JP3357927B2 - Charged particle beam exposure apparatus and charged particle beam exposure method - Google Patents

Charged particle beam exposure apparatus and charged particle beam exposure method

Info

Publication number
JP3357927B2
JP3357927B2 JP17061693A JP17061693A JP3357927B2 JP 3357927 B2 JP3357927 B2 JP 3357927B2 JP 17061693 A JP17061693 A JP 17061693A JP 17061693 A JP17061693 A JP 17061693A JP 3357927 B2 JP3357927 B2 JP 3357927B2
Authority
JP
Japan
Prior art keywords
view
sub
field
charged particle
particle beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17061693A
Other languages
Japanese (ja)
Other versions
JPH0729793A (en
Inventor
護 中筋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP17061693A priority Critical patent/JP3357927B2/en
Publication of JPH0729793A publication Critical patent/JPH0729793A/en
Application granted granted Critical
Publication of JP3357927B2 publication Critical patent/JP3357927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、荷電粒子線によりマス
ク上に形成したパターンを半導体用のウエハ等の感光基
板に転写する露光装置および露光方法に関する。
The present invention relates to an exposure apparatus and an exposure method for transferring a pattern formed on a mask by a charged particle beam onto a photosensitive substrate such as a semiconductor wafer.

【0002】[0002]

【従来の技術】この種の装置として、図11に示すよう
に、マスク1の薄膜2上に散乱体3を配設し、散乱体3
同士の隙間を通過する荷電粒子線B1の全量を第1のレ
ンズ4によりフィルタ5の透孔5aから第2のレンズ6
に導いて感光基板7と直交する方向に偏向する一方、散
乱体3を通過して散乱する荷電粒子線B2の一部のみを
透孔5aから第2のレンズ6に導いて偏向し、これによ
り感光基板7上でコントラストを生じさせて散乱体3の
配置に応じたパターンを露光するものがある。
2. Description of the Related Art As an apparatus of this type, a scatterer 3 is disposed on a thin film 2 of a mask 1 as shown in FIG.
The entire amount of the charged particle beam B1 passing through the gap between the first lens 4 and the second lens 6
And deflects it in the direction orthogonal to the photosensitive substrate 7, while guiding only a part of the charged particle beam B2 scattered by passing through the scatterer 3 from the through-hole 5 a to the second lens 6 and deflects it. There is a type in which a contrast is generated on the photosensitive substrate 7 to expose a pattern corresponding to the arrangement of the scatterers 3.

【0003】上述した露光装置では、感光基板7の大型
化や回路パターンの微細化に対応して、例えば図12に
示すようにマスク1を主視野MFと呼ばれる1以上の領
域に分割し、この主視野MFをさらに副視野SFと呼ば
れる複数の領域に分割した上で、各副視野SF毎に露光
条件を調整しつつ感光基板7へ露光を繰り返すことがあ
る。そして、このような視野分割を行なう場合、副視野
SFの境界(図12の点線位置)には図11に示すよう
に微小幅の梁状の境界部材8が配置される。この境界部
材8は、荷電粒子線を実質的に通さない材料、例えば十
分に厚いシリコンで成形され、1つの副視野SFへ荷電
粒子線を照射する際に隣接する副視野SFへ荷電粒子線
が漏れないように各副視野SFを区分する。なお、露光
時には、図13に矢印Fm,Fwで示すようにマスク1
と感光基板7とが互いに逆方向へ連続的に移動せしめら
れる。この際、マスク1に対する荷電粒子線の照射位置
は、不図示の偏向器により、マスク1と感光基板7との
相対移動方向と直交する方向へ副視野SFの1個分ずつ
ステップ状に変更される。したがって、図12のマスク
1が同図の矢印Fm方向に移動するならば、同図に矢印
Eで示す順序で各副視野SFに荷電粒子線が照射されて
それぞれのパターンが感光基板7上に転写される。
In the above-described exposure apparatus, the mask 1 is divided into one or more areas called a main field of view MF as shown in FIG. 12, for example, in response to the enlargement of the photosensitive substrate 7 and the miniaturization of the circuit pattern. After dividing the main field of view MF into a plurality of areas called sub-fields of view SF, exposure to the photosensitive substrate 7 may be repeated while adjusting the exposure conditions for each sub-field of view SF. When performing such field division, a beam-shaped boundary member 8 having a very small width is arranged at the boundary of the sub-field SF (the position indicated by the dotted line in FIG. 12), as shown in FIG. The boundary member 8 is formed of a material that does not substantially pass through the charged particle beam, for example, silicon that is sufficiently thick. When the charged particle beam is irradiated to one sub-field SF, the charged particle beam is transmitted to the adjacent sub-field SF. Each sub-field of view SF is divided so as not to leak. At the time of exposure, as shown by arrows Fm and Fw in FIG.
And the photosensitive substrate 7 are continuously moved in opposite directions. At this time, the irradiation position of the charged particle beam on the mask 1 is changed stepwise by one deflector SF in a direction orthogonal to the direction of relative movement between the mask 1 and the photosensitive substrate 7 by a deflector (not shown). You. Therefore, if the mask 1 in FIG. 12 moves in the direction of the arrow Fm in FIG. 12, each sub-field of view SF is irradiated with a charged particle beam in the order indicated by the arrow E in FIG. Transcribed.

【0004】[0004]

【発明が解決しようとする課題】ところで、半導体ウエ
ハのリソグラフィ工程では、図14(b)に示すよう
に、全周がすべて露光部EPで囲まれた島状の非露光部
NEを感光基板7上に形成することがある。この場合、
上述した露光装置では図14(a)に示すように、島状
の非露光部NEを形成するための散乱体3の周囲をすべ
て荷電粒子線の透過部Gとし、散乱体3を副視野SF内
でいわば宙に浮いた状態とする必要がある。このため、
単一のマスクで島状の非露光部を形成する場合には、散
乱体3を支持する薄膜2が必要不可欠とされていた。
By the way, in the lithography process of a semiconductor wafer, as shown in FIG. 14B, an island-shaped non-exposed portion NE whose entire periphery is entirely surrounded by an exposed portion EP is formed on the photosensitive substrate 7. May form on top. in this case,
In the above-described exposure apparatus, as shown in FIG. 14A, the entire periphery of the scatterer 3 for forming the island-shaped non-exposed part NE is a transmission part G of the charged particle beam, and the scatterer 3 is used as the sub-field SF. It is necessary to float in the air, so to speak. For this reason,
When an island-shaped non-exposed portion is formed with a single mask, the thin film 2 supporting the scatterer 3 has been indispensable.

【0005】しかし、薄膜2は500オングストローム
程度と極めて薄いため、作り難く、破損し易い。また、
薄膜2で支持する散乱体3は薄くする必要があり(50
0オングストローム程度)、その材料は重金属に限定さ
れる。したがって、散乱体3の熱容量が小さくなり、荷
電粒子線の照射で比較的大きな熱膨張が発生して感光基
板7へ転写されるパターンの位置がずれ、露光精度が悪
化する。しかも、薄膜2と散乱体3とが異種材料なの
で、マスク1の欠陥除去、修正等に用いる溶剤や洗浄剤
が薄膜2および散乱体3の双方に及ぼす影響を常に検討
する必要があるなど、マスク1の保守管理上の制約も大
きい。
However, since the thin film 2 is extremely thin, about 500 angstroms, it is difficult to make it and it is easy to break. Also,
The scatterer 3 supported by the thin film 2 needs to be thin (50
The material is limited to heavy metals. Therefore, the heat capacity of the scatterer 3 becomes small, and relatively large thermal expansion occurs due to the irradiation of the charged particle beam, so that the position of the pattern transferred to the photosensitive substrate 7 shifts, and the exposure accuracy deteriorates. Moreover, since the thin film 2 and the scatterer 3 are made of different materials, it is necessary to always examine the influence of a solvent or a cleaning agent used for removing or correcting defects on the mask 1 on both the thin film 2 and the scatterer 3. (1) The restrictions on maintenance management are also large.

【0006】また、荷電粒子線が薄膜2を通過する際に
多少なりとも散乱を受けるので、散乱体3同士の隙間を
通過する荷電粒子線B1もフィルタ5の透孔5aを通過
する際にその一部が遮られてしまう。例えばフィルタ5
の開口角を1mrad.とすると、荷電粒子線B1のフィル
タ5の透過率は50%程度まで低下する。一方、荷電粒
子線のレンズ系の収差は1mrad.では大きく、通常は0.
4mrad.程度に調整する必要がある。この領域ではフィ
ルタ5での透過率が10%程度まで落ちてしまう。フィ
ルタ5での透過率が低いと感光基板7に到達するビーム
電流が小さくなり、スループットが著しく低下する。こ
れを補うべく荷電粒子線の放出源からのビーム電流を大
きくすると、空間電荷効果によるビームのボケが顕著と
なり、露光精度が低下する。
Further, since the charged particle beam is somewhat scattered when passing through the thin film 2, the charged particle beam B 1 passing through the gap between the scatterers 3 also passes through the through hole 5 a of the filter 5. Some are blocked. For example, filter 5
Is 1 mrad., The transmittance of the filter 5 for the charged particle beam B1 decreases to about 50%. On the other hand, the aberration of the charged particle beam lens system is large at 1 mrad.
It needs to be adjusted to about 4 mrad. In this region, the transmittance of the filter 5 drops to about 10%. If the transmittance of the filter 5 is low, the beam current reaching the photosensitive substrate 7 becomes small, and the throughput is significantly reduced. If the beam current from the emission source of the charged particle beam is increased to compensate for this, the beam blur due to the space charge effect becomes remarkable, and the exposure accuracy decreases.

【0007】以上のような不都合を回避するため、マス
ク1を2枚用いて島状の非露光部を形成することもあ
る。この場合、島状の非露光部の周囲の露光部に対応す
る荷電粒子線の透過部の一部を一方のマスクに、透過部
の残部を他方のマスクに形成し、両マスクの露光像を感
光基板上の同一領域に転写して島状の非露光部を形成す
る。このような手法によれば、宙に浮いた状態の散乱体
をマスク内に設ける必要がないので薄膜が不要となる。
しかしながら、一枚の感光基板を露光する途中でマスク
の交換を必要とするので段取作業の工数が増え、かつ露
光時間も単純に倍増してスループットが半分近くに低下
する。
In order to avoid such inconveniences, an island-shaped non-exposed portion may be formed using two masks 1. In this case, a part of the transmitting part of the charged particle beam corresponding to the exposed part around the island-shaped non-exposed part is formed on one mask, and the remaining part of the transmitting part is formed on the other mask, and the exposure images of both masks are formed. It is transferred to the same region on the photosensitive substrate to form an island-shaped non-exposed portion. According to such a method, it is not necessary to provide a scatterer floating in the air in the mask, so that a thin film is not required.
However, since a mask needs to be replaced during the exposure of one photosensitive substrate, the number of man-hours for the setup operation increases, and the exposure time is simply doubled, so that the throughput is reduced to almost half.

【0008】本発明の目的は、単一のマスクにより島状
の非露光部を形成でき、散乱体を支持する薄膜も不要と
なる荷電粒子線露光装置および荷電粒子線露光方法を提
供することにある。
An object of the present invention is to provide a charged particle beam exposure apparatus and a charged particle beam exposure method in which an island-shaped non-exposed portion can be formed by a single mask and a thin film supporting a scatterer is not required. is there.

【0009】[0009]

【課題を解決するための手段】一実施例を示す図1〜図
3に対応付けて説明すると、請求項1の発明は、荷電粒
子線で照射されるマスク10上に1以上の主視野MFを
設定し、この主視野MFを複数の副視野SFに分割し
分割された副視野SF毎に感光基板7への露光を繰り返
して主視野MFの全体を露光する荷電粒子線露光装置に
適用される。そして、上述した目的は、マスク10に照
射される荷電粒子線を散乱させて感光基板7上に島状の
非露光部NE1〜NE4を形成させる散乱体120を
副視野SFに境界に設けられた境界部材11に支持させ
ることにより達成される。
According to an embodiment of the present invention, one or more main fields of view MF are provided on a mask 10 irradiated with a charged particle beam. Is set, the main field of view MF is divided into a plurality of sub-fields of view SF ,
The present invention is applied to a charged particle beam exposure apparatus that exposes the entire main field MF by repeatedly exposing the photosensitive substrate 7 for each divided sub-field SF. The object described above is to form a scatterer 120 that scatters the charged particle beam irradiated on the mask 10 to form the island-shaped non-exposed portions NE1 to NE4 on the photosensitive substrate 7 .
This is achieved by supporting the sub-field SF on the boundary member 11 provided at the boundary.

【0010】請求項2の発明では、請求項1記載の荷電
粒子線露光装置において、感光基板7上に形成すべき島
状の非露光部NE5に対応する副視野SFDを、例えば
図4に示すように、単一のマスク10上にて複数の副視
野構成部SFD1,SFD2に分割し、これら複数の副視野
構成部SFD1,SFD2には島状の非露光部NE5の周囲
の露光部EPを形成するための荷電粒子線の透過部13
a,13bを分割して形成し、分割された副視野構成部
SFD1,SFD2に形成された透過部13a,13bに対
応するパターンを感光基板7上の同一領域に転写して当
該領域に島状の非露光部NE5を形成する。
[0010] In the present invention of claim 2, a charged particle beam exposure apparatus according to claim 1, wherein the subfield SF D corresponding to the island-like non-exposed portion NE5 to be formed on the photosensitive substrate 7, for example, in FIG As shown, a plurality of sub-field-of-view components SF D1 , S D2 are divided on a single mask 10, and the plurality of sub-field-of-view components S D1 , S D2 are surrounded by an island-shaped non-exposed portion NE 5. Charged particle beam transmitting portion 13 for forming the exposed portion EP
a, 13b are divided and formed, and patterns corresponding to the transmission portions 13a, 13b formed in the divided sub-field-of-view constituting portions SF D1 , SF D2 are transferred to the same region on the photosensitive substrate 7 and transferred to the corresponding region. An island-shaped non-exposed portion NE5 is formed.

【0011】また、例えば図8に示すように、副視野構
成部への分割をしないと仮定した場合に、長さLと幅W
の比L/Wが所定の許容値よりも大きくなる散乱体22
が生じる副視野SF2を副視野構成部SF21,SF22に
分割してもよい。この場合には、荷電粒子線の照射によ
る散乱体22の熱変位が抑制され、露光精度が向上す
る。また、副視野構成部への分割をしないと仮定した場
合のパターン充填率が所定の許容値よりも大きくなる副
視野SF3を副視野構成部SF31,SF32に分割しても
よい。この場合には副視野構成部SF31,SF32のパタ
ーンを転写する際に感光基板へ到達するビーム電流が小
さくなり、空間電荷効果によるビームのボケが防止され
る。なお、パターン充填率とは、単一の副視野SF3に
含まれる荷電粒子線の透過部214,215の総面積A
1を、当該副視野SF3の面積A0で除算した値A1/A0
をいう。また、請求項5の発明は、荷電粒子線で照射さ
れるマスク上に1以上の主視野を設定し、この主視野を
複数の副視野に分割し、分割された副視野毎に感光基板
への露光を繰り返して主視野の全体を露光する荷電粒子
線露光方法に適用される。そして、主視野に含まれる島
状あるいは半島状の非露光部を検出し、これらの非露光
部の周辺の露光部を形成するための荷電粒子線の透過部
が少なくとも2つの副視野にまたがるように、副視野の
位置または大きさを設定し、そのような設定をしても島
状あるいは半島状の非露光部が残留する副視野について
は、図4に示すように副視野SFを2つの副視野構成部
SFD1,SFD2に分割して、2つの副視野構成部S
D1,SFD2に形成された透過部13a,13bに
対応するパターンを感光基板7上の同一領域に転写する
多重露光により露光を行うようにする。
For example, as shown in FIG. 8, when it is assumed that the image is not divided into sub-fields of view, the length L and the width W
Scatterer 22 whose ratio L / W is larger than a predetermined allowable value
May be divided into sub-field components SF21 and SF22. In this case, thermal displacement of the scatterer 22 due to irradiation of the charged particle beam is suppressed, and the exposure accuracy is improved. Further, the sub-field of view SF3 in which the pattern filling rate is larger than a predetermined allowable value when the division into the sub-field-of-view constituent units is not performed may be divided into the sub-field-of-view constituent units SF31 and SF32. In this case, the beam current that reaches the photosensitive substrate when transferring the pattern of the sub-field-of-view constituent portions SF31 and SF32 is reduced, and beam blur due to the space charge effect is prevented. The pattern filling rate refers to the total area A of the charged particle beam transmitting portions 214 and 215 included in the single sub-field of view SF3.
The value A1 / A0 obtained by dividing 1 by the area A0 of the sub-field of view SF3.
Say. According to a fifth aspect of the present invention, at least one main field of view is set on a mask irradiated with a charged particle beam, the main field of view is divided into a plurality of sub-fields of view, and each divided sub-field of view is transferred to a photosensitive substrate. Is applied to the charged particle beam exposure method for exposing the entire main field of view by repeating the exposure. Then, island-shaped or peninsula-shaped non-exposed portions included in the main field of view are detected, and the transmission portion of the charged particle beam for forming an exposed portion around these non-exposed portions is arranged to span at least two sub-fields. Then, the position or size of the sub-field of view is set, and the sub-field of view in which an island-shaped or peninsula-shaped non-exposed portion remains even if such a setting is made, as shown in FIG. Divided into the sub-field-of-view constituent units SF D1 and SF D2, and divided into two sub-field-of-view constituent units S
F D1, SF D2 the formed transparent portion 13a, by multiple exposure to transfer a pattern corresponding to 13b in the same area on the photosensitive substrate 7 to perform the exposure.

【0012】[0012]

【作用】請求項1の発明では、島状の非露光部NE1〜
NE4を形成するための散乱体120を境界部材11に
支持させたので、これら散乱体120を支持する薄膜は
不要となる。散乱体120の周囲に形成すべき荷電粒子
線の透過部分13は、境界部材11を挟んで隣接する複
数の副視野SFに分割して形成できる。
According to the first aspect of the present invention, the island-shaped non-exposed portions NE1 to NE1 are provided.
Since the scatterers 120 for forming NE4 are supported by the boundary member 11, a thin film supporting these scatterers 120 becomes unnecessary. The transmission part 13 of the charged particle beam to be formed around the scatterer 120 can be divided into a plurality of sub-fields of view SF adjacent to each other with the boundary member 11 interposed therebetween.

【0013】請求項2の発明では、請求項1の発明によ
り複数の副視野SFに分割できなかった島状の非露光部
NE5に対応する副視野SFDのみ複数の副視野構成部
SFD1,SFD2に分割すればよいので、多重露光を行な
う副視野SFの数を最小限に抑制できる。
[0013] claimed in the invention of claim 2, claim subfields SF D only a plurality of sub-field configuration unit SF D 1 corresponding to a plurality of sub-field SF island unexposed portion NE5 which could not be divided into the invention of 1 , SF D2 , so that the number of sub-fields SF for performing multiple exposure can be minimized.

【0014】請求項3の発明では、島状の非露光部NE
を取り囲む露光部EP1に対応する荷電粒子線の透過部
210,211を単一のマスク20上にて複数の副視野
構成部SF11,SF12に分割して形成するので、副視野
構成部SF11,SF12の各々では島状の非露光部NEを
形成するための散乱体22を宙に浮いた状態で支持する
必要がない。このため、散乱体22を支持する薄膜は不
要となる。単一のマスク20に副視野構成SF11,SF
12を形成するので、一つの感光基板に対して複数のマス
クを用いる必要もない。
According to the third aspect of the present invention, the island-shaped non-exposed portion NE is provided.
Are formed on the single mask 20 by dividing into a plurality of sub-field forming portions SF11 and SF12, so that the sub-field forming portions SF11 and SF12 are divided. In each of the above, it is not necessary to support the scatterer 22 for forming the island-shaped non-exposed portion NE in a suspended state. Therefore, a thin film supporting the scatterer 22 is not required. The sub-field-of-view configuration SF11, SF is formed on a single mask 20.
Since 12 is formed, it is not necessary to use a plurality of masks for one photosensitive substrate.

【0015】なお、本発明の構成を説明する上記課題を
解決するための手段と作用の項では、本発明を分かり易
くするために実施例の図を用いたが、これにより本発明
が実施例に限定されるものではない。
In the means and means for solving the above-mentioned problems which explain the constitution of the present invention, the drawings of the embodiments are used to make the present invention easy to understand. However, the present invention is not limited to this.

【0016】[0016]

【実施例】【Example】

−第1実施例− 以下、図1〜図4を参照して本発明の第1実施例を説明
する。なお、本実施例の露光装置はそのマスク部分の構
造に特徴を有し、レンズ系の構成は図11に示すものと
同様である。したがって、以下ではマスクの構造を中心
に説明する。
First Embodiment Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. The exposure apparatus of this embodiment is characterized by the structure of the mask portion, and the configuration of the lens system is the same as that shown in FIG. Therefore, the structure of the mask will be mainly described below.

【0017】図1は本実施例のマスク10の主視野MF
および副視野SFと、感光基板の島状の非露光部NE1
〜NE5との位置関係を示すものである。図から明らか
なように、本実施例では感光基板に形成すべき4つの島
状の非露光部NE1〜NE4が副視野SFの境界(図の
点線位置)を越えて少なくとも二つの副視野SFにまた
がるように副視野SFのx,y方向の位置や大きさが定
められている。なお、x方向およびy方向は、いずれか
一方がマスク10と感光基板との相対移動方向、他方が
荷電粒子線を偏向させる方向に相当する。
FIG. 1 shows the main field of view MF of the mask 10 of this embodiment.
And the sub-field of view SF and the island-shaped non-exposed portion NE1 of the photosensitive substrate
3 shows the positional relationship with the NE5. As is clear from the drawing, in this embodiment, four island-shaped non-exposed portions NE1 to NE4 to be formed on the photosensitive substrate extend over at least two sub-fields SF beyond the boundary of the sub-field SF (the position indicated by the dotted line). The position and size in the x and y directions of the sub-field of view SF are determined so as to span. One of the x direction and the y direction corresponds to a direction of relative movement between the mask 10 and the photosensitive substrate, and the other corresponds to a direction of deflecting the charged particle beam.

【0018】図2および図3(a)は、図1のII部(非
露光部12に対応する部分)におけるマスク10の詳細
を示すものである。これらの図から明らかなように、本
実施例のマスク10では、副視野SFの境界線に対応す
る格子状の境界部材11の下端部に荷電粒子線を散乱さ
せる散乱体12が一体に設けられるとともに、荷電粒子
線を通過させるスリット13が散乱体12を厚さ方向に
貫通させて形成されている。なお、図2では隣接する一
対の副視野SFの散乱体12をハッチング領域で示す。
感光基板7にはこれら散乱体12およびスリット13の
形状、配置に応じたパターンが転写される。
FIG. 2 and FIG. 3A show details of the mask 10 in a portion II (a portion corresponding to the non-exposed portion 12) in FIG. As is apparent from these figures, in the mask 10 of the present embodiment, a scatterer 12 for scattering a charged particle beam is integrally provided at the lower end portion of a grid-like boundary member 11 corresponding to the boundary of the sub-field of view SF. At the same time, a slit 13 for passing the charged particle beam is formed so as to penetrate the scatterer 12 in the thickness direction. In FIG. 2, the scatterers 12 of a pair of adjacent sub-fields of view SF are indicated by hatched areas.
The pattern according to the shape and arrangement of the scatterers 12 and the slits 13 is transferred to the photosensitive substrate 7.

【0019】散乱体12のうち、感光基板7に島状の非
露光部NE2(図1参照)を形成するための散乱体12
0は、境界部材11を介して隣接する一対の副視野SF
の双方に等しく突出させて形成されている。
Among the scatterers 12, the scatterers 12 for forming the island-shaped non-exposed portions NE2 (see FIG. 1) on the photosensitive substrate 7 are formed.
0 is a pair of sub-fields of view SF adjacent via the boundary member 11
Are formed to protrude equally to both sides.

【0020】本実施例では、図3(b)に示すように各
副視野SFの境界部材11よりも内側の領域が感光基板
7上で互いに接するように露光範囲が調整される。この
ため、隣接する一対の副視野SFを露光することで、散
乱体120に対応する非露光部NE2L,NE2Rが接続
されて感光基板7上に島状の非露光部NE2が形成され
る。
In this embodiment, as shown in FIG. 3B, the exposure range is adjusted so that the areas inside the boundary member 11 of each sub-field of view SF are in contact with each other on the photosensitive substrate 7. Therefore, by exposing a pair of adjacent sub-fields of view SF, the non-exposed portions NE2 L and NE2 R corresponding to the scatterers 120 are connected to form an island-shaped non-exposed portion NE2 on the photosensitive substrate 7. .

【0021】以上から明らかなように、本実施例では島
状の露光部NEを形成するための散乱体120が境界部
材11と一体化されているので、散乱体120を支持す
る薄膜が不要となる。これにより、薄膜の製造、保守の
手間がすべて解消される。また、散乱体120を薄膜で
の支持に備えて薄くする必要がないので、散乱体120
を熱容量の大きな軽原子材料、例えばシリコン(S
i)、窒化珪素(SiN)、シリカ(SiO2)により
十分に厚く(2〜3μm)形成できる。このため、散乱
体12,120の熱容量が大きくなって露光中の熱膨張
が抑制され、露光精度が向上する。ちなみに、上記の材
料により2〜3μm厚の散乱体120を形成した場合、
熱容量が約50倍となって熱膨張は約1/50となる。
さらに、散乱体12,120を厚く形成することでその
剛性も向上する。散乱体12を支持する薄膜が存在しな
いため、スリット13を通過する荷電粒子線の散乱がな
くなってフィルタ5での透過率が100%となり、感光
基板7に到達するビーム電流が増加して高スループット
が期待できる。境界部材11と散乱体12が同一材料で
形成されているので、マスク10の洗浄液の制約が減少
するなど、マスク10の保守管理に要する手間が軽減さ
れる。
As is clear from the above, in this embodiment, the scatterer 120 for forming the island-shaped exposed portion NE is integrated with the boundary member 11, so that a thin film supporting the scatterer 120 is not required. Become. As a result, all the labor for manufacturing and maintaining the thin film is eliminated. In addition, since it is not necessary to make the scatterer 120 thin in preparation for supporting with a thin film, the scatterer 120
Is replaced by a light atomic material having a large heat capacity, for example, silicon (S
i), silicon nitride (SiN) and silica (SiO 2 ) can be formed sufficiently thick (2 to 3 μm). For this reason, the heat capacity of the scatterers 12 and 120 is increased, so that thermal expansion during exposure is suppressed, and exposure accuracy is improved. By the way, when the scatterer 120 having a thickness of 2 to 3 μm is formed from the above materials,
The heat capacity becomes about 50 times and the thermal expansion becomes about 1/50.
Further, by forming the scatterers 12 and 120 thickly, the rigidity thereof is also improved. Since there is no thin film supporting the scatterer 12, the scattering of the charged particle beam passing through the slit 13 is eliminated, the transmittance at the filter 5 becomes 100%, the beam current reaching the photosensitive substrate 7 increases, and high throughput is achieved. Can be expected. Since the boundary member 11 and the scatterer 12 are formed of the same material, the labor required for maintenance and management of the mask 10 is reduced, for example, restrictions on the cleaning liquid for the mask 10 are reduced.

【0022】ここで、副視野SFの境界位置や大きさを
調整するだけでは感光基板7上に形成すべき全ての島状
の非露光部NEを副視野SFの境界と接するように配置
することができず、例えば図1の副視野SFDと非露光
部NE5のように、単一の副視野SFに島状の非露光部
NEの全体が包含される部分が残る場合がある。この場
合には、当該副視野SFDのみ分割して多重露光を行な
う。その例を図4により説明する。
Here, by merely adjusting the boundary position and size of the sub-field SF, all the island-shaped non-exposed portions NE to be formed on the photosensitive substrate 7 are arranged so as to be in contact with the boundary of the sub-field SF. can not, for example, as in the subfield SF D and unexposed portions NE5 in figure 1, there is a case where part entire island unexposed portions NE in a single subfield SF is encompassed remain. In this case, performing multiple exposure by dividing only the sub-field SF D. An example will be described with reference to FIG.

【0023】図4の例では、副視野SFDが2つの副視
野構成部SFD1,SFD2に分割されている。図4(a)
に示すように、第1の副視野構成部SFD1には、島状の
非露光部NE5を取り囲む露光部EPの一部EP1(同
図(b)参照)に対応するスリット13aが形成され、
第2の副視野構成部SFD2には、非露光部NE5を取り
囲む露光部EPの残部EP2に対応するスリット13b
が形成される。第2の副視野構成部SFD2では、第1の
副視野構成部SFD1に形成されるスリット13aに相当
する領域が散乱体12で構成され、この部分により非露
光部NE5を形成するための散乱体120が支持され
る。副視野構成部SFD1,SFD2の境界上には境界部材
11が設けられる。
[0023] In the example of FIG. 4, is divided into subfield SF D has two subfield configuration unit SF D1, SF D2. FIG. 4 (a)
As shown in FIG. 5, a slit 13a corresponding to a part EP 1 of the exposed portion EP surrounding the non-exposed portion NE5 (see FIG. 2B) is formed in the first sub-field-of-view constituting portion SF D1 . ,
The second sub-field component SF D2, slits 13b corresponding to the remainder EP 2 exposure portion EP surrounding unexposed portion NE5
Is formed. In the second sub-field-of-view component SF D2 , a region corresponding to the slit 13 a formed in the first sub-field-of-view component SF D1 is formed of the scatterer 12, and this portion forms the non-exposed portion NE 5. The scatterer 120 is supported. A boundary member 11 is provided on the boundary between the sub visual field forming units SF D1 and SF D2 .

【0024】そして、図4の例ではまず第1の副視野構
成部SFD1に荷電粒子線が照射されて感光基板上にスリ
ット13aに対応する露光部が形成される。次いで、第
2の副視野構成部SFD2に荷電粒子線が照射されて感光
基板上の同一領域にスリット13bに対応する露光部が
形成される。これにより、図4(b)に示すように、ス
リット13a,13bに対応する露光部EP1,EP2
接続されて島状の非露光部NE5が形成される。なお、
マスク10上の異なる位置に形成される副視野構成部S
D1,SFD2の露光像を感光基板上の同一領域に結像さ
せるには、荷電粒子線の光路を不図示の偏向器で調整す
ればよい。副視野構成部SFD1,SFD2はマスク10上
で必ずしも隣接させる必要はなく、マスク10上の全く
異なる位置に副視野構成部SFD1,SFD2を分けて形成
してもよい。
In the example of FIG. 4, first, the first sub-field-of-view component SF D1 is irradiated with a charged particle beam, and an exposure portion corresponding to the slit 13a is formed on the photosensitive substrate. Next, the charged particle beam is irradiated to the second sub-field-of-view component SF D2 to form an exposed portion corresponding to the slit 13b in the same region on the photosensitive substrate. As a result, as shown in FIG. 4B, the exposed portions EP 1 and EP 2 corresponding to the slits 13a and 13b are connected to form an island-shaped non-exposed portion NE5. In addition,
Sub-field-of-view component S formed at different positions on mask 10
In order to form the exposure images of F D1 and SF D2 on the same area on the photosensitive substrate, the optical path of the charged particle beam may be adjusted by a deflector (not shown). The sub-field-of-view components SF D1 , SF D2 do not necessarily have to be adjacent to each other on the mask 10, and the sub-field-of-view component SF D1 , SF D2 may be formed at completely different positions on the mask 10.

【0025】ここで、上述した島状の非露光部NE1〜
NE5は、例えばコンタクトホールをネガレジストで露
光するような特殊な場合以外はあまり存在せず、仮にこ
れらが存在したとしても上述した副視野SFの位置およ
び大きさの調整でほとんど排除できる。したがって、図
4のように特定の副視野SFDを多重露光しても現実の
スループットはほとんど低下しない。なお、島状の非露
光部が極めて少数であれば、すべての島状の非露光部を
図4のように多重露光してもよい。
Here, the above-mentioned island-shaped non-exposed portions NE1 to NE1
NE5 is rarely present except in special cases such as exposing a contact hole with a negative resist. Even if NE5 is present, it can be almost eliminated by adjusting the position and size of the sub-field of view SF described above. Therefore, the actual throughput hardly decreases even if the specific sub-field of view SFD is subjected to multiple exposure as shown in FIG. If the number of island-shaped non-exposed portions is extremely small, all the island-shaped non-exposed portions may be subjected to multiple exposure as shown in FIG.

【0026】図1〜図3の例では島状の非露光部NE1
〜NE4を形成するための散乱体120を二つの副視野
SFに突出させたが、図5に示すように一方の副視野S
Fにのみ散乱体120を突出させ、他方の副視野SFに
はスリット13のみ形成してもよい。また、三つあるい
はそれ以上の副視野SFにまたがるように散乱体120
を配置してもよい。散乱体120は必ずしも境界部材1
1と一体に製造する必要はなく、境界部材11に着脱自
在としてもよい。
In the example shown in FIGS. 1 to 3, the island-shaped non-exposed portion NE1
To NE4, the scatterer 120 is projected into the two sub-fields of view SF, but as shown in FIG.
The scatterer 120 may be protruded only at F, and only the slit 13 may be formed at the other sub-field of view SF. In addition, the scatterer 120 extends over three or more sub-fields of view SF.
May be arranged. The scatterer 120 is not necessarily the boundary member 1
It is not necessary to manufacture it integrally with 1, and it may be detachable from the boundary member 11.

【0027】−第2実施例− 図6〜図10により本発明の第2実施例を説明する。な
お、本実施例の露光装置も第1実施例と同様にマスク部
分の構造に特徴を有し、レンズ系の構成は図11に示す
ものと同様である。したがって、以下ではマスクの構造
を中心に説明する。
Second Embodiment A second embodiment of the present invention will be described with reference to FIGS. Note that the exposure apparatus of the present embodiment also has a feature in the structure of the mask portion as in the first embodiment, and the configuration of the lens system is the same as that shown in FIG. Therefore, the structure of the mask will be mainly described below.

【0028】図6は本実施例に係るマスク20の一つの
主視野MFを示すもので、図示の主視野MFも第1実施
例と同様に図中の点線位置で複数の副視野SFに分割さ
れている。図中ハッチングで示す領域が各副視野SFに
おける荷電粒子線の透過部21であり、透過部21以外
の部分は荷電粒子線を散乱させる散乱体22で構成され
る。副視野SFの境界には不図示の境界部材が設けられ
る。ここで、本実施例では4つの副視野SF1〜SF4
が図中y方向に隣接する2つの副視野構成部SFn1,S
Fn2(n=1,2,3,4)に分割されている。副視野
構成部SFn1,SFn2は、分割される副視野SF1〜S
F4以外の他の副視野SFと同一の大きさである。マス
ク20の副視野構成部SFn2に並んでx方向に延びる領
域R1,R2,R3は、本来ならば透過部21が全く形
成されないマスク20の予備領域であり、本実施例では
これらの予備領域R1〜R3を利用して副視野SF1〜
SF4が分割されている。
FIG. 6 shows one main field of view MF of the mask 20 according to the present embodiment. The main field of view MF is also divided into a plurality of sub-fields SF at dotted line positions in the drawing, similarly to the first embodiment. Have been. The hatched area in the figure is the charged particle beam transmitting portion 21 in each sub-field of view SF, and the portion other than the transmitting portion 21 is formed of a scatterer 22 that scatters the charged particle beam. A boundary member (not shown) is provided at the boundary of the sub-field of view SF. Here, in the present embodiment, four sub-fields of view SF1 to SF4
Are two sub-field-of-view constituent parts SFn1, S adjacent in the y direction in the figure.
Fn2 (n = 1, 2, 3, 4). The sub-fields of view SF1 and SFn2 are divided into sub-fields SF1-S
It has the same size as the other sub-fields of view SF other than F4. Regions R1, R2, and R3 extending in the x direction along with the sub-field forming portion SFn2 of the mask 20 are spare regions of the mask 20 where the transmission portion 21 is not formed at all. In the present embodiment, these spare regions R1 are provided. Using R3, sub-field of view SF1
SF4 is divided.

【0029】図7〜図10は、副視野SF1〜SF4の
各副視野構成部SFn1,SFn2と、これら副視野SF1
〜SF4に対応する感光基板の露光パターンとの関係を
示すもので、各図の(a)が副視野SF1〜SF4を、
(b)が感光基板の露光パターンを示す。図7(a)に
示すように副視野SF1を構成する副視野構成部SF1
1,SF12には、同図(b)に示す島状の非露光部NE
の周囲の露光部EP1の半分に対応するコ字状の透過部
210,211が形成されている。また、図8(a)に
示すように、副視野SF2を構成する副視野構成部SF
21,SF22には、同図(b)に示す鈎状の露光部EP2
を同図のP−P線で分割した形状に対応する透過部21
2,213が形成されている。また、図9(a)に示す
ように、副視野SF3を構成する副視野構成部SF31,
SF32には、同図(b)に示すように感光基板上の副視
野SF3に対応する露光領域(2点鎖線で囲まれた部
分)のほぼ全面を占める矩形状の露光部EP3を、その
対角線に沿って分割した形状に対応する透過部214,
215が形成されている。そして、図10(a)に示す
ように、副視野SF4を構成する副視野構成部SF41,
SF42には、同図(b)に示す蛇行パターン状の露光部
EP4を同図のP−P線で分割した形状に対応する透過
部216,217が形成されている。
FIGS. 7 to 10 show the respective sub-field components SFn1 and SFn2 of the sub-fields SF1 to SF4 and the sub-fields SF1 and SFn2.
7A to 7F show the relationship with the exposure pattern of the photosensitive substrate corresponding to SF4.
(B) shows the exposure pattern of the photosensitive substrate. As shown in FIG. 7A, the sub-field-of-view component SF1 constituting the sub-field of view SF1 is provided.
1, SF12 includes an island-shaped non-exposed portion NE shown in FIG.
Are formed, and U-shaped transmission portions 210 and 211 corresponding to half of the exposed portion EP1 around are formed. Further, as shown in FIG. 8A, the sub-view component SF constituting the sub-view SF2 is formed.
21 and SF22, a hook-shaped exposure unit EP2 shown in FIG.
21 corresponding to the shape obtained by dividing the line by the PP line in FIG.
2, 213 are formed. Further, as shown in FIG. 9A, the sub-view component SF31,
SF32 includes a rectangular exposure portion EP3 occupying almost the entire surface of an exposure region (portion surrounded by a two-dot chain line) corresponding to the sub-field of view SF3 on the photosensitive substrate as shown in FIG. The transparent portion 214 corresponding to the shape divided along
215 are formed. Then, as shown in FIG. 10A, the sub-field-of-view constituent parts SF41, SF41,
In the SF 42, transmission portions 216 and 217 corresponding to the shape obtained by dividing the exposure portion EP4 in a meandering pattern shape shown in FIG.

【0030】本実施例の露光装置では、不図示のマスク
移動機構によりマスク20が図6のy方向に連続的に移
動せしめられ、かつ不図示の基板移動機構により感光基
板がy方向と反対側へ連続的に移動せしめられる。そし
て、これらの移動に同期して、荷電粒子線の照射位置が
不図示の偏向器によりx方向へ副視野SFのピッチずつ
所定のタイミングでステップ状に変更され、これにより
副視野SFの最上段の列C1から下段の列C2,C3,
C4へ向けて順に露光が行なわれる。この際、上述した
第1実施例と同様に各副視野SFの境界部材よりも内側
の部分が感光基板上にて互いに接するように露光位置が
調整される。
In the exposure apparatus of this embodiment, the mask 20 is continuously moved in the y direction in FIG. 6 by a mask moving mechanism (not shown), and the photosensitive substrate is moved in the direction opposite to the y direction by a substrate moving mechanism (not shown). Continuously moved to In synchronization with these movements, the irradiation position of the charged particle beam is changed stepwise at a predetermined timing by the deflector (not shown) in the x direction at a predetermined pitch of the sub-field SF. From the column C1 to the lower columns C2, C3,
Exposure is performed sequentially toward C4. At this time, similarly to the first embodiment described above, the exposure position is adjusted such that portions inside the boundary members of the sub-fields of view SF are in contact with each other on the photosensitive substrate.

【0031】そして、特に副視野SF1〜SF4の露光
時には、まず副視野構成部SFn1に荷電粒子線が照射さ
れてこれらの透過部210,212,214,216に
対応するパターンが感光基板上の副視野SF1〜SF4
に対応する露光領域に転写される。続いて、荷電粒子線
の照射位置が図中y方向に偏向されて副視野構成部SF
n2に荷電粒子線が照射され、これらの透過部211,2
13,215,217に対応するパターンが感光基板上
の副視野SF1〜SF4に対応する露光領域に転写され
る。以上により、感光基板上の副視野SF1〜SF4に
対応する領域では、副視野構成部SFn1,SFn2に対応
するパターンが接続されて図7〜図10の(b)に示す
露光部EP1〜EP4がそれぞれ形成される。
In particular, at the time of exposure of the sub-fields SF1 to SF4, the sub-field constituting part SFn1 is first irradiated with a charged particle beam, and a pattern corresponding to these transmission parts 210, 212, 214, 216 is formed on the photosensitive substrate. Field of view SF1-SF4
Is transferred to the exposure area corresponding to. Subsequently, the irradiation position of the charged particle beam is deflected in the y direction in the figure, and
n2 is irradiated with a charged particle beam, and
Patterns corresponding to 13, 215, and 217 are transferred to exposure regions corresponding to the sub-fields of view SF1 to SF4 on the photosensitive substrate. As described above, in the area corresponding to the sub-fields of view SF1 to SF4 on the photosensitive substrate, the patterns corresponding to the sub-field-of-view constituent parts SFn1 and SFn2 are connected, and the exposure units EP1 to EP4 shown in FIGS. Each is formed.

【0032】本実施例では副視野SF1〜SF4のみ2
回ずつ露光を行なうので、マスク20および感光基板の
移動速度は、多重露光を行なわない通常の場合よりも副
視野SF1〜SF4の個数分だけ遅く設定する必要があ
る。しかし、分割を必要とする副視野の個数は僅かなた
め、移動速度の低下によるスループットの低下はほとん
どなく、2枚のマスクを用いる従来例に比してスループ
ットは遥かに高く維持される。散乱体22を支持する薄
膜が不要であるため、第1実施例と同様の効果が得られ
る。
In the present embodiment, only the sub-fields SF1 to SF4 are 2
Since exposure is performed one by one, the moving speed of the mask 20 and the photosensitive substrate needs to be set to be slower by the number of sub-fields SF1 to SF4 than in a normal case where multiple exposure is not performed. However, since the number of sub-fields requiring division is small, there is almost no decrease in throughput due to a decrease in moving speed, and the throughput is maintained much higher than in the conventional example using two masks. Since a thin film supporting the scatterer 22 is not required, the same effect as in the first embodiment can be obtained.

【0033】本実施例では副視野構成部SFn1,SFn2
をマスク20の送り方向へ隣接させて形成したので、荷
電粒子線の照射位置をy方向へ副視野SFの3個分程度
偏向可能に設けておけば、副視野SF1〜SF4の露光
に際してマスク20や感光基板の移動方向を切替える必
要がなく、既述のようにマスク20と感光基板の送り速
度を副視野SF1〜SF4の重複分だけ低下させるだけ
でよい。この点、副視野構成部SFn1,SFn2を荷電粒
子線の偏向では対処できないほど離れた位置に設けた場
合には、多重露光を行なう箇所のみマスク20や感光基
板の位置調整を行なう必要があるので、マスク20や感
光基板の移動が複雑になる。ただし、副視野構成部SF
n1,SFn2を分離したとしても、マスクの交換作業が不
要な点では変りなく、スループットの向上が期待できる
のは勿論である。
In the present embodiment, the sub-field-of-view constituent parts SFn1, SFn2
Are formed adjacent to the feed direction of the mask 20, and if the irradiation position of the charged particle beam is provided so as to be able to deflect about three sub-fields SF in the y direction, the mask 20 is exposed when the sub-fields SF1 to SF4 are exposed. It is not necessary to switch the moving direction of the photosensitive substrate or the photosensitive substrate, and it is only necessary to reduce the feed speed of the mask 20 and the photosensitive substrate by the overlap of the sub-fields of view SF1 to SF4 as described above. In this regard, if the sub-field-of-view constituent parts SFn1 and SFn2 are provided at positions far apart from each other by deflection of the charged particle beam, it is necessary to adjust the position of the mask 20 and the photosensitive substrate only at the position where multiple exposure is performed. In addition, the movement of the mask 20 and the photosensitive substrate becomes complicated. However, the sub-view component SF
Even if n1 and SFn2 are separated from each other, there is no change in the necessity of replacing the mask, and the improvement of the throughput can be expected.

【0034】なお、本実施例では島状の非露光部に対応
する副視野SF1以外の副視野SF2〜SF4も分割し
たが、その理由は以下の通りである。 (1)副視野SF2,SF4 副視野SF2を副視野構成部SF21,SF22に分割しな
いと仮定したとき、副視野SF2の透過部は図8(b)
に示す露光部EP2と相似形状をなす。この場合、一対
の露光部EP2に挟まれた非露光部NE20と相似形状
の散乱体を副視野SF2に設ける必要が生じるが、その
散乱体の全長Lと幅Wの比L/Wは非露光部NE20の
全長L´と幅W´の比L´/W´に等しい。比L/Wが
一定以上となる細長い散乱体は、その両端または一端の
みで他の散乱体に支持されるので、荷電粒子線の照射に
よる温度上昇で中間部分や自由端に大きな熱変位が発生
し、その熱変位で露光精度が大きく低下する。図8
(b)の例であれば非露光部NE20のコーナ部分Kに
最も大きな変位が生じる。そこで、副視野SF2を図8
(a)のように分割して散乱体の長さLと幅Wの比L/
Wを一定値以内に制限した。副視野SF4も同様の理由
による。
In the present embodiment, the sub-fields SF2 to SF4 other than the sub-field SF1 corresponding to the island-shaped non-exposed portion are also divided, for the following reason. (1) Sub-field of view SF2, SF4 Assuming that the sub-field of view SF2 is not divided into sub-fields of view SF21, SF22, the transmission part of the sub-field of view SF2 is shown in FIG.
Has a similar shape to the exposed portion EP2 shown in FIG. In this case, it is necessary to provide a scatterer similar in shape to the non-exposure portion NE20 sandwiched between the pair of exposure portions EP2 in the sub-field of view SF2, and the ratio L / W of the total length L and the width W of the scatterer is not exposed. It is equal to the ratio L '/ W' of the total length L 'to the width W' of the portion NE20. An elongated scatterer having a ratio L / W of a certain value or more is supported by other scatterers only at both ends or one end thereof, and a large thermal displacement occurs at an intermediate portion and a free end due to a temperature rise due to irradiation of a charged particle beam. However, the exposure accuracy is greatly reduced due to the thermal displacement. FIG.
In the example of (b), the largest displacement occurs in the corner portion K of the non-exposed portion NE20. Therefore, the sub-field of view SF2 is changed as shown in FIG.
The scatterer is divided as shown in FIG.
W was restricted to within a certain value. The same applies to the sub-field of view SF4.

【0035】(2)副視野SF3 副視野SF3を副視野構成部SF31,SF32に分割しな
いと仮定したとき、副視野SF3の透過部は図9(b)
に示す露光部EP3と相似形状となるため、副視野SF
3のパターン充填率、すなわち透過部の面積A1と副視
野SF3の面積A0の比A1/A0は100%に接近す
る。副視野SFに照射される荷電粒子線のビーム電流が
一定とすれば、感光基板上に到達するビーム電流はパタ
ーン充填率が大きいほど増加する。ビーム電流が大きく
なると、空間電荷効果により荷電粒子線の焦点位置が遠
方へ移動して感光基板上でのビームのボケが無視できな
いほど大きくなり、露光精度が低下する。これを避ける
にはパターン充填率が最大の副視野でもビームのボケが
無視し得るほど小さくなるように電子銃からのビーム電
流を低下させる必要があるが、この場合にはパターン充
填率が最も小さくなる副視野の露光時に感光基板へ到達
するビーム電流が極めて低下し、露光時間が長時間化し
てスループットが大きく低下する。そこで、本実施例で
は、副視野毎のパターン充填率のばらつきを抑えて大き
なビーム電流で露光を行なうため、特にパターン充填率
が大きくなる副視野SF3を副視野構成部SF31,SF
32に分割して分割後の副視野SF3のパターン充填率を
50%以内に制限した。
(2) Sub-field SF3 Assuming that the sub-field SF3 is not divided into sub-field components SF31 and SF32, the transmission part of the sub-field SF3 is shown in FIG.
Has a similar shape to the exposure part EP3 shown in FIG.
The pattern filling ratio of 3, that is, the ratio A1 / A0 of the area A1 of the transmitting portion and the area A0 of the sub-field of view SF3 approaches 100%. Assuming that the beam current of the charged particle beam applied to the sub-field of view SF is constant, the beam current reaching the photosensitive substrate increases as the pattern filling rate increases. When the beam current increases, the focal position of the charged particle beam moves to a distant position due to the space charge effect, and the blur of the beam on the photosensitive substrate becomes so large that it cannot be ignored. In order to avoid this, it is necessary to reduce the beam current from the electron gun so that the beam blur is negligibly small even in the subfield of view where the pattern filling rate is the maximum, but in this case, the pattern filling rate is the smallest. The beam current that reaches the photosensitive substrate during the exposure of the sub-field of view becomes extremely low, and the exposure time is prolonged, thereby greatly reducing the throughput. Therefore, in this embodiment, in order to perform the exposure with a large beam current while suppressing the variation in the pattern filling rate for each sub-field, the sub-field SF3 in which the pattern filling rate is particularly large is connected to the sub-field forming sections SF31 and SF.
The pattern filling rate of the sub-field of view SF3 after division into 32 parts was limited to 50% or less.

【0036】なお、本実施例では副視野SFの分割のみ
で島状の非露光部に対処したが、島状の散乱体を境界部
材に支持させる第1実施例と組合わせてよいことは勿論
である。図6に示した透過部21の形状はあくまで一例
であって、実際のLSIの回路パターンを示すものでは
ない。
In this embodiment, the island-shaped non-exposed portion is dealt with only by dividing the sub-field of view SF. However, it is needless to say that the present embodiment may be combined with the first embodiment in which the island-shaped scatterer is supported by the boundary member. It is. The shape of the transmission section 21 shown in FIG. 6 is merely an example, and does not show an actual LSI circuit pattern.

【0037】[0037]

【発明の効果】以上説明したように、請求項1の発明で
は、島状の非露光部を形成するための散乱体が境界部材
に支持されるので、散乱体を支持する薄膜が不要とな
り、薄膜の製造、保守の手間がすべて解消される。散乱
体を薄膜での支持に備えて薄くする必要がないので、散
乱体を熱容量の大きな軽原子材料により十分に厚く形成
して露光中の熱膨張を抑制し、露光精度の向上を図るこ
とができるとともに、散乱体の剛性を向上させることも
できる。散乱体を支持する薄膜を省略できるので、散乱
体同士の隙間を通過する荷電粒子線の散乱がなくなり、
感光基板に到達するビーム電流が増加して高スループッ
トが期待できる。境界部材と散乱体を同一材料で形成し
てマスクの保守管理に要する手間を軽減できる。
As described above, according to the first aspect of the present invention, since the scatterer for forming the island-shaped non-exposed portion is supported by the boundary member, a thin film for supporting the scatterer is unnecessary. Eliminates the labor of manufacturing and maintaining thin films. Since it is not necessary to make the scatterer thin in preparation for supporting it with a thin film, the scatterer can be formed sufficiently thick from a light atomic material with a large heat capacity to suppress thermal expansion during exposure and improve exposure accuracy. In addition to this, the rigidity of the scatterer can be improved. Since the thin film supporting the scatterers can be omitted, the scattering of the charged particle beam passing through the gap between the scatterers is eliminated,
The beam current reaching the photosensitive substrate increases, and high throughput can be expected. By forming the boundary member and the scatterer with the same material, the labor required for maintenance and management of the mask can be reduced.

【0038】請求項2の発明では、多重露光を行なう副
視野の数が最小限に止められ、スループットが一層向上
する。
According to the second aspect of the present invention, the number of sub-fields for performing multiple exposure is minimized, and the throughput is further improved.

【0039】請求項3の発明では、長さLと幅Wの比L
/Wが大きな散乱体をマスク上から排除して露光精度の
向上を図ることができる。また、請求項4の発明では空
間電荷効果によるビームのボケが無視できないほどに大
きくなるパターン充填率の高い副視野の発生を防止し、
露光精度およびスループットの改善を図ることが可能と
なる。請求項5では、島状あるいは半島状の非露光部が
残留する副視野は2つの副視野構成部に分割されるの
で、非露光部を形成するための透過部を各副視野構成部
に分割して形成することで、宙に浮いた状態の散乱体の
発生を防止することができる。
According to the third aspect of the invention, the ratio L of the length L to the width W is L
It is possible to improve the exposure accuracy by excluding scatterers having a large / W from the mask. According to the fourth aspect of the present invention, it is possible to prevent the occurrence of a sub-field having a high pattern filling rate in which the beam blur due to the space charge effect becomes so large that it cannot be ignored.
Exposure accuracy and throughput can be improved. According to the fifth aspect, the sub-field in which the island-shaped or peninsula-shaped non-exposed portion remains is divided into two sub-field components, so that the transmission portion for forming the non-exposed portion is divided into each sub-field component. By forming the scatterers, it is possible to prevent the generation of scatterers floating in the air.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例におけるマスクの視野分割
位置と感光基板に形成される島状の非露光部との位置関
係を示す図。
FIG. 1 is a diagram showing a positional relationship between a field-of-view division position of a mask and an island-shaped non-exposed portion formed on a photosensitive substrate in a first embodiment of the present invention.

【図2】図1のII部におけるマスクの平面図。FIG. 2 is a plan view of a mask in a part II in FIG. 1;

【図3】図2に示すマスクのIII−III線における断面図
(a)と、対応する感光基板の露光形状(b)とを示す
図。
3A is a cross-sectional view of the mask shown in FIG. 2 along the line III-III, and FIG. 3B is a view showing a corresponding exposure shape of a photosensitive substrate.

【図4】図1に示す副視野SFDを複数の副視野構成部
に分割した状態(a)と、対応する感光基板の露光形状
(b)とを示す図。
Shows [4] in a state where the subfield SF D shown in FIG. 1 was divided into a plurality of subfields constituting unit (a), the exposure shape of the corresponding photosensitive substrate and (b).

【図5】図2の変形例を示す図。FIG. 5 is a view showing a modification of FIG. 2;

【図6】本発明の第2実施例におけるマスクの主視野を
示す図。
FIG. 6 is a diagram showing a main field of view of a mask according to a second embodiment of the present invention.

【図7】図6に示す副視野SF1を複数の副視野構成部
に分割した状態(a)と、対応する感光基板の露光形状
(b)とを示す図。
FIG. 7 is a view showing a state (a) in which the sub-field of view SF1 shown in FIG. 6 is divided into a plurality of sub-field-of-view components, and a corresponding exposure shape (b) of the photosensitive substrate.

【図8】図6に示す副視野SF2を複数の副視野構成部
に分割した状態(a)と、対応する感光基板の露光形状
(b)とを示す図。
FIG. 8 is a view showing a state (a) in which the sub-field of view SF2 shown in FIG. 6 is divided into a plurality of sub-field-of-view components, and a corresponding exposure shape (b) of the photosensitive substrate.

【図9】図6に示す副視野SF3を複数の副視野構成部
に分割した状態(a)と、対応する感光基板の露光形状
(b)とを示す図。
9 is a view showing a state (a) in which the sub-field of view SF3 shown in FIG. 6 is divided into a plurality of sub-field-of-view components, and a corresponding exposure shape (b) of the photosensitive substrate.

【図10】図6に示す副視野SF4を複数の副視野構成
部に分割した状態(a)と、対応する感光基板の露光形
状(b)とを示す図。
FIG. 10 is a diagram showing a state (a) in which the sub-field of view SF4 shown in FIG. 6 is divided into a plurality of sub-field-of-view components, and a corresponding exposure shape (b) of the photosensitive substrate.

【図11】荷電粒子線露光装置の概略を示す図。FIG. 11 is a view schematically showing a charged particle beam exposure apparatus.

【図12】マスクの視野分割の例を示す図。FIG. 12 is a diagram showing an example of field division of a mask.

【図13】マスクと感光基板の露光時の移動を示す図。FIG. 13 is a view showing movement of a mask and a photosensitive substrate during exposure.

【図14】感光基板上に形成される島状の非露光部とこ
れに対応するマスクの副視野とを示す図。
FIG. 14 is a diagram showing an island-shaped non-exposed portion formed on a photosensitive substrate and a corresponding subfield of view of a mask.

【符号の説明】 10,20 マスク 11 境界部材 12,22 散乱体 13,13a,13b 荷電粒子線を透過させるスリッ
ト 21 荷電粒子線の透過部 120 島状の非露光部を形成するための散乱体 EP,EP1 島状の非露光部の周囲の露光部 MF 主視野 NE,NE1,NE2,NE3,NE4,NE5 島状
の非露光部 SF 副視野 SFD,SF1 島状の非露光部に対応する副視野 SFD1,SFD2,SF11,SF12 副視野構成部
DESCRIPTION OF SYMBOLS 10, 20 Mask 11 Boundary member 12, 22 Scattering body 13, 13a, 13b Slit for transmitting charged particle beam 21 Transmission part of charged particle beam 120 Scattering body for forming island-shaped non-exposed part EP, EP1 Exposure portion around island-shaped non-exposed portion MF Main field of view NE, NE1, NE2, NE3, NE4, NE5 Island-shaped non-exposed portion SF Sub-field of view SF D , SF1 Corresponds to island-shaped non-exposed portion Sub field of view SF D1 , SF D2 , SF11, SF12 Sub field of view

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 荷電粒子線で照射されるマスク上に1以
上の主視野を設定し、この主視野を複数の副視野に分割
し、分割された前記副視野毎に感光基板への露光を繰り
返して前記主視野の全体を露光する荷電粒子線露光装置
において、前記マスクに照射される荷電粒子線を散乱さ
せて前記感光基板上に島状の非露光部を形成させる散乱
体を、前記副視野の境界に設けられた境界部材に支持さ
せたことを特徴とする荷電粒子線露光装置。
1. A method according to claim 1, wherein one or more main fields of view are set on a mask irradiated with a charged particle beam, and the main field of view is divided into a plurality of sub-fields of view. In a charged particle beam exposure apparatus that repeatedly exposes the entire main field of view, a scatterer that scatters a charged particle beam applied to the mask to form an island-shaped non-exposed portion on the photosensitive substrate is formed by using the auxiliary A charged particle beam exposure apparatus characterized by being supported by a boundary member provided at a boundary of a visual field.
【請求項2】 請求項1記載の荷電粒子線露光装置にお
いて、 前記感光基板上に形成すべき島状の非露光部に対応する
副視野を単一のマスク上にて複数の副視野構成部に分割
し、これら複数の副視野構成部には前記島状の非露光部
の周囲の露光部を形成するための荷電粒子線の透過部を
分割して形成し、分割された副視野構成部に形成された
前記透過部に対応するパターンを前記感光基板上の同一
領域に転写して当該領域に島状の非露光部を形成するこ
とを特徴とする荷電粒子線露光装置。
2. The charged particle beam exposure apparatus according to claim 1, wherein a plurality of sub-fields corresponding to island-shaped non-exposed portions to be formed on the photosensitive substrate are formed on a single mask. The plurality of sub-field-of-view component parts are formed by dividing and transmitting a charged particle beam transmission part for forming an exposed part around the island-shaped non-exposure part. A charged particle beam exposure apparatus, wherein a pattern corresponding to the transmissive portion formed on the photosensitive substrate is transferred to the same region on the photosensitive substrate to form an island-shaped non-exposed portion in the region.
【請求項3】 荷電粒子線で照射されるマスク上に1以3. The method according to claim 1, wherein the mask is irradiated with a charged particle beam.
上の主視野を設定し、この主視野を複数の副視野に分割Set the upper main field of view and divide this main field of view into multiple sub-fields of view
し、分割された前記副視野毎に露光を繰り返して前記主The exposure is repeated for each of the divided sub-fields of view, and the
視野の全体を露光する荷電粒子線露光装置において、In a charged particle beam exposure apparatus that exposes the entire field of view, 前記副視野のうち、長さLと幅Wの比L/Wが所定の許In the sub-field of view, the ratio L / W of the length L to the width W is within a predetermined range.
容値よりも大きくなる散乱体が生じる副視野を単一のマA single field of view is created where the scatterers that are larger than
スク上にて複数の副視野構成部に分割し、分割された複Divide into multiple sub-field components on the disc, and
数の副視野構成部に形成された荷電粒子線の透過部に対To the transmission part of the charged particle beam formed in
応するパターンを前記感光基板上の同一領域に転写するTransfer the corresponding pattern to the same area on the photosensitive substrate
ことを特徴とする荷電粒子線露光装置。A charged particle beam exposure apparatus characterized in that:
【請求項4】 荷電粒子線で照射されるマスク上に1以4. The method according to claim 1, wherein one or more masks are irradiated with the charged particle beam.
上の主視野を設定し、この主視野を複数の副視野に分割Set the upper main field of view and divide this main field of view into multiple sub-fields of view
し、分割された前記副視野毎に露光を繰り返して前記主The exposure is repeated for each of the divided sub-fields of view, and the
視野の全体を露光する荷電粒子線露光装置において、In a charged particle beam exposure apparatus that exposes the entire field of view, 前記副視野のうち、副視野構成部への分割をしないと仮If the sub-view is not divided into sub-view constituents,
定した場合のパターン充填率が所定の許容値よりも大きPattern filling rate is greater than the specified tolerance
くなる副視野を単一のマスク上にて複数の副視野構成部Multiple sub-field components on a single mask
に分割し、分割された複数の副視野構成部に形成されたDivided into a plurality of divided sub-field-of-view components
荷電粒子線の透過部に対応するパターンを前記感光基板The pattern corresponding to the transmission part of the charged particle beam is formed on the photosensitive substrate.
上の同一領域に転写することを特徴とする荷電粒子線露Charged particle beam exposure characterized by being transferred to the same area above
光装置。Light device.
【請求項5】 荷電粒子線で照射されるマスク上に1以5. The method according to claim 1, wherein the mask is irradiated with a charged particle beam.
上の主視野を設定し、この主視野を複数の副視野に分割Set the upper main field of view and divide this main field of view into multiple sub-fields of view
し、分割された前記副視野毎に感光基板への露光を繰りAnd exposure to the photosensitive substrate is repeated for each of the divided sub-fields of view.
返して前記主視野の全体を露光する荷電粒子線露光方法Charged particle beam exposure method for exposing the entire main field of view
において、At 前記主視野に含まれる島状あるいは半島状の非露光部をIsland-shaped or peninsula-shaped non-exposed portions included in the main field of view
検出し、これらの非露光部の周辺の露光部を形成するたTo detect and form exposed areas around these unexposed areas.
めの荷電粒子線の透過部が少なくとも2つの副視野にまOf the charged particle beam for at least two sub-fields
たがるように、前記副視野の位置または大きさを設定Set the position or size of the sub field of view so that
し、前記設定をしても島状あるいは半島状の非露光部がHowever, even if the above setting is made, non-exposed portions in the form of islands or
残留する副視野については、その副視野を2つの副視野For the remaining sub-fields, the sub-fields are divided into two sub-fields
構成部に分割して、前記2つの副視野構成部に形成されDivided into components and formed into the two sub-field-of-view components
た透過部に対応するパターンを前記感光基板上の同一領The pattern corresponding to the transparent part
域に転写する多重露光により露光を行うことを特徴とすThe exposure is performed by multiple exposure to transfer to the area.
る荷電粒子線露光方法。Charged particle beam exposure method.
JP17061693A 1993-07-09 1993-07-09 Charged particle beam exposure apparatus and charged particle beam exposure method Expired - Fee Related JP3357927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17061693A JP3357927B2 (en) 1993-07-09 1993-07-09 Charged particle beam exposure apparatus and charged particle beam exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17061693A JP3357927B2 (en) 1993-07-09 1993-07-09 Charged particle beam exposure apparatus and charged particle beam exposure method

Publications (2)

Publication Number Publication Date
JPH0729793A JPH0729793A (en) 1995-01-31
JP3357927B2 true JP3357927B2 (en) 2002-12-16

Family

ID=15908174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17061693A Expired - Fee Related JP3357927B2 (en) 1993-07-09 1993-07-09 Charged particle beam exposure apparatus and charged particle beam exposure method

Country Status (1)

Country Link
JP (1) JP3357927B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770863A (en) * 1995-10-24 1998-06-23 Nikon Corporation Charged particle beam projection apparatus
JP2000340492A (en) * 1999-05-28 2000-12-08 Nec Corp Mask for electron beam exposure and manufacture of semiconductor device using the same
WO2002021582A1 (en) * 2000-09-05 2002-03-14 Hoya Corporation Transfer mask, method of dividing pattern of transfer mask, and method of manufacturing transfer mask
WO2003081649A1 (en) * 2002-03-26 2003-10-02 Toppan Printing Co., Ltd. Circuit pattern dividing method, stencil mask manufacturing method, stencil mask, and exposure method

Also Published As

Publication number Publication date
JPH0729793A (en) 1995-01-31

Similar Documents

Publication Publication Date Title
US6004699A (en) Photomask used for projection exposure with phase shifted auxiliary pattern
US6268091B1 (en) Subresolution grating for attenuated phase shifting mask fabrication
US6836365B2 (en) Diffractive optical element, method of fabricating the element, illumination device provided with the element, projection exposure apparatus, exposure method, optical homogenizer, and method of fabricating the optical homogenizer
US5849437A (en) Electron beam exposure mask and method of manufacturing the same and electron beam exposure method
JP2004069841A (en) Mask pattern and resist pattern forming method using the same
JP2001144008A (en) Electron beam exposure method, mask used therefor and electron beam aligner
JP2006100336A (en) Electron beam exposure mask, electron beam exposure method and device
CN101305319A (en) Photomask and method for forming a non-orthogonal feature on the same
JP3123547B2 (en) Exposure method and exposure apparatus
US5876881A (en) Manufacturing method for mask for charged-particle-beam transfer or mask for x-ray transfer
JP3357927B2 (en) Charged particle beam exposure apparatus and charged particle beam exposure method
KR19980071487A (en) Phase shift mask, exposure method and spherical aberration measurement method
JPH08236428A (en) Method for exposing charged particle beam and mask used therefor
JP2897299B2 (en) Phase shift mask, method of manufacturing phase shift mask, and method of manufacturing semiconductor device using phase shift mask
JP3363787B2 (en) Exposure method and exposure apparatus
JP2001296646A (en) Photomask, method for producing the same, exposure method and aligner
US6201598B1 (en) Charged-particle-beam microlithographic exposure apparatus and reticles for use with same
JPH08288211A (en) Method and apparatus for projection exposure
JP3070520B2 (en) Photomask and exposure method
US6440614B1 (en) Mask and method of manufacturing semiconductor device
US8178280B2 (en) Self-contained proximity effect correction inspiration for advanced lithography (special)
JPH11329948A (en) Electron beam transfer method
JP3790872B2 (en) Charged particle beam transfer mask
JPH0844039A (en) Phase shift mask of halftone system and resist exposing method
US6300023B1 (en) Microlithographic pattern-transfer methods for large segmented reticles, and device manufacturing methods using same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees