
無を識別するデータ処理装置を備える光学式測距装置で
あって、上記各局に、設置周囲の水温を検出する温度セ
ンサ及び水の屈折率nを検出する屈折率計を設け、上記
データ処理装置は、基準量測定時τ1 の実測水温を初期
温度tAs℃とし、水温における水の実測屈折率を初期屈
折率nAsとし、初期屈折率nAsを下記演算式1に代入し
て求めた光パルスの伝播速度を初期伝播速度vAsとし、
さらに、各局同士間の1組毎の実測パルス伝播時間幅Δ
Tの和を初期伝播時間TAsとして記憶手段に記憶し、基
準量測定後の測定時τ2 の実測水温tn ℃における実測
屈折率nn を下記演算式1に代入して光パルスの伝播速
度vn を算出して、1組毎の実測パルス伝播時間幅ΔT
の和を実測伝播時間Tn として求め、基準量測定後の測
定時τ2 の実測伝播時間Tn 及び伝播速度vn と、初期
伝播速度vAsとを下記演算式2に代入して求めた伝播時
間TAsn を、基準量測定後の測定時τ2 における実測伝
播時間Tn を初期温度t As℃における初期伝播時間TAs
に温度補正された伝播時間TAsn として記憶保持し、基
準量測定時τ1 の初期伝播時間TAsと温度補正した伝播
時間TAsn とを対比し、その対比結果に基づいて水平歪
みの有無を識別するように構成したことを特徴とする。 演算式1:v=C0 /n、ここで、nは上記基準量測定
時τ1 及び該基準量測定後の測定時τ2 の水の実測屈折
率、C0 は真空中の光速度(3×108 m/s)、vは
算出した上記基準量測定時τ1 及び該基準量測定後の測
定時τ2 の水中の光パルスの初期伝播速度を示す、 演算式2:TAsn =(vn ・Tn )/vAs、ここで、v
Asは上記基準量測定時τ 1 に測定した水中の光パルスの
初期伝播速度、vn は該基準量測定時τ1 の後の測定時
τ2 における水中の光パルスの伝播速度、Tn は上記測
定時τ2 の実測伝播時間、TAsn は測定時τ2 の実測伝
播時間Tn を上記基準量測定時τ1 の初期温度tAs℃に
おける初期伝播時間TAsに温度補正した伝播時間を示
す。
According to a third aspect of the present invention, a fault at the bottom of the water is interposed.
And a transmitting station that transmits optical pulses and
A relay station that transmits light to the next station and an optical pulse from the relay station
The last receiving station that receives the light is installed facing each other at predetermined intervals.
Transmission line from the transmitting station to the receiving station via the relay station.
Light pulse for observation for each station from light pulse for propagation
And the photoelectric conversion pulse train is transmitted via a transmission cable.
To the ground station, and when measuring the reference amount τ1In, photoelectric conversion
Pulse train, and the branching path between stations
One set of pulses, and each set of one-way pulse transmission
Calculate the seeding time width ΔT, add it, and refer to the propagation time T of the survey line
Determined as the propagation time, the reference propagation time T and the reference amount measurement time τ
1Measurement time afterTwoIs compared with the propagation time T found in
Of horizontal strain on the bottom of the seabed
An optical distance measuring device equipped with a data processing device that identifies nothing
Each station has a temperature sensor to detect the water temperature around the installation.
A refractometer for detecting the refractive index n of the sensor and water,
The data processing device calculates the reference amount τ1Initially measured water temperature of
Temperature tAs° C and the measured refractive index of water at
Folding ratio nAsAnd the initial refractive index nAsInto Equation 1 below
The propagation speed of the light pulse obtained byAsage,
Furthermore, the measured pulse propagation time width Δ for each pair between the stations
T is the initial propagation time TAsStored in the storage means as
At the time of measurement after measurement of reference quantity τTwoActual measured water temperature tnActual measurement at ℃
Refractive index nnInto the following equation 1 to calculate the light pulse propagation speed
Degree vnTo calculate the measured pulse propagation time width ΔT for each set
Is the actual propagation time TnMeasurement after the reference amount measurement.
Scheduled τTwoMeasured propagation time TnAnd the propagation velocity vnAnd the initial
Propagation speed vAsAt the time of propagation calculated by substituting
Interval TAsnAt the time of measurement after the reference amount measurement τTwoMeasurements in Japan
Sowing time TnIs the initial temperature t AsInitial propagation time T in ° CAs
Time T corrected for temperatureAsnAs a memory
At the time of reference value measurement τ1Initial propagation time TAsAnd temperature compensated propagation
Time TAsnAnd horizontal distortion based on the comparison result.
Characterized in that it is configured to identify the presence or absence of only Equation 1: v = C0/ N, where n is the reference amount measurement
Time τ1And the measurement time τ after the reference amount measurementTwoActual refraction of water
Rate, C0Is the speed of light in a vacuum (3 × 108m / s), v is
When measuring the calculated reference amount τ1And measurement after the measurement of the reference amount.
Scheduled τTwoEquation 2: T, which indicates the initial propagation speed of the light pulse in the water.Asn= (Vn・ Tn) / VAs, Where v
AsIs τ when measuring the reference amount. 1Of light pulse in water measured at
Initial propagation velocity, vnIs τ when measuring the reference amount.1When measuring after
τTwoVelocity of light pulse in water at TnIs
Scheduled τTwoMeasured propagation time, TAsnIs the measurement time τTwoActual measurement
Sowing time TnAt the time of the above-mentioned reference amount measurement τ1Initial temperature tAs
Initial propagation time TAsShows the propagation time with temperature compensation
You.

【0018】請求項4の発明は、上記測線における各局
毎に、光パルスを送光する送信局からのレーザ光送光方
向に配設されている光学的測定系と並例に、かつレーザ
光送光方向とは逆方向に向けて光学的測定系を配設する
ことにより、測線に往復路光学的測定系を形成し、往復
路光学的測定系により検出したパルス伝播時間幅データ
と、各局に設けたセンサからの検出データとを上記デー
タ処理装置に伝送する事を特徴とする。
According to a fourth aspect of the present invention, there is provided, in parallel with the optical measuring system disposed in the direction of transmitting a laser beam from a transmitting station for transmitting an optical pulse, for each station on the measurement line, By arranging the optical measurement system in the direction opposite to the light transmission direction, a round-trip optical measurement system is formed on the measurement line, and the pulse propagation time width data detected by the round-trip optical measurement system and each station And transmitting the detection data from the sensor provided to the data processing device.

【0019】請求項5の発明は、上記測線に対し、先頭
に位置する送信局、中継局、及び受信局の列からなる測
線の多数を、測線の伝播用光パルスを送光する送信局
と、各測線の先頭送信局とが並列位置するよう敷設し、
測線の送信局と、各測線の先頭送信局とが、測線の送信
局が送光する伝播用光パルスから分岐した伝播用光パル
スを各測線の先頭送信局に順次伝播するよう光結合され
ており、各測線の先頭送信局から中継局を介して受信局
に、伝播用光パルスを送光し、各測線の先頭送信局、中
継局、及び受信局から分岐した伝播用光パルスから分岐
した観測用の光パルスの光電変換パルス列と、各局毎に
設けたセンサからの検出データとをデータ処理装置に伝
送することを特徴とする。
According to a fifth aspect of the present invention, there is provided a transmission line for transmitting a light pulse for propagation of a survey line, comprising: a plurality of survey lines comprising a train of a transmitting station, a relay station, and a receiving station positioned at the head of the survey line; , Laying so that the top transmitting station of each survey line is located in parallel,
The transmission line transmission station and the head transmission station of each measurement line are optically coupled so as to sequentially propagate the propagation light pulse branched from the propagation light pulse transmitted by the transmission line transmission station to the head transmission station of each measurement line. The transmitting optical pulse is transmitted from the head transmitting station of each path to the receiving station via the relay station, and is branched from the transmitting optical pulse branched from the head transmitting station, the relay station, and the receiving station of each path. A photoelectric conversion pulse train of optical pulses for observation and detection data from a sensor provided for each station are transmitted to a data processing device.

【0020】請求項6の発明は、上記測線における所定
の局を、送信局から送光する伝播用光パルスを分岐する
分岐局とし、分岐局から複数の方向に向けて、先頭に位
置する送信局、中継局、及び受信局よりなる分岐測線の
複数を分岐敷設し、伝播用光パルスを分岐局にて分岐
し、各分岐測線の先頭送信局から中継局を介して受信局
に送光し、各分岐測線の先頭送信局、中継局、及び受信
局から、伝播用光パスルから分岐した観測用の光パルス
の光電変換パルス列と、各分岐測線の各局に設けたセン
サの検出データとを上記データ処理装置に伝送する事を
特徴とする。
According to a sixth aspect of the present invention, the predetermined station on the measurement line is a branch station for branching the propagation optical pulse transmitted from the transmitting station, and the transmitting station positioned at the head of the branch station in a plurality of directions from the branch station. A plurality of branch paths including a station, a relay station, and a receiving station are laid in a branch, the propagation optical pulse is branched at the branch station, and light is transmitted from the head transmitting station of each branch path to the receiving station via the relay station. From the head transmitting station, relay station, and receiving station of each branch path, the photoelectric conversion pulse train of the observation light pulse branched from the propagation optical pulse, and the detection data of the sensor provided at each station of each branch path, It is characterized in that it is transmitted to a data processing device.

【0021】請求項7の発明は、水底における多数の三
角形の頂点を形成する位置毎に観測局を敷設し、観測局
は、この観測局から発生される光伝播パルスを観測局に
隣接する観測局のうちの半数の観測局に対してそれぞれ
送光し、隣接する観測局のうちの残りの半数の観測局か
ら送光される光伝播パルスをそれぞれ受光するよう構成
することにより観測局同士が相互に光結合している光学
式測距装置であって、観測局と、この観測局に隣接する
各観測局との間で送、受光される光伝播パルスの検出伝
播時間幅データ、及び各観測局に設けたセンサの上記検
出データとをデータ処理装置に伝送することを特徴とす
る。
According to a seventh aspect of the present invention, an observation station is laid at each position forming the vertices of a large number of triangles on the water floor. By transmitting light to half of the observation stations, and receiving light propagation pulses transmitted from the other half of the adjacent observation stations, the observation stations can communicate with each other. An optical distance measuring device optically coupled to each other, comprising: an observation station and data transmitted and received between each observation station adjacent to the observation station; The detection data of the sensor provided in the observation station is transmitted to a data processing device.

【0022】請求項8の発明は、上記光電変換パルス列
を伝送ケーブルを介して地上局に伝送し、対向設置され
た局同士の分岐パルスを1組とし、1組毎のパルス伝播
時間幅ΔTを、周波数が異なる複数のクロックパルスに
より計数することを特徴とする。
According to an eighth aspect of the present invention, the above-described photoelectric conversion pulse train is transmitted to a ground station via a transmission cable, and a set of branch pulses between the stations installed opposite to each other is set as a pulse propagation time width ΔT for each set. , Counting by a plurality of clock pulses having different frequencies.

【0023】請求項9の発明は、水底の断層を介在させ
て、光パルスを送光する送信局、光パルスを受光して次
段の局に送光する中継局、及び中継局からの光パルスを
受光する最終段の受信局を所定間隔毎に配設してなる測
線を敷設し、データ処理装置を備える地上局からの伝送
ケーブルを上記送信局、中継局、及び受信局を連接し、
対向する上記各局同士間に介在する伝送ケーブルに、各
局同士を接続する分布型光ファイバー温度計をそれぞれ
添設し、基準量測定時t1 及び該測定時t1 から所定時
間経過後の測定時t2 のそれぞれの計測時において、対
向局の一方の対向局から他方の対向局に向け、上記一方
の対向局にて分岐した一方の分岐光パルスSwを上記対
向局間に介在する水中光路を透過させると共に、他方の
分岐光パルスScを上記対向局間同士を連接する分布型
光ファイバー温度計の光ファイバー光路を介して伝送
し、分岐光パルスSc及び基準光パルスSpを他方の対
向局内設置の計測演算装置の第1成分検出部にて受光
し、検出した両パルスSc及びSp間の位相差を示す第
1の成分信号と、分岐光パルスSw及び基準光パルスS
pを計測演算装置の第2成分検出部にて受光し、検出し
た両パルスSw及びSp間の位相差を示す第2の成分信
号との位相差を示す基準量測定時t1 及び測定時t2
検出信号をそれぞれ伝送ケーブルを介して地上局に伝送
し、地上局にて、基準量測定時t1 における計測時の検
出信号と測定時t2 における計測時の検出信号との位相
差を対比し、その対比結果に基づいて、測線を構成する
対向局間に介在する水温とその余の対向局間の水温との
相違に関係無く、断層の出現の有無、あるいは、断層の
伸縮、地殻変動の有無を識別することを特徴とする。
According to a ninth aspect of the present invention, there is provided a transmitting station for transmitting an optical pulse through a fault at the bottom of the water, a relay station for receiving the optical pulse and transmitting the light pulse to a next station, and a light from the relay station. Lay out a survey line that arranges the receiving stations at the final stage receiving the pulse at predetermined intervals, and connect the transmission cable from the ground station equipped with the data processing device to the transmitting station, the relay station, and the receiving station,
The transmission cable interposed between the stations facing each other, the distributed optical fiber thermometer which connects the stations to each other and additionally provided respectively, the reference measuring time t 1 and the surveying Ordinary t 1 from a predetermined time has elapsed after the measurement time t At the time of each measurement of 2 , one branch optical pulse Sw branched from the one opposing station is transmitted from one opposing station to the other opposing station through the underwater optical path interposed between the opposing stations. At the same time, the other branch light pulse Sc is transmitted via the optical fiber optical path of the distributed optical fiber thermometer connecting the opposite stations, and the branch light pulse Sc and the reference light pulse Sp are measured and calculated in the other counter station. A first component signal received and detected by a first component detection unit of the device and indicating a phase difference between the two pulses Sc and Sp, a branch light pulse Sw and a reference light pulse S
p is received by the second component detection unit of the measurement and calculation device, and the reference amount measurement time t 1 and the measurement time t indicating the phase difference with the second component signal indicating the phase difference between the two detected pulses Sw and Sp. 2 is transmitted to the ground station via the transmission cable, and the ground station calculates the phase difference between the detection signal at the time of measurement of the reference amount t 1 and the detection signal at the time of measurement t 2 . Based on the comparison result, based on the comparison result, regardless of the difference between the water temperature between the opposing stations constituting the survey line and the water temperature between the other opposing stations, the presence or absence of a fault, expansion or contraction of the fault, crustal crust It is characterized by the presence or absence of a change.

【0024】[0024]

【発明の実施の形態】以下に本発明の第1の実施の形態
の詳細を、添付した図面に基づいて説明する。図1は海
底に配設する本発明のレーザ光送信局の構成を示し、
(A)は同(B)の切断線A−A′に沿って切断して矢
印P方向から眺めた送信局の一部断面図、(B)は
(A)に示す送信局の斜視図、図2は測線の中継局の内
部構成を概略的に示す断面図、図3は海底の送信局、中
継局、及び受信局からの観測データを地上局に送信する
伝送ケーブルと、片側給電を行う給電線とを備える外装
ケーブルの断面図、図4(A)は送信局、中継局、及び
受信局に設けた光増幅器の構成図、(B)は光増幅器の
例としてエルビウム(Er )添加型光ファイバー式光増
幅器の構成図を示し、図5は光電力を分岐するカプラー
を示すもので、(A)は送信局に配設される前段の光カ
プラーを側面から眺めた図、(B)は上記送信局の前段
の光カプラーの後段に配設される光カプラーを側面から
眺めた図、(C)は測線の最終段の受信局に設けた光カ
プラーを側面から眺めた図、図6は図8に示す第1組の
測線AAの各局構成の概略的断面を示し、光源光送信局
10aからのパルス光が中継局10b・・・を経由して
最終段の受信局10nに送光する間に、各局から発信さ
れる光電変換パルスを外装ケーブルを介して伝送する説
明図、図7は図8に示す第2組の測線BBの各局構成の
概略的断面を示し、測線AAの送信局10aからの分岐
光を受光した先頭の送信局20a、中継局20bを経由
して受信局20nに受光される間に、各局から発信され
る光電変換パルスを外装ケーブルを介して伝送する説明
図、図8は本発明の光学式測距装置の第1の敷設方式に
よる全体配設図を示し、2組の測線を平行敷設したブロ
ック図、図9(A)は測線AA、測線BBの各局から送
光される光パルス列Ma 、Mb 、・・・Mn 、及びM´
a 、M´b 、・・・M´n を示し、(B)は各局から光
パルスが送信される間に、光の分岐、伝播による光強度
の減衰を補償する目的で、減衰された光強度をレーザ光
源から出射されるレーザ光の光強度に光増幅した光強度
の減衰・増幅変動波形図、(C)は分岐された光パルス
の光電変換パルス列Pa 、Pb 、・・・Pn 、及びP´
a 、P´b 、・・・P´n と、各パルス間の伝播時間幅
ΔTab、ΔTbc、・・・ΔTmn、及びΔT´ab、ΔT´
bc、・・・ΔT´mnとを示す波形図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The first embodiment of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 shows a configuration of a laser light transmitting station of the present invention disposed on the sea floor,
(A) is a partial cross-sectional view of the transmitting station cut along the cutting line AA ′ of (B) and viewed from the direction of arrow P, (B) is a perspective view of the transmitting station shown in (A), FIG. 2 is a cross-sectional view schematically showing an internal configuration of a relay station of a survey line. FIG. 3 is a transmission cable for transmitting observation data from a transmitting station, a relay station, and a receiving station on the sea floor to a ground station, and one-side power supply. FIG. 4A is a sectional view of an optical amplifier provided in a transmitting station, a relay station, and a receiving station, and FIG. 4B is an erbium ( Er ) -doped optical amplifier as an example of the optical amplifier. FIG. 5 shows a configuration diagram of a type optical fiber type optical amplifier, FIG. 5 shows a coupler for splitting optical power, (A) is a diagram of a front stage optical coupler disposed in a transmitting station, viewed from the side, and (B). Is a side view of the optical coupler disposed after the optical coupler preceding the transmitting station, and FIG. FIG. 6 is a side view of an optical coupler provided in a receiving station at the last stage of FIG. 6. FIG. 6 is a schematic cross section of each station configuration of the first set of measurement lines AA shown in FIG. FIG. 7 is an explanatory view of transmitting photoelectric conversion pulses transmitted from each station via an external cable while transmitting light to the final receiving station 10n via the relay station 10b... FIG. 7 is shown in FIG. FIG. 4 shows a schematic cross section of the configuration of each station of the second set of measurement lines BB. FIG. FIG. 8 is an explanatory diagram for transmitting a photoelectric conversion pulse transmitted from each station via an external cable. FIG. 8 is an overall arrangement diagram of the optical distance measuring apparatus according to the first installation method of the present invention, showing two sets of measurement lines. 9A is a block diagram in which line AA and line B are shown. Optical pulse train is sending from each station M a, M b, ··· M n, and M'
a , M ′ b ,... M ′ n , and (B) shows attenuated light for the purpose of compensating for attenuation of light intensity due to branching and propagation of light during transmission of an optical pulse from each station. FIG. 7C is an attenuation / amplification fluctuation waveform diagram of the light intensity obtained by optically amplifying the light intensity to the light intensity of the laser light emitted from the laser light source, and FIG. 9C shows the photoelectric conversion pulse trains P a , P b ,. n and P '
a, P'b, ··· P'n and the propagation time width [Delta] T ab between pulses, [Delta] T bc, · · · [Delta] T mn, and ΔT' ab, ΔT'
FIG. 6 is a waveform diagram showing bc ,... ΔT ′ mn .

【0025】図1(A)に示すように、海底Eには、地
上局のデータ処理装置からの指令信号により、所定時間
間隔毎に点灯するパルスレーザ光源4を内蔵する光送信
局10aが設置され、その耐圧容器1は、鉄製で、四角
柱形状を有し、その高さは、例えば、1.5m程度、重
量は、例えば、200〜300kgであり、そして、容
器1の内部は、真空状態、又は、大気圧に保持されると
ともに、後述する光学系を備えている。さらに、耐圧容
器1の外側面、又は、その頂面に、海水の屈折率を検出
する屈折率計12、サーミスタ等による水温検出用の温
度センサ13、ストレンゲージ等による水圧センサ1
4、例えばレーザドップラー型の流速検出用の流速セン
サ15、流向計16、及び塩分濃度計として、例えば、
ナトリウムイオン電極式又は電導式塩分濃度計17が並
設され、また、容器1の内部には、地震計10と、光源
光送信局10aの傾斜状態を検知する傾斜計11とが設
けられ、それらの測定データは容器1内に配設した信号
線18を経由し、後述する外装ケーブル103Aを介し
て図示しない地上局に送信される。
As shown in FIG. 1A, an optical transmission station 10a having a built-in pulse laser light source 4 which is turned on at predetermined time intervals in accordance with a command signal from a data processing device of a ground station is installed on the sea floor E. The pressure-resistant container 1 is made of iron, has a square pillar shape, a height of, for example, about 1.5 m, a weight of, for example, 200 to 300 kg, and the inside of the container 1 has a vacuum. It is maintained in a state or an atmospheric pressure, and has an optical system described later. Further, a refractometer 12 for detecting the refractive index of seawater, a temperature sensor 13 for detecting a water temperature using a thermistor, etc., and a water pressure sensor 1 using a strain gauge or the like are provided on the outer surface or the top surface of the pressure vessel 1.
4, for example, as a laser Doppler type flow velocity sensor 15 for flow velocity detection, a flow direction meter 16, and a salt concentration meter, for example,
A sodium ion electrode type or conductive salt concentration meter 17 is juxtaposed, and a seismometer 10 and an inclinometer 11 for detecting an inclination state of the light source light transmitting station 10a are provided inside the container 1, Is transmitted to a ground station (not shown) via a signal line 18 disposed in the container 1 and an external cable 103A described later.

【0026】耐圧容器1の側壁下部を貫通している外装
ケーブル103Aは、図3に示すように、例えば、各局
からの光信号伝送用の光ファイバーケーブル及び光電変
換パルス等の観測データを伝送する通信線よりなる伝送
ケーブル113と、その周囲を囲む片側給電線123
と、伝送ケーブル113及び給電線123を囲む外装部
133とにより構成されているが、対向耐圧容器1間に
介在するケーブル103Aは、対向耐圧容器1間の海底
に歪みが発生しても、その影響を吸収して容器1が転倒
しないようにたるみを持たせて接続されている。なお、
外装部133には、必要に応じて鉄線を巻付けるよう構
成して引っ張り強度を増大させることも可能である。勿
論、図8に示す測線BBの外装ケーブル103Bも同様
に構成されている。
As shown in FIG. 3, the outer cable 103A penetrating the lower part of the side wall of the pressure vessel 1 is, for example, an optical fiber cable for transmitting an optical signal from each station and a communication for transmitting observation data such as a photoelectric conversion pulse. Transmission cable 113 composed of a single line and a one-sided power supply line 123 surrounding the transmission cable 113
And the outer portion 133 surrounding the transmission cable 113 and the power supply line 123. The cable 103A interposed between the opposing pressure-resistant containers 1 is not affected even if the seabed between the opposing pressure-resistant containers 1 is distorted. The connection is made with a slack so that the container 1 does not fall down by absorbing the influence. In addition,
An iron wire may be wound around the exterior part 133 as necessary to increase the tensile strength. Of course, the armored cable 103B of the measuring line BB shown in FIG. 8 has the same configuration.

【0027】図1(B)にも見られるように、容器1の
底面に設けた重錘19の底面から約1mの高さ位置の4
側面には、耐圧性及び光透過性を持つパイレックス(登
録商標)製等の窓3がそれぞれ設けられ、耐圧容器1の
側壁の上部には、容器1の各側面の上部縁から水平4方
向に向けて突出する4つの庇部分2・・・を設け、窓3
が、海底に沈降するプランクトン等の死骸により汚染さ
れないようにする。
As can be seen from FIG. 1 (B), the 4
A window 3 made of Pyrex (registered trademark) or the like having pressure resistance and light transmissivity is provided on each side surface. Are provided with four eaves 2 projecting toward
However, it should not be contaminated by dead bodies such as plankton that settle on the sea floor.

【0028】次に、図1(A)を再び参照して容器1内
の光学系を説明すると、レーザ光源4から出射されたレ
ーザパルス光は、図1(A)では判別を容易にする目的
でその形状を概略的にT字形状にて示してあるが、図5
(A)に示すように、前段の光電力分岐カプラー5Aの
ポート51に入射して光電力を二分し、ポート52を介
し、その一方の分岐パルス光L1を、図4(A)に示す
ように、光増幅器6に入射させ、その入射により閉止さ
れたスイッチSWを介して電源E1からの電流供給によ
りランプを点灯して光L2を送光し、ランプ光L2を光
増幅器の光導電体Fに受光させ、電源E2からEL(電
場発光体)に電流が供給され、上記した分岐による光減
衰を、レーザ光源4からの出射光強度と同じ光強度にな
るように増幅した光パルス信号L3を出射する。
Next, referring to FIG. 1A again, the optical system in the container 1 will be described. The laser pulse light emitted from the laser light source 4 is shown in FIG. In FIG. 5, the shape is schematically shown by a T-shape.
As shown in FIG. 4A, the optical power is incident on the port 51 of the preceding optical power branching coupler 5A to divide the optical power into two, and one of the branched pulse lights L1 is passed through the port 52 as shown in FIG. The lamp is turned on by the current supply from the power supply E1 through the switch SW closed by the incidence to transmit the light L2, and the lamp light L2 is transmitted to the photoconductor F of the optical amplifier. And a current is supplied from a power source E2 to an EL (electroluminescent element), and an optical pulse signal L3 obtained by amplifying the optical attenuation due to the above-mentioned branching to have the same light intensity as the light intensity emitted from the laser light source 4 is obtained. Emit.

【0029】あるいは、図4(B)に示すように、光増
幅器として、例えばエルビウム(E r )添加型光ファイ
バー増幅器6´を用い、レーザ光を光増幅して出射させ
てもよい。この増幅器6´の構成を概略的に説明する
と、エルビウム(Er )をシリケイトガラス、または、
フォスフェイトガラスにドープしてなる光ファイバOF
のレーザ光入射部ITから、入力光カプラーIC、フィ
ルタFIL、光ファイバOFのループ形成部、及びその
出射側に光カプラーCが連接され、さらに、その出射側
を分岐し、その一方にはEr の980nm、または14
80nmの吸収線に一致する半導体レーザを備えるポン
プレーザPLが、その他方には光増幅したレーザ光を出
力する出射部OTが設けられている。
Alternatively, as shown in FIG.
For example, erbium (E r) Additive type optical fiber
Using a bar amplifier 6 ', the laser light is amplified and emitted.
You may. The configuration of the amplifier 6 'will be schematically described.
And Erbium (Er) Is silicate glass, or
Optical fiber OF doped with phosphate glass
The input optical coupler IC and the filter
Ruta FIL, loop forming part of optical fiber OF, and its
An optical coupler C is connected to the output side, and further, the output side
And one of them has Er980 nm, or 14
Pont with semiconductor laser coincident with 80 nm absorption line
The laser PL emits an optically amplified laser beam to the other side.
There is provided a light emitting part OT for power.

【0030】そして、ポンプレーザPLのレーザ光によ
り光ファイバOFのエルビウム(E r )を光励起する
と、光ファイバOFの入射部ITに入力された、点線で
示す1550nmの波長を持つ弱い入射光が(図4
(A)の入射光L1に相当)、光ファイバOF中を実線
で示すように伝播しながら光増幅されて出射端OTから
出力される1550nmの光(実線で示す、図4(A)
の増幅した光パルス信号L3に相当)を利用するように
してもよい。
Then, the laser light of the pump laser PL is used.
Erbium (E) rPhotoexcitation
And the dotted line input to the entrance IT of the optical fiber OF
The weak incident light having the wavelength of 1550 nm shown in FIG.
(Corresponding to the incident light L1 in (A)), and a solid line in the optical fiber OF.
The light is amplified while propagating as shown by
The output light of 1550 nm (shown by a solid line in FIG. 4 (A)
(Corresponding to the amplified optical pulse signal L3)
May be.

【0031】そして、図5(B)に示す後段の分岐カプ
ラー5Bに向けて送光する。上記した他方の分岐パルス
光は、観測用光パルスとして、図5(A)に示すよう
に、点線で示す端部を下方に緩く曲げたポート53を介
して光電変換器9に入射され(図1(A))、電気パル
スPに変換される。
Then, the light is transmitted toward the subsequent branch coupler 5B shown in FIG. 5 (B). As shown in FIG. 5A, the other branched pulse light is incident on the photoelectric converter 9 through the port 53 whose end shown by the dotted line is bent slightly downward as shown in FIG. 1 (A)), which is converted into an electric pulse P.

【0032】なお、図4(A)に示す符号D1、D2は
透明電極であり、その表面に貼着するガラスは省略して
示してある。また、図5に示す分岐カプラー5Aは、後
述する図2に代表例として示す中継局用の分岐カプラー
にも用いられる。そして、分岐カプラー5Aは、測線B
Bの先頭送信局20aに用いる場合には、送信局10a
から送光されるパルス光を受光し得るように、分岐カプ
ラー5Aのポート51の端部を発信局10aの送光窓に
向けて緩く屈曲させるよう構成しておくことは勿論であ
る。
Note that reference numerals D1 and D2 shown in FIG. 4A are transparent electrodes, and the glass adhered to the surface thereof is omitted. The branch coupler 5A shown in FIG. 5 is also used as a branch coupler for a relay station shown as a representative example in FIG. The branch coupler 5A is connected to the measurement line B
When used for the first transmitting station 20a of B, the transmitting station 10a
It is a matter of course that the end of the port 51 of the branch coupler 5A is configured to be slightly bent toward the light transmitting window of the transmitting station 10a so that the pulse light transmitted from the transmitting station 10a can be received.

【0033】さらに続けると、図5(B)に示すよう
に、後段の光電力分岐カプラー5Bのポート51に入
射、分岐された一方の分岐パルス光は、ポート52を介
して光増幅器6に入射され、そして、他方の分岐パルス
光は、伝播用光パルスとして、ポート53を経由し、送
信局10aの側壁に設けた図示しない光透過窓3を介し
て海中に送光し、そして、隣接する測線BBの先頭送信
局20aの側壁に設けた分岐光受光用の光透過窓3を介
して受光させ、光増幅器6にて、同様に、レーザ光源4
からのレーザ光強度と同一の光強度になるように光増幅
し、集光レンズ8(第2図、参照)及び光透過窓3を通
過して次段の中継局20b・・・に向けて送光される。
他方、ポート54の端部に設けた光吸収部材(又は、光
アイソレータ)56により、ポート53からの反射光を
吸収する。
To continue, as shown in FIG. 5 (B), one of the branched pulse lights which enters the port 51 of the subsequent optical power splitting coupler 5B and is split into the optical amplifier 6 via the port 52. Then, the other branched pulse light is transmitted as a propagation light pulse through the port 53, through the light transmission window 3 (not shown) provided on the side wall of the transmitting station 10a, and into the sea, and is transmitted to the adjacent one. The light is received via a light transmitting window 3 for receiving the branched light provided on the side wall of the head transmitting station 20a of the measurement line BB, and the laser light source 4
Amplifies the light so as to have the same light intensity as that of the laser beam from the light source and passes through the condenser lens 8 (see FIG. 2) and the light transmission window 3 to the next-stage relay station 20b. Light is sent.
On the other hand, a light absorbing member (or an optical isolator) 56 provided at the end of the port 54 absorbs the reflected light from the port 53.

【0034】このようにして、伝播用パルス光は、図示
しない最後の中継局10m(図示せず)に送光され、こ
の中継局から、図5(C)に示すように、測線AAの最
終段の受信局10nに設けた分岐カプラー5Cのポート
51に入射され、ポート52、53に2分した、観測用
光パルスとしての一方の分岐パルス光を、ポート52の
端部に設けた光吸収部材55により吸収し、そして、そ
の端部部分が曲げられたポート53を介して光電変換器
9に入射され、電気パルスPに変換される。ポート52
の先端には光増幅器6が配設されている。
In this way, the propagation pulse light is transmitted to the last relay station 10m (not shown), not shown, and from this relay station, as shown in FIG. One branch pulse light as an observation light pulse, which is incident on the port 51 of the branch coupler 5C provided in the receiving station 10n at the stage and is divided into the ports 52 and 53, is provided at the end of the port 52. The light is absorbed by the member 55, and the end portion is incident on the photoelectric converter 9 through the bent port 53, and is converted into an electric pulse P. Port 52
An optical amplifier 6 is provided at the end of the optical amplifier.

【0035】なお、上記した図1(A)に示す集光レン
ズ8には、容器1が傾斜して着床した場合や、レベル差
のある海底面に着床した場合に、隣接する局の送光窓と
受光窓とが正確に対向しなくても、パルス光の送受を支
障なく行えるようにする目的で、耐圧容器1の垂直方向
の軸回りにレンズ8を微回動させるための回動機構と、
送受光方向と平行する水平面に対する傾斜角、つまり、
伏角を微調整する回動機構を設け、レンズ8の位置を微
調整し、確実な送、受光を可能にするよう構成されてい
ることは勿論である。
Note that the condensing lens 8 shown in FIG. 1 (A) is provided with an adjacent station when the container 1 lands on an inclined plane or when it lands on the sea floor with a level difference. A rotation for slightly rotating the lens 8 around the axis in the vertical direction of the pressure-resistant container 1 for the purpose of transmitting and receiving pulsed light without any trouble even if the light transmitting window and the light receiving window do not face each other accurately. Motion mechanism,
Angle of inclination with respect to the horizontal plane parallel to the transmission and reception directions, that is,
It is needless to say that a rotation mechanism for finely adjusting the inclination is provided to finely adjust the position of the lens 8 so as to enable reliable transmission and reception of light.

【0036】図2は測線AAの中継局10b〜10mの
耐圧容器1を示すもので、送信局10aの耐圧容器1の
構成と対比すると、その相違は、レーザ光源4と分岐カ
プラー5Bを具備していない上、分岐カプラー5Aの前
段の光増幅器6の前方に集光レンズ8を具備する点で相
違している。
FIG. 2 shows the pressure-resistant container 1 of the relay stations 10b to 10m on the measurement line AA. Compared with the structure of the pressure-resistant container 1 of the transmitting station 10a, the difference is that the laser light source 4 and the branch coupler 5B are provided. And a condenser lens 8 is provided in front of the optical amplifier 6 before the branch coupler 5A.

【0037】また、最終段の受信局10nの耐圧容器1
は、図2に示す中継局用10b〜10mの耐圧容器1と
対比すると、図6、及び図7に示すように、分岐カプラ
ー5Aに代え、図5(C)に示す分岐カプラー5Cを備
える他、分岐カプラー5Cの後段にレンズ8を具備しな
い点である。さらに、測線BBの先頭送信局20a、中
継局20b〜20m及び受信局20nにおける分岐カプ
ラーについても、測線AAと同様に構成されている。
The pressure-resistant container 1 of the last receiving station 10n.
When compared with the pressure-resistant container 1 of 10b to 10m for the relay station shown in FIG. 2, as shown in FIGS. 6 and 7, instead of the branch coupler 5A, the And that the lens 8 is not provided at the subsequent stage of the branch coupler 5C. Further, the branch couplers at the head transmitting station 20a, the relay stations 20b to 20m, and the receiving station 20n of the measurement line BB are configured similarly to the measurement line AA.

【0038】なお、図1(A)及び図2において、符号
20は、耐圧容器1を低層水流等の押圧力や、漂砂、浸
食等の影響を受けて転倒させずに長期間にわたり安定に
保持させる目的で、容器1の下方に取り付けられた重錘
19の底面に取り付けられるもので、例えば、尖った先
端部を備え、耐圧容器の自重、及び水圧により海底地中
に刺入された脚部材を示す。
In FIG. 1 (A) and FIG. 2, reference numeral 20 indicates a stable holding for a long period of time without overturning the pressure-resistant container 1 under the influence of the pressing force of a low-rise water flow, sand drift, erosion and the like. For example, a leg member which is attached to the bottom surface of a weight 19 attached below the container 1 and has a sharp tip portion and is inserted into the seabed by the weight of the pressure-resistant container and water pressure. Is shown.

【0039】さて、図8の第1の設置例に示すように、
海底Eの断層60を跨いで、例えば、30m間隔で配設
されている各局10a〜10nからなる第1組の測線A
Aが配設されており、この測線AAと平行に、同様に3
0m間隔で配設された各局20a〜20nよりなる第2
組の測線BBが断層61を跨いで配設されている。
Now, as shown in the first installation example of FIG.
For example, a first set of survey lines A including stations 10a to 10n arranged at intervals of 30 m across the fault 60 of the seabed E.
A is arranged in parallel with the line AA.
The second is composed of the stations 20a to 20n arranged at 0 m intervals.
A set of measurement lines BB are arranged across the fault 61.

【0040】次に、図6、図7、及び図8に示す測線A
A及び測線BBにて発生、伝送されるパルスについて、
図9(A)〜(C)の波形図を参照しながら説明する。
図9(A)に示すように、測線AAの送信局10aのレ
ーザ光源4のパルスレーザ光Ma を分岐カプラー5Aに
入射し、一方の分岐パルス光を後段の光増幅器6に入射
し、図9(B)に示すように、分岐による光減衰を、レ
ーザ光源4の光強度と同じ光強度となるように光増幅し
た伝播用パルス光を後段の分岐カプラー5Bに入射し、
その一方の分岐パルス光をさらに後段の光増幅器6に入
射し、さらに、耐圧容器1の光透過窓3を介して次段の
中継局10bに送光させる。中継局10bの光透過窓3
を介し、光増幅器6にてレーザ光源4の伝播用光パルス
の光強度と同一の光強度に光増幅した光パルスMb を中
継局10bの分岐カプラー5Aに入射させ、光透過窓3
から図示しない次段の中継器に送光する。このようにし
て、図示しない中継局10mから最終段の受信局10n
の光透過窓3を介して光増幅器6に入射され、光増幅後
にパルス光Mn が分岐パルス光が分岐カプラー5Cに入
射される。
Next, the measurement line A shown in FIG. 6, FIG. 7, and FIG.
About the pulse generated and transmitted in A and the measurement line BB,
This will be described with reference to the waveform diagrams of FIGS.
As shown in FIG. 9 (A), and incident pulsed laser beam M a laser light source 4 of the transmitting station 10a of survey line AA in branch coupler 5A, incident one branch pulsed light after the optical amplifier 6, FIG. As shown in FIG. 9 (B), a propagation pulse light, which is optically amplified so as to have the same light intensity as the light intensity of the laser light source 4 by the light attenuation due to the branching, is incident on the subsequent branch coupler 5B,
One of the branched pulse lights enters the optical amplifier 6 in the subsequent stage, and is further transmitted to the relay station 10b in the next stage through the light transmission window 3 of the pressure-resistant container 1. Light transmission window 3 of relay station 10b
The through, the optical pulse M b which optically amplifies the same light intensity and the light intensity of the propagating light pulse of the laser light source 4 is incident on the branching coupler 5A of the relay station 10b by an optical amplifier 6, the light transmission window 3
Then, the light is transmitted to the next-stage repeater (not shown). In this manner, from the relay station 10m (not shown) to the final receiving station 10n
Is input to the optical amplifier 6 through the light transmission window 3, and after the optical amplification, the pulse light Mn is branched and the pulse light is input to the branch coupler 5C.

【0041】そして、送信局10aの分岐カプラー5A
にて分岐された他方の分岐パルス光Ma 、中継局10b
の分岐カプラー5Aにて分岐された他方の分岐パルス光
b、Mc ・・・と、最終段の受信局10nの分岐カプ
ラー5Cの他方の分岐パルス光Mn をそれぞれ観測用光
パルスとして、それぞれ光電変換器9・・・に入射さ
せ、電気パルスPa 、Pb 、Pc ・・・Pn を伝送ケー
ブル103にて伝送する。
Then, the branch coupler 5A of the transmitting station 10a
, The other branch pulse light M a , the relay station 10b
Other branched light pulses M b which is branched at the branch coupler 5A of the M c · · ·, branch coupler 5C receiving station 10n of the final stage other branch pulsed light M n as an observation light pulse respectively, each is incident on the photoelectric converter 9 ..., transmits electrical pulses P a, P b, the P c ... P n at the transmission cable 103.

【0042】また、測線BBでは、測線AAの送信局1
0aの分岐カプラー5B(図5(B))にて分岐され、
その光透過窓3を介して海中に送光された分岐パルス光
は、伝播用光パルスとして、分岐カプラー5Aを示す図
5(A)、及び図8を参照すると、測線BBの先頭に位
置する送信局20aの光透過窓3を介し、その耐圧容器
1内の光増幅器6に入射され、レーザ光源の光強度と同
一の光強度に光増幅される。この光増幅器6から送光さ
れたパルス光を分岐カプラー5Aで分岐し、その一方の
分岐パルス光を光透過窓3を介して次段の中継局20b
に送光する。そして、中継器20bから図示しない次段
の中継局に送光しながら、最終段の受信局20nに送光
する。中継局20aの分岐カプラー5Aにて分岐した他
方の分岐パルス光M´a 、及び他方の分岐パルス光M´
b ・・・M´n を、観測用光パルスとしてそれぞれ光電
変換器9に入射させ、電気パルスP´a 、P´b ・・・
P´n を伝送ケーブル103Bにより地上局に伝送す
る。
In the measurement line BB, the transmitting station 1 of the measurement line AA
0a is branched by a branch coupler 5B (FIG. 5 (B)),
The branch pulse light transmitted into the sea through the light transmission window 3 is located at the head of the measurement line BB as shown in FIGS. 5A and 8 showing the branch coupler 5A as a propagation light pulse. The light enters the optical amplifier 6 in the pressure-resistant container 1 through the light transmission window 3 of the transmitting station 20a, and is optically amplified to the same light intensity as the laser light source. The pulse light transmitted from the optical amplifier 6 is branched by the branch coupler 5A, and one of the branched pulse lights is transmitted through the light transmission window 3 to the next-stage relay station 20b.
Light. Then, while transmitting light from the repeater 20b to the next-stage relay station (not shown), the light is transmitted to the final-stage receiving station 20n. Other branched light pulses M'a branched by the branch coupler 5A of the relay station 20a, and the other branched light pulses M'
b a · · · M'n, respectively is incident on the photoelectric converter 9 as an observation optical pulses, the electrical pulses P'a, P'b · · ·
The P'n transmits to the ground station by transmission cable 103B.

【0043】なお、図9(C)に示すパルスPa
b 、・・・Pn と、P´a 、P´b ・・・P´n とを
外装ケーブル103A、103Bにて地上局に伝送せず
に、分岐パルス光をそのまま(又は、光増幅後)地上局
に伝送する方式も可能である。また、地上局からクロッ
クパルスを海底に設置した各局に伝送し、上記した分岐
パルス光の波長をカウントし、このカウント値を地上局
に伝送する方式も可能である。さらに、地上局に伝送さ
れる光電変換パルス列の、対向設置された局同士の分岐
パルスを1組とし、該1組毎の分岐パルスの伝播時間幅
ΔTを、周波数が異なるクロック信号により計測し、そ
れぞれの測定結果を総合することで正確な測定値を求め
ることが可能となる。
[0043] The pulse P a shown in FIG. 9 (C),
P b, and ··· P n, P'a, P' b ··· P'n and the armored cable 103A, without transmitting to the ground station at 103B, the branch pulsed light as it is (or optical amplification After) A method of transmitting to the ground station is also possible. It is also possible to use a method in which a clock pulse is transmitted from a ground station to each station installed on the sea floor, the wavelength of the above-mentioned branched pulse light is counted, and this count value is transmitted to the ground station. Further, a set of branch pulses of the photoelectric conversion pulse train transmitted to the ground station, which is set between the stations installed opposite to each other, and the propagation time width ΔT of each set of the branch pulses is measured by a clock signal having a different frequency. Accurate measured values can be obtained by integrating the respective measured results.

【0044】次に、測線AA、及び測線BBにおける基
準値測定時t1 と基準値測定時から所定時間経過後の測
定時t2 とにおいて、対向する設置局間の片道の光パル
ス伝播時間幅ΔT、光パルスの伝播速度v、対向局間設
置距離Lを求めるとともに、屈折率n、あるいは水温等
のそのパラメータの変動に対応して見掛け上変動する対
向局の設置間距離Lを補正するデータ処理を行ない、対
向局間における歪み量の発生の有無を識別するデータ処
理装置について、図10に示す機能ブロック図を参照し
ながら説明する。
Next, at the reference value measurement time t 1 on the measurement lines AA and BB and the measurement time t 2 after a lapse of a predetermined time from the measurement of the reference value, the one-way optical pulse propagation time width between the opposed installation stations is measured. Data for obtaining ΔT, the propagation speed v of the light pulse, and the installation distance L between the opposing stations, and correcting the installation distance L of the opposing station that apparently fluctuates in response to the change in its parameter such as the refractive index n or the water temperature. A data processing device that performs processing and identifies whether or not a distortion amount has occurred between opposing stations will be described with reference to a functional block diagram shown in FIG.

【0045】図10は、CPUに接続されたプリンタ、
図示しないキーボードや、マウス等の入出力装置を有す
るとともに、メモリを備え、以下に記載するデータ処理
の制御プログラムを実行するマイクロコンピュータ、又
はパソコンの機能ブロック図である。これを機能的に説
明すると、先ず測線AAにおいて、検出部では、各局に
設置したセンサにより、測定時t1 及びt2 における各
1回の測定時間、即ち、1秒〜数秒の短時間毎にN回に
わたり海水の屈折率と、塩分濃度、温度等のパラメータ
との反復検出を行うとともに、図9(C)に示すよう
に、海底の各耐圧容器1、即ち、各局から地上局に次々
に伝送されて来る光電変換パルスPa 、P b 、Pc 、・
・・Pn を順次取り込み、次いで、カウンタ部では、測
定時t1 及びt2 毎の1組のパルスPa b 間の伝播時
間幅ΔTabと、Pb c 間の伝播時間幅ΔTbcと、・・
・・Pm n 間の伝播時間幅ΔTmnを計数し、メモリに
各伝播時間幅を記憶させる。
FIG. 10 shows a printer connected to the CPU,
Has input / output devices such as a keyboard and mouse not shown
Data processing as described below.
Microcomputer that executes the control program of
Is a functional block diagram of a personal computer. Functionally explain this
First, in the measurement line AA, the detection unit
Depending on the installed sensor, measurement time t1And tTwoIn each
One measurement time, that is, N times for each short time of one second to several seconds
Refractive index of seawater, salt concentration, temperature and other parameters
And iterative detection, and as shown in FIG.
Then, each pressure vessel 1 on the seabed, that is, from each station to the ground station one after another
Photoelectric conversion pulse P transmitted toa, P b, Pc,
..PnAnd then the counter section measures
Regular time t1And tTwoOne set of pulses P for eachaPbAt the time of propagation between
Spacing ΔTabAnd PbPcPropagation time width ΔT betweenbcWhen,··
..PmPnPropagation time width ΔT betweenmnCount and store in memory
Each propagation time width is stored.

【0046】ところで、各局における水中の光伝播速度
vは、v=C0 /nの演算式(1)で示される、ここ
で、C0 は真空中の光速度3×108 (m/s)、nは
各局設置の屈折率センサにより検出した水の屈折率を示
す。そして、水中の光パルスの伝播速度v及び伝播時間
ΔTの積と、測線AAにおける対向局間のそれぞれの設
置距離Lとの関係は、v×ΔT=Lの演算式(2)にて
示される。
The underwater light propagation velocity v at each station is given by the following equation (1) where v = C 0 / n, where C 0 is the light velocity in vacuum of 3 × 10 8 (m / s). ) And n indicate the refractive index of water detected by a refractive index sensor installed at each station. Then, the relationship between the product of the propagation speed v and the propagation time ΔT of the underwater light pulse and the installation distance L between the opposing stations on the measurement line AA is expressed by an arithmetic expression (2) of v × ΔT = L. .

【0047】したがって、対向局間の屈折率n、海水の
塩分濃度、水温、水圧、流速、流向等のパラメータgの
値が変動すると、海水中の光パルスの伝播速度vが変動
する。このため、例えば、i番目の局と(i+1)番目
の局との対向局間設置距離Lは、上記屈折率等のパラメ
ータgの変動に基づく光パルスの水中伝播速度の変動の
影響を受けた補正前のi番目及び(i+1)番目の局間
の水中光パルスの片道伝播速度v:〔v(j) (i、i+
1)〕と、i番目の局から(i+1)番目の局への水中
光パルスの実測伝播時間幅ΔT:〔T(j) (i、i+
1)〕との積、即ち、 (補正前の伝播速度〔v(j) (i、i+1)〕)×(補正前の実測伝播時間幅〔 T(j) (i、i+1)〕)=(補正前の対向局間設置距離〔L(j) (i、i+1 )〕)・・・(2´) で示される、ここで、i、(i+1)は正の数値を示
し、v(j) 、T(j) はj回目測定時の伝播速度と伝播時
間幅との値を示す。
Therefore, when the value of the parameter g such as the refractive index n between the opposing stations, the salt concentration of seawater, the water temperature, the water pressure, the flow velocity, and the flow direction changes, the propagation speed v of the light pulse in the seawater changes. For this reason, for example, the installation distance L between the opposing stations between the i-th station and the (i + 1) -th station is affected by the fluctuation of the underwater propagation speed of the light pulse based on the fluctuation of the parameter g such as the refractive index. One-way propagation velocity v of the underwater light pulse between the i-th station and the (i + 1) -th station before correction: v (j (i, i +
1)] and the measured propagation time width ΔT of the underwater light pulse from the i-th station to the (i + 1) -th station: [T (j) (i, i +
1)], that is, (propagation velocity before correction [v (j) (i, i + 1)]) × (measured propagation time width before correction [T (j) (i, i + 1)]) = ( The distance between opposite stations before correction [L (j) (i, i + 1)])... (2 ′), where i and (i + 1) are positive values and v (j) , T (j) indicate the values of the propagation speed and the propagation time width at the j-th measurement.

【0048】上記式(2´)の右辺のi番目と(i+
1)番目の各局間の対向距離Lは、海底歪みの発生、伸
縮によるのではなく、屈折率や、その海水温度、塩分濃
度、流速、流向等のパラメータの変動により見掛け上変
動していることを示している。そこで、i番目及び(i
+1)番目の対向局間の真の、即ち、見掛け上の変動を
補正した後の設置間距離Lは、見掛け上の変動補正前の
対向局間設置距離Lである上記〔L(j) (i、i+
1)〕と、i番目及び(i+1)番目の対向局設置距離
の補正量δLとの和、即ち、(真の対向局間設置距離
L)=(補正前の対向局間設置距離L)+(補正量)に
て示される。これを具体的に示すと、 (真の対向局間設置距離〔L(j) (i、i+1)〕)=(補正前の対向局間設置 距離〔L(j) (i、i+1)〕)+(補正量〔δL(j) (i、i+1)〕)・・ ・・(2″) で示される。この式(2″)の右辺第1項の補正前の距
離Lの数値は上記演算式(2)で求めた値そのものを示
しているが、右辺第2項の(補正量)の算出について以
下に説明する。
The ith of the right side of the above equation (2 ') and (i +
1) The opposing distance L between the stations does not depend on the occurrence or expansion and contraction of seafloor distortion, but rather fluctuates due to changes in the refractive index and parameters such as seawater temperature, salt concentration, flow velocity, and current direction. Is shown. Then, the i-th and (i
The true installation distance L between the (+1) th opposing stations, that is, the apparent inter-station distance after correcting the apparent fluctuation, is the above-mentioned distance [L (j) ( i, i +
1)] and the correction amount δL of the i-th and (i + 1) -th opposing station installation distances, that is, (true inter-station installation distance L) = (inter-office installation distance L before correction) + (Correction amount). Specifically, (true installation distance between opposing stations [L (j) (i, i + 1)]) = (installation distance between opposing stations before correction [L (j) (i, i + 1)]) + (Correction amount [δL (j) (i, i + 1)]) (2 ″) The numerical value of the distance L before correction of the first term on the right side of the equation (2 ″) is calculated by the above calculation. Although the value itself obtained by Expression (2) is shown, the calculation of the (correction amount) of the second term on the right side will be described below.

【0049】一般に、単に1回の測定データのみを用い
て補正量とする事は、より正確な結果が得られないため
好ましいことではない。既に述べたように、対向局間の
設置距離は、例えば30mで比較的短距離であるから、
その間の屈折率分布や、塩分濃度等のパラメータ分布に
は大幅な変動は考え難く、このため、i番目局と(i+
1)番目局のうち、i番目局のパラメータ検出値の平均
値<g>、又は(i+1)番目局のパラメータ検出値の
平均値<g>の何れかを用いた補正で十分間に合うもの
と考えられる。
In general, it is not preferable to use only one measurement data as the correction amount because a more accurate result cannot be obtained. As already described, since the installation distance between the opposite stations is relatively short, for example, 30 m,
It is unlikely that the refractive index distribution and the parameter distributions such as the salt concentration during that period fluctuate greatly. Therefore, the i-th station and (i +
1) Among the stations, it is considered that the correction using either the average value <g> of the parameter detection values of the i-th station or the average value <g> of the parameter detection values of the (i + 1) -th station is sufficient. Can be

【0050】そこで、データ処理装置の平均補正量算出
部では、各測定時t1 、t2 の測定時期毎に、例えば、
それぞれ1秒〜数秒の短時間の間にi番目及び(i+
1)番目の両局に設置したセンサ12〜17によりN回
反復検出した屈折率、海水温度、塩分濃度、流速、及び
流向等の各パラメータgの検出値を、屈折率や塩分濃度
等の各パラメータ毎にそれぞれ区分して加算し、各加算
値を検出回数Nでそれぞれ除算することで、i番目局、
又は(i+1)番目局における屈折率等の各パラメータ
gの短時間平均値、換言すると短時間平均補正量<g
>、 を求める。
Therefore, the average correction amount calculating section of the data processing device, for example, for each measurement time t 1 and t 2 ,
The i-th and (i +
1) The detected values of each parameter g such as the refractive index, seawater temperature, salinity concentration, flow velocity, and flow direction, which are repeatedly detected N times by the sensors 12 to 17 installed in both stations, are calculated by the respective refractive index and salinity concentration. By dividing and adding each parameter, and dividing each addition value by the number of detections N, the i-th station,
Alternatively, the short-term average value of each parameter g such as the refractive index at the (i + 1) -th station, in other words, the short-time average correction amount <g
> Ask for.

【0051】ところで、式(2″)の右辺、第2項に示
す補正量〔δL(j) (i、i+1)〕、即ち、<δL>
は、レーザパルス光の伝播経路における屈折率や塩分濃
度、水温等の各パラメータgの変動(δg)の函数と、
計測機器のノイズ等に起因する人工的変動の和で表現さ
れるため、これらを纏めて短時間平均補正量<δL>=
F(パラメータ)+<δL(計測機器)>と表現でき
る。以下では、簡単のため、<δL(計測機器)>をゼ
ロと仮定するが、勿論、<δL(計測機器)>を別途実
施する計測機器の検定により推定してもよい。そして、
上記F(パラメータ)を一次近似的に<δL(パラメー
タ)>として各パラメータ毎の線形一次近似式の和で表
現すると、<δL(パラメータ)>=<δL(屈折率の
みの変動の影響)>+<δL(塩分濃度のみの変動の影
響)>+<δL(水温のみの変動の影響)>+<δL
(水圧のみの変動の影響)>+<δL(流速のみの変動
の影響)>+<δL(流向のみの変動の影響)>+・・
・と記載することができる。
By the way, the correction amount [δL (j) (i, i + 1)] shown in the second term on the right side of equation (2 ″), that is, <δL>
Is a function of variation (δg) of each parameter g such as a refractive index, a salt concentration, and a water temperature in a propagation path of a laser pulse light;
Since they are expressed as the sum of artificial fluctuations caused by noise of measuring equipment, these are combined and the short-term average correction amount <δL> =
F (parameter) + <δL (measurement device)>. In the following, for the sake of simplicity, <δL (measurement device)> is assumed to be zero, but of course, <δL (measurement device)> may be estimated by a test of a measurement device separately performed. And
When the above F (parameter) is linearly approximated as <δL (parameter)> and expressed as the sum of linear linear approximation formulas for each parameter, <δL (parameter)> = <δL (influence of variation only in refractive index)> + <ΔL (influence of fluctuation only in salt concentration)> + <δL (influence of fluctuation only in water temperature) ++ <δL
(Influence of fluctuation only in water pressure)> + <δL (Effect of fluctuation only in flow velocity)> + <δL (Effect of fluctuation only in flow direction) ++.
・ It can be described as

【0052】実際には、例えば、屈折率等のパラメータ
gのうちの任意の何れか1つのパラメータを選択し、平
均補正量算出部で算出した短時間平均補正量<g>を<
δL(パラメータ)>と表現し、この<δL(パラメー
タ)>を、上述した式(2″)の第2項に示す各局設置
間距離Lの補正計算用の真の短時間平均補正量<δL>
に相当するものと見なして用いる事としたのである。そ
して、上記した短時間平均補正量である<δL(パラメ
ータ)>は、 <δL(パラメータ)>= (Σ(j) N 〔δL(パラメータ)(j) (i、i+1)〕)/N・・・(3´) の式で示されるが、このようにN回の反復検出値の平均
値を求めることにより、測定精度は√N倍向上すること
となる。かくして、補正前の対向局間設置距離Lと短時
間平均補正量<δL(パラメータ)>を加算した真の距
離Lが、メモリに記憶される。
Actually, for example, any one of the parameters g such as the refractive index is selected, and the short-time average correction amount <g> calculated by the average correction amount calculation unit is set to <
δL (parameter)>, and this <δL (parameter)> is the true short-time average correction amount <δL for the correction calculation of the distance L between each station shown in the second term of the above equation (2 ″). >
It was decided to use it as equivalent to. <ΔL (parameter)>, which is the short-time average correction amount, is as follows: <δL (parameter)> = (Σ (j) N [δL (parameter) (j) (i, i + 1)]) / N · ··· (3 ′) The measurement accuracy is improved by √N times by obtaining the average value of the N repeated detection values as described above. Thus, the true distance L obtained by adding the installation distance L between the opposite stations before the correction and the short-time average correction amount <δL (parameter)> is stored in the memory.

【0053】次に、測線AAにおいて、パラメータgと
して何れか一方の局の屈折率nのみを選択し、i番目の
局と(i+1)番目の局との真の設置間距離Lの算出
と、測定時t1 からt2 の間に発生した歪み量の算出す
る場合について説明する。図11に示すように、例え
ば、海底の断層観察開始時間t1 、即ち、1秒〜数秒の
短時間t1 の間に、i番目局、又は(i+1)番目局に
設置した屈折率計12により水の屈折率nのN回の反復
検出を行ない、観察開始時間(基準値測定時)t1 から
所定時間経過後の時間t2 、同様に1秒〜数秒の短時間
2 の間に屈折率nのN回の反復検出を行うとともに、
上記演算式(1)、(2)により算出したi番目と(i
+1)番目の各局間における補正前の距離Lと、データ
処理装置の平均補正量算出部により算出した、i番目、
又は(i+1)番目の局で検出した屈折率nの短時間平
均補正量<δL(パラメータ)>t1とを用いて、t=t
1における補正後のi番目と(i+1)番目の局間の真
の距離LをLt1 C (i、i+1)と示すと、距離算出部
では、Lt1 C (i、i+1)=(測定時t1 における補
正前の対向局間設置距離〔L(j ) (i、i+1)〕)+
(測定時t1 における短時間平均補正量<δL(パラメ
ータ)>t1)・・・(4)により算出し、同様にt=t
2 におけるi番目と(i+1)番目の対向局間の補正後
の真の距離Lを、Lt2 C (i、i+1)と示すと、Lt2
C (i、i+1)=(測定時t2 における補正前の対向
局間の設置距離〔L (j) (i、i+1)〕)+(測定時
2 における短時間平均補正量<δL(パラメータ)>
t2)・・・(4´)により算出する。
Next, in the measurement line AA, the parameter g
To select only the refractive index n of one of the stations,
Calculation of true installation distance L between station and (i + 1) th station
And the measurement time t1To tTwoCalculate the amount of distortion that occurred during
Will be described. As shown in FIG.
If the tomographic observation start time t1That is, one second to several seconds
Short time t1During the i-th station or (i + 1) -th station
N repetitions of the refractive index n of water by the installed refractometer 12
Detection is performed and the observation start time (when measuring the reference value) t1From
Time t after elapse of predetermined timeTwoAs well as a short time of one second to several seconds
tTwoWhile performing N repetitive detections of the refractive index n during
The i-th and (i) calculated by the above arithmetic expressions (1) and (2)
+1) the distance L between the stations before correction and the data
I-th, calculated by the average correction amount calculation unit of the processing device
Or the short-time average of the refractive index n detected at the (i + 1) -th station.
Average correction amount <δL (parameter)>t1And t = t
1Between the i-th and (i + 1) -th stations after correction in
Distance L oft1 CWhen expressed as (i, i + 1), the distance calculation unit
Then, Lt1 C(I, i + 1) = (measurement time t1Complement in
Installation distance [L(j )(I, i + 1)]) +
(At the time of measurement1Short-term average correction amount <δL (parameter
Data)>t1)... (4), and similarly, t = t
TwoAfter correction between the i-th and (i + 1) -th opposing stations in
Is the true distance L oft2 CDenoting (i, i + 1), Lt2
C(I, i + 1) = (measurement time tTwoOpposition before correction in
Installation distance between stations [L (j)(I, i + 1)]) + (at the time of measurement
tTwoShort-term average correction amount <δL (parameter)>
t2) (4 ′)

【0054】さらに、測定時t1 〜t2 と歪み変化量ε
の変動傾向との関係を示す図11から明らかとなるが、
測定時t1 〜t2 におけるi番目及び(i+1)番目の
対向局間の真の設置距離Lの変動量、換言すると、歪み
変化量εは、下記演算式、〔ε(i、i+1)〕t1 t2
{(測定時t2 における補正後の真の対向局間設置距離
〔Lt2 C (i、i+1)〕−(測定時t1 における補正
前の対向局間設置距離〔Lt1 C (i、i+1)〕)}/
0.5×{(測定時t1 における補正後の真の対向局間
設置距離〔Lt1 C (i、i+1)〕)+(測定時t2
おける補正後の真の対向局間設置距離〔Lt2 C (i、i
+1)〕)}・・・(5A)にて、又は下記演算式、
〔ε(i、i+1)〕t1 t2≡{(測定時t2 における補
正後の真の対向局間設置距離〔Lt2 C (i、i+1)〕
−(測定時t1 における補正前の対向局間設置距離〔L
t1 C (i、i+1)〕)}/(測定時t1 における補正
後の真の対向局間設置距離〔Lt1 C (i、i+1)〕)
・・・(5B)により算出される。
Further, at the time of measurement t 1 to t 2 and the change in strain ε
FIG. 11 showing the relationship with the fluctuation tendency of
The fluctuation amount of the true installation distance L between the i-th and (i + 1) -th opposing stations during the measurement time t 1 to t 2 , in other words, the distortion change amount ε is represented by the following equation: [ε (i, i + 1)] t1 t2
{(True opposite station between the installation distance corrected in the measurement time t 2 [L t2 C (i, i + 1) ] - (opposite station between the installation distance before correction in the measurement time t 1 [L t1 C (i, i + 1 )])} /
0.5 × {(true inter-station distance after correction at measurement time t 1 [L t1 C (i, i + 1)]) + (true inter-station distance after correction at measurement time t 2 [ L t2 C (i, i
+1)])} (5A) or the following arithmetic expression:
[Ε (i, i + 1)] t1 t2 ≡ {(true between the opposing station installation distance after correction in the measurement time t 2 [L t2 C (i, i + 1) ]
− (Setting distance between opposing stations before correction at measurement time t 1 [L
t1 C (i, i + 1 ) ])} / (the true opposite station between the installation distance corrected in the measurement time t 1 [L t1 C (i, i + 1) ])
(5B)

【0055】比較部では、(測定時t2 における補正後
の真の距離Lt2の算出値)と(測定時t1 における補正
後の真の距離Lt1の算出値)との差が計測能力限界(例
えば、10-8)以下であり、かつ、等しければ、基準値
測定時t1 から所定時間経過後の測定時t2 の間に有意
な歪みの発生がなく、等しくなければ、歪みが発生した
と識別し、その判別信号と上記演算式(5A)、又は
(5B)により求めた歪み変化量を示す信号とを出力す
る。
[0055] In comparison unit, the difference measurement capability (measured at the calculated value of the true distance L t2 after the correction in t 2) and (calculated value of the true distance L t1 corrected in the measurement time t 1) If the difference is equal to or less than the limit (for example, 10 −8 ) and equal, no significant distortion occurs between the reference value measurement time t 1 and the measurement time t 2 after a lapse of a predetermined time. It is determined that a distortion has occurred, and a signal indicating the amount of distortion change obtained by the above-described arithmetic expression (5A) or (5B) is output.

【0056】また、測線BBについても同様に、パラメ
ータgとして何れか一方の局の屈折率nのみを用い、i
番目の局と(i+1)番目の局との真の設置間距離Lの
算出と、測定時t1 からt2 の間に発生した歪み量の算
出とを説明する。図11に示すように、海底の断層観察
開始時間t1 の間に、i番目局、又は(i+1)番目局
に設置した屈折率計12により水の屈折率nのN回の反
復検出を行ない、観察開始時間(基準値測定時)t1
ら所定時間経過後の時間t2 の間に屈折率nのN回の反
復検出を行うとともに、上記演算式(1)、(2)によ
り算出したi番目と(i+1)番目の各局間における補
正前の距離Lと、データ処理装置の平均補正量算出部に
より算出した、i番目、又は(i+1)番目の局で検出
した屈折率nの短時間平均補正量<δL(パラメータ)
t1とを用い、距離算出部では補正後のi番目と(i+
1)番目の局間の真の距離Lを、Lt1 C (i、i+1)
=(測定時t1 における補正前の対向局間設置距離〔L
(j ) (i、i+1)〕)+(測定時t1 における短時間
平均補正量<δL(パラメータ)>t1)・・・(4)に
より算出し、同様にt=t2 におけるi番目と(i+
1)番目の対向局間の補正後の真の距離Lを、L
t2 C (i、i+1)=(測定時t2 における補正前の対
向局間の設置距離〔L (j) (i、i+1)〕)+(測定
時t2 における短時間平均補正量<δL(パラメータ)
t2)・・・(4´)により算出する。
The same applies to the measurement line BB.
Using only the refractive index n of one of the stations as data g
Of the true installation distance L between the i-th station and the (i + 1) -th station
Calculation and measurement time t1To tTwoCalculation of the amount of distortion that occurred during
Will be explained. As shown in Fig. 11, seafloor fault observation
Start time t1I-th station or (i + 1) -th station
Of the refractive index n of water N times
Re-detection is performed, and the observation start time (when measuring the reference value) t1Or
Time after a predetermined time elapsesTwoN times anti-refractive index
Detection, and the above equations (1) and (2) are used.
Between the i-th and (i + 1) -th stations calculated
The distance L in front and the average correction amount calculation unit of the data processing device
Detected at i-th or (i + 1) -th station
Short-term average correction amount of refractive index n <δL (parameter)
>t1And the distance calculation unit uses the corrected i-th and (i +
1) Let the true distance L between the stations be Lt1 C(I, i + 1)
= (At measurement t1In the opposite station before correction [L
(j )(I, i + 1)]) + (measurement t1Short time in
Average correction amount <δL (parameter)>t1) ... (4)
T = tTwoAnd the (i +
1) The corrected true distance L between the opposing stations is L
t2 C(I, i + 1) = (measurement time tTwoBefore correction in
Installation distance between stations [L (j)(I, i + 1)]) + (measurement
Time tTwoShort-term average correction amount <δL (parameter)
>t2) (4 ′)

【0057】さらに、測定時t1 〜t2 におけるi番目
及び(i+1)番目の対向局間の真の設置距離Lの変動
量、即ち、歪み変化量εを下記演算式(5A)、〔ε
(i、i+1)〕t1 t2≡{(測定時t2 における補正後
の真の対向局間設置距離〔Lt2 C (i、i+1)〕−
(測定時t1 における補正前の対向局間設置距離〔Lt1
C (i、i+1)〕)}/0.5×{(測定時t1 にお
ける補正後の真の対向局間設置距離〔Lt1 C (i、i+
1)〕)+(測定時t2 における補正後の真の対向局間
設置距離〔Lt2 C (i、i+1)〕)}により、又は下
記演算式(5B)、〔ε(i、i+1)〕t1 t2≡{(測
定時t2 における補正後の真の対向局間設置距離〔Lt2
C (i、i+1)〕−(測定時t1 における補正前の対
向局間設置距離〔Lt1 C (i、i+1)〕)}/(測定
時t1 における補正後の真の対向局間設置距離〔Lt1 C
(i、i+1)〕)により算出する。
Further, the fluctuation amount of the true installation distance L between the i-th and (i + 1) -th opposing stations during the measurement time t 1 to t 2 , that is, the distortion change amount ε is calculated by the following equation (5A), [ε
(I, i + 1)] t1 t2 ≡ {(true opposite station between the installation distance corrected in the measurement time t 2 [L t2 C (i, i + 1)] -
(Opposite station between the installation distance before correction in the measurement time t 1 [L t1
C (i, i + 1)])} / 0.5 × {(True installation distance after correction at measurement time t 1 [L t1 C (i, i +
1)]) + (True installation distance between corrected opposing stations [L t2 C (i, i + 1)])} after correction at measurement time t 2 , or the following equation (5B), [ε (i, i + 1)] ] t1 t2 ≡ {(true opposite station between the installation distance corrected in the measurement time t 2 [L t2
C (i, i + 1)] - (opposite station between the installation distance before correction in the measurement time t 1 [L t1 C (i, i + 1) ])} / (true inter opposite station after correction in the measurement time t 1 installed Distance [L t1 C
(I, i + 1)]).

【0058】比較部では、(測定時t2 における補正後
の真の距離Lt2の算出値)と(測定時t1 における補正
後の真の距離Lt1の算出値)との差が計測能力限界(例
えば、10-8)以下であり、かつ、等しければ、基準値
測定時t1 から所定時間経過後の測定時t2 の間に有意
な歪みの発生がなく、等しくなければ、歪みが発生した
と識別し、その判別信号と上記演算式(5A)、又は
(5B)により求めた歪み変化量を示す信号とを出力す
る。
[0058] In comparison unit, the difference measurement capability (measured at the calculated value of the true distance L t2 after the correction in t 2) and (calculated value of the true distance L t1 corrected in the measurement time t 1) If the difference is equal to or less than the limit (for example, 10 −8 ) and equal, no significant distortion occurs between the reference value measurement time t 1 and the measurement time t 2 after a lapse of a predetermined time. It is determined that a distortion has occurred, and a signal indicating the amount of distortion change obtained by the above-described arithmetic expression (5A) or (5B) is output.

【0059】次に、断層60、61に跨がって配設した
測線AA、BBの作用を以下に説明する。いま、図6、
図8に示す光送信局10aのレーザ光源4から発生され
た光パルスを前段の分岐カプラー5Aにより分岐し、分
岐による減衰分を光増幅器6によりレーザ光源4からの
光パルスの光強度と同一強度に増幅した光パルスM
a (図9(A))を後段の分岐カプラー5Bに入射し、
さらに、分岐による減衰分をレーザ光源4からの光パル
スの光強度まで増幅し(図9(B))、光透過窓3を介
し、次段の中継局10bの光透過窓3に向けて送光す
る。また、分岐カプラー5Aにて分岐された他方の分岐
パルス光を、光電変換器9にて光電変換したパルスP a
を伝送ケーブル103Aを介して図示しない地上局に伝
送する(図9(C))。
Next, it was arranged over the faults 60 and 61.
The operation of the measurement lines AA and BB will be described below. Now, FIG.
It is generated from the laser light source 4 of the optical transmitting station 10a shown in FIG.
The split optical pulse is split by the splitter coupler 5A at the previous stage,
The amount of attenuation due to the branch is reflected by the optical amplifier 6 from the laser light source 4.
Light pulse M amplified to the same intensity as the light intensity of the light pulse
a(FIG. 9A) is incident on the subsequent branch coupler 5B,
Further, the amount of attenuation due to the branch is calculated by the optical pulse from the laser light source 4.
(FIG. 9 (B)), and passes through the light transmission window 3.
Then, the light is transmitted toward the light transmission window 3 of the relay station 10b at the next stage.
You. The other branch branched by the branch coupler 5A
A pulse P obtained by photoelectrically converting the pulse light by the photoelectric converter 9 a
To the ground station (not shown) via the transmission cable 103A.
(FIG. 9C).

【0060】次段の中継器10bの光透過窓3を介して
受光した光パルスを光増幅器6によりレーザ光源4から
の光パルスの光強度と同じ強度に増幅し、分岐カプラー
5Bで分岐した一方の分岐パルス光を光増幅器6に入射
し、さらに、光透過窓3を介して次段の中継局に向けて
送光し、このようにして、分岐パルス光を後続する中継
局に次々に伝送する。中継局10b、・・・の分岐カプ
ラー5Aにて分岐された他方の分岐パルス光Mb
c 、・・・Mm を光電変換器9により電気パルス
b 、Pc 、・・・Pm に変換し、伝送ケーブル103
を介して図示しない地上局に伝送する。最終段の受信局
10nでは、光透過窓3を介して入射した一方の分岐パ
ルス光を光増幅6によりレーザ光源4からの光パルスの
光強度と同じ強度に増幅し、分岐カプラー5Cにより分
岐させた他方の分岐パルス光Mn の光電変換パルスPn
を、同様に伝送ケーブル103を介して伝送する。
The light pulse received through the light transmission window 3 of the repeater 10b at the next stage is amplified by the optical amplifier 6 to the same intensity as the light intensity of the light pulse from the laser light source 4, and is branched by the branch coupler 5B. Is input to the optical amplifier 6 and further transmitted through the light transmission window 3 to the next-stage relay station. In this way, the branched pulse light is successively transmitted to the subsequent relay station. I do. The other branch pulse light M b branched by the branch coupler 5A of the relay stations 10b,.
M c, ··· M m electricity by photoelectric converter 9 pulses P b, P c, converted into · · · P m, the transmission cable 103
To a ground station (not shown). In the receiving station 10n at the last stage, one of the branched pulse lights incident through the light transmission window 3 is amplified by the optical amplifier 6 to the same intensity as the light intensity of the optical pulse from the laser light source 4, and branched by the branch coupler 5C. photoelectric conversion pulse P n of the other branched light pulses M n was
Is transmitted via the transmission cable 103 in the same manner.

【0061】他方、図7、図8に示すように、送信局1
0aの分岐カプラー5Bにより分岐した分岐パルス光
を、隣接する測線BBの先頭の送信局20aの光透過窓
3を介して前段の光増幅器6に入射し、レーザ光源4の
光強度と同一強度に光増幅した一方の分岐パルス光M´
a を分岐カプラー5Aに入射し、一方の分岐パルス光を
後段の光増幅器6に入射し、レーザ光源4の光強度と同
一強度に光増幅し、光透過窓3を介して次段の中継器2
0bに送光する。そして、分岐カプラー5Aの他方の分
岐パルス光を光電変換器9により電気パルスP´a に変
換して送出する。かくして、一方の分岐光パルスを後続
する中継局20b・・・を経由し、さらに、最終段の受
信局20nに次々に伝送する。他方、中継局20b、・
・・の分岐カプラー5Aにて分岐された他方の分岐パル
ス光M´b 、Mc ´、・・・M´nを光電変換器9によ
り電気パルスP´b 、P´c 、・・・P´n に変換し、
伝送ケーブル103を介して図示しない地上局に伝送す
る。
On the other hand, as shown in FIGS.
The branched pulse light branched by the 0a branch coupler 5B is incident on the optical amplifier 6 at the preceding stage via the light transmission window 3 of the transmitting station 20a at the head of the adjacent measurement line BB, and has the same intensity as the light intensity of the laser light source 4. One of the optically amplified branched pulse lights M '
a is input to the branch coupler 5A, one of the branched pulse lights is input to the optical amplifier 6 at the subsequent stage, and is amplified to the same intensity as the optical intensity of the laser light source 4; 2
0b. Then, it sent into an electric pulse P'a the other branch pulsed light branching coupler 5A by the photoelectric converter 9. Thus, one of the branched optical pulses is successively transmitted to the final receiving station 20n via the subsequent relay station 20b. On the other hand, the relay station 20b,
· Branch coupler 5A other split pulsed light M'b which is branched at, M c ', ··· M'n electrical pulses by a photoelectric converter 9 P'b, P'c, ··· P Convert to ´n
The signal is transmitted to a ground station (not shown) via the transmission cable 103.

【0062】図12に示すフローチャートを参照し、各
局から伝送されてくる検出データの処理について説明す
る。地上局のデータ処理装置の検出部では、図9(C)
に示すように、測線AAの送信局10a、中継局10
b、・・・、受信局10nから次々に伝送されて来る光
電変換パルスPa 、Pb 、Pc 、・・・Pn と、測線B
Bの中継局20a、・・・、受信局20nから次々に伝
送されて来る光電変換パルスP´a 、P´b 、P´c
・・・P´n とを取り込むとともに、測線AAからのパ
ルスPa b 間の伝播時間幅ΔTab、パルスPb c
の伝播時間幅ΔT bc、・・・・、パルスPm n 間の伝
播時間幅ΔTmnと、測線BBからのパルスP´a P´b
間の伝播時間幅ΔT´ab、パルスP´b P´c 間の伝播
時間幅ΔT´bc、・・・・、パルスP´m P´n 間の伝
播時間幅ΔT´mnとをカウンタ部にて計数し、測定時t
1 、t2 における各伝播時間ΔTをメモリに記憶させる
(ステップS1)。そして、測線AA、BBにおける各
局設置位置の屈折率、水温、水圧、流向、流速、塩分濃
度のパラメータgを、i番目、又は(i+1)番目の対
向局に設置した屈折率計12、温度センサ13、水圧セ
ンサ14、流速センサ15、流向計16、塩分濃度計1
7のセンサにより測定時t=t1 、及びこの時間から所
定時間経過後の測定時t=t2 において、例えば、1秒
〜数秒間の短時間内にそれぞれN回反復検出する(ステ
ップS2)。そして、メモリに記憶させた真空中の光速
度C0 と屈折率nを演算式(1)に代入し、光パルスの
伝播速度vを求め、この伝播速度vとi番目と(i+
1)番目の局間の伝播時間ΔTとを演算式(2)に代入
して補正前の距離Lを算出する(ステップ3)。
Referring to the flowchart shown in FIG.
The processing of the detection data transmitted from the station will be described.
You. In the detection unit of the data processing device of the ground station, FIG.
As shown in the figure, the transmitting station 10a of the survey line AA, the relay station 10
b,..., light sequentially transmitted from the receiving station 10n
Electric conversion pulse Pa, Pb, Pc, ... PnAnd survey line B
B relay stations 20a,...
The transmitted photoelectric conversion pulse P 'a, P 'b, P 'c,
... P 'nAlong with the path from survey line AA.
Luth PaPbPropagation time width ΔT betweenab, Pulse PbPcwhile
Propagation time width ΔT bc, ..., Pulse PmPnBiography
Seeding time width ΔTmnAnd the pulse P 'from the measurement line BBaP 'b
Propagation time width ΔT 'betweenab, Pulse P 'bP 'cPropagation between
Time width ΔT 'bc, ..., pulse P 'mP 'nBiography
Seeding time width ΔT 'mnAre counted by the counter section, and at the time of measurement t
1, TTwoStore each propagation time ΔT in the memory
(Step S1). Then, each of the measurement lines AA and BB
Refractive index of station location, water temperature, water pressure, flow direction, flow velocity, salt concentration
The degree parameter g is set to the i-th or (i + 1) -th pair.
A refractometer 12, a temperature sensor 13, and a hydraulic pressure
Sensor 14, flow rate sensor 15, flow direction meter 16, salt concentration meter 1
T = t at the time of measurement by the sensor 71And from this time
Measurement time after elapse of fixed time t = tTwoIn, for example, 1 second
N times detection within a short time of ~ several seconds (step
Step S2). And the speed of light in vacuum stored in the memory
Degree C0And the refractive index n into the arithmetic expression (1),
The propagation speed v is obtained, and the propagation speed v and the i-th and (i +
1) Substitute the propagation time ΔT between the stations into the arithmetic expression (2)
To calculate the distance L before correction (step 3).

【0063】次に、平均補正量算出部では、ステップS
2で検出した測線AA、BBにおける屈折率、水温、塩
分濃度等の各パラメータgによる短時間平均補正量(Σ
(j) N 〔δg(j) (i、i+1)〕)/Nをそれぞれ算
出し、即ち、<δL(パラメータ)>を求める(ステッ
プS4)。距離算出部では、ステップS4で算出した屈
折率n等の短時間平均補正量<g>のうち、屈折率nの
短時間平均補正量<g>、換言すると、その<δL(パ
ラメータ)>を用いて対向局間の真の設置間距離Lの算
出を行う。
Next, in the average correction amount calculating section, step S
Refractive index, water temperature, salt on the measurement lines AA and BB detected in 2
Short-term average correction amount by each parameter g such as partial concentration (Σ
(j) N[Δg(j)(I, i + 1)]) / N
Out, that is, <δL (parameter)> is obtained (step
S4). In the distance calculation unit, the bending calculated in step S4 is performed.
Of the short-time average correction amounts <g> such as the folding index n, the refractive index n
The short-term average correction amount <g>, in other words, <δL (P
Calculation of the true installation distance L between the opposing stations using
Go out.

【0064】即ち、測線AA、BBの対向局間の、例え
ば、i番目の局と(i+1)番目の局間の真の設置間距
離Lの変動量、即ち、歪み量εは、測定時t1 とt2
おける算出した補正後の真の距離Lt1 C とLt2 C とを下
記演算式、 〔ε(i、i+1)〕t1 t2≡{(測定時t2 における補正後の真の対向局間設置 距離〔Lt2 C (i、i+1)〕−(測定時t1 における補正前の対向局間設置距 離〔Lt1 C (i、i+1)〕)}/0.5×{(測定時t1 における補正後の真 の対向局間設置距離〔Lt1 C (i、i+1)〕)+(測定時t2 における補正後 の真の対向局間設置距離〔Lt2 C (i、i+1)〕)}・・・(5A)、 又は、 〔ε(i、i+1)〕t1 t2≡{(測定時t2 における補正後の対向局間設置距離 〔Lt2 C (i、i+1)〕)−(測定時t1 における補正後の対向局間設置距離 〔Lt1 C (i、i+1)〕)}/(測定時t1 における補正後の真の対向局間設 置距離〔Lt1 C (i、i+1)〕)・・・(5B) に代入することにより算出される(ステップS5)。
That is, the fluctuation amount of the true inter-installation distance L between the opposing stations of the measurement lines AA and BB, for example, between the i-th station and the (i + 1) -th station, that is, the distortion amount ε, The calculated true distances L t1 C and L t2 C after correction at 1 and t 2 are calculated by the following equation: [ε (i, i + 1)] t1 t2 ≡ {(true opposition after correction at measurement time t 2 ) between stations installation distance [L t2 C (i, i + 1) ] - (between opposing station installation distance before correction in the measurement time t 1 [L t1 C (i, i + 1) ])} / 0.5 × {(measured Corrected installation distance between opposing stations at time t 1 [L t1 C (i, i + 1)] + (corrected installation distance between opposing stations at measurement time t 2 [L t2 C (i, i + 1) )])} · · · (5A), or, [ε (i, i + 1)] t1 t2 ≡ {(opposite station between the installation distance corrected in the measurement time t 2 [L t2 C (i, i + 1) ]) (Measurement time t 1 opposite station between the installation distance [L t1 C (i, i + 1) ] after correction in)} / (measured at the true opposite station between Installation distance after correction in t 1 [L t1 C (i , I + 1)]) (5B) (step S5).

【0065】比較部では、(測定時t2 における補正後
の真の距離Lt2の算出値)と(測定時t1 における補正
後の真の距離Lt1の算出値)との差が計測能力限界(例
えば、10-8)以下なら(ステップS6)、上記両値が
等しければ測定時t1 〜t2の間に有意な歪みの発生が
なく(ステップS8)、そうでなければ有意な歪みが発
生したと識別し(ステップS7)、その識別信号と上記
歪みの推定値を示す信号を出力する。
In the comparison section, the difference between (the calculated value of the corrected true distance L t2 at the measurement time t 2 ) and (the calculated value of the corrected true distance L t1 at the measurement time t 1 ) is the measurement capability. limit (e.g., 10 -8) if below (step S6), and does not generate significant strain during the measurement time t 1 ~t 2 if the two values are equal (step S8), and significant otherwise strain Is generated (step S7), and the identification signal and a signal indicating the estimated value of the distortion are output.

【0066】かくして、判別信号を、屈折率計12、温
度センサ13、水圧センサ14、流向計15、流速計1
6、塩分濃度計17により実測した水温、水圧、流向、
流速、塩分濃度等のパラメータの各測定データととも
に、プリンタ、CRTに送出し(ステップS9)、次
に、ステップS1、S2に飛んで、上記データ処理を対
向各局に対する測定を反復することにより、測線AA、
BBにおける全部の対向各局間における歪みの有無を識
別するとともに、歪み量の算出を行う。なお、測定時t
2 経過後の測定時t3 ・・・tn の各測定値と、測定時
1 との各対比から歪みの発生の有無、歪み量の検知を
行うことは勿論である。
Thus, the discrimination signal is sent to the refractometer 12, the temperature sensor 13, the water pressure sensor 14, the flow direction meter 15, and the current meter 1.
6. Water temperature, water pressure, flow direction measured by the salinity meter 17,
The data is sent to the printer and the CRT together with the measurement data of the parameters such as the flow velocity and the salt concentration (step S9). AA,
The presence / absence of distortion between all opposing stations in the BB is identified, and the amount of distortion is calculated. At the time of measurement t
It is a matter of course that the presence or absence of distortion and the amount of distortion are detected from each measurement value at the measurement time t 3 ... T n after the lapse of 2 and each measurement time t 1 .

【0067】上記した例では、光学式測距装置の収納容
器の側部の形状を四角柱状に特定し、その4側面に光透
過窓を設ける旨を述べてあるが、光透過窓の穿設高さ位
置の側壁のみを円筒形状に、又は、側壁全体を円筒形状
に形成した上、120°、90°、60°又は45°間
隔に光透過窓を設けることで、送受光方向を3方向、4
方向、6方向、及び8方向にも分岐して送受光可能とし
たり、また、90°毎に光透過窓を設け、その内の3方
向を送受方向とするよう構成する事も随意である。さら
に、多方向に光を分岐送光する場合には、図5に示す分
岐カプラーは2方向に分岐させるから、例えば、受光光
を3方向に分岐させるには、光増幅器を介在させながら
分岐カプラー2個を縦設すればよく、したがって、分岐
を行う局に、分岐方向数の増加に対応した数の分岐カプ
ラーを配設するよう構成すればよい。
In the above-described example, the shape of the side portion of the storage container of the optical distance measuring device is specified as a quadrangular prism, and light transmitting windows are provided on the four side surfaces. Only the side wall at the height position is formed in a cylindrical shape, or the entire side wall is formed in a cylindrical shape, and light transmitting and receiving directions are provided in three directions by providing light transmitting windows at 120 °, 90 °, 60 ° or 45 ° intervals. , 4
It is also possible to arbitrarily branch the directions, six directions, and eight directions to enable transmission and reception, or to provide a light transmission window at every 90 ° and to configure three directions as transmission and reception directions. Further, when light is branched and transmitted in multiple directions, the branch coupler shown in FIG. 5 is branched in two directions. For example, in order to branch received light in three directions, the branch coupler is interposed with an optical amplifier. It suffices that two couplers are provided vertically. Therefore, the number of branch couplers corresponding to the increase in the number of branch directions may be arranged in the branching station.

【0068】また、ケーシング内に傾斜計10を設けて
あるため、本発明の光学式測距装置を傾斜して布設した
際には、傾斜計の傾斜信号は地上局に伝送され、これを
識別したオペレータは各中継局に設けた図示しないケー
ブルを、例えば、ケーブル布設用作業船を用いて牽引す
ることで、各中継局の傾斜を補正して設置することが可
能となる。さらに、上記実施例において、送信局、中継
局、及び受信局の何れかにデータ処理装置を設け、そこ
で検出データの処理を行って判別データを得た後、地上
局に転送するよう構成してもよいことは勿論である。
Further, since the inclinometer 10 is provided in the casing, when the optical distance measuring device of the present invention is laid in an inclined state, the inclination signal of the inclinometer is transmitted to the ground station and identified. Then, the operator who pulls the cable (not shown) provided in each relay station using, for example, a cable laying work boat, can correct and install the inclination of each relay station. Further, in the above embodiment, a data processing device is provided in any one of the transmitting station, the relay station, and the receiving station, and performs processing of the detection data to obtain discrimination data, and then transfers the data to the ground station. Of course, it is good.

【0069】次に、既に述べた<δL(パラメータ)>
は、対向局の何れか一方の局における任意の1つのパラ
メータgの短時間平均補正量に限定されるものではな
く、対向局の何れか一方の局で求めた任意の複数のパラ
メータgの各短時間平均補正量<g>を加算したとき、
又は対向局の各局において求めた任意の複数のパラメー
タgの各短時間平均補正量<g>を加算して対向局数2
で除算した平均値で示すときにも適用されるもので、そ
れらの場合の短時間平均補正量を、識別化のため<δL
´(パラメータ)>と表現する事とする。ところで、対
向局の何れか一方の局で求めた複数のパラメータgの短
時間平均補正量<g>を加算するときは、演算式(3
A)により、<δL´(パラメータ)>=<δL(屈折
率のみの変動の影響)>+<δL(塩分濃度のみの変動
の影響)>+<δL(水温のみの変動の影響)>+<δ
L(水圧のみの変動の影響)>+<δL(流速のみの変
動の影響)>+<δL(流向のみの変動の影響)>と示
し、また、対向局の各局において求めた任意の複数のパ
ラメータgの短時間平均補正量<g>を加算して対向局
数2、換言すると、0.5で除算した平均値で示すとき
は、演算式(3B)により、<δL´(パラメータ)>
=0.5×{(一方の局における〔<δL(屈折率のみ
の変動の影響)>+<δL(塩分濃度のみの変動の影
響)>+<δL(水温のみの変動の影響)>+<δL
(水圧のみの変動の影響)>+<δL(流速のみの変動
の影響)>+<δL(流向のみの変動の影響)>〕)+
(他方の局における〔<δL(屈折率のみの変動の影
響)>+<δL(塩分濃度のみの変動の影響)>+<δ
L(水温のみの変動の影響)>+<δL(水圧のみの変
動の影響)>+<δL(流速のみの変動の影響)>+<
δL(流向のみの変動の影響)>〕)}と示す。
Next, the already described <δL (parameter)>
Is not limited to the short-time average correction amount of any one parameter g in any one of the opposing stations, but may be any of a plurality of arbitrary parameters g obtained in any one of the opposing stations. When the short-time average correction amount <g> is added,
Alternatively, the short-term average correction amount <g> of an arbitrary plurality of parameters g obtained in each of the opposing stations is added and the number of opposing stations is 2
This is also applied to the case where the average value is divided by the following expression. In these cases, the short-time average correction amount is set to <δL for discrimination.
'(Parameter)>. By the way, when adding the short-time average correction amount <g> of the plurality of parameters g obtained in any one of the opposite stations, the arithmetic expression (3
According to A), <δL ′ (parameter)> = <δL (effect of variation only in refractive index)> + <δL (effect of variation only in salt concentration) ++ <δL (effect of variation only in water temperature) + <Δ
L (influence of fluctuation only in water pressure)> + <δL (influence of fluctuation in only flow velocity)> + <δL (influence of fluctuation in only flow direction)> When the short-term average correction amount <g> of the parameter g is added and the number of opposing stations is 2, in other words, when the average value obtained by dividing by 0.5 is represented by the arithmetic value (3B), <δL ′ (parameter)>
= 0.5 × {([<δL (influence of variation only in refractive index)) ++ δL (influence of variation only in salt concentration) ++ <δL (influence of variation only in water temperature)> + <ΔL
(Influence of fluctuation only in water pressure)> + <δL (Effect of fluctuation only in flow velocity)> + <δL (Effect of fluctuation only in flow direction)>)) +
([<ΔL (influence of variation only in refractive index)) ++ δL (influence of variation only in salinity)> + <δ in the other station
L (Influence of fluctuation only in water temperature)> + <δL (Effect of fluctuation only in water pressure)> + <δL (Influence of fluctuation only in flow velocity)> + <
δL (influence of fluctuation only in flow direction)>])}.

【0070】次に、対向局の何れか一方の局で求めた任
意の複数のパラメータgの各短時間平均補正量<g>を
加算したもの、又は、「対向局の各局において求めた任
意の複数のパラメータgの各短時間平均補正量<g>の
加算して対向局数2で除算した平均値」で示したものを
<δL´(パラメータ)>と表し、これを用いた歪み量
の算出を説明する。この場合、前述した対向局の何れか
一方の局の任意の1つのパラメータgを選択した時の各
短時間平均補正量<δL(パラメータ)>の算出前の処
理過程は同じであるが、これ以後の処理過程が若干相違
するので、以下に相違点について説明する。
Next, a value obtained by adding the short-time average correction amounts <g> of arbitrary parameters g obtained by any one of the opposing stations, or “arbitrary parameters obtained by each opposing station” The average value obtained by adding the short-time average correction amounts <g> of the plurality of parameters g and dividing by the number of opposing stations 2 ”is expressed as <δL ′ (parameter)>, and the distortion amount using The calculation will be described. In this case, the process before calculation of each short-time average correction amount <δL (parameter)> when any one parameter g of any one of the opposite stations is selected is the same. Since the subsequent processing steps are slightly different, the differences will be described below.

【0071】先ず、測定時t1 、t2 に検出した任意の
複数のパラメータgを用いた各短時間平均補正量を加算
したものを<δL´(パラメータ)>とし、対向局の何
れか一方の局で求めた任意の複数のパラメータg、例え
ば、屈折率、塩分濃度のパラメータgを選択したとき
は、演算式(3A)により、<δL´(パラメータ)>
=<δL(屈折率のみの変動の影響)>+<δL(塩分
濃度のみの変動の影響)>を算出し、補正後の真の対向
局間設置距離Lを求める下記演算式(4A)、(4B)
の右辺第2項にそれぞれ代入する。また、対向局の各局
において求めた任意の複数のパラメータgを用いた各短
時間平均補正量<g>、例えば、各局における屈折率、
塩分濃度、水温のパラメータgを選択したときは、演算
式(3B)により、<δL´(パラメータ)>=0.5
×{(一方の局における〔<δL(屈折率のみの変動の
影響)>+<δL(塩分濃度のみの変動の影響)>+<
δL(水温のみの変動の影響)>〕)+(他方の局にお
ける〔<δL(屈折率のみの変動の影響)>+<δL
(塩分濃度のみの変動の影響)>+<δL(水温のみの
変動の影響)>〕)}を算出し、この場合も同様に、補
正後の真の対向局間設置距離Lを求める下記演算式(4
A)、(4B)の右辺第2項にそれぞれ代入する。
First, <δL ′ (parameter)> is the sum of the respective short-time average correction amounts using a plurality of arbitrary parameters g detected at the measurement times t 1 and t 2 , and any one of the opposite stations is used. When any of a plurality of parameters g obtained at the station, for example, the parameters g of the refractive index and the salt concentration, are selected, <δL ′ (parameter)> is obtained by the arithmetic expression (3A).
= <ΔL (influence of variation only in refractive index)> + <δL (influence of variation only in salt concentration)> to calculate the true installation distance L between the opposite stations after correction, (4B)
To the second term on the right side of. Further, each short-time average correction amount <g> using an arbitrary plurality of parameters g obtained in each station of the opposite station, for example, the refractive index in each station,
When the parameter g of the salt concentration and the water temperature is selected, <δL ′ (parameter)> = 0.5 by the arithmetic expression (3B).
× {([<δL (influence of variation only in refractive index)) in one station> + <δL (influence of variation only in salt concentration)> + <
δL (effect of fluctuation only in water temperature)>) + ([<δL (effect of fluctuation only in refractive index)) ++ δL in the other station
(Influence of variation only in salt concentration)> + <δL (Influence of variation only in water temperature)>))} is calculated, and in this case, similarly, the following calculation for calculating the true corrected installation distance L between opposing stations is similarly performed. Equation (4
A) and (4B) are substituted for the second term on the right side.

【0072】よって、何れの場合も、測定時t1 におけ
る補正後の真の対向局間設置距離Lは、 L=〔Lt1 C (i、i+1)〕=(測定時t1 における補正前の対向局間設置距 離〔L(j) (i、i+1);t=t1 〕)+(測定時t1 における短時間平均補 正量<δL´(パラメータ)>t1)・・・演算式(4A) に示すように、測定時t1 における補正前の対向局間設
置距離L(j) と上記短時間平均補正量<δL´(パラメ
ータ)>t1 との和から測定時t1 における補正後の真
の対向局間設置距離Lを求めると共に、測定時t2 にお
ける補正後の真の対向局間の設置距離Lは、 測定時t2 における補正後の真の対向局間設置距離L=〔Lt2 C (i、i+1) 〕=(測定時t2 における補正前の対向局間設置距離〔L(j) (i、i+1); t=t2 〕)+(測定時t2 における短時間平均補正量<δL´(パラメータ) >t2)・・・演算式(4B) に示すように、測定時t2 における補正前の対向局間設
置距離L(j) と上記短時間平均補正量<δL´(パラメ
ータ)>t2 との和から測定時t2 における補正後の真
の対向局間設置距離Lを求める。
In any case, the true installation distance L between the opposing stations after the correction at the measurement time t 1 is L = [L t1 C (i, i + 1)] = (the value before the correction at the measurement time t 1 ) Distance between opposing stations [L (j) (i, i + 1); t = t 1 ]) + (short-time average correction amount at measurement time t 1 <δL '(parameter)> t 1 ) as shown in (4A), the correction in the measurement time t 1 from the sum of the measured time between the opposed stations before correction in t 1 installation distance L (j) and the short-term average correction amount <δL'(parameter)> t1 true with obtaining the opposite station between the installation distance L after, installation distance L between the true opposite station after correction in the measurement time t 2 is between true opposite station installation after correction in the measurement time t 2 distance L = [L t2 C (i, i + 1)] = (Distance between opposite stations before correction at measurement time t 2 [L (j) (i, i + 1); t = t 2 ) ]) + (Measured at the short-term average correction amount in t 2 <δL'(parameters)> As shown in t2) · · · arithmetic expression (4B), between the opposing station installation distance before correction in the measurement time t 2 L (j) and the short-term average correction amount <δL'(parameter)> obtaining a true between the opposing station installation distance L after correction in the measurement time t 2 from the sum of t2.

【0073】 次に、{(測定時t2 における補正後の真の対向局間設置距離〔Lt2 C (i、 i+1)〕)−(測定時t1 における補正後の真の対向局間設置距離〔Lt1 C ( i、i+1)〕)}/0.5×{(測定時t1 における補正後の真の対向局間設 置距離〔Lt1 C (i、i+1)〕)+(測定時t2 における補正後の真の対向局 間設置距離〔Lt2 C (i、i+1)〕)}・・・演算式(5A)、 又は、 {(測定時t2 における補正後の真の対向局間設置距離〔Lt2 C (i、i+1) 〕)−(測定時t1 における補正後の真の対向局間設置距離〔Lt1 C (i、i+ 1)〕)}/(測定時t1 における補正後の真の対向局間設置距離〔Lt1 C (i 、i+1)〕)・・・演算式(5B)、 の分子の{(測定時t2 における補正後の真の対向局間
設置距離Lt2)の値から、(測定時t1 における補正後
の真の対向局間設置距離Lt1)の値の差}の結果に基づ
いて対向局間における歪みの発生の有無を識別し、そし
て、演算式(5A)に基づき、{(測定時t2 における
補正後の真の対向局間設置距離Lt2の値、及び測定時t
1 における補正後の真の対向局間設置距離Lt1の値の
差)と、上記(測定時t1 及びt2 における補正後の真
の対向局間設置距離Lt1及びLt2の平均値)}との比か
ら対向局間に発生する歪み量〔ε(i、i+1)〕t1 t2
を、又は演算式(5B)に基づいて、{(測定時t2
おける補正後の真の対向局間設置距離Lt2の値、及び測
定時t 1 における補正後の真の対向局間設置距離Lt1
値の差)と、上記(測定時t1における補正後の真の対
向局間設置距離Lt1)}との比から対向局間に発生する
歪み量〔ε(i、i+1)〕t1 t2を求めることが出来
る。
Next, Δ (at the time of measurement tTwoOf the true installation distance between opposing stations [Lt2 C(I, i + 1)])-(measurement t1Of the true installation distance between opposing stations [Lt1 C(I, i + 1)])} / 0.5 × {(t at the time of measurement1The corrected installation distance between opposing stations [Lt1 C(I, i + 1)]) + (measurement tTwoCorrected distance between opposing stations [Lt2 C(I, i + 1)])} ... Equation (5A) or {(measurement tTwoOf the true installation distance between opposing stations [Lt2 C(I, i + 1)])-(measurement time t1Of the true installation distance between opposing stations [Lt1 C(I, i + 1)))} / (measurement t1Of the true installation distance between opposing stations [Lt1 C(I, i + 1)])... Of the numerator of the arithmetic expression (5B)TwoBetween true opposing stations after correction at
Installation distance Lt2), (At the time of measurement t1After correction in
True distance L between stationst1) Based on the result of the difference
To identify whether or not distortion has occurred between opposing stations, and
Then, based on the arithmetic expression (5A),TwoIn
True corrected installation distance L between opposing stationst2And the time of measurement t
1Corrected inter-station distance L after correction int1Of the value of
Difference) and the above (t1And tTwoTrue after correction in
Installation distance L between opposing stationst1And Lt2Average value of})
From the opposite station [ε (i, i + 1)]t1 t2
Or {(measurement time t)TwoTo
Corrected distance L between opposing stations after correctiont2Value and measurement
Regular time t 1Corrected inter-station distance L after correction int1of
Value) and the above (at the time of measurement t)1True pair after correction in
Installation distance L between stationst1Occurs between opposing stations based on the ratio of})
Distortion [ε (i, i + 1)]t1 t2Can ask for
You.

【0074】次に、上記した測定処理を実行する測線の
多数を幾つかの断層を跨いで多方向に分岐配設した実施
例を、以下に説明する。図13は、観測領域を一層拡大
するため、測線の多数を幾つかの断層を跨いで多方向に
分岐配設した第2の設置例のブロック図を示し、例え
ば、30m間隔毎に配設された送信局10A、中継局1
0B、・・・、10F、・・・10M、受信局10Nよ
りなる測線AAが断層71、72を跨いで直線状に敷設
され、送信局10Aから送光された光パルスは中継局1
0B、・・・10M、受信局10Nに次々に伝播され
る。
Next, a description will be given of an embodiment in which a large number of measurement lines for executing the above-described measurement processing are branched and arranged in several directions across several slices. FIG. 13 is a block diagram of a second installation example in which a large number of survey lines are branched and arranged in multiple directions across several faults in order to further expand the observation area. Transmitting station 10A, relay station 1
.. 10F,... 10M and the receiving station 10N are laid in a straight line across the toms 71 and 72, and the optical pulse transmitted from the transmitting station 10A is
OB,... 10M, and propagates to the receiving station 10N one after another.

【0075】そして、測線AAの中継局10Fを光パル
ス分岐局とし、その図示しない2個の光透過窓を介して
光パルスを、直交方向に配設されている一方の測線BB
の先頭送信局30Aの光透過窓に送光し、さらに、図示
しない中継局を経由して最終段の受信局30Nに送光す
る一方、他方の測線CCの先頭送信局40Aの光透過窓
に送光し、図示しない中継局を経由して最終段の受信局
40Nに送光する。
The relay station 10F of the measurement line AA is an optical pulse branching station, and an optical pulse is transmitted through two light transmission windows (not shown) to one of the measurement lines BB arranged in the orthogonal direction.
Is transmitted to the light transmitting window of the first transmitting station 30A, and further transmitted to the final receiving station 30N via a relay station (not shown), while being transmitted to the light transmitting window of the first transmitting station 40A of the other measurement line CC. The light is transmitted to a final-stage receiving station 40N via a relay station (not shown).

【0076】また、中継局10Mを光パルス分岐局と
し、その図示しない2個の光透過窓を介して光パルス
を、直交方向に配設されている一方の測線HHの先頭送
信局50Aの光透過窓に送光し、図示しない中継局を経
由して最終段の受信局50Nに送光する一方、他方の測
線JJの先頭送信局60Aの光透過窓に送光し、図示し
ない中継局を経由して最終段の受信局60Nに送光す
る。
Also, the relay station 10M is an optical pulse branching station, and the optical pulse is transmitted through the two light transmission windows (not shown) to the optical transmitter of the head transmitting station 50A of one of the measurement lines HH arranged in the orthogonal direction. While transmitting the light to the transmission window and transmitting the light to the final receiving station 50N via the relay station (not shown), the light is transmitted to the light transmission window of the head transmitting station 60A of the other measurement line JJ, and the relay station (not shown) is transmitted. The light is transmitted to the receiving station 60N at the final stage via the optical path.

【0077】さらに、測線AAの受信局10Nを光パル
ス分岐局とし、その光透過窓を介して光パルスが、相互
にほぼ90°の角度を持ち、かつ、断層73に跨がって
配設されている一方の測線KKの先頭送信局70Aに送
光し、図示しない中継局を介して最終段の受信局70N
に送光され、また、他方の測線LLの先頭送信局80A
の光透過窓に送光するとともに、図示しない中継局を介
して最終段の受信局80Nに送光される。
Further, the receiving station 10N of the measurement line AA is an optical pulse branching station, and the optical pulses are arranged at an angle of about 90 ° with each other through the light transmitting window and straddling the tomographic cross section 73. To the head transmitting station 70A of one of the measurement lines KK, and the final receiving station 70N via a relay station (not shown).
And the head transmitting station 80A of the other measurement line LL
And the light is transmitted to the final receiving station 80N via a relay station (not shown).

【0078】そして、測線AA、BB、HH、JJ、K
K、LLの各局から発生される光電変換パルスPと、測
定した海水の屈折率、水温、水圧、流向、流速、塩分濃
度データとを、並列伝送ケーブル103A、103B、
103C、103H、103J、103K、103Lを
経由し、これらの搬送ケーブルを収容している伝送ケー
ブル103Tを介して搬送され、地上局にて既に述べた
データ処理を実行する。上記したように、観測領域が7
本の測線により敷設されるため、観測領域の拡大化をは
かることが可能となる。
Then, the measurement lines AA, BB, HH, JJ, K
The photoelectric conversion pulse P generated from each station of K and LL and the measured refractive index, water temperature, water pressure, flow direction, flow velocity, and salt concentration data of seawater are converted into parallel transmission cables 103A, 103B,
Via 103C, 103H, 103J, 103K, 103L, it is transported via a transmission cable 103T accommodating these transport cables, and the ground station executes the data processing already described. As mentioned above, the observation area is 7
Since it is laid by the measurement lines, it is possible to expand the observation area.

【0079】次に、多数の測線を海底に平行敷設する第
3の設置例のブロック図を示す図14を参照すると、例
えば、30m間隔毎に配設された光パルスを発生する送
信局10a、中継局10b・・・、受信局10nを直線
状に敷設した測線AAと、送信局10aからの分岐光パ
ルスを送光される先頭送信局20a、中継局20b・・
・、受信局20nを直線状に敷設した測線BBと、測線
BBの先頭送信局20aからの分岐光パルスを送光され
る先頭送信局30a、中継局30b・・・、受信局30
n 直線状に敷設した測線CCと、測線CCの先頭送信
局30bからの分岐光パルスを送光される先頭送信局4
0a、中継局40b・・・、受信局40nを直線状に敷
設した測線DDと、測線DDの先頭送信局40aからの
分岐光パルスを送光される一方の先頭送信局50a、中
継局50b・・・、受信局50nを直線状に敷設した測
線EEとが海底に平行配設されている。そして、測線A
A、測線BB、測線CC、測線DD、及び測線EEにお
ける各局から発生される光電変換パルスPと、敷設位置
における海水温度、水圧、流向、流速、及び塩分濃度の
測定データとを、それぞれ並列した搬送ケーブル103
A、103B、103C、103D、及び103Eを介
して地上局に搬送される。この場合でも、既に述べた海
水の温度変動による温度補償等のデータ処理と同じデー
タ処理を行う。
Next, referring to FIG. 14, which shows a block diagram of a third installation example in which a large number of survey lines are laid in parallel on the sea floor, for example, a transmitting station 10a which generates optical pulses arranged at intervals of 30 m, The relay station 10b ..., the measuring line AA in which the receiving station 10n is laid in a straight line, the head transmitting station 20a to which the branch optical pulse from the transmitting station 10a is transmitted, the relay station 20b, ...
A measuring line BB in which the receiving stations 20n are laid in a straight line, and a head transmitting station 30a, a relay station 30b,..., The receiving station 30 to which the branch optical pulse from the head transmitting station 20a of the measuring line BB is transmitted.
n The line CC laid in a straight line, and the head transmitting station 4 to which the branch optical pulse from the head transmitting station 30b of the line CC is transmitted.
0a, a relay station 40b,..., A measuring line DD in which receiving stations 40n are laid in a straight line, and one of the first transmitting station 50a, the relay station 50b, to which a branch optical pulse is transmitted from the first transmitting station 40a of the measuring line DD. .. and a measuring line EE in which the receiving stations 50n are laid in a straight line are arranged in parallel on the sea floor. And line A
A, the photoelectric conversion pulse P generated from each station on the measurement line BB, the measurement line CC, the measurement line DD, and the measurement line EE, and the measurement data of the seawater temperature, water pressure, flow direction, flow velocity, and salinity concentration at the laying position were respectively arranged in parallel. Transport cable 103
Transported to ground stations via A, 103B, 103C, 103D, and 103E. Also in this case, the same data processing as the data processing such as the temperature compensation due to the seawater temperature fluctuation described above is performed.

【0080】図15は、国土地理院により地上に設置し
た三角測量網と同様に、海底における多数の三角形の頂
点形成位置毎に観測局を二次元的拡がりを形成するよう
に敷設した第4の設置例のブロック図である。なお、こ
の実施の形態例では、隣接2局間の伝播時間を測定し、
その測定時t1 の測定値とこの測定時t1 から所定時間
経過した測定時t2 の測定値との差の有無を識別し、こ
れにより、2局間に介在する地殻の伸縮の有無を判別す
る点でこれ迄の実施の形態の例とは相違するが、その後
の温度補正等のデータ処理については、これ迄述べたも
のと同じである。
FIG. 15 shows a fourth example in which an observation station is laid so as to form a two-dimensional spread at each vertex forming position of a large number of triangles on the sea floor, similarly to the triangulation network installed on the ground by the Geographical Survey Institute. It is a block diagram of an example of an installation. In this embodiment, the propagation time between two adjacent stations is measured.
Identifying the presence or absence of difference between the measured value of the time t 1 from the measurement time t 1 and the measurement value of the predetermined time elapsed measured time t 2, thereby, the presence of expansion and contraction of the crust interposed between two stations Although this embodiment is different from the above-described embodiments in the point of discrimination, the subsequent data processing such as temperature correction is the same as that described above.

【0081】図15において、例えば、30m間隔毎
に、後述する構成を有する観測局10A1・・・10A
6・・・と、10B1・・・10B7・・・と、さら
に、10C1・・・10C7・・・と、10D2・・・
10D7・・・とが、例えば、正三角形の各頂点形成位
置に敷設されている。
In FIG. 15, for example, every 30 m, the observation stations 10A1.
6B, 10B1, 10B7, 10C1, 10C7, 10D2,
10D7... Are laid, for example, at each vertex forming position of an equilateral triangle.

【0082】次に、図15の観測網の梯形領域Sを抜き
出して示す図16を参照し、この観測網に用いるに観測
局の構成と、各観測局間における光パルスの伝播及び伝
播時間Tの測定とについて説明する。この観測局は全て
同じ構成であるが、伝播時間の測定説明の中心となる観
測局10B3についてはその関連部材について参照符号
を付して説明し、隣接観測局については上記説明と関連
する部材についてだけ参照符号を付して説明し、説明の
重複化を避けることとする。
Next, with reference to FIG. 16 showing a trapezoidal region S of the observation network extracted from FIG. 15, the configuration of the observation station used in this observation network, the propagation of the optical pulse between the observation stations, and the propagation time T Will be described. Although all of these observation stations have the same configuration, the observation station 10B3, which is the center of the explanation of the measurement of the propagation time, will be described with reference numerals for the related members, and the adjacent observation stations will be described with respect to the members related to the above description. Only the reference numerals will be described, and the description will not be duplicated.

【0083】観測局10B3内の水平軸における図中左
側の水平線位置を0°とし、ここから時計方向回りに6
0°ずつの角度間隔をおいて3個の光電変換器9A、9
B、9Cを配設し、さらに、図中右側の水平線位置を1
80°とし、ここから時計方向回りに60°ずつ角度間
隔を置いて、パルス光を発生するレーザ光源4C、4
B、4Aの順に配設されている。なお、このレーザ光源
4A、4B、4Cは、図示しない搬送ケーブル内の給電
ケーブルに接続され、地上局のデータ処理装置からの指
令により、所定時間間隔毎に同時的に点灯するよう構成
されている。この観測局の構成によれば、これ迄の説明
した観測局のように、分岐カプラー5A〜5C、及び光
増幅器6を備える必要がなく、構成上の簡単化がはかれ
る。
The horizontal line position on the left side of the horizontal axis in the observing station 10B3 is set to 0 °, and 6 degrees clockwise from here.
Three photoelectric converters 9A, 9 at an angular interval of 0 °
B, 9C, and the horizontal line position on the right
The laser light sources 4C, 4C, which generate pulsed light, are spaced at an angular interval of 60 ° clockwise from here.
B, 4A. The laser light sources 4A, 4B, and 4C are connected to a power supply cable in a transport cable (not shown), and are configured to be simultaneously turned on at predetermined time intervals according to a command from a data processing device of a ground station. . According to the configuration of the observation station, it is not necessary to provide the branch couplers 5A to 5C and the optical amplifier 6 unlike the observation station described so far, and the configuration can be simplified.

【0084】次に、例示的に、観測局10B3を中心と
した隣接局への光パルスの伝播と、この局10B3と隣
接局10A2、及び10A3との間の伝播時間T1 、T
2 、隣接局10B2、及び10B4との間の伝播時間T
3 、T4 、隣接局10C3、10C4との間の伝播時間
5 、T6 の測定について説明する。
Next, as an example, the propagation of the optical pulse to the adjacent station centering on the observation station 10B3 and the propagation times T 1 , T 1 between this station 10B3 and the adjacent stations 10A2 and 10A3.
2 , the propagation time T between adjacent stations 10B2 and 10B4
3 , T 4 and the measurement of the propagation times T 5 and T 6 between the adjacent stations 10C3 and 10C4 will be described.

【0085】隣接局10A1(図15、16参照)から
の送光パルスを局10A2の光電変換器9Aが受光し、
発生した光電変換パルスK1を伝送ケーブル104A1
を介し、地上局のデータ処理装置内のカウンタ部に送信
する。そして、同時点灯するレーザ光源4Aの光パルス
を隣接局10B2の光電変換器9Cに送光し、レーザ光
源4Bの光パルスを隣接局10B3の光電変換器9Bに
送光し、発生したパルスK2をケーブル104B5を介
して上記カウンタ部に送信し、対向局10A2と10B
3との間の光パルス伝播時間T1 を示す計数値を出力さ
せ、また、レーザ光源4Cの光パルスを隣接局10A3
の光電変換器9Aに送光し、発生パルスK3をケーブル
104A4を介してカウンタ部に送信する。
The light transmitting pulse from the adjacent station 10A1 (see FIGS. 15 and 16) is received by the photoelectric converter 9A of the station 10A2.
The generated photoelectric conversion pulse K1 is transmitted to the transmission cable 104A1.
To the counter section in the data processing device of the ground station. Then, the optical pulse of the laser light source 4A which is turned on at the same time is transmitted to the photoelectric converter 9C of the adjacent station 10B2, the optical pulse of the laser light source 4B is transmitted to the photoelectric converter 9B of the adjacent station 10B3, and the generated pulse K2 is transmitted. The data is transmitted to the counter section via the cable 104B5, and the opposite stations 10A2 and 10B are transmitted.
3 to output the count value of an optical pulse propagation time T 1 of the between, also the optical pulse of the laser light source 4C neighbor 10A3
To the photoelectric converter 9A, and transmits the generated pulse K3 to the counter unit via the cable 104A4.

【0086】局10A3のレーザ光源4Aからの光パル
スを隣接局10B3の光電変換器9Cに送光し、この光
電変換器9Cからの発生パルスK4はケーブル104B
6を介し、上記パルスK3が送信されるカウンタ部に送
信される。このため、対向局10A3と10B3との間
の光パルスの伝播時間T2 を示す計数値が出力される。
The optical pulse from the laser light source 4A of the station 10A3 is transmitted to the photoelectric converter 9C of the adjacent station 10B3.
6, the pulse K3 is transmitted to the counter unit to which the pulse is transmitted. Therefore, count value indicating the propagation time T 2 of the optical pulse between the counter station 10A3 and 10B3 is output.

【0087】隣接局10B1からの光パルス(図15、
16参照)を局10B2の光電変換器9Aが受光し、発
生したパルスK5をケーブル104B1を介してカウン
タ部に送信する。他方、このカウンタ部には、ケーブル
104B4を介し、局10B2のレーザ光源4Cからの
光パルスを隣接局10B3の光電変換器9Aが受光し、
その発生パルスK6が送信されるので、このカウンタ部
からは対向局10B2と10B3との間の光パルス伝播
時間T3 の計数値が出力される。
The optical pulse from the adjacent station 10B1 (FIG. 15,
16) is received by the photoelectric converter 9A of the station 10B2, and the generated pulse K5 is transmitted to the counter unit via the cable 104B1. On the other hand, the photoelectric converter 9A of the adjacent station 10B3 receives the optical pulse from the laser light source 4C of the station 10B2 via the cable 104B4 in this counter section.
Since the generated pulses K6 is transmitted, the count value of the optical pulse propagation time T 3 between this from the counter and the counter station 10B2 10B3 is output.

【0088】局10B3のレーザ光源4A〜4Cが同時
点灯し、レーザ光源4Aの光パルスが隣接局10C3の
光電変換器9Cに送信され、その発生パルスK8はケー
ブル104C6を介し、前記パルスK6が送信されるカ
ウンタ部に入力され、対向局10B3と10C3との間
の光パルスの伝播時間T5 の計数値が出力される。
The laser light sources 4A to 4C of the station 10B3 are simultaneously turned on, the optical pulse of the laser light source 4A is transmitted to the photoelectric converter 9C of the adjacent station 10C3, and the generated pulse K8 is transmitted via the cable 104C6 and transmitted. is input to the counter unit is, the count value of the propagation time T 5 of the optical pulse between the counter station 10B3 and 10C3 is output.

【0089】また、局10B3のレーザ光源4Bからの
光パルスを隣接局10C4の光電変換器9Bが受光し、
発生パルスK9をケーブル104C8を介し、局10B
3からケーブル104B4を介して発生パルスK6が送
信されるカウンタ部に入力され、対向局10B3と10
C4との間の光パルスの伝播時間T6 の計数値が出力さ
れる。
The optical pulse from the laser light source 4B of the station 10B3 is received by the photoelectric converter 9B of the adjacent station 10C4.
The generated pulse K9 is transmitted to the station 10B via the cable 104C8.
3 is input to the counter unit to which the generated pulse K6 is transmitted via the cable 104B4, and the opposite stations 10B3 and 10B3
Count of propagation time T 6 of the optical pulse between C4 is output.

【0090】さらに、局10B3のレーザ光源4Cから
の光パルスが隣接局10B4の光電変換器9Aに送光さ
れ、発生パルスK7はケーブル104B7を介し、局1
0B3からの発生パルスK6をケーブル104B4を介
して送信されるカウンタ部に送信されることにより、対
向局10B3と10B4との間の光パルス伝播時間T 4
を示す計数値が出力される。地上局のデータ処理装置で
は、上記した伝播時間T1 〜伝播時間T6 を検知する
が、温度補正等のその余のデータ処理については、既に
述べたと同様に実行する。また、上記観測局を正三角形
の頂点位置に配設する例を説明したが、二等辺三角形
や、その他任意の角度を有する三角形に対しても配設可
能である。その場合、3個の光電変換器、及び3個のレ
ーザ光源は、上記実施例で述べた作用を行い得るよう任
意の角度にて配設する例について述べたが、湖底の断層
を跨いで配設することも可能である。
Further, from the laser light source 4C of the station 10B3
Is transmitted to the photoelectric converter 9A of the adjacent station 10B4.
The generated pulse K7 is transmitted to the station 1 via the cable 104B7.
Generated pulse K6 from 0B3 via cable 104B4
Is transmitted to the counter unit
Optical pulse propagation time T between the stations 10B3 and 10B4 Four
Is output. In the ground station data processing equipment
Is the above propagation time T1~ Propagation time T6Detect
However, for other data processing such as temperature correction,
Perform as described. In addition, the above observation stations are equilateral triangles.
Has been explained at the vertex position of
And other triangles with arbitrary angles
Noh. In that case, three photoelectric converters and three lasers
The laser light source is designed to perform the functions described in the above embodiments.
The example of arranging at an arbitrary angle was described.
It is also possible to arrange over the.

【0091】なお、上記した図13〜図15に示す実施
例にも、短時間平均補正量<δL(パラメータ)>や、
<δL´(パラメータ)>を用い、測線の各局間の真の
設置間距離Lを求める前述した測定処理を適用できるこ
とは言う迄もない。
The embodiments shown in FIGS. 13 to 15 also have a short-time average correction amount <δL (parameter)>,
It goes without saying that the above-described measurement processing for obtaining the true installation distance L between stations on the measurement line using <δL ′ (parameter)> can be applied.

【0092】次に、図17を参照し、水温の変動に基づ
く光パルスの伝播速度vの変動に対し、図1乃至図16
に示した光学式測距装置よりも、より精密に温度補償の
行える本発明の第2の実施の形態の光学式測距装置の実
施例を説明する。
Next, referring to FIG. 17, the change in the propagation speed v of the light pulse due to the change in the water temperature will be described with reference to FIGS.
An example of the optical distance measuring apparatus according to the second embodiment of the present invention, which can perform temperature compensation more precisely than the optical distance measuring apparatus shown in FIG.

【0093】図17に示すように、海底Eに設置した、
例えば、測線AAを構成する送信局10a′、複数の中
継局10b′・・・、及び受信局10n′には、図示し
ない地上局から延伸した伝送ケーブル103Aが貫通、
連接されている。そして、送信局10a′と初段の中継
局10b′の間、第2段目の中継局10b´から最後の
中継局10m´の間において対設する中継局同士、最後
に中継局10m´とこれに対向する最後尾に位置する受
信局10n′との間には、各局を貫通している伝送ケー
ブル103Aの各外周面に、図19(A)に示す分布型
光ファイバー温度計TH1、TH2、・・・、THmが
添設されている。
As shown in FIG.
For example, a transmission cable 103A extending from a ground station (not shown) passes through the transmitting station 10a ', the plurality of relay stations 10b',...
It is articulated. Then, between the transmitting station 10a 'and the first-stage relay station 10b', between the second-stage relay station 10b 'and the last relay station 10m', relay stations connected to each other, and finally, the relay station 10m ' , Between the outermost peripheral surface of the transmission cable 103A penetrating each station, and the distribution type optical fiber thermometer TH1, TH2,... Shown in FIG.・ ・, THm is attached.

【0094】図19(A)を参照しながら分布型光ファ
イバー温度計TH1を概略説明すると、光ファイバー温
度計TH1は、コアCRの外周にクラッドCLを有し、
その外周にメタルコーティングMCを施してなるもの
で、その長手方向に沿う多箇所にて加熱されている光フ
ァイバー温度計TH1の入射端ITにパルスレーザ光を
入射すると、光ファイバー温度計TH1の各所でラマン
散乱光(周波数が変動する)が発生するが、ラマン散乱
光の強度は温度依存性を持つ。そして、その後方散乱光
を検出すると、ラマン散乱光の発生位置に対応してパル
ス光が入射してから戻って来る迄の時間が異なるため、
光ファイバー温度計TH1の温度を位置毎に求め、光フ
ァイバー温度計TH1の長手方向に沿った温度分布を求
めることが出来る。なお、この種の光ファイバー温度計
の温度測定範囲は、例えば、−200℃〜500℃であ
り、長さ30kmまでの温度分布が測定可能である。
Referring to FIG. 19A, the distributed optical fiber thermometer TH1 will be briefly described. The optical fiber thermometer TH1 has a clad CL on the outer periphery of a core CR,
When a pulsed laser beam is incident on the incident end IT of the optical fiber thermometer TH1 which is heated at multiple points along its longitudinal direction, Raman is applied at various points of the optical fiber thermometer TH1. Scattered light (frequency fluctuates) is generated, but the intensity of Raman scattered light has temperature dependence. When the backscattered light is detected, the time from when the pulsed light is incident to when it returns is different depending on the position where the Raman scattered light is generated.
The temperature of the optical fiber thermometer TH1 is obtained for each position, and the temperature distribution along the longitudinal direction of the optical fiber thermometer TH1 can be obtained. The temperature measurement range of this type of optical fiber thermometer is, for example, −200 ° C. to 500 ° C., and a temperature distribution up to a length of 30 km can be measured.

【0095】なお、本発明では、光ファイバー温度計T
H1の長手方向に沿った温度分布検出を行う必要は必ず
しもない。単に、分布型光ファイバー温度計TH1の外
周の海水温度に対応して伝播速度が変動するパルスレー
ザ光を検出してもよい。そこで、本発明においては、光
ファイバー温度計TH1の入射端ITにパルスレーザ光
Scを入力し、その出射端OTにて透過光パルス、又
は、前方散乱光パルスも検出する。
In the present invention, the optical fiber thermometer T
It is not always necessary to detect the temperature distribution along the longitudinal direction of H1. The pulse laser light whose propagation speed fluctuates according to the seawater temperature on the outer periphery of the distributed optical fiber thermometer TH1 may be simply detected. Therefore, in the present invention, the pulse laser light Sc is input to the input end IT of the optical fiber thermometer TH1, and the transmitted light pulse or the forward scattered light pulse is also detected at the output end OT.

【0096】ところで、図18に示すように、各中継局
10b´・・・と受信局10n´とに設けた計測演算装
置800・・・のそれぞれは、ケーブル103Aを介し
て地上局から伝送される駆動パルスDSにより付勢され
て基準光パルスを発生する基準光パルス発生部801
と、成分検出部802、803と、計測演算部804と
を備えている。
As shown in FIG. 18, each of the measurement operation devices 800 provided in each of the relay stations 10b '... And the receiving station 10n' is transmitted from the ground station via the cable 103A. A reference light pulse generator 801 which is energized by the drive pulse DS to generate a reference light pulse.
And component detection units 802 and 803, and a measurement calculation unit 804.

【0097】第1の成分検出部802は、基準光パルス
発生部801から出射される基準光パルスSPと、光フ
ァイバー温度計TH1の出射端から放射される上記パル
スレーザ光Scとが入射され、基準光パルスSPを参照
して両パルス間の位相差を示す第1の成分光パルス信号
を求め、電気信号に変換して計測演算部804に入力
し、デジタル電気信号に変換する。また、第2の成分検
出部803も、同様に、上記基準光パルス発生部801
から出射される基準光パルスSPと、後述する海中を透
過するパルスレーザ光Swとが入射され、基準光パルス
SPを参照して両パルス間の位相差を示す第2の成分光
パルス信号を求め、電気信号に変換して計測演算部80
4に入力し、デジタル電気信号に変換する。そして、計
測演算部804から、パルスScの光路長を示す位相差
信号とパルスSwの光路長を示す位相差信号とを対比
し、両光路長の差を示す位相差信号をケーブル103A
を介して地上局に伝送する。
The first component detector 802 receives the reference light pulse SP emitted from the reference light pulse generator 801 and the pulse laser light Sc emitted from the emission end of the optical fiber thermometer TH1. A first component light pulse signal indicating a phase difference between the two pulses is obtained with reference to the light pulse SP, converted into an electric signal, input to the measurement operation unit 804, and converted into a digital electric signal. Similarly, the second component detection unit 803 also operates as the reference light pulse generation unit 801.
A reference light pulse SP emitted from the light source and a pulse laser beam Sw transmitted through the sea, which will be described later, are incident, and a second component light pulse signal indicating a phase difference between the two pulses is obtained with reference to the reference light pulse SP. Is converted into an electric signal,
4 and converted into a digital electric signal. Then, the measurement calculation unit 804 compares the phase difference signal indicating the optical path length of the pulse Sc with the phase difference signal indicating the optical path length of the pulse Sw, and outputs the phase difference signal indicating the difference between the two optical paths to the cable 103A.
To the ground station via.

【0098】なお、図17に示す送信局、中継局、及び
受信局の構成は、図1〜図16で説明したものとは、伝
送ケーブル103Aに分布型光ファイバ温度計を添設し
た点と、分布型光ファイバ温度計を伝播するパルスレー
ザ光Scと、海中を透過するパルスレーザ光Swとの両
光路差を示す位相差測定に基づいて温度補正を行う点で
大きく相違する。
The configuration of the transmitting station, relay station, and receiving station shown in FIG. 17 differs from that described with reference to FIGS. The difference is that the temperature correction is performed based on the phase difference measurement indicating the optical path difference between the pulse laser beam Sc propagating through the distributed optical fiber thermometer and the pulse laser beam Sw passing through the sea.

【0099】次に、図17乃至図19を参照しながら、
分布型光ファイバー温度計による断層の発生の有無の識
別について説明する。
Next, referring to FIGS. 17 to 19,
The identification of the presence / absence of a fault by the distributed optical fiber thermometer will be described.

【0100】先ず、地上局からケーブル103Aを介し
て伝送される駆動パルスDPにより送信局10a′のレ
ーザ光源4が付勢され、ここから発生されるパルスレー
ザ光はプリズム5、又は既に図5で述べた分岐ファイバ
ーにより二分され(ステップS11)、パルスレーザ光
Scは送信局10a′から分布型光ファイバー温度計T
H1を伝播し(ステップS14)、対設した中継局10
b′の計測演算装置800の成分検出部802に入射す
るとともに、同様に地上局から伝送されてくる駆動パル
スDPを基準光パルス発生部801に入力し、ここから
同期発生される基準光パルスSPも入射してパルスSc
と基準位相パルスSPとの位相差を求め、第1の位相差
信号として計測演算部804に入力し、デジタル信号に
変換する。
First, the laser light source 4 of the transmitting station 10a 'is energized by the driving pulse DP transmitted from the ground station via the cable 103A. The pulse laser beam Sc is divided into two by the branch fiber described above (step S11), and the distributed optical fiber thermometer T is transmitted from the transmitting station 10a '.
H1 is propagated (step S14), and the connected relay station 10
The drive pulse DP similarly transmitted from the ground station to the component detection unit 802 of the measurement / calculation device 800 for b ′ is input to the reference light pulse generation unit 801, and the reference light pulse SP synchronously generated therefrom Also incident and pulse Sc
And a phase difference between the reference phase pulse SP and the reference phase pulse SP.

【0101】他方、プリズム5により二分されて海中を
透過する他方のパルスレーザ光Swは、光増幅器6及び
送信局の送光窓3を介して海中に投光され、そして、中
継局10b′の受光窓3を透過した後にプリズム5によ
り分岐され、中継局10b′の計測演算装置800の成
分検出部803に入射されるとともに、同様に駆動パル
スDPを基準光パルス発生部801に入力することで同
期発生された基準光パルスSPも入射し、両パルスSw
と基準光パルスSPとの位相差を検出し、第2の位相差
信号として計測演算部804に入力し、デジタル値に変
換する。そして、計測演算部804では、第1の位相差
信号、即ち、パルスScの光路長を示す信号と、第2の
位相差信号、即ち、パルスSwの光路長を示す信号とを
対比し、両信号の位相差を示す信号を出力し、伝送ケー
ブル103Aを介して地上局に伝送する。
On the other hand, the other pulsed laser light Sw that is split by the prism 5 and transmitted through the sea is projected into the sea through the optical amplifier 6 and the light transmitting window 3 of the transmitting station, and then transmitted to the relay station 10b '. After passing through the light receiving window 3, the light is branched by the prism 5 and is incident on the component detection unit 803 of the measurement and calculation device 800 of the relay station 10 b ′. The synchronously generated reference light pulse SP also enters, and both pulses Sw
A phase difference between the reference pulse SP and the reference light pulse SP is detected, and is input to the measurement calculation unit 804 as a second phase difference signal, and is converted into a digital value. Then, the measurement calculation unit 804 compares the first phase difference signal, that is, the signal indicating the optical path length of the pulse Sc, with the second phase difference signal, that is, the signal indicating the optical path length of the pulse Sw, and compares them. A signal indicating the phase difference of the signal is output and transmitted to the ground station via the transmission cable 103A.

【0102】同様にして、図示しない中継局10c′と
対設した中継局10d´との間、・・・、最後に中継局
10m´と受信局10n′との間で、上記したように基
準光パルスSPと海中透過パルスSwとの位相差を示す
デジタル値、及び基準光パルスPSと分布型光ファイバ
ー温度計THmを伝播するパルスScとの位相差を示す
デジタル値がケーブル103Aを介して地上局に伝送さ
れる。
Similarly, between the relay station 10c '(not shown) and the opposite relay station 10d',..., And finally, between the relay station 10m 'and the receiving station 10n', The digital value indicating the phase difference between the optical pulse SP and the underwater transmission pulse Sw, and the digital value indicating the phase difference between the reference optical pulse PS and the pulse Sc propagating through the distributed optical fiber thermometer THm are transmitted via the cable 103A to the ground station. Is transmitted to

【0103】かくして、各計測演算装置800・・・か
らは、分布型光ファイバー温度計TH1を伝播するレー
ザ光Scの伝播光路長と、対向局の間のレーザ光Swの
海中の透過光路長との光路差を示す位相差信号が出力さ
れることとなる。
Thus, from each of the measurement calculation devices 800,..., The transmission optical path length of the laser light Sc propagating through the distributed optical fiber thermometer TH1 and the transmitted light path length of the laser light Sw in the sea between the opposing stations are determined. A phase difference signal indicating the optical path difference is output.

【0104】そして、対設2局間にのみ冷水、又は、熱
水が介在している場合に、光パルスScは分布型光ファ
イバー温度計TH1を介して熱水、又は、冷水の温度の
みの影響を受けて光パルスの伝播速度が変動し、他方、
海水を透過する光パルスSwはその海水温度の影響によ
る伝播速度の変動を受けて出力されるため、両光路の温
度依存性はキャンセルされる。そこで、前回測定時、即
ち、測定時t1 の両光路長の光路差を示す位相差信号、
即ち、送信局10a´と対向する先頭の中継局10b´
との両パルスSc、Swの両光路長の光路差の値Z1、
先頭の中継局10b´と対向する中継局10c´との両
パルスSc、Swの両光路長の光路差の値Z2、・・
・、最終段の中継局10m´と受信局10n´との両パ
ルスSc、Swの両光路長の光路差の値Zmを出力し
(ステップS15)、また、伝送ケーブル103Aを介
して地上局のデータ処理装置に伝送し、そのメモリに記
憶させる。次に、測定時t2 における両光路長の位相差
信号Z1´、Z2´、・・・Zm´を出力し(ステップ
S16)、同様に地上の観測局のデータ処理装置に伝送
し、メモリに記憶させる。
When cold water or hot water is interposed only between two opposed stations, the light pulse Sc is affected by only the temperature of hot water or cold water via the distributed optical fiber thermometer TH1. As a result, the propagation speed of the light pulse fluctuates,
Since the light pulse Sw transmitted through the seawater is output after receiving a change in the propagation speed due to the influence of the seawater temperature, the temperature dependence of both optical paths is canceled. Therefore, at the time of the previous measurement, that is, a phase difference signal indicating the optical path difference between both optical path lengths at the measurement time t 1 ,
That is, the first relay station 10b 'facing the transmitting station 10a'.
The value Z1 of the optical path difference between the optical path lengths of both pulses Sc and Sw
The value Z2 of the optical path difference between the optical path lengths of both pulses Sc and Sw between the leading relay station 10b 'and the opposite relay station 10c'.
Output the value Zm of the optical path difference between the optical path lengths of both the pulses Sc and Sw of the relay station 10m 'and the receiving station 10n' at the last stage (step S15); The data is transmitted to the data processing device and stored in the memory. Then, both the optical path length of the phase difference signal Z1' in the measurement time t 2, Z2 ', and it outputs the ··· Zm' (step S16), and transmits same to the data processing apparatus on the ground observation station, in the memory Remember.

【0105】したがって、例えば、対設2局間に熱水、
又は冷水が介在するが、その余の各局間に熱水、又は冷
水が介在していない場合、つまり、各局間の海水温度が
同一でない場合でも、測定時t1 (観測開始時)の位相
差信号Z1、Z2、・・・Zmと、測定時t1 より所定
時間経過後の測定時t2 の位相差信号Z1′、Z2′、
・・・Zm′とを個別に対比し(ステップS17)、Z
1とZ1′の組の数値に差異がなく、Z2とZ2′の組
の数値にも差異がなく、・・・、ZmとZm′の組の数
値にも有意な差異がなければ、各局間距離は有意には変
化していないか、あるいは、断層は活動しておらず、有
意な地殻変動は認められないと判断され(ステップS1
9)、いずれか1つの組の数値にでも有意な差異が発生
すれば、差異を発生した組の対向2局間に断層活動等の
何らかの異常が発生したと判断される(ステップS1
8)。そして、水平歪みの有無と、ステップS12で測
定した水圧、流速、流向、温度センサ13にて測定した
水温(図1、参照)、屈折率、塩分濃度等の測定値との
表示、プリントを行い(ステップS20)、ステップS
11に戻り、上記処理を実行する。
Therefore, for example, hot water between two opposed stations,
Or, when cold water is interposed, but hot water or cold water is not interposed between the other stations, that is, even if the seawater temperature between the stations is not the same, the phase difference at the measurement time t 1 (at the start of observation) signals Z1, Z2, and · · · Zm, the phase difference signal Z1 of the measurement time t 1 than after the predetermined period of time measured at t 2 ', Z2',
.. Zm 'are individually compared (step S17), and Zm'
If there is no difference in the numerical value of the set of 1 and Z1 ', and there is no difference in the numerical value of the set of Z2 and Z2', if there is no significant difference in the numerical value of the set of Zm and Zm ', It is determined that the distance has not changed significantly, or the fault has not been activated, and no significant crustal deformation has been observed (step S1).
9) If a significant difference occurs in any one set of numerical values, it is determined that some abnormality such as fault activity has occurred between two opposing stations in the set in which the difference has occurred (step S1).
8). Then, display and printing of the presence / absence of horizontal distortion, and the measured values of the water pressure, flow velocity, flow direction, water temperature (see FIG. 1) measured by the temperature sensor 13, the refractive index, and the salt concentration measured in step S 12 are performed. (Step S20), Step S
Returning to step 11, the above processing is executed.

【0106】なお、図17に示す中継局10b´におけ
る第1段のプリズム5を撤去し、この位置に計測演算装
置800を配設する。そして、前記したプリズム5の背
面側に位置する光増幅器6に代え、地上局からの指令信
号に基づいて、送信局のレーザ光源4と同時的に発光す
るレーザ光源4を配設するよう構成することも可能であ
る。
Note that the first-stage prism 5 in the relay station 10b 'shown in FIG. 17 is removed, and the measurement arithmetic unit 800 is provided at this position. Then, instead of the optical amplifier 6 located on the back side of the prism 5, the laser light source 4 that emits light simultaneously with the laser light source 4 of the transmitting station based on a command signal from the ground station is provided. It is also possible.

【0107】次に、図20に示すように、図1乃至図1
6に示す類の送信局10a、中継局10b・・・、受信
局10nの各耐圧容器1の頂面を截頭円錐形状に形成
し、その直上方向(海面方向)や斜め上方における底層
流の流速分布を検知する目的で、複数の超音波送受信器
201、・・・を併設し、さらに、各局の両側面におけ
る底層流の流速分布を検知するために、その庇2の4側
面の各側面毎に超音波送受信器202、・・・を設け
る。そして、送信局10a、中継局10b、及び受信局
10nの超音波送受信器201、・・・及び超音波送受
信器202、・・・から超音波を海中に向けて周期的に
送信し、底層流からの反射波を受信する。この超音波送
信波及びその受信波を電気パルスに変換し、外装ケーブ
ル103Aを介して地上局のデタ処理装置に伝送し、そ
こで、ドップラー周波数変位の有無、及びその大きさを
測定することにより各局周辺の底層流の流速状況を検知
する。なお、上記した超音波送受信器を上記した図17
に示す水中測距装置に設けることも勿論可能である。
Next, as shown in FIG. 20, FIG.
6, the top surface of each pressure-resistant vessel 1 of the transmitting station 10a, the relay station 10b,..., And the receiving station 10n is formed in a frusto-conical shape, and the bottom layer flow in the direction directly above (in the sea surface direction) or obliquely upward. In order to detect the flow velocity distribution, a plurality of ultrasonic transmitters / receivers 201,... Are provided in parallel, and further, in order to detect the flow velocity distribution of the bottom layer flow on both side surfaces of each station, each side surface of the four sides of the eave 2 is detected. An ultrasonic transceiver 202 is provided for each. The ultrasonic transceivers 201,... And the ultrasonic transceivers 202,... Of the transmitting station 10a, the relay station 10b, and the receiving station 10n periodically transmit ultrasonic waves toward the sea. Receive the reflected wave from. This ultrasonic transmission wave and its reception wave are converted into electric pulses, and transmitted to the data processing device of the ground station via the outer cable 103A. Then, the presence or absence of the Doppler frequency displacement and the magnitude thereof are measured, and each station is measured. Detects the velocity of the surrounding bottom laminar flow. Note that the above-mentioned ultrasonic transceiver is replaced with the above-described ultrasonic transceiver shown in FIG.
Of course, it is also possible to provide the underwater distance measuring device shown in FIG.

【0108】次に、測線の先頭の送信局から中継局を経
由して終端の受信局に送光する基準量測定時τ1に測定
したレーザ光の伝播時間と、所定時間経過後τ2に測定
した伝播時間とを照合し、測線全体が一様な温度変動を
受けても、その影響を受けずに断層の発生の有無を検知
する温度補正方式を採用した本発明の第3の実施の形態
を、図21乃至図23に基づいて説明する。なお、上記
した第3の実施の形態は、第1の実施の形態のものとは
温度補正方式が相違するだけで、その余の構成、即ち、
送信局、中継局、及び受信局、これら各局を接続する外
装ケーブル、各局に設置する各種センサや、光増幅器、
光電力分岐カプラー等の内蔵器具、ならびに測線AA、
BBにおける光パルス伝送方式、図9に示すように、各
局に送光する光パルスを分岐して取り出した各光電変換
パルス列の伝播時間幅を求める点に関して全て同様に構
成されているので、図1〜図9を再び参照しながら、図
21に示す温度補正用のデータ処理ブロックが、図23
に示す温度補正のデータ処理の流れ図に基づいて図22
に示すように温度補正が行える点について説明する。
Next, the propagation time of the laser light measured at τ1 when the reference amount is transmitted from the transmitting station at the head of the measurement line to the receiving station at the end via the relay station, and measured at τ2 after the elapse of a predetermined time. The third embodiment of the present invention adopts a temperature correction method that checks the propagation time and detects the presence or absence of a fault without being affected by the uniform temperature fluctuation of the entire survey line. This will be described with reference to FIGS. Note that the third embodiment described above differs from the first embodiment only in the temperature correction method, and other configurations, that is,
Transmitting station, relay station, and receiving station, armored cables connecting these stations, various sensors installed in each station, optical amplifiers,
Built-in instruments such as optical power splitting couplers, and survey lines AA,
The BB optical pulse transmission method, as shown in FIG. 9, is all the same in terms of obtaining the propagation time width of each photoelectric conversion pulse train extracted by branching the optical pulse to be transmitted to each station. Referring again to FIG. 9, the data processing block for temperature correction shown in FIG.
22 based on the flow chart of the temperature correction data processing shown in FIG.
The point that the temperature correction can be performed as shown in FIG.

【0109】例えば、水温t5 ℃における測線AA、及
び水温t6 ℃における測線BBの観測中の各局間におけ
るパルス伝播時間幅ΔTのそれぞれの和、即ち、基準伝
播時間として実測伝播時間T5 、T6 を算出するととも
に、これら実測伝播時間T5、T6 が海水の温度変動に
対応して変動する光パルスの伝播速度の変動を補正する
ためのデータ処理、及び測線AA、測線BBの配設位置
における海水の屈折率、水温、水圧、流向、流速、及び
塩分濃度を測定するデータ処理装置について、図21に
示す機能ブロック図と、図23に示すその制御を実行す
るフローチャートとを参照しながら説明する。
For example, the sum of the respective pulse propagation time widths ΔT between the stations during observation of the measurement line AA at the water temperature t 5 ° C and the measurement line BB at the water temperature t 6 ° C, that is, the measured propagation time T 5 as the reference propagation time, calculates the T 6, data processing for correcting the variation of the propagation velocity of the light pulse which these measured propagation time T 5, T 6 is varied in response to temperature variations of the seawater and measuring lines AA, distribution of measuring lines BB Regarding the data processing device that measures the refractive index, water temperature, water pressure, flow direction, flow velocity, and salinity of seawater at the installation position, refer to the functional block diagram shown in FIG. 21 and the flowchart for executing the control shown in FIG. I will explain it.

【0110】図21は、以下に記載するデータ処理の制
御プログラムを実行するマイクロコンピュータ、又はパ
ソコンの機能ブロック図で、これを機能的に説明する
と、このデータ処理装置は、測線AAにおいて、図9
(C)に示すように、海底の各耐圧容器1から地上局に
次々に伝送されて来る光電変換パルスPa 、Pb
c 、・・・Pn を順次取り込む検出部を備え、次い
で、1組のパルスPa b 間の伝播時間幅ΔTabと、P
b c 間の伝播時間幅ΔTbcと、・・・・Pm n 間の
伝播時間幅ΔTmnを計数するカウンタ部を備え、各伝播
時間幅をメモリに記憶させる。次に、加算部により、測
線AAの伝播時間幅の総和、即ち、基準伝播時間として
実測伝播時間TAs=ΔTab+ΔTbc+・・・+ΔTmn
算出し、メモリに記憶させる。
FIG. 21 is a functional block diagram of a microcomputer or a personal computer that executes a control program for data processing described below. To explain this functionally, this data processing device is shown in FIG.
As shown in (C), photoelectric conversion pulses P a , P b , which are sequentially transmitted from each pressure vessel 1 on the sea floor to the ground station,
P c, comprising a detection unit for sequentially capturing · · · P n, then the set of pulse P a P b between the propagation time width [Delta] T ab, P
and b P c between the propagation time width [Delta] T bc, a counter section for counting the ···· P m P n propagation time width [Delta] T mn between, and stores the respective propagation time width into the memory. Then, the adding unit, the sum of the propagation time width measuring line AA, ie, calculates the measured propagation time T As = ΔT ab + ΔT bc + ··· + ΔT mn as reference propagation time, is stored in the memory.

【0111】ところで、水中の光の伝播速度vは、v=
0 /nで示される、ここで、C0は真空中の光速度3
×108 (m/s)、nは水の屈折率を示す。この屈折
率nは、よく知られているように、温度や、塩分濃度、
密度等の状況に依存するもので、関数n(n∝F(密
度、温度、塩分濃度等))で示される、即ち、図22に
示すように、温度tが標準温度4℃のときに屈折率nは
最高であり、温度tが4℃以上に上昇、又は、低下する
につれて減少する特性を有しているため、屈折率と関数
関係を持つ水中での光伝播速度vは、4℃を境にして温
度が上昇、低下するにつれて増大する特性を示してい
る、そして、光伝播速度vは上記特性を示すため、伝播
時間Tも4℃を境にして温度tが上昇、低下するにつれ
て減少する特性を示している。
By the way, the propagation velocity v of light in water is v =
Denoted by C 0 / n, where C 0 is the speed of light 3 in vacuum
× 10 8 (m / s), n indicates the refractive index of water. As is well known, the refractive index n is determined by temperature, salt concentration,
It depends on the situation such as density, and is represented by a function n (n∝F (density, temperature, salt concentration, etc.)), that is, refraction when the temperature t is a standard temperature of 4 ° C. as shown in FIG. Since the refractive index n is the highest, and has a characteristic that it decreases as the temperature t rises or falls above 4 ° C., the light propagation velocity v in water having a functional relationship with the refractive index is 4 ° C. The light propagation speed v shows the above characteristics, and the propagation time T also decreases as the temperature t rises and falls around 4 ° C. It shows the characteristics of

【0112】そこで、基準量測定時τ1 において、測線
AAの海水温度tAs℃、及びその温度の時の屈折率nAs
をそれぞれ温度センサ13、屈折率計12にて実測し、
補正部で、この実測屈折率nAsを上記演算式(v=C0
/n)のnに代入し、温度t As℃における海水中の光パ
ルスの伝播速度vAs(m/s)を算出し、これらの数値
を初期温度tAs℃、初期屈折率nAs、初期伝播速度vAs
としてメモリに記憶させるとともに、加算部で求めた各
局から伝送されてくるパルス信号Pa 、Pb 、Pc 、・
・・Pn 間の各伝播時間幅ΔTの和TAsを初期伝播時間
としてメモリに記憶させる。また、測線BBについて
も、図示していないが、基準量測定時τ1の海水温度、
実測屈折率、及び算出した光パルス伝播速度をそれぞ
れ、初期温度tBs℃、初期屈折率nBs、及び初期伝播速
度vBsとしてメモリに記憶させ、そして、各局からのパ
ルス信号P´a 、P´b 、P´c 、・・・P´n 間の各
伝播時間幅ΔT´の和TBsを初期伝播時間としてメモリ
に記憶させておく。
Therefore, when measuring the reference amount τ1At the survey line
AA seawater temperature tAs° C and the refractive index n at that temperatureAs
Are actually measured by the temperature sensor 13 and the refractometer 12, respectively.
In the correction unit, the measured refractive index nAsWith the above equation (v = C0
/ N) into n AsLight in seawater at ℃
Luth propagation speed vAs(M / s) and calculate these values
Is the initial temperature tAs° C, initial refractive index nAs, Initial propagation velocity vAs
As well as
Pulse signal P transmitted from the stationa, Pb, Pc,
..PnSum T of each propagation time width ΔT betweenAsIs the initial propagation time
As a memory. In addition, about survey line BB
Is also not shown, when measuring the reference amount τ1Seawater temperature,
The measured refractive index and the calculated light pulse propagation velocity
And the initial temperature tBs° C, initial refractive index nBs, And initial propagation speed
Degree vBsTo the memory as
Loose signal P 'a, P 'b, P 'c, ... P 'nBetween each
Sum T of propagation time width ΔT 'BsWith initial propagation time as memory
To be stored.

【0113】次に、測線AAで、基準量測定時τ1 から
所定時間経過後の測定時τ2 にて測定した実測水温がt
5 ℃で、実測屈折率がn5 であるとき、補正部では、上
述したように、演算式v=C0 /nにより光パルスの水
中における算出伝播速度v5を算出する。加算部では、
各伝播時間ΔTを加算して求めた基準量測定後の測定時
τ2 における実測伝播時間T5 を求める。この実測伝播
時間T5 と、算出した伝播速度v5 と、測線AAの基準
量測定時τ1 の初期温度tAs℃における光パルスの初期
伝播速度vAsと、初期伝播時間TAsとの関係は、光の伝
播速度VがV=L(距離)/T(伝播時間)で示され、
かつ、時刻τ1とτ2が接近しているなら、即ち、(τ
1−τ2)の絶対値が小さい場合は、距離Lが一定であ
ると考えられるので、L=V・Tで示されるから、 vAs・TAs=v5 ・T5 という関係式で示される。そこで、補正部では、この関
係式から求めた演算式 TAs=(v5 ・T5 )/vAs =TAs5 にv5 、T5 、vAsを代入してTAs、つまり、測定時τ
2 の実測水温t5 ℃における実測伝播時間T5 を、基準
量測定時τ1 の初期温度tAs℃において温度補正した伝
播時間TAs5 として算出する。上記したTAs、即ち、T
As5 は、図22に示すように、上記した測定時τ2 にお
ける実測水温t5 ℃の実測伝播時間T5 を、測線AAの
基準量測定時τ1 の初期温度tAs℃における初期伝播時
間TAsに温度補正して示した伝播時間TAs5 としてメモ
リに記憶させる。次に、この温度補正した初期伝播時間
As5 と、メモリに記憶させた基準量測定時τ1 の初期
伝播時間TAsとを比較部で対比し、差がなければ、海底
に水平歪み変化が発生していないと判別し、差があれば
水平歪みが変化していると判別する。このようにして、
判別信号を、屈折率計12、温度センサ13、水圧セン
サ14、流向計15、流速計16、塩分濃度計17によ
り実測した水温、水圧、流向、流速、塩分濃度の各測定
データとともに、プリンタ、CRTに送出する。
Next, at the measurement line AA, the measured water temperature measured at the measurement time τ 2 after the elapse of a predetermined time from the measurement of the reference amount τ 1 is represented by t
When the measured refractive index is n 5 at 5 ° C., the correction unit calculates the calculated propagation velocity v 5 of the light pulse in water by the arithmetic expression v = C 0 / n as described above. In the adder,
Adding the respective propagation time ΔT by obtaining the measured propagation time T 5 in the measurement time tau 2 after the reference measuring determined. Relationship between the actually measured propagation time T 5 , the calculated propagation velocity v 5 , the initial propagation time v As of the light pulse at the initial temperature t As ° C. at the time of the reference amount measurement τ 1 of the measurement line AA, and the initial propagation time T As Is represented by the following equation: V = L (distance) / T (propagation time)
If the times τ1 and τ2 are close, ie, (τ
When the absolute value of 1−τ2) is small, the distance L is considered to be constant, and is represented by L = V · T. Therefore, it is represented by the relational expression v As · T As = v 5 · T 5. . Therefore, the correction unit substitutes v 5 , T 5 , and v As for the arithmetic expression T As = (v 5 · T 5 ) / v As = T As5 obtained from this relational expression to obtain T As , that is, at the time of measurement. τ
The measured propagation time T 5 at the measured water temperature t 5 ° C of 2 is calculated as the propagation time T As5 temperature-corrected at the initial temperature t As ° C of the reference amount measurement time τ 1 . T As described above, that is, T
As5, as shown in FIG. 22, the initial propagation time in the actual measurement the measured propagation time T 5 of the water temperature t 5 ° C., the initial temperature t As ° C. of the reference measuring time tau 1 of measuring line AA in the measurement time tau 2 described above T It is stored in a memory as a propagation time T As5 indicated by temperature-corrected As . Next, the temperature-corrected initial propagation time T As5 is compared with the initial propagation time T As of the reference amount measurement time τ 1 stored in the memory by the comparison unit, and if there is no difference, the horizontal distortion change on the sea floor is observed. It is determined that the horizontal distortion has not occurred, and if there is a difference, it is determined that the horizontal distortion has changed. In this way,
The discrimination signal, together with the measured data of the water temperature, water pressure, flow direction, flow velocity, and salinity concentration measured by the refractometer 12, the temperature sensor 13, the water pressure sensor 14, the flow direction meter 15, the flow velocity meter 16, and the salinity concentration meter 17, together with the printer, Send to CRT.

【0114】測線BBについても、基準量測定後の測定
時τ2 の実測水温がt6 ℃、実測屈折率がn6 である場
合、演算式v=C0 /nにより算出した光パルスの海水
中の速度v6 と、各伝播時間ΔTを加算して求めた実測
伝播時間T6 と、測線BBの測定時τ1 の、メモリに記
憶させておいた初期温度tBs℃、初期屈折率nBsにおけ
る算出した光パルスの初期伝播速度vBsとを、vBs・T
Bs=v6 ・T6 の関係式から求めた演算式 TBs=(v6 ・T6 )/vBs =TBs6 に代入してTBsを算出する。このTBsを、測定時τ2
測線BBの実測水温t6℃における実測伝播時間T
6 を、基準量測定時τ1 における測線BBの初期温度t
Bs℃における初期伝播時間TBsに温度補正した伝播時間
Bs6 としてメモリに記憶させる。そして、温度補正し
た伝播時間TBs6 と基準量測定時τ1 の初期伝播時間T
Bsとの比較部での対比結果に基づいて、有意な歪みの発
生の有無を判別する。
Regarding the measurement line BB, when the measured water temperature at the time of measurement τ 2 after the reference amount measurement is t 6 ° C and the measured refractive index is n 6 , the seawater of the light pulse calculated by the arithmetic expression v = C 0 / n The initial velocity t Bs ° C and the initial refractive index n stored in the memory at the measured propagation time T 6 obtained by adding the medium velocity v 6 , each propagation time ΔT, and the measurement time τ 1 of the measurement line BB. of light pulses which is calculated in the Bs and the initial propagation velocity v Bs, v Bs · T
Bs = v 6 · T 6 arithmetic expression T bs determined from the relationship equation = (v 6 · T 6) / v by substituting bs = T BS6 calculating the T bs. The measured propagation time T Bs of the measurement line BB at the measurement time τ 2 at the measured water temperature t 6 ° C.
6 is the initial temperature t of the measurement line BB at the time of measuring the reference amount τ 1 .
It is stored in a memory as a propagation time T Bs6 obtained by temperature-correcting the initial propagation time T Bs at Bs ° C. Then, the temperature-corrected propagation time T Bs6 and the initial propagation time T of the reference amount measurement time τ 1
The presence or absence of significant distortion is determined based on the comparison result in the comparison unit with Bs .

【0115】次に、図6、図8に示す断層60、61に
跨がって配設した本発明の第3の実施の態様を適用した
測線AA、BBの作用を以下に説明する。いま、光送信
局10aのレーザ光源4から発生された伝播用光パルス
を前段の分岐カプラー5Aにより分岐し、分岐による減
衰分を光増幅器6によりレーザ光源4からの光パルスの
光強度と同一強度に増幅した光パルスMa (図9
(A))を後段の分岐カプラー5Bに入射し、さらに、
分岐による減衰分をレーザ光源4からの光パルスの光強
度まで増幅し(図9(B))、光透過窓3を介し、次段
の中継局10bの光透過窓3に向けて送光する。また、
分岐カプラー5Aにて分岐された、観測用光パルスとし
ての他方の分岐パルス光を、光電変換器9にて光電変換
したパルスPa を伝送ケーブル103Aを介して図示し
ない地上局に伝送する(図9(C))。
Next, the operation of the measurement lines AA and BB to which the third embodiment of the present invention is applied over the tomographic planes 60 and 61 shown in FIGS. 6 and 8 will be described. Now, the propagation light pulse generated from the laser light source 4 of the optical transmission station 10a is branched by the preceding branch coupler 5A, and the attenuation due to the branch is made equal to the light intensity of the light pulse from the laser light source 4 by the optical amplifier 6. The optical pulse M a that has been amplified to
(A)) is incident on the subsequent branch coupler 5B,
The amount of attenuation due to the branch is amplified to the light intensity of the light pulse from the laser light source 4 (FIG. 9B), and transmitted through the light transmission window 3 to the light transmission window 3 of the relay station 10b at the next stage. . Also,
Is branched by the branch coupler 5A, the other branch pulsed light as observation light pulses, transmits the pulse P a photoelectrically converted by the photoelectric converter 9 to the ground station (not shown) via a transmission cable 103A (FIG. 9 (C)).

【0116】次段の中継器10bの光透過窓3を介して
受光した光パルスを光増幅器6によりレーザ光源4から
の光パルスの光強度と同じ強度に増幅し、分岐カプラー
5Bで分岐した一方の分岐パルス光を光増幅器6に入射
し、さらに、光透過窓3を介して次段の中継局に向けて
送光し、このようにして、分岐パルス光を後続する中継
局に次々に伝送する。中継局10b、・・・の分岐カプ
ラー5Aにて分岐された他方の分岐パルス光Mb
c 、・・・Mm を光電変換器9により電気パルス
b 、Pc 、・・・Pm に変換し、伝送ケーブル103
を介して図示しない地上局に伝送する。最終段の受信局
10nでは、光透過窓3を介して入射した一方の分岐パ
ルス光を光増幅6によりレーザ光源4からの光パルスの
光強度と同じ強度に増幅し、分岐カプラー5Cにより分
岐させた他方の分岐パルス光Mn の光電変換パルスPn
を、同様に伝送ケーブル103を介して伝送する。
The optical pulse received through the optical transmission window 3 of the repeater 10b at the next stage is amplified by the optical amplifier 6 to the same intensity as the optical intensity of the optical pulse from the laser light source 4, and is branched by the branch coupler 5B. Is input to the optical amplifier 6 and further transmitted through the light transmission window 3 to the next-stage relay station. In this way, the branched pulse light is successively transmitted to the subsequent relay station. I do. The other branch pulse light M b branched by the branch coupler 5A of the relay stations 10b,.
M c, ··· M m electricity by photoelectric converter 9 pulses P b, P c, converted into · · · P m, the transmission cable 103
To a ground station (not shown). In the receiving station 10n at the last stage, one of the branched pulse lights incident through the light transmission window 3 is amplified by the optical amplifier 6 to the same intensity as the light intensity of the optical pulse from the laser light source 4, and branched by the branch coupler 5C. photoelectric conversion pulse P n of the other branched light pulses M n was
Is transmitted via the transmission cable 103 in the same manner.

【0117】他方、図7、図8に示すように、送信局1
0aの分岐カプラー5Bにより分岐した分岐パルス光を
伝播用光パルスとして、隣接する測線BBの先頭送信局
20aの光透過窓3を介して前段の光増幅器6に入射
し、レーザ光源4の光強度と同一強度に光増幅した一方
の分岐パルス光M´a を分岐カプラー5Aに入射し、一
方の分岐パルス光を後段の光増幅器6に入射し、レーザ
光源4の光強度と同一強度に光増幅し、光透過窓3を介
して次段の中継局20bに送光する。そして、分岐カプ
ラー5Aの他方の分岐パルス光を観測用光パルスとし
て、光電変換器9により電気パルスP´a に変換して送
出する。かくして、一方の分岐光パルスを後続する中継
局を経由し、さらに、最終段の受信局20nに次々に伝
送する。他方、中継局20b、・・・の分岐カプラー5
Aにて分岐された他方の分岐パルス光M´b 、Mc ´、
・・・M´n を光電変換器9により電気パルスP´b
P´c、・・・P´m 、P´n に変換し、伝送ケーブル
103を介して図示しない地上局に伝送する。
On the other hand, as shown in FIG. 7 and FIG.
The pulse light branched by the 0a branch coupler 5B is input as a propagation light pulse to the optical amplifier 6 in the preceding stage via the light transmission window 3 of the head transmitting station 20a of the adjacent measurement line BB, and the light intensity of the laser light source 4 light amplified one of the split pulse light M'a incident on the branching coupler 5A in the same intensity and incident to one of the branch pulsed light after the optical amplifier 6, an optical amplification in the optical intensity and the same intensity of the laser light source 4 Then, the light is transmitted to the next-stage relay station 20b via the light transmission window 3. Then, the other branch pulsed light branching coupler 5A as an observation light pulse, and sends it into an electric pulse P'a by the photoelectric converter 9. Thus, one of the branched optical pulses is transmitted to the last receiving station 20n one after another via the following relay station. On the other hand, the branch coupler 5 of the relay station 20b,.
The other branch pulse light M ′ b , M c ′,
.., M ′ n is converted by the photoelectric converter 9 into electric pulses P ′ b ,
Are converted to P ′ c ,... P ′ m , P ′ n and transmitted to a ground station (not shown) via the transmission cable 103.

【0118】次に、図23に示すフローチャートを参照
し、各局から伝送されてくる検出データの処理について
説明する。地上局のデータ処理装置では、図9(C)に
示すように、基準量測定時τ1 において、測線AAの送
信局10a、中継局10b、・・・、受信局10nから
次々に伝送されて来る光電変換パルスPa 、Pb
c 、・・・Pn と、測線BBの先頭送信局20a、中
継局20b・・・、・・・、受信局20nから次々に伝
送されて来る光電変換パルスP´a 、P´b 、P´ c
・・・P´n とを取り込むとともに(ステップS1
1)、測線AA、BB設置位置の水温を温度センサ13
により、例えば、それぞれt5 ℃、t6 ℃を、屈折率を
屈折率計12により、例えば、それぞれn5 、n6 を実
測し(ステップS12)、さらに、水圧センサ14、流
向計15、流速計16、塩分濃度計17により測線設置
位置の水圧、海流の流向、海流の流速、塩分濃度のデー
タを取り込む(ステップS13)。次に、測線AAから
のパルスPa b 間の伝播時間幅ΔTab、パルスPb
c 間の伝播時間幅ΔTbc、・・・・、パルスPm n
の伝播時間幅ΔTmnと、測線BBからのパルスP´a
´b 間の伝播時間幅ΔT´ab、パルスP´b P´c 間の
伝播時間幅ΔT´bc、・・・・、パルスP´m P´n
の伝播時間幅ΔT´mnとをカウンタ部にて計数し、測線
AAの送信局10aから受信局10nに至る迄の各伝播
時間幅の総和、即ち、実測伝播時間T5 =ΔT ab+ΔT
bc+・・・+ΔTmnを算出し、また、測線BBの中継局
20aから受信局20nに至る迄の各伝播時間幅の総
和、即ち、実測伝播時間T6 =、ΔT´ab+ΔT´bc
・・・+ΔT´mnを算出しメモリに記憶させる(ステッ
プS14)。そして、測線AAの検出水温t5 ℃に対応
する実測屈折率n5 を、演算式v=C0 /nのnに代入
して光パルスの初期伝播速度v5 を算出する。測線BB
では検出温度t6 ℃における実測屈折率n6 を、演算式
v=C0 /nのnに代入して光パルスの伝播速度v6
算出する(ステップS15)。
Next, refer to the flowchart shown in FIG.
And processing of detection data transmitted from each station
explain. In the data processing device of the ground station, FIG.
As shown, when measuring the reference amount τ1In the transmission of the survey line AA
From the transmitting station 10a, the relay station 10b,..., The receiving station 10n
Photoelectric conversion pulse P transmitted one after anothera, Pb,
P c, ... PnAnd the top transmitting station 20a of the measurement line BB, middle
..,..., Successively transmitted from the receiving station 20n.
The transmitted photoelectric conversion pulse P 'a, P 'b, P ' c,
... P 'n(Step S1)
1) The water temperature at the installation position of the measuring lines AA and BB is
Thus, for example, tFive° C, t6℃, refractive index
By means of the refractometer 12, for example, nFive, N6Real
Measurement (step S12), and further, the water pressure sensor 14,
Lines are set using a direction meter 15, current meter 16, and salt concentration meter 17.
Location water pressure, ocean current direction, ocean current velocity, salinity data
The data is fetched (step S13). Next, from survey line AA
Pulse PaPbPropagation time width ΔT betweenab, Pulse PbP
cPropagation time width ΔT betweenbc, ..., Pulse PmPnwhile
Propagation time width ΔTmnAnd the pulse P 'from the measurement line BBaP
´bPropagation time width ΔT 'betweenab, Pulse P 'bP 'cAmong
Propagation time width ΔT 'bc, ..., pulse P 'mP 'nwhile
Propagation time width ΔT 'mnIs counted by the counter section,
Each propagation of the AA from the transmitting station 10a to the receiving station 10n
Sum of time widths, that is, measured propagation time TFive= ΔT ab+ ΔT
bc+ ... + ΔTmnAnd the relay station of the survey line BB
Total of each propagation time width from 20a to receiving station 20n
Sum, ie, the measured propagation time T6=, ΔT ′ab+ ΔT 'bc+
... + ΔT 'mnIs calculated and stored in the memory (step
S14). Then, the detected water temperature t of the measurement line AAFiveCompatible with ° C
Measured refractive index nFiveIs calculated by the following equation: v = C0Substitute / n for n
And the initial propagation speed v of the light pulseFiveIs calculated. Measurement line BB
Then, the detected temperature t6Measured refractive index n in ° C6Is the arithmetic expression
v = C0/ N to n6To
It is calculated (step S15).

【0119】次に、測線AAにおける実測伝播時間T5
と、実測温度t5 ℃で、実測屈折率n5 における算出伝
播速度v5 と、予めメモリに記憶させておいた測線AA
の基準量測定時τ1 のデータである初期温度tAs℃にお
ける光パルスの初期伝播速度vAs及び初期伝播時間TAs
とを、 演算式TAs=(v5 ・T5 )/vAs に代入してTAsを算出する。このTAsは、測線AAの実
測温度t5 ℃における実測伝播時間T5 を測線AAの基
準量測定時τ1 の初期温度tAs℃における初期伝播時間
(TAs)に温度補正して求めた伝播時間TAs5 としてメ
モリに記憶させる(ステップS16)。かくして測定終
了後、初期温度tAs℃における初期伝播時間TAsと、測
線AAの基準量測定時τ2 のメモリに記憶させておいた
初期温度t As℃における伝播時間に温度補正した伝播時
間TAs5 とを比較し(ステップS17)、TAsとT5
間に有意な差異がなければ、水平歪みが変化せず(ステ
ップS19)、有意な差異があれば水平歪みが変化した
と判断できる(ステップS18)。このようにして求め
た判別信号を、海水温度、水圧、流向、流速、塩分濃度
の測定データとともにプリンタに送出する(ステップS
20)。そして、ステップS11に飛んで、上記データ
処理を反復する。
Next, the measured propagation time T on the survey line AAFive
And the measured temperature tFive° C, the measured refractive index nFiveCalculation in
Seeding speed vFiveAnd the survey line AA stored in the memory in advance
When measuring the reference amount of τ1Initial temperature tAs
The initial propagation velocity v of the light pulseAsAnd the initial propagation time TAs
And the expression TAs= (VFive・ TFive) / VAs To TAsIs calculated. This TAsIs the actual line AA
Temperature measurement tFiveMeasured propagation time T in ° CFiveIs the basis of the survey line AA
At the time of reference value measurement τ1Initial temperature tAsInitial propagation time in ° C
(TAs) And the propagation time T obtained by temperature correctionAs5As
It is stored in the memory (step S16). Thus the measurement ends
After completion, the initial temperature tAsInitial propagation time T in ° CAsAnd
Τ when measuring the reference amount of line AATwoStored in the memory of
Initial temperature t AsPropagation time corrected to the propagation time in ° C
Interval TAs5(Step S17), and TAsAnd TFiveof
If there is no significant difference between them, the horizontal distortion does not change (step
Step S19), if there is a significant difference, the horizontal distortion has changed.
Can be determined (step S18). Asked in this way
Seawater temperature, water pressure, current direction, flow velocity, salt concentration
(Step S)
20). Then, the process jumps to step S11, where the data
Repeat the process.

【0120】同様に、測線BBについても上記演算式に
基づいてTBsを算出する。このTBsは、測線BBの実測
温度t6 ℃における実測伝播時間T6 を測線BBの基準
量測定時τ1 の初期温度tBs℃における初期伝播時間T
Bsに温度補正した伝播時間TB6 としてメモリに記憶さ
せる。そして、初期伝播時間TBsと温度補正した伝播時
間TBs6 との比較結果に基づいて水平歪みの変化の有無
を判別する。なお、上記したように屈折率nは塩分濃度
の関数でもあるから、塩分濃度が変動し、海水中を伝播
するレーザパルス光の速度変動が発生する場合でも、基
準量測定時τ1 の塩分濃度変動前の屈折率と、基準伝播
時間測定後の測定時τ2 の塩分濃度変動後の屈折率を実
測し、既に述べたようにして、基準量測定時τ1 の際の
屈折率測定時のパルスの海中伝播速度v1 及び測線の実
測伝播時間T1 と、基準伝播時間測定後の測定時τ2
おける屈折率測定時のパルスの海中伝播速度v2及び測
線の実測伝播時間T2 とを求めて上記した演算式に代入
し、塩分濃度の変動に基づく海中での光パルス伝播速度
の変動を補正し、有意な断層活動や地殻変動出現の有無
を正確に識別することが可能である。
Similarly, for the measurement line BB, T Bs is calculated based on the above equation. This T Bs is obtained by calculating the actual propagation time T 6 of the measurement line BB at the measured temperature t 6 ° C by the initial propagation time T of the reference line BB at the measurement time τ 1 at the initial temperature t Bs ° C.
And stores it in the memory as a propagation time TB 6 that temperature compensation to bs. Then, to determine the presence or absence of a change in the horizontal distortion based on the result of comparison between the initial propagation time T Bs and the temperature corrected propagation times T BS6. Since the refractive index n is also a function of the salt concentration as described above, even when the salt concentration fluctuates and the speed fluctuation of the laser pulse light propagating in the seawater occurs, the salt concentration at the time of the reference amount measurement τ 1 is measured. and the refractive index of the previous variation, after the reference propagation time measurement of the measurement time tau 2 actually measuring the refractive index after salinity variation, as already mentioned, during the reference measuring time tau 1 at refractometry a subsea propagation velocity v 1 and transect the measured propagation time T 1 of the pulse, the time of refractive index measurement at the measurement time tau 2 after the reference propagation time measured and sea propagation velocity v 2 and measuring lines of the measured propagation time T 2 of the pulse It is obtained and substituted into the above-mentioned arithmetic expression, and it is possible to correct the fluctuation of the light pulse propagation velocity in the sea based on the fluctuation of the salt concentration, and to accurately identify the presence or absence of significant fault activity or crustal deformation.

【0121】また、基準量測定時τ1 後の測定は、上記
した第2回目の測定時τ2 に限らず、所定時間経過後の
τ3 、τ4 、・・・、τn の測定を反復し、基準量測定
時τ 1 の際に求めた値と、τ3 、τ4 、・・・、τn
各測定時の際に求めた値とを個別に対比して観測するこ
とは勿論である。さらに、図21〜図23に示す温度補
正方式は、前述した図13、図14、図15、及び図2
0に示す装置に適用することが可能である。
When the reference amount is measured, τ1Later measurements are described above
At the time of the second measurement τTwoNot only after a certain period of time
τThree, ΤFour, ..., τnMeasurement of reference amount is repeated
Time τ 1And τThree, ΤFour, ..., τnof
Observe by comparing the values obtained at the time of each measurement individually.
Of course. Further, the temperature compensation shown in FIGS.
The correct method is described in FIGS. 13, 14, 15 and 2 described above.
0 can be applied to the apparatus shown in FIG.

【0122】最後に、図6〜図8に示す測線AA、測線
BBでは、光送信局10a、20aから中継局10b・
・・、20b・・・を経由し、最後尾の受信局10n、
20nに向け伝播用レーザ光を順方向に送光する単光路
測定系を採用しているが、受信局10n、20nから光
送信局10a、20aに向けてレーザ光を逆方向にも送
光可能とすることにより計測精度の向上が可能となるの
で、その構成を概略的に示す平面図24を参照しなが
ら、往復光路光学式測定系を備える光学式測距装置を説
明する。
Finally, on the measurement lines AA and BB shown in FIGS. 6 to 8, the optical transmission stations 10a and 20a to the relay station 10b.
.., 20b..., The last receiving station 10n,
Uses a single optical path measurement system that transmits the propagation laser light in the forward direction toward 20n, but can transmit the laser light in the reverse direction from the receiving stations 10n and 20n to the optical transmitting stations 10a and 20a. Since the measurement accuracy can be improved by the above, an optical distance measuring apparatus including a reciprocating optical path optical measuring system will be described with reference to a plan view 24 schematically showing the configuration.

【0123】測線AAの送信局10aの往路用の分岐カ
プラー5Bと光増幅器6の直列配設に対して複路用の直
列の分岐カプラー5A、光増幅器6を並列配設し、受信
局10b・・・の往路用の光増幅器6、分岐カプラー5
A、光増幅器6の直列配設に対して複路用の光増幅器
6、分岐カプラー5A、光増幅器6の直列配設を並列配
設し、さらに、受信局10nの往路用の光増幅器6、分
岐カプラー5C、光増幅器6の直列配設に対して複路用
の光増幅器6、分岐カプラー5C、光増幅器6の直列配
設を並列配設すると共に、往路用の光増幅器6のレーザ
光出射側と、復路用の光増幅器6の入射側との空間に、
往路用の光増幅器6からの伝播用レーザ光を復路用の光
増幅器6に屈折入射させるプリズムPR1、PR2を配
設する。
In contrast to the serial arrangement of the outgoing branch coupler 5B and the optical amplifier 6 of the transmitting station 10a on the measurement line AA, the multipath serial coupler 5A and the optical amplifier 6 are arranged in parallel, and the receiving station 10b. ..Optical amplifiers 6 and branch couplers 5 for the outbound path
A, the serial arrangement of the optical amplifier 6, the optical amplifier 6 for multiple paths, the branch coupler 5A, and the serial arrangement of the optical amplifier 6 are arranged in parallel, and further, the optical amplifier 6 for the forward path of the receiving station 10n, In contrast to the serial arrangement of the branch coupler 5C and the optical amplifier 6, the serial arrangement of the multi-path optical amplifier 6, the branch coupler 5C and the optical amplifier 6 is arranged in parallel, and the laser light is emitted from the optical amplifier 6 for the forward path. Side and the space between the entrance side of the optical amplifier 6 for the return path,
Prisms PR1 and PR2 for refracting the propagation laser light from the forward optical amplifier 6 into the backward optical amplifier 6 are provided.

【0124】同様に、測線BBの先頭送信局20aの往
路用分岐カプラー5Aと光増幅器6に対して復路用の分
岐カプラー5A、光増幅器6を並列配設し、中継局20
b・・・の往路用の光増幅器6、分岐カプラー5A、光
増幅器6の直列配設に対して複路用の光増幅器6、分岐
カプラー5A、光増幅器6の直列配設を並列配設し、さ
らに、受信局20nの往路用の光増幅器6、分岐カプラ
ー5C、光増幅器6の直列配設に対して複路用の光増幅
器6、分岐カプラー5C、光増幅器6の直列配設を並列
配設するとともに、往路の光増幅器6レーザ光出射側
と、復路の光増幅器6の入射側の空間に、往路用の光増
幅器6から伝播用レーザ光を復路用の光増幅器6に屈折
入射させるプリズムPR1、PR2を配設する。勿論、
測線AA、測線BBの分岐カプラー5A〜5Cの分岐路
には、図示しない光電変換器9が配設されている。な
お、図中符号3は光透過窓を示す。
Similarly, the branch coupler 5A for the return path and the optical amplifier 6 are arranged in parallel with the branch coupler 5A for the forward path and the optical amplifier 6 of the head transmitting station 20a of the measurement line BB.
The serial arrangement of the optical amplifier 6, the branch coupler 5A, and the optical amplifier 6 for the multi-path is arranged in parallel with the serial arrangement of the optical amplifier 6, the branch coupler 5A, and the optical amplifier 6 for the forward path b. Furthermore, the serial arrangement of the multi-path optical amplifier 6, the branch coupler 5C, and the optical amplifier 6 is arranged in parallel with the serial arrangement of the optical amplifier 6, the branch coupler 5C, and the optical amplifier 6 for the forward path of the receiving station 20n. And a prism for refracting and propagating the propagation laser light from the forward optical amplifier 6 to the backward optical amplifier 6 in the space on the outgoing optical amplifier 6 at the laser light emitting side and the incoming side of the backward optical amplifier 6. PR1 and PR2 are provided. Of course,
A photoelectric converter 9 (not shown) is provided on a branch path of the branch couplers 5A to 5C of the measurement line AA and the measurement line BB. In addition, the code | symbol 3 in a figure shows a light transmission window.

【0125】かかる往復光路光学的測定系の形成によ
り、測線AAのレーザ光源4からの伝播用レーザ光は分
岐カプラー5B、光増幅器6を経由し、矢印で示すよう
に、次段の中継局10b・・・を経由し、最終段の受信
局10nの光増幅器6、分岐カプラー5C、光増幅器6
から出射され、プリズムPR1、PR2で屈折され、次
に光増幅器6、分岐カプラー5C、光増幅器6を経由
し、中継局10b・・・を透過し、最後に、送信局10
aの光増幅器6を経由して分岐カプラー5Aに入射す
る。
With the formation of the optical measurement system for the reciprocating optical path, the laser light for propagation from the laser light source 4 on the measurement line AA passes through the branch coupler 5B and the optical amplifier 6, and as shown by the arrow, the relay station 10b at the next stage. , Via the optical amplifier 6, the branch coupler 5C, and the optical amplifier 6 in the final receiving station 10n.
, Are refracted by the prisms PR1 and PR2, then pass through the optical amplifier 6, the branch coupler 5C, and the optical amplifier 6, pass through the relay stations 10b,.
The light enters the branch coupler 5A via the optical amplifier 6 of FIG.

【0126】測線BBでも、矢印で示すように、測線A
Aの送信局10aの分岐カプラー5Bで分岐された伝播
用レーザ光が測線BBの先頭送信器20aの光透過用窓
3を介して光増幅器6に入射し、さらに分岐カプラー5
A、光増幅器6を経由して次段の中継局20b・・・に
順次送光され、受信局20nの光増幅器6、分岐カプラ
ー5C、光増幅器6を経由し、プリズムPR1、PR2
で屈折され、光増幅器6、分岐カプラー5C、光増幅器
6から出射され、次段の中継局20b・・・に送光し、
最後に先頭送信局20aの光増幅器6、分岐カプラー5
Aに入射される。その間、測線AA、測線BBの往復光
路における分岐カプラー5A〜5Cからは、レーザ光を
図示しない光電変換器9・・・に送光し、往復光路測定
系における測定データを得ることが出来る。なお、この
ような往復光路測定系は、図13、図14、及び図22
に示す本発明の装置にも適用可能である。
The measurement line BB is also used as indicated by the arrow.
The propagation laser light branched by the branch coupler 5B of the transmission station 10a of A enters the optical amplifier 6 through the light transmission window 3 of the head transmitter 20a of the measurement line BB, and further the branch coupler 5B
A, the light is sequentially transmitted to the next-stage relay station 20b... Via the optical amplifier 6 and then to the prisms PR1 and PR2 via the optical amplifier 6, the branch coupler 5C, and the optical amplifier 6 of the receiving station 20n.
, And is emitted from the optical amplifier 6, the branch coupler 5C, and the optical amplifier 6, and is transmitted to the next-stage relay station 20b.
Finally, the optical amplifier 6 and the branch coupler 5 of the head transmitting station 20a
A. In the meantime, the branch couplers 5A to 5C in the reciprocating optical paths of the measurement line AA and the measurement line BB transmit the laser light to the not-shown photoelectric converters 9 to obtain measurement data in the reciprocation optical path measurement system. Such a reciprocating optical path measuring system is shown in FIGS. 13, 14, and 22.
The present invention is also applicable to the apparatus of the present invention shown in FIG.

【0127】[0127]

【発明の効果】以上述べたように請求項1の発明によれ
ば、データ処理装置は、基準値測定時t1 及び所定時間
経過後の測定時t2 毎に、対向局の何れか一方の局にお
ける任意の1つのパラメータgの短時間平均補正量<g
>を<δL(パラメータ)>として求め、測定時t1
2 における水中の光パルスの伝播速度vと、対向局間
の光電変換パルス列の1組毎の伝播時間幅ΔTとの積か
ら対向局間の補正前の設置距離Lを求め、そして、(測
定時t2 における補正前の対向局間設置距離L及び短時
間平均補正量<δL(パラメータ)>t2の和)から測定
時t2 における補正後の真の対向局間設置距離Lを求
め、また(測定時t1 における補正前の対向局間設置距
離L及び短時間平均補正量<δL(パラメータ)>t1
和)から測定時t1 における補正後の真の対向局間設置
距離Lt1求め、さらに、(測定時t2における補正後の
真の対向局間設置距離Lt2)と(測定時t1 における補
正後の真の対向局間設置距離Lt1)との差に基づいて対
向局間における歪みの発生の有無を識別し、さらに、
(測定時t2 における補正後の真の対向局間設置距離L
t2の値、及び測定時t1 における補正後の真の対向局間
設置距離Lt1の値の差)と、(測定時t2 における補正
後の真の対向局間設置距離Lt2の値及び測定時t1にお
ける補正後の真の対向局間設置距離Lt1の値の平均値)
との比から、又は、(測定時t2 における補正後の真の
対向局間設置距離Lt2の値、及び測定時t1における補
正後の真の対向局間設置距離Lt1の値の差)と、(測定
時t1 における補正後の真の対向局間設置距離Lt1)と
の比から対向局間に発生する歪み量を算出するよう構成
してあるため、屈折率等のパラメータgの変動の影響を
受けずに、測線を形成する各対向局間に有意な歪みが発
生したか否かを正確に識別し得る上、各対向局間に発生
する歪み量も算出することが可能となる。
According to the present invention as mentioned above, according to the present invention, the data processing apparatus, the reference value for each measurement time t 1 and a measurement time t 2 after a predetermined time, one of the opposite station Short-term average correction amount of any one parameter g in the station <g
> As <δL (parameter)>, and the measurement time t 1 ,
The installation distance L between the opposing stations before correction is determined from the product of the propagation speed v of the light pulse in water at t 2 and the propagation time width ΔT of each set of photoelectric conversion pulse trains between the opposing stations, and obtains a true between the opposing station installation distance L after correction in the measurement time t 2 from the opposite station between the installation distance L and the short-term average correction amount before correction <[delta] L (parameters)> sum t2) at t 2 when, also (between the opposing station installation distance L and the short-term average correction amount before correction in the measurement time t 1 <[delta] L (parameter)> t1 sum of) the true opposite station between the installation distance L t1 determined after correction in the measurement time t 1 from further, the opposite station on the basis of the difference between (among true opposite station after correction in the measurement time t 2 the installation distance L t2) and (inter true opposite station after correction in the measurement time t 1 the installation distance L t1) The presence or absence of distortion between them,
(True counter-station installation distance L after correction at measurement time t 2
The value of t2, and the difference) of the true value of the counter station between the installation distance L t1 corrected in the measurement time t 1, (a value between the true opposite station after correction in the measurement time t 2 the installation distance L t2 and the average value of the true value of the counter station between the installation distance L t1 corrected in the measurement time t 1)
From the ratio of the, or, (the difference between the measured time the true value of the counter station between the installation distance L t2 after the correction in t 2, and the true value of the counter station between the installation distance L t1 corrected in the measurement time t 1 ) And (true corrected installation distance L t1 between opposing stations at measurement time t 1 ) to calculate the amount of distortion generated between the opposing stations. It is possible to accurately determine whether significant distortion has occurred between the opposing stations that form the survey line without being affected by the fluctuations in the measurement line, and to calculate the amount of distortion that occurs between the opposing stations. Becomes

【0128】請求項2の発明によれば、「対向局の何れ
か一方の局における水温等の複数のパラメータgの各短
時間平均補正量<g>の加算値」、又は「対向局の各局
における複数のパラメータgの短時間平均補正量<g>
を加算して対向局数2で除算した平均値」で示すとき
に、補正前の対向局間設置距離Lの見掛け上の変動の補
正用短時間平均補正量として<δL´(パラメータ)>
を適用可能となるよう構成してあるため、1つのパラメ
ータgを用いる場合よりもより正確な短時間平均補正量
を得ることが出来る。
According to the invention of claim 2, "added value of each short-time average correction amount <g> of a plurality of parameters g such as water temperature in one of the opposing stations" or "each station of the opposing station" Short-term average correction amount <g> of a plurality of parameters g at
ΔL ′ (parameter)> as the short-time average correction amount for correcting the apparent fluctuation of the installation distance L between the opposite stations before the correction.
Is applied so that a more accurate short-time average correction amount can be obtained than when one parameter g is used.

【0129】請求項3の発明によれば、基準量測定時τ
1 の水温の初期温度tAs℃における水の初期屈折率nAs
を、演算式v=C0 /nのnに代入して水中における光
パルスの初期伝播速度vAsと、各局同士間の1組毎の実
測パルス伝播時間幅ΔTの和である初期伝播時間TAs
を記憶手段に記憶し、基準量測定後の測定時τ2 の実測
水温tn ℃における実測屈折率nn を同様にして算出し
た光パルスの伝播速度vn と、1組毎の実測パルス伝播
時間幅の和を実測伝播時間Tn とを記憶し、測定時τ2
の実測伝播時間Tn 及び伝播速度vn と、初期伝播速度
Asとを演算式TAsn =(vn ・Tn )/vASに代入
し、求めたTAsn を、測定時τ2 の実測伝播時間Tn
初期温度tAs℃に温度補正した伝播時間TAsn として記
憶保持し、そして、基準量測定時τ1 の初期伝播時間T
Asと温度補正した伝播時間TAsn とを対比し、その対比
結果に基づいて水平歪みの有無を識別するよう構成して
あるので、測線全体が一様な水温等の変動を受けても水
中の光伝播速度の変動の影響を受けずに、基準量測定時
τ1 の初期伝播時間TASと、基準量測定後の測定時τ 2
における水温等の影響を補正した伝播時間TASn との対
比を行って、正確な基線間の伝播時間の測定が行える
他、測線設置周囲の水の屈折率、及び温度データ等を提
示することが出来る。
According to the third aspect of the present invention, when the reference amount is measured τ
1Initial temperature t of water temperatureAsInitial refractive index n of water at ℃As
Is calculated by the following equation: v = C0/ N substitute for n
Initial propagation velocity v of pulseAsAnd the actual number of each set between stations
Initial propagation time T, which is the sum of measured pulse propagation time width ΔTAsWhen
Is stored in the storage means, and the time τTwoMeasurement of
Water temperature tnMeasured refractive index n in ° CnIs calculated in the same way
Propagation speed vnAnd measured pulse propagation for each set
Measured propagation time TnAt the time of measurement τTwo
Measured propagation time TnAnd the propagation velocity vnAnd the initial propagation speed
vAsAnd the arithmetic expression TAsn= (Vn・ Tn) / VASAssigned to
TAsnAt the time of measurement τTwoMeasured propagation time TnTo
Initial temperature tAsPropagation time T, temperature corrected to ° CAsnNote as
Τ1Initial propagation time T
AsAnd propagation time T corrected for temperatureAsnAnd the contrast
Configure to identify the presence or absence of horizontal distortion based on the result
Even if the entire survey line is subject to uniform fluctuations in water temperature, etc.
When measuring reference amounts without being affected by fluctuations in light propagation speed
τ1Initial propagation time TASAnd the measurement time τ after the reference amount measurement Two
Propagation time T corrected for effects of water temperature, etc.ASnPair with
Ratio allows accurate measurement of the propagation time between baselines
In addition, provide the refractive index of water around the survey line installation, temperature data, etc.
Can be shown.

【0130】請求項4の発明によれば、測線に往復路光
学的測定系を配設してあるため、光パルス伝播方向の順
方向、及び逆方向の計測データが得られて計測精度の向
上がはかれる。
According to the fourth aspect of the present invention, since the round-trip optical measurement system is provided on the measurement line, measurement data in the forward and reverse directions of the light pulse propagation direction can be obtained, thereby improving the measurement accuracy. Is peeled off.

【0131】請求項5の発明によれば、測線に対し、先
頭送信局、中継局、及び受信局の列からなる多数の測線
を並列敷設し、上記測線の光パルス送信局から分岐した
伝播用光パルスを、多数の測線の各先頭送信局に順次伝
播するよう光結合するとともに、多数の測線の各先頭送
信局から、それぞれ自己の測線の中継局を介して受信局
に送光し、測線及び多数の測線における各局からの光電
変換パルスを伝送ケーブルを介してデータ処理装置に伝
送するよう構成してあるため、水底面に面的拡がりを持
たせた観測網を敷設することが出来る。
According to the fifth aspect of the present invention, a large number of survey lines consisting of a head transmitting station, a relay station, and a receiving station are laid in parallel on a survey line, and the propagation line branched from the optical pulse transmitting station on the survey line is provided. The optical pulse is optically coupled so as to be sequentially propagated to each of the leading transmitting stations of the plurality of survey lines, and light is transmitted from each of the leading transmitting stations of the survey line to the receiving station via the relay station of its own survey line. In addition, since the photoelectric conversion pulse from each station in a large number of survey lines is configured to be transmitted to the data processing device via the transmission cable, an observation network having a surface spread on the water bottom surface can be laid.

【0132】請求項6の発明によれば、上記測線におけ
る所定の局を分岐局とし、先頭送信局、中継局、及び受
信局よりなる分岐測線を、その分岐局から複数の方向に
向けて敷設するよう構成してあるため、同様に水底にお
ける観測領域を面的に拡張することが出来る。
According to the invention of claim 6, a predetermined station in the above-mentioned survey line is a branch station, and a branch survey line consisting of a head transmitting station, a relay station, and a receiving station is laid in a plurality of directions from the branch station. As a result, the observation area on the water floor can be expanded in a similar manner.

【0133】請求項7の発明によれば、水底に多数の三
角形の頂点位置毎に観測局を敷設するよう構成してある
ため、同様に二次元的拡がりを持った水底観測領域を形
成することが出来る。
According to the seventh aspect of the present invention, since observation stations are laid on the water bottom at each of the vertices of a large number of triangles, a water bottom observation area having a two-dimensional spread is similarly formed. Can be done.

【0134】請求項8の発明によれば、光電変換パルス
列を伝送ケーブルを介してデータ処置装置に伝送し、対
向設置された局同士の分岐した観測用光パルスを1組と
し、その1組毎のパルス伝播時間幅ΔTを、周波数が異
なる複数のクロックパルスで各別に計数するよう構成し
てあるので、1組毎のパルス伝播時間幅ΔTのそれぞれ
の計数結果を総合比較することができ、これにより正確
な測定値を求めることが可能となる。
According to the eighth aspect of the present invention, the photoelectric conversion pulse train is transmitted to the data processing device via the transmission cable, and the observation light pulse branched between the stations installed opposite to each other is set as one set. The pulse propagation time width ΔT is calculated separately for each of a plurality of clock pulses having different frequencies, so that the counting results of the pulse propagation time width ΔT for each set can be comprehensively compared. It is possible to obtain more accurate measurement values.

【0135】請求項9の発明によれば、基準量測定時t
1 において検出した、対向局の間に介在する水中を透過
する分岐光パルスSwの光路長、及び対向局間に介在す
る伝送ケーブルに分布型光ファイバー温度計を添設さ
れ、かつ、対向局間に介在する分布型光ファイバー温度
計の光ファイバー光路を介して伝送される分岐光パルス
Scの光路長の差と、測定時t1 から所定時間経過後の
測定時t2 において検出した両パルスSw、Scの両光
路長の差とを対比し、その対比結果に基づいて歪みの発
生の有無を判別するよう構成してあるため、対向局間に
熱水、又は、冷水が介在しても、両パルスSw、Scの
両光路は同じ水温の影響を受ける関係上、両光路に及ぼ
す温度の影響が消去され、これにより、測線を構成する
各対向局同士の間の水温がそれぞれ相違する場合でも、
その影響を受けること無く、断層の出現の有無、又は、
既存の断層の活動の有無を正確に判別することが出来
る。
According to the ninth aspect of the present invention, the reference amount measurement time t
A distributed optical fiber thermometer is added to the optical path length of the branch light pulse Sw passing through the water interposed between the opposing stations detected in 1 and the transmission cable interposed between the opposing stations, and between the opposing stations. and the difference in optical path length of the split light pulse Sc to be transmitted through an optical fiber light path of the distributed optical fiber thermometer mediated measured during both pulse Sw is detected at the measurement time t 2 after a predetermined time has elapsed since t 1, the Sc The difference between the two optical path lengths is compared with each other, and the presence or absence of distortion is determined based on the comparison result. Therefore, even if hot water or cold water is interposed between the opposite stations, both pulses Sw , Sc are affected by the same water temperature, so that the influence of the temperature on both light paths is eliminated, whereby even if the water temperatures between the opposite stations forming the survey line are different,
Without being affected by the occurrence of a fault, or
The presence or absence of existing fault activity can be accurately determined.

【図面の簡単な説明】[Brief description of the drawings]

【図01】 (A)は(B)に示すの切断線A−A´に
沿って切断して矢印P方向から眺めた本発明のレーザ光
送信局の一部断面図、(B)は(A)に示す送信局の斜
視図である。
(A) is a partial cross-sectional view of the laser light transmitting station of the present invention, taken along the cutting line AA ′ shown in (B) and viewed from the direction of arrow P, and (B) is (B). It is a perspective view of the transmitting station shown to A).

【図02】 海底に敷設する本発明の中継局の内部構成
を概略的に示す断面図である。
FIG. 02 is a sectional view schematically showing an internal configuration of a relay station of the present invention laid on the sea floor.

【図03】 海底に設置した局で観測したデータを地上
局に送信する伝送ケーブルと、片側給電を行う給電線と
を備える外装ケーブルの断面図である。
FIG. 03 is a cross-sectional view of an outer cable including a transmission cable for transmitting data observed by a station installed on the sea floor to a ground station and a power supply line for performing one-side power supply.

【図04】 (A)は送信局、中継局、及び受信局に設
けた光増幅器の構成図、(B)はエルビウム添加型光フ
ァイバ増幅器の構成図である。
(A) is a configuration diagram of an optical amplifier provided in a transmitting station, a relay station, and a receiving station, and (B) is a configuration diagram of an erbium-doped optical fiber amplifier.

【図05】 光電力を分岐する分岐カプラーを示し、
(A)は送信局に配設される前段の光カプラーの側面
図、(B)は送信局の前段の光カプラーの後段に配設さ
れる光カプラーの側面図、(C)は最終段の受信局に設
けた光カプラーの側面図である。
FIG. 05 shows a branch coupler for branching optical power;
(A) is a side view of an optical coupler at a preceding stage provided in a transmitting station, (B) is a side view of an optical coupler provided at a subsequent stage of an optical coupler at a preceding stage of the transmitting station, and (C) is a side view of a final stage. It is a side view of the optical coupler provided in the receiving station.

【図06】 図08に示す測線AAの各局の概略的構成
断面図である。
FIG. 06 is a schematic configuration sectional view of each station along a measurement line AA shown in FIG. 08.

【図07】 図08に示す測線BBの各局の概略的構成
断面図である。
FIG. 07 is a schematic cross-sectional view of each station along the measurement line BB shown in FIG. 08.

【図08】 本発明の光学式測距装置を備える2組の測
線の第1の設置例の全体配設図である。
FIG. 08 is an overall arrangement diagram of a first installation example of two sets of measurement lines including the optical distance measuring device of the present invention.

【図09】 (A)は2組の測線の各局から送られる光
パルス列、(B)は減衰された光強度をレーザ光源から
出射されるレーザ光源までに光増幅した光強度の減衰・
増幅変動波形図、(C)は分岐された2組の光電変換パ
ルス列と、各パルス間の伝搬時間幅とを示す波形図であ
る。
FIG. 9A shows an optical pulse train transmitted from each station of two sets of measurement lines, and FIG. 9B shows an attenuation of light intensity obtained by optically amplifying the attenuated light intensity to a laser light source emitted from a laser light source.
FIG. 3C is a waveform diagram showing two sets of branched photoelectric conversion pulse trains and a propagation time width between each pulse.

【図10】 各局間の光信号の伝播時間幅の算出と、有
意な歪み量εの発生の有無の識別を行うデータ処理装置
の機能ブロック図である。
FIG. 10 is a functional block diagram of a data processing device that calculates a propagation time width of an optical signal between stations and identifies whether or not a significant distortion amount ε has occurred.

【図11】 測定時間と、その間に発生する歪み量との
関係を示すグラフである。
FIG. 11 is a graph showing a relationship between a measurement time and a distortion amount generated during the measurement time.

【図12】 データ処理の制御を実行するデータ処理装
置のフローチャートである。
FIG. 12 is a flowchart of a data processing device that controls data processing.

【図13】 多数の測線を多方向に向けて分岐敷設した
本発明の第2の設置例のブロック図である。
FIG. 13 is a block diagram of a second installation example of the present invention in which a large number of measurement lines are branched and laid in multiple directions.

【図14】 多数の測線を海底に平行敷設する第3の設
置例のブロック図である。
FIG. 14 is a block diagram of a third installation example in which a large number of measurement lines are laid in parallel on the sea floor.

【図15】 海底における多数の三角形の頂点形成位置
毎に敷設し、二次元的拡がりを持つ第4の設置例のブロ
ック図である。
FIG. 15 is a block diagram of a fourth installation example in which a plurality of triangles are laid at each vertex formation position on the seabed and have a two-dimensional spread.

【図16】 図15の観測網の梯形領域Sを抜き出して
拡大して示した図である。
16 is a diagram illustrating a trapezoidal region S of the observation network of FIG. 15 extracted and enlarged.

【図17】 測線の一部を形成する対向2局間の温度が
相違する場合、その温度の影響を消去し、有意な断層活
動や地殻活動の発生の有無を検知する本発明の別の光学
式測距装置の構成図である。
FIG. 17 is a diagram showing another optical system according to the present invention for detecting the occurrence of significant fault activity or crustal activity by eliminating the influence of the temperature when the temperature between the two opposing stations forming a part of the survey line is different. It is a block diagram of a type distance measuring device.

【図18】 図17に示す中継局10b´・・・、受信
局10n´にそれぞれ設けた計測演算装置の構成例を示
す図である。
18 is a diagram illustrating a configuration example of a measurement operation device provided in each of the relay stations 10b ′... And the reception station 10n ′ illustrated in FIG.

【図19】 (A)は分布型光ファイバー温度計の一部
の斜視図、(B)は図17に示す装置の機能を実行を示
すフローチャートである。
19 (A) is a perspective view of a part of the distributed optical fiber thermometer, and FIG. 19 (B) is a flowchart showing execution of functions of the apparatus shown in FIG.

【図20】 各局に超音波送受信器を設け、底層流の有
無、状況等を観測する本発明の別の光学式測距装置の海
底配設図である。
FIG. 20 is a diagram of a submarine arrangement of another optical distance measuring apparatus according to the present invention, in which an ultrasonic transceiver is provided in each station to observe the presence or absence of a bottom laminar flow, a situation, and the like.

【図21】 温度補正方式を異にする本発明の第3の実
施の形態のデータ処理装置の機能ブロック図である。
FIG. 21 is a functional block diagram of a data processing device according to a third embodiment of the present invention which differs in a temperature correction method.

【図22】 図21に示すデータ処理装置を設けた本発
明の第3の実施の形態の側線AAにおいて、標準温度を
中心とした海水の屈折率n、海水中の光パルスの伝播速
度v、及び光伝播時間Tの変化傾向と、温度補正前、後
の測定値とを示す図である。
22 is a side line AA according to the third embodiment of the present invention provided with the data processing device shown in FIG. 21; a refractive index n of seawater around a standard temperature; a propagation speed v of an optical pulse in seawater; FIG. 7 is a diagram showing a change tendency of the light propagation time T and measured values before and after temperature correction.

【図23】 図21の装置のデータ処理制御を実行する
データ処理装置のフローチャートである。
FIG. 23 is a flowchart of a data processing device that executes data processing control of the device of FIG. 21;

【図24】 図06、図07に示す測線AA、測線BB
を例示して、往復光路を備える測定系を説明するための
概略的構成を上から眺めたブロック図である。
FIG. 24 shows a measurement line AA and a measurement line BB shown in FIGS.
FIG. 2 is a block diagram of a schematic configuration for explaining a measurement system including a reciprocating optical path, as viewed from above.

【図25】 海底に敷設した、従来の光学式測距装置よ
りなる測線の概念図である。
FIG. 25 is a conceptual diagram of a measurement line laid on the sea floor and configured by a conventional optical distance measuring device.

【図26】 (A)は断層を跨いで2方向に個別配設し
た従来の測線の配置図、(B)は断層を跨いで2方向に
直交させて一度に配設した従来の測線の配置図である。
FIG. 26 (A) is a layout diagram of conventional measurement lines individually arranged in two directions across a fault, and FIG. 26 (B) is a layout of conventional measurement lines arranged at one time orthogonally in two directions across a fault. FIG.

【符号の説明】[Explanation of symbols]

10a・・送信局、10b・・中継局、10n・・受信
局、12・・屈折率計、13・・温度センサ、14・・
水圧センサ、15・・流速計、16・・流向計、17・
・塩分濃度計、5a、5b、5c・・分岐カプラー、
6′・・エルビウム添加型光増幅器、TH1〜TH(n
−1)・・分布型光ファイバー温度計、Sw・・海中を
透過するパルスレーザ光、Sc・・分布型光ファイバー
温度計を伝送するパルスレーザ光、201、202・・
超音波送受信器。
10a ... transmitting station, 10b ... relay station, 10n ... receiving station, 12 ... refractometer, 13 ... temperature sensor, 14 ...
Water pressure sensor, 15 ··· current meter, 16 · · flow direction meter, 17 ·
・ Salt concentration meter, 5a, 5b, 5c ・ ・ Branch coupler,
6 '.. Erbium-doped optical amplifier, TH1 to TH (n
-1) ··· Distributed optical fiber thermometer, Sw ··· Pulse laser light transmitted through the sea, Sc ··· Pulse laser light transmitted through the distributed optical fiber thermometer, 201, 202 ···
Ultrasonic transceiver.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01V 1/22 G01C 3/06 G01V 8/10 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01V 1/22 G01C 3/06 G01V 8/10

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水底の断層を介在させて、光パルスを送
光する送信局と、該光パルスを受光して次段の局に送光
する中継局と、中継局からの光パルスを受光する最終段
の受信局とを所定間隔毎に対向配設してなる測線を設
け、 上記送信局から中継局を経由し受信局に送光される伝播
用光パルスから各局毎に観測用の光パルスを分岐し、そ
の光電変換したパルス列と、上記各局毎に設けたセンサ
により検出した各局設置周囲の水の屈折率、塩分濃度、
水温、水圧、流速、及び流向の検出データとを伝送ケー
ブルを介して地上局に伝送し、 上記光電変換パルス列を取り込み、基準値測定時t1
び該基準値測定時から所定時間経過した後の測定時t2
において、上記対向配設された局同士の光電変換パルス
を1組とし、求めた1組毎の対向局間片道のパルス伝播
時間幅ΔT及び上記検出データに基づいて水底基盤にお
ける対向局間の水平歪みの発生の有無を識別するデータ
処理装置を備える光学式測距装置であって、 上記データ処理装置は、 上記測定時t1 及び測定時t2 において、上記対向局間
の設置距離Lに対し見掛け上の変動を与える屈折率、塩
分濃度、水温、水圧、流速、又は流向の各パラメータg
をそれぞれN回反復検出し、 下記演算式(2)に、下記演算式(1)により求めた上
記測定時t1 及び測定時t2 における対向局間の水中の
光パルスの伝播速度vと対向局間のパルス伝播時間幅Δ
Tとを代入して測定時t1 及び測定時t2 における補正
前の対向局間設置距離Lを求め、 下記演算式(3)に基づいて、上記対向局の何れか一方
の局における任意の1つのパラメータgのN回の反復検
出値の加算値をNで除算して算出した上記測定時t1
び測定時t2 における各短時間平均補正量<g>を<δ
L(パラメータ)>と表し、下記演算式(3´)に示す
上記<δL(パラメータ)>を上記測定時t1 及び測定
時t2 における補正前の対向局間の設置距離Lの見掛け
上の変動を補正するための短時間平均補正量とみなして
用い、 下記演算式(4)により、上記測定時t1 における補正
前の対向局間設置距離L(j) と短時間平均補正量<δL
(パラメータ)>t1 との和に基づいて補正後の真の対
向局間設置距離Lを求め、 下記演算式(4´)により、上記測定時t2 における補
正前の対向局間設置距離L(j) と短時間平均補正量<δ
L(パラメータ)>t2 との和に基づいて補正後の真の
対向局間設置距離Lを求め、 下記演算式(5A)、又は(5B)に示す上記(測定時
2 における補正後の真の対向局間設置距離Lt2)の値
から(測定時t1 における補正後の真の対向局間設置距
離Lt1)の値の差の結果に基づいて対向局間における歪
みの発生の有無を識別し、そして、下記演算式(5A)
に基づいて、上記(測定時t2 における補正後の真の対
向局間設置距離Lt2の値、及び測定時t1 における補正
後の真の対向局間設置距離Lt1の値の差)と、上記(測
定時t1 及びt2 における補正後の真の対向局間設置距
離Lt1及びLt2の平均値)との比から、又は下記演算式
(5B)に基づいて、上記(測定時t2 における補正後
の真の対向局間設置距離Lt2の値、及び測定時t1 にお
ける補正後の真の対向局間設置距離Lt1の値の差)と、
上記(測定時t1 における補正後の真の対向局間設置距
離Lt1)との比から対向局間に発生する歪み量〔ε
(i、i+1)〕t1 t2を求めるよう構成したことを特徴
とする光学式測距装置。 演算式(1):v=C0 /n、ここで、nは測定時t1
及びt2 における各局の水の実測屈折率、C0 は真空中
の光速度(3×108 m/s)、vは測定時t1及びt
2 における対向局間の光パルスの伝播速度を示す、 演算式(2):v×ΔT=L、ここで、ΔTは対向局間
の光パルスの片道伝播時間幅を示す、 ここで、<g>は各パラメータgのN回測定の平均値、
即ち、各パラメータgの短時間平均補正量、<δL(パ
ラメータ)>は補正前の対向局間の設置距離Lの見掛け
上の変動を補正するための短時間平均補正量、i、(i
+1)はi番目、(i+1)番目の局、δg(j) 及びδ
L(パラメータ)(j) はN回の反復検出のうちj回目の
測定量を示す、 演算式(4):測定時t1 における補正後の真の対向局
間設置距離L=〔Lt1 C(i、i+1)〕=(測定時t
1 における補正前の対向局間設置距離〔L(j) (i、i
+1);t=t1 〕)+(測定時t1 における短時間平
均補正量<δL(パラメータ)>t1)、 演算式(4´):測定時t2 における補正後の真の対向
局間設置距離L=〔Lt2 C (i、i+1)〕=(測定時
2 における補正前の対向局間設置距離〔L(j) (i、
i+1);t=t2 〕)+(測定時t2 における短時間
平均補正量<δL(パラメータ)>t2)、 演算式(5A):〔ε(i、i+1)〕t1 t2≡{(測定
時t2 における補正後の真の対向局間設置距離〔Lt2 C
(i、i+1)〕)−(測定時t1 における補正後の真
の対向局間設置距離〔Lt1 C (i、i+1)〕)}/
0.5×{(測定時t1 における補正後の真の対向局間
設置距離〔Lt1 C (i、i+1)〕)+(測定時t2
おける補正後の真の対向局間設置距離〔Lt2 C (i、i
+1)〕)}、 演算式(5B):〔ε(i、i+1)〕t1 t2≡{(測定
時t2 における補正後の真の対向局間設置距離〔Lt2 C
(i、i+1)〕)−(測定時t1 における補正後の真
の対向局間設置距離〔Lt1 C (i、i+1)〕)}/
(測定時t1 における補正後の真の対向局間設置距離
〔Lt1 C (i、i+1)〕)。
1. A transmitting station for transmitting an optical pulse through a fault at the bottom of the water, a relay station for receiving the optical pulse and transmitting the light pulse to a next station, and receiving an optical pulse from the relay station. A measurement line is provided in which a receiving station at the final stage is disposed opposite to the receiving station at predetermined intervals, and a light beam for observation is transmitted from the transmitting station to the receiving station via the relay station. The pulse is branched, the photoelectrically converted pulse train, and the refractive index, salt concentration, and the water around each station installed detected by the sensor provided for each station.
Water temperature, water pressure, flow rate, and transmitted to the ground station and the detection data of the flow direction through the transmission cable, takes in the photoelectric conversion pulse train, when the reference measurement t 1 and after a predetermined time has elapsed from the time of the reference measurement Measurement time t 2
In the above, the photoelectric conversion pulses between the stations arranged opposite to each other are regarded as one set, and based on the obtained one-way pulse propagation time width ΔT between the opposite stations and the detected data, the horizontal distance between the opposite stations on the underwater base is determined. An optical distance measuring device including a data processing device for identifying the presence or absence of distortion, wherein the data processing device performs a measurement with respect to an installation distance L between the opposite stations at the measurement time t 1 and the measurement time t 2 . Refractive index, salt concentration, water temperature, water pressure, flow velocity, or flow direction parameter g that gives apparent fluctuation
Are repeatedly detected N times, and the following equation (2) is used to determine the propagation velocity v of the underwater light pulse between the opposing stations at the measurement time t 1 and the measurement time t 2 obtained by the following equation (1). Pulse propagation time width between stations Δ
By substituting T with each other, the installation distance L between the opposing stations before the correction at the measurement time t 1 and the measurement time t 2 is obtained. The respective short-time average correction amounts <g> at the measurement times t 1 and t 2 calculated by dividing the sum of N repeated detection values of one parameter g by N are represented by <δ
L (parameter)>, and the above <δL (parameter)> shown in the following arithmetic expression (3 ′) is the apparent installation distance L between the opposing stations before the correction at the measurement time t 1 and the measurement time t 2 . used is regarded as the short-term average correction amount for correcting the variation, according to the following arithmetic expression (4), between the opposed stations before correction in the measurement time t 1 installation distance L and (j) the short-term average correction amount <[delta] L
(Parameters)> sought installation distance L between the true opposite station corrected based on the sum of the t1, by the following arithmetic expression (4 '), between the opposed stations before correction in the measurement time t 2 installation distance L ( j) and short-term average correction amount <δ
L (parameters)> based on the sum of t2 determined the true opposite station between the installation distance L after correction the true corrected in the (measured at t 2 represented by the following arithmetic expression (5A), or (5B) from values between the opposite station installation distance L t2) whether the distortion occurred between opposite station on the basis of the result of the difference between the value of (inter true opposite station installation distance corrected in the measurement time t 1 L t1) Identify and calculate the following equation (5A)
Based on, the above (the difference between the measured time the true value of the counter station between the installation distance L t2 after the correction in t 2, and the true value of the counter station between the installation distance L t1 corrected in the measurement time t 1) , from the ratio between the (average values of the measured time between the true opposite station installation distance corrected in t 1 and t 2 L t1 and L t2), or on the basis of the following arithmetic expression (5B), the (time of measurement true value of the counter station between the installation distance L t2 after the correction in t 2, and a true difference in the value of the counter station between the installation distance L t1) after correction in the measurement time t 1,
The amount of strain occurring between the opposed stations from the ratio of the (true between the opposing station installation distance L t1 corrected in the measurement time t 1)
(I, i + 1)] An optical distance measuring apparatus characterized in that t1 and t2 are determined. Equation (1): v = C 0 / n, where n is the measurement time t 1
And the measured refractive index of water at each station at t 2 , C 0 is the light velocity in vacuum (3 × 10 8 m / s), and v is the measurement time t 1 and t
2, which indicates the propagation speed of the optical pulse between the opposing stations in Equation (2): v × ΔT = L, where ΔT indicates the one-way propagation time width of the optical pulse between the opposing stations, Here, <g> is an average value of N measurements of each parameter g,
That is, the short-time average correction amount of each parameter g, <δL (parameter)>, is a short-time average correction amount for correcting an apparent variation of the installation distance L between the opposite stations before correction, i, (i
+1) is the i-th station, the (i + 1) -th station, δg (j) and δ
L (parameter) (j) represents a measure of the j-th of the N iterations detection, calculation formula (4): between true opposite station after correction in the measurement time t 1 installation distance L = [L t1 C (I, i + 1)] = (measurement time t
1 the distance between the opposing stations before correction [L (j) (i, i
+1); t = t 1 ]) + (short-time average correction amount at measurement time t 1 <δL (parameter)> t 1 ), Expression (4 ′): true inter-office after correction at measurement time t 2 installation distance L = [L t2 C (i, i + 1) ] = (opposite station between the installation distance before correction in the measurement time t 2 [L (j) (i,
i + 1); t = t 2 ]) + (short-time average correction amount at measurement time t 2 <δL (parameter)> t 2 ), Expression (5A): [ε (i, i + 1)] t 1 t 2 ≡ {(measurement The true installation distance between opposing stations after correction at time t 2 [L t2 C
(I, i + 1)]) − (True installation distance after correction at measurement time t 1 [L t1 C (i, i + 1)])} /
0.5 × {(true inter-station distance after correction at measurement time t 1 [L t1 C (i, i + 1)]) + (true inter-station distance after correction at measurement time t 2 [ L t2 C (i, i
+1)])}, the calculation formula (5B): [ε (i, i + 1)] t1 t2 ≡ {(true opposite station between the installation distance corrected in the measurement time t 2 [L t2 C
(I, i + 1)]) − (True installation distance after correction at measurement time t 1 [L t1 C (i, i + 1)])} /
(True corrected inter-station distance [L t1 C (i, i + 1)] after correction at measurement time t 1 ).
【請求項2】 上記<δL(パラメータ)>は、 上記測定時t1 及び測定時t2 における補正前の対向局
間の設置距離Lの見掛け上の変動を補正するための短時
間平均補正量として、上記対向局の何れか一方の局にお
ける任意の複数のパラメータgの各短時間平均補正量<
g>を加算するとき、又は該対向局の各局における任意
の複数のパラメータgの各短時間平均補正量<g>を加
算して対向局数2で除算した平均値で示すときは、<δ
L´(パラメータ)>として表し、 下記演算式(4A)により、上記測定時t1 における補
正前の対向局間設置距離L(j) と短時間平均補正量<δ
L´(パラメータ)>t1 との和に基づいて上記測定時
1 における補正後の真の対向局間設置距離Lを求め、 下記演算式(4B)により、上記測定時t2 における補
正前の対向局間設置距離L(j) と短時間平均補正量<δ
L´(パラメータ)>t2 との和に基づいて上記測定時
2 における補正後の真の対向局間設置距離Lを求め、 下記演算式(5A)、又は(5B)に示す(測定時t2
における補正後の真の対向局間設置距離Lt2)の値から
(測定時t1 における補正後の真の対向局間設置距離L
t1)の値の差の結果に基づいて対向局間における歪みの
発生の有無を識別し、そして、下記演算式(5A)に基
づいて、(測定時t2 における補正後の真の対向局間設
置距離Lt2の値、及び測定時t1 における補正後の真の
対向局間設置距離Lt1の値の差)と、上記(測定時t1
及びt2 における補正後の真の対向局間設置距離Lt1
びLt2の平均値)との比から、又は下記演算式(5B)
に基づいて、(測定時t2 における補正後の真の対向局
間設置距離Lt2の値、及び測定時t1における補正後の
真の対向局間設置距離Lt1の値の差)と、上記(測定時
1 における補正後の真の対向局間設置距離Lt1)との
比から対向局間に発生する歪み量〔ε(i、i+1)〕
t1 t2を求めることを特徴とする請求項1記載の光学式測
距装置。 演算式(4A):測定時t1 における補正後の真の対向
局間設置距離L=〔L t1 C (i、i+1)〕=(測定時
1 における補正前の対向局間設置距離〔L(j ) (i、
i+1);t=t1 〕)+(測定時t1 における短時間
平均補正量<δL´(パラメータ)>t1)、 演算式(4B):測定時t2 における補正後の真の対向
局間設置距離L=〔Lt2 C (i、i+1)〕=(測定時
2 における補正前の対向局間設置距離〔L(j)(i、
i+1);t=t2 〕)+(測定時t2 における短時間
平均補正量<δL´(パラメータ)>t2)、 演算式(5A):〔ε(i、i+1)〕t1 t2≡{(測定
時t2 における補正後の真の対向局間設置距離〔Lt2 C
(i、i+1)〕}−(測定時t1 における補正後の真
の対向局間設置距離〔Lt1 C (i、i+1)〕)}/
0.5×{(測定時t1 における補正後の真の対向局間
設置距離〔Lt1 C (i、i+1)〕)+(測定時t2
おける補正後の真の対向局間設置距離〔Lt2 C (i、i
+1)〕)}、 演算式(5B):〔ε(i、i+1)〕t1 t2≡{(測定
時t2 における補正後の真の対向局間設置距離〔Lt2 C
(i、i+1)〕)−(測定時t1 における補正後の真
の対向局間設置距離〔Lt1 C (i、i+1)〕)}/
(測定時t1 における補正後の真の対向局間設置距離
〔Lt1 C (i、i+1)〕)。
2. The above-mentioned <δL (parameter)> is calculated at the time of measurement1And measurement time tTwoBefore correction
Time to correct the apparent fluctuation of the installation distance L between
As the inter-average correction amount, one of the above opposing stations
Short-term average correction amount of arbitrary parameters g <
g>, or any of the opposing stations
The short-term average correction amount <g> of the plurality of parameters g of
<Δ when the average value is calculated by dividing by 2
L ′ (parameter)>, and the above measurement time t is calculated by the following arithmetic expression (4A).1Complement in
Installation distance L between the opposing stations in front(j)And short-term average correction amount <δ
L '(parameter)>t1At the time of the above measurement based on the sum of
t1, The true installation distance L between the opposing stations after the correction is obtained, and the above measurement time t is calculated by the following arithmetic expression (4B).TwoComplement in
Installation distance L between the opposing stations in front(j)And short-term average correction amount <δ
L '(parameter)>t2At the time of the above measurement based on the sum of
tTwo, The true installation distance L between the opposing stations after the correction is obtained, and is expressed by the following equation (5A) or (5B) (measurement time tTwo
Corrected inter-station distance L after correction int2) Value
(At the time of measurement1Corrected inter-station distance L after correction in
t1) Based on the result of the difference between
The presence or absence of occurrence is identified, and based on the following arithmetic expression (5A)
Then, (measurement time tTwoTrue inter-station setup after correction in
Distance Lt2And the time of measurement t1True after correction in
Installation distance L between opposing stationst1) And the above (at the time of measurement t1
And tTwoCorrected inter-station distance L after correction int1Passing
And Lt2From the average value) or the following arithmetic expression (5B)
Based on (measurement time tTwoTrue opposite station at
Installation distance Lt2And the time of measurement t1After correction in
True distance L between opposing stationst1Difference) and the above (during measurement)
t1Corrected inter-station distance L after correction int1) With
The amount of distortion generated between the opposite stations based on the ratio [ε (i, i + 1)]
t1 t22. The optical measurement according to claim 1, wherein
Distance device. Equation (4A): t at the time of measurement1True opposition after correction at
Station installation distance L = [L t1 C(I, i + 1)] = (at the time of measurement
t1In the opposite station before correction [L(j )(I,
i + 1); t = t1]) + (At the time of measurement t)1Short time in
Average correction amount <δL '(parameter)>t1), Equation (4B): t during measurementTwoTrue opposition after correction at
Station installation distance L = [Lt2 C(I, i + 1)] = (at the time of measurement
tTwoIn the opposite station before correction [L(j)(I,
i + 1); t = tTwo]) + (At the time of measurement t)TwoShort time in
Average correction amount <δL '(parameter)>t2), Equation (5A): [ε (i, i + 1)]t1 t2≡ {(Measure
Time tTwoOf the true installation distance between opposing stations [Lt2 C
(I, i + 1)]}-(measurement t1True after correction in
Installation distance [Lt1 C(I, i + 1)])} /
0.5 × {(at measurement t1Between true opposing stations after correction at
Installation distance [Lt1 C(I, i + 1)]) + (measurement tTwoTo
Corrected distance between opposing stations after correction [Lt2 C(I, i
+1)])}, Equation (5B): [ε (i, i + 1)]t1 t2≡ {(Measure
Time tTwoOf the true installation distance between opposing stations [Lt2 C
(I, i + 1)])-(at the time of measurement t1True after correction in
Installation distance [Lt1 C(I, i + 1)])} /
(At the time of measurement1Corrected distance between opposing stations after correction
[Lt1 C(I, i + 1)]).
【請求項3】 水底の断層を介在させて、光パルスを送
光する送信局と、該光パルスを受光して次段の局に送光
する中継局と、中継局からの光パルスを受光する最終段
の受信局とを所定間隔毎に対向配設してなる測線を設
け、 上記送信局から中継局を経由し受信局に送光される伝播
用光パルスから各局毎に観測用の光パルスを分岐し、そ
の光電変換したパルス列を伝送ケーブルを介して地上局
に伝送し、 基準量測定時τ1 において、上記光電変換パルス列を取
り込み、上記対向配設された局同士の分岐パルスを1組
とし、該1組毎の対向局間片道のパルス伝播時間幅ΔT
を求め、加算して上記測線の伝播時間Tを基準伝播時間
として求め、 上記基準伝播時間Tと上記基準量測定時τ1 の後の測定
時τ2 に求めた伝播時間Tとを対比し、その差異の有無
から水底基盤における水平歪みの変化の有無を識別する
データ処理装置を備える光学式測距装置であって、 上記各局に、設置周囲の水温を検出する温度センサ及び
水の屈折率nを検出する屈折率計を設け、 上記データ処理装置は、 上記基準量測定時τ1 の実測水温を初期温度tAs℃と
し、該水温における水の実測屈折率を初期屈折率nAs
し、該初期屈折率nAsを下記演算式1に代入して求めた
光パルスの伝播速度を初期伝播速度vAsとし、さらに、
上記各局同士間の1組毎の実測パルス伝播時間幅ΔTの
和を初期伝播時間TAsとして記憶手段に記憶し、 上記基準量測定後の測定時τ2 の実測水温tn ℃におけ
る実測屈折率nn を下記演算式1に代入して光パルスの
伝播速度vn を算出し、上記1組毎の実測パルス伝播時
間幅ΔTの和を実測伝播時間Tn として求め、 上記基準量測定後の測定時τ2 の実測伝播時間Tn 及び
伝播速度vn と、上記初期伝播速度vAsとを下記演算式
2に代入して求めた伝播時間TAsn を、上記基準量測定
後の測定時τ2 における実測伝播時間Tn を初期温度t
As℃における初期伝播時間TAsに温度補正された伝播時
間TAsn として記憶保持し、 上記基準量測定時τ1 の初期伝播時間TAsと温度補正し
た上記伝播時間TAs n とを対比し、その対比結果に基づ
いて水平歪みの有無を識別するように構成したことを特
徴とする光学式測距装置。 演算式1:v=C0 /n、ここで、nは上記基準量測定
時τ1 及び該基準量測定後の測定時τ2 の水の実測屈折
率、C0 は真空中の光速度(3×108 m/s)、vは
算出した上記基準量測定時τ1 及び該基準量測定後の測
定時τ2 の水中の光パルスの初期伝播速度を示す、 演算式2:TAsn =(vn ・Tn )/vAs、ここで、v
Asは上記基準量測定時τ1 に測定した水中の光パルスの
初期伝播速度、vn は該基準量測定時τ1 の後の測定時
τ2 における水中の光パルスの伝播速度、Tn は上記測
定時τ2 の実測伝播時間、TAsn は測定時τ2 の実測伝
播時間Tn を上記基準量測定時τ1 の初期温度tAs℃に
おける初期伝播時間TAsに温度補正した伝播時間を示
す。
3. A transmitting station for transmitting an optical pulse through a fault at the bottom of the water, a relay station for receiving the optical pulse and transmitting the light pulse to a next station, and receiving an optical pulse from the relay station. A measurement line is provided in which a receiving station at the final stage is disposed opposite to the receiving station at predetermined intervals, and a light beam for observation is transmitted from the transmitting station to the receiving station via the relay station. The pulse is branched, and the photoelectrically converted pulse train is transmitted to a ground station via a transmission cable. At the time of reference amount measurement τ 1 , the photoelectric conversion pulse train is fetched, and the branch pulse between the opposed stations is set to 1 And a one-way pulse propagation time width ΔT between the opposing stations for each set.
Is obtained and added to obtain the propagation time T of the survey line as a reference propagation time. The reference propagation time T is compared with the propagation time T obtained at the measurement time τ 2 after the reference amount measurement time τ 1 , What is claimed is: 1. An optical distance measuring device comprising: a data processing device for identifying the presence or absence of a change in horizontal distortion in a water base from the presence or absence of the difference. The data processing device is configured to set the measured water temperature at the reference amount measurement time τ 1 to an initial temperature t As ° C, and to set the measured refractive index of water at the water temperature to an initial refractive index n As. The propagation velocity of the light pulse obtained by substituting the initial refractive index n As into the following equation 1 is defined as the initial propagation velocity v As ,
The sum of the measured pulse propagation time width ΔT for each set between the stations is stored in the storage means as the initial propagation time T As , and the measured refractive index at the measured water temperature t n ° C at the measurement time τ 2 after the measurement of the reference amount is measured. calculating the propagation velocity v n of light pulses by substituting n n the following arithmetic expression 1, it calculates the sum of the measured pulse propagation time width ΔT of said set each as measured propagation time T n, after the reference measuring the measured propagation time T n and the propagation velocity v n of the measurement time tau 2, the propagation time T Asn found by replacing the above initial propagation velocity v as the following operation expression 2, when measured after the reference measuring tau 2 is the measured propagation time T n and the initial temperature t
Stored and held as a temperature compensated propagation time T Asn in the initial propagation time T As at As ° C., by comparison with the reference amount initial propagation time of the measuring time tau 1 T As the temperature corrected the propagation time T As n, An optical distance measuring apparatus characterized in that the presence or absence of horizontal distortion is identified based on the comparison result. Arithmetic formula 1: v = C 0 / n, where n is the actually measured refractive index of water at the time of measuring τ 1 and τ 2 after measuring the reference amount, and C 0 is the speed of light in vacuum ( 3 × 10 8 m / s), and v represents the calculated initial propagation velocity of the light pulse in water at the time of measurement of the reference amount τ 1 and the time of measurement τ 2 after the measurement of the reference amount. Equation 2: T Asn = (V n · T n ) / v As , where v
As early propagation speed of light pulses in water was measured in the reference measuring time tau 1, v n is the propagation velocity in water of light pulses in the measurement time tau 2 after the reference measuring time tau 1, T n is The measured propagation time T 2 at the measurement time τ 2 , T Asn is the propagation time obtained by temperature correction of the measured propagation time T n at the measurement time τ 2 to the initial propagation time T As at the initial temperature t As ° C at the time of the reference amount measurement τ 1. Show.
【請求項4】 上記測線における各局毎に、上記光パル
スを送光する送信局からのレーザ光送光方向に配設され
ている光学的測定系と並例に、かつ該レーザ光送光方向
とは逆方向に向けて光学的測定系を配設することによ
り、上記測線に往復路光学的測定系を形成し、 上記往復路光学的測定系により検出した上記パルス伝播
時間幅データと、各局に設けたセンサからの検出データ
とを上記データ処理装置に伝送することを特徴とする請
求項1、又は請求項3の何れか1項記載の光学式測距装
置。
4. An optical measuring system disposed in a direction of transmitting a laser beam from a transmitting station that transmits the optical pulse, for each station on the measurement line, and in the direction of transmitting the laser beam. By providing an optical measurement system in the opposite direction to the above, a round-trip optical measurement system is formed on the measurement line, and the pulse propagation time width data detected by the round-trip optical measurement system and each station The optical distance measuring device according to claim 1, wherein the detection data from the sensor provided in (1) is transmitted to the data processing device. 5.
【請求項5】 上記測線に対し、先頭に位置する送信
局、中継局、及び受信局の列からなる測線の多数を、上
記測線の伝播用光パルスを送光する送信局と、各測線の
先頭送信局とが並列位置するよう敷設し、 上記測線の送信局と、各測線の先頭送信局とが、上記測
線の送信局が送光する伝播用光パルスから分岐した伝播
用光パルスを各測線の先頭送信局に順次伝播するよう光
結合されており、 上記各測線の先頭送信局から中継局を介して受信局に、
伝播用光パルスを送光し、 各測線の先頭送信局、中継局、及び受信局から分岐した
伝播用光パルスから分岐した観測用の光パルスの光電変
換パルス列と、該各局毎に設けたセンサからの検出デー
タとを上記データ処理装置に伝送することを特徴とする
請求項1、又は請求項3の何れか1項記載の光学式測距
装置。
5. The transmission line transmitting a light pulse for propagation of the path, a plurality of transmission lines composed of a sequence of a transmission station, a relay station, and a reception station positioned at the head of the path, Laying so that the leading transmitting station is located in parallel, the transmitting station of the above-mentioned survey line, and the leading transmitting station of each survey line each transmit a propagation light pulse branched from the propagation light pulse transmitted by the transmitting station of the above-mentioned survey line. Optically coupled so as to sequentially propagate to the top transmission station of the survey line, from the top transmission station of each measurement line to the receiving station via the relay station,
A light transmission pulse is transmitted, and a photoelectric conversion pulse train of an observation light pulse branched from the propagation light pulse branched from the head transmitting station, the relay station, and the reception station of each measurement line, and a sensor provided for each station 4. The optical distance measuring apparatus according to claim 1, wherein the detected data is transmitted to the data processing device.
【請求項6】 上記測線における所定の局を、上記送信
局から送光する伝播用光パルスを分岐する分岐局とし、
該分岐局から複数の方向に向けて、先頭に位置する送信
局、中継局、及び受信局よりなる分岐測線の複数を分岐
敷設し、 上記伝播用光パルスを上記分岐局にて分岐し、上記各分
岐測線の先頭送信局から中継局を介して受信局に送光
し、 上記各分岐測線の先頭送信局、中継局、及び受信局か
ら、上記伝播用光パスルから分岐した観測用の光パルス
の光電変換パルス列と、上記各分岐測線の各局に設けた
センサの検出データとを上記データ処理装置に伝送する
ことを特徴とする請求項1、又は請求項3の何れか1項
記載の光学式測距装置。
6. A predetermined station on the survey line is a branch station for branching a propagation optical pulse transmitted from the transmitting station,
In a plurality of directions from the branch station, a plurality of branch measurement lines each consisting of a transmission station, a relay station, and a reception station positioned at the head are laid and branched, and the propagation light pulse is branched at the branch station. Light is transmitted from the head transmitting station of each branch path to the receiving station via the relay station, and an observation optical pulse branched from the propagation optical pulse from the head transmitting station, relay station, and receiving station of each branch path. 4. The optical system according to claim 1, wherein the photoelectric conversion pulse train and the detection data of a sensor provided at each station of each of the branch survey lines are transmitted to the data processing device. 5. Distance measuring device.
【請求項7】 水底における多数の三角形の頂点を形成
する位置毎に観測局を敷設し、 上記観測局は、この観測局から発生される光伝播パルス
を、該観測局に隣接する観測局のうちの半数の観測局に
対してそれぞれ送光し、上記隣接する観測局のうちの残
りの半数の観測局から送光される光伝播パルスをそれぞ
れ受光するよう構成することにより観測局同士が相互に
光結合している光学式測距装置であって、 上記観測局と、該観測局に隣接する各観測局との間で
送、受光される光伝播パルスの検出伝播時間幅データ、
及び各観測局に設けたセンサの上記検出データとをデー
タ処理装置に伝送することを特徴とする請求項1、又は
請求項3の何れか1項記載の光学式測距装置。
7. An observation station is laid at each position where a number of triangle vertices are formed on the water floor. The observation station transmits a light propagation pulse generated from the observation station to an observation station adjacent to the observation station. By transmitting light to half of the observation stations, and receiving light propagation pulses transmitted from the remaining half of the adjacent observation stations, the observation stations can communicate with each other. An optical distance measuring device optically coupled to the observation station, and transmitted between the observation station and each observation station adjacent to the observation station, the detection propagation time width data of the light propagation pulse received and received,
4. The optical distance measuring apparatus according to claim 1, wherein said detection data of a sensor provided at each observation station is transmitted to a data processing device.
【請求項8】 上記光電変換パルス列を伝送ケーブルを
介して地上局に伝送し、対向設置された局同士から分岐
パルスを1組とし、該1組毎のパルス伝播時間幅ΔT
を、周波数が異なる複数のクロックパルスにより計数す
ることを特徴とする請求項1、又は請求項3記載の光学
式測距装置。
8. The above-mentioned photoelectric conversion pulse train is transmitted to a ground station via a transmission cable, and a set of branch pulses from stations installed opposite to each other is set, and a pulse propagation time width ΔT for each set is set.
The optical distance measuring apparatus according to claim 1 or 3, wherein the number is counted by a plurality of clock pulses having different frequencies.
【請求項9】 水底の断層を介在させて、光パルスを送
光する送信局、該光パルスを受光して次段の局に送光す
る中継局、及び中継局からの光パルスを受光する最終段
の受信局を所定間隔毎に配設してなる測線を敷設し、 データ処理装置を備える地上局からの伝送ケーブルを上
記送信局、中継局、及び受信局を連接し、 対向する上記各局同士間に介在する伝送ケーブルに、該
各局同士を接続する分布型光ファイバー温度計をそれぞ
れ添設し、 基準量測定時t1 及び該測定時t1 から所定時間経過後
の測定時t2 のそれぞれの計測時において、上記対向局
の一方の対向局から他方の対向局に向け、上記一方の対
向局にて分岐した一方の分岐光パルスSwを上記対向局
間に介在する水中光路を透過させると共に、他方の分岐
光パルスScを上記対向局間同士を連接する分布型光フ
ァイバー温度計の光ファイバー光路を介して伝送し、 上記分岐光パルスSc及び基準光パルスSpを上記他方
の対向局内設置の計測演算装置の第1成分検出部にて受
光し、検出した両パルスSc及びSp間の位相差を示す
第1の成分信号と、上記分岐光パルスSw及び基準光パ
ルスSpを上記計測演算装置の第2成分検出部にて受光
し、検出した両パルスSw及びSp間の位相差を示す第
2の成分信号との位相差を示す基準量測定時t1 及び測
定時t2の検出信号をそれぞれ伝送ケーブルを介して地
上局に伝送し、 地上局にて、基準量測定時t1 における計測時の検出信
号と、測定時t2 における計測時の検出信号との位相差
を対比し、その対比結果に基づいて、測線を構成する対
向局間に介在する水温とその余の対向局間の水温との相
違に関係無く、断層の出現の有無、あるいは、断層の伸
縮、地殻変動の有無を識別することを特徴とする光学式
測距装置。
9. A transmitting station that transmits an optical pulse through a fault at the bottom of the water, a relay station that receives the optical pulse and transmits the optical pulse to a next station, and receives an optical pulse from the relay station. A survey line with the last receiving stations arranged at predetermined intervals is laid, and a transmission cable from a ground station equipped with a data processing device is connected to the transmitting station, relay station, and receiving station. the transmission cable interposed between each other, the distributed optical fiber thermometer which connects respective stations to each other and additionally provided respectively, the reference measuring time t 1 and the surveying from each scheduled t 1 after a predetermined time during measurement t 2 At the time of measurement, one of the opposing stations is directed from one opposing station to the other opposing station, and one of the branched optical pulses Sw branched at the one opposing station is transmitted through the underwater optical path interposed between the opposing stations. And the other branch light pulse Sc Transmitted via the optical fiber optical path of a distributed optical fiber thermometer connecting the stations, and receiving the branch light pulse Sc and the reference light pulse Sp by the first component detection unit of the measurement and calculation device installed in the other counter station. Then, the first component signal indicating the detected phase difference between the pulses Sc and Sp, the branch light pulse Sw and the reference light pulse Sp are received and detected by the second component detection unit of the measurement and calculation device. transmitted to the ground station via respective transmission cables the reference amount detection signal of the measuring time t 1 and a measurement time t 2 indicating the phase difference between the second component signal indicating a phase difference between the pulses Sw and Sp, ground at the station, compared with the detection signal at the time of measurement in the reference measuring time t 1, a phase difference between the detection signal at the time of measurement in the measurement time t 2, on the basis of the comparison result, between the opposed stations constituting survey line Temperature and the remainder An optical distance measuring apparatus for identifying the presence or absence of a fault, the presence or absence of the expansion and contraction of a fault, and the presence or absence of crustal deformation irrespective of a difference in water temperature between the opposite stations.
JP2000097156A 2000-03-31 2000-03-31 Optical distance measuring device Expired - Lifetime JP3358177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000097156A JP3358177B2 (en) 2000-03-31 2000-03-31 Optical distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000097156A JP3358177B2 (en) 2000-03-31 2000-03-31 Optical distance measuring device

Publications (2)

Publication Number Publication Date
JP2001281348A JP2001281348A (en) 2001-10-10
JP3358177B2 true JP3358177B2 (en) 2002-12-16

Family

ID=18611818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000097156A Expired - Lifetime JP3358177B2 (en) 2000-03-31 2000-03-31 Optical distance measuring device

Country Status (1)

Country Link
JP (1) JP3358177B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057027A (en) 2001-08-10 2003-02-26 Ebara Corp Measuring instrument
JP7081555B2 (en) * 2019-04-02 2022-06-07 日本電信電話株式会社 Station placement support method and station placement support system
US20220299358A1 (en) * 2019-12-03 2022-09-22 Nec Corporation Optical fiber sensing system, measuring device, and measuring method
CN112711005B (en) * 2020-12-29 2024-05-17 深圳市利拓光电有限公司 Distance measuring device based on laser and control method

Also Published As

Publication number Publication date
JP2001281348A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
US9140815B2 (en) Signal stacking in fiber optic distributed acoustic sensing
EP3478932B1 (en) Real-time processing and control of das vsp surveys
CN102879081B (en) A kind of data processing method in distributed optical fiber vibration system
US4713538A (en) Optical fiber apparatus and method for remotely measuring an external parameter from a monitoring position
US10330525B2 (en) Optical fiber vibration measurement system in multiphase flows with related method to monitor multiphase flows
US20160018245A1 (en) Measurement Using A Multi-Core Optical Fiber
CN104034409B (en) Distributed optical fiber vibration sensing method and system based on pulse code external modulation
CA2619095A1 (en) High-speed laser ranging system including a fiber laser
CN105067104A (en) Composite optical fiber sensing system and sensing method
CN104048684A (en) OTDR device and method based on coded pulse optical signals
CN104864979A (en) Correction method of errors measured by distributed raman optical fiber temperature measuring system
CN106769736B (en) Dust concentration measurement system
CN102506916B (en) Distributed sensor network using weak reflection fiber Bragg grating (FBG) and precise positioning method of each FBG
WO2020140869A1 (en) Multi-dimensional spatial positioning system and method for disturbance source
CN106066203A (en) Distributed highly sensitive vibration-detection system based on ultrashort optical fiber optical grating array and method
CN102116684B (en) Self-correcting fully-distributed optical fiber Raman scattering sensor
CN101794506B (en) Method and device used for data calibration in distributed type optical fiber temperature sensor
CN103119393A (en) Multiple optical channel autocorrelator based on optical circulator
CN114696891A (en) Extending DAS range in subsea cables using looping back
JP3358177B2 (en) Optical distance measuring device
CN102410887A (en) Stimulated Raman scattering (SRS) compensation method in distributed optical fiber temperature sensor system
CN106769737B (en) Optical fiber type dust concentration measuring device
RU2439626C2 (en) Method of determining atmospheric characteristics
CN104181128B (en) Trnaslucent materials based on time-correlated single photon counting t radiation property measurement method
CN105606034A (en) Glass thickness detection apparatus and glass thickness detection method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020904

R150 Certificate of patent or registration of utility model

Ref document number: 3358177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term